1
|
Zhou C, Xu X, Peng Y, Wang G, Liu H, Jin Q, Jia R, Ma J, Kinouchi T, Wang G. Response of sulfate concentration to eutrophication on spatio-temporal scale in freshwater lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176142. [PMID: 39255939 DOI: 10.1016/j.scitotenv.2024.176142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/30/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
The dramatical increase of sulfur concentration in eutrophic lakes, especially sulfate (SO42-), has brought attention to the impact on the lake ecosystem; however, the mechanisms driving the intensification of eutrophication and the role of SO₄2- concentrations remain poorly understood. To assess the impact of eutrophication on SO42- dynamics in lakes, this study monitored SO42- concentrations in water and sediments across seven lakes with varying trophic statuses on a spatial scale, and in the eutrophic Lake Taihu over one year on a temporal scale, as well as a series of microcosms with different initial SO42- concentrations. Exogenous sulfur input is the primary driver of increased SO42- concentrations in lakes, the highest SO42- concentration in overlying water was 100 mg/L, as well as which reached 310.9 mg/L in sediment. The concurrent input of nutrients such as nitrogen and phosphorus exacerbated eutrophication, resulting in the destabilization of the sulfur cycle. Eutrophication promoted the SO42- concentration on the spatio-temporal scale, especially in sediment, and trophic lake index (TLI) showed a positive correlation with the SO42- in sediments (R2 = 0.99; 0.88). The SO42- concentration in water and TLI showed a nonlinear correlation on the temporal scale (R2 = 0.44), and showed a positive correlation on the spatial scale (R2 = 0.49). Microscopic experiments demonstrate that the anaerobic environment created by cyanobacteria decomposition induced sulfate reduction and significantly reduces SO42- concentrations. Concurrently, the anaerobic environment facilitates the coupling of iron reduction with sulfate reduction, leading to a substantial increase in Acid Volatile Sulfides (AVS) in the sediment. These findings reveal that eutrophication has a dual effect on the dynamic change of SO42- concentrations in overlying water, which is helpful to accurately evaluate and predict the change of SO42- concentrations in lakes.
Collapse
Affiliation(s)
- Chuanqiao Zhou
- Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Yu Peng
- Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Guanshun Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Huazu Liu
- Department of Urban and Environmental Engineering, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Qiu Jin
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Ruoyu Jia
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Jie Ma
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210024, China.
| | - Tsuyoshi Kinouchi
- Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
2
|
Tu T, Li L, Li W, Zhang S, Zhong H, Ge G, Ma Y, Wu L. Different patterns of bacterioplankton in response to inorganic and organic phosphorus inputs in freshwater lakes - a microcosmic study. WATER RESEARCH 2024; 268:122645. [PMID: 39461213 DOI: 10.1016/j.watres.2024.122645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/23/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
Phosphorus (P) is a limiting factor in fresh waters and is also the main cause of water eutrophication and deterioration, However, the practical effect of elevated P level on bacterioplankton is less evaluated. In this study, we investigated the bacterioplankton in a 96 hours microcosm experiment with P additions in two forms (organic/inorganic P, OP/IP) and three levels (final conc., 0.040, 0.065 and 0.125 g/L), aiming to find out the response pattern of bacterioplankton in coping with the increasing P levels. Results showed a more dramatic change of water properties and bacterioplankton between P forms (OP and IP) than among the addition levels, and a more remarkable effect of OP addition than the IP. Both OP and IP treatments significantly decreased the water pH, dissolved oxygen (DO), Electrical Conductivity (EC), Nitrate Nitrogen (NO3--N) and Total Organic Carbon (TOC), and reduced the α-diversity of bacterioplankton and relative abundance of Cyanobacteria, but increased the abundance of Proteobacteria. The IP addition decreased Actinobacteria abundance (especially for HgcI) and showed higher denitrification potentials, while the OP addition depressed the Bateroidota and exhibited lowed methylotrophic functions, but such trends decreased with increasing addition concentrations. The network analysis showed that both IP and OP additions increased the proportion of positively correlated edges and reduced the network complexity and stability, but the OP network was more stable than the IP network. The study clarifies the response pattern of bacterioplankton to the P input with different forms and levels, and deepens our understanding of the eutrophication process, which provides a scientific basis for the management and control of freshwater lakes facing eutrophication.
Collapse
Affiliation(s)
- Tianhong Tu
- School of Life Sciences, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330022, China
| | - Le Li
- School of Life Sciences, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330022, China
| | - Wenkai Li
- School of Life Sciences, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330022, China
| | - Shan Zhang
- School of Life Sciences, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330022, China
| | - Hui Zhong
- School of Life Sciences, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330022, China
| | - Gang Ge
- School of Life Sciences, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330022, China
| | - Yantian Ma
- School of Life Sciences, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330022, China.
| | - Lan Wu
- School of Life Sciences, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330022, China.
| |
Collapse
|
3
|
Tang W, Ni R, Wang X, Song L. Different effects of seasonal impoundment and land use change on microbiome in a tributary sediment of the three gorgers reservoir. ENVIRONMENTAL RESEARCH 2024; 259:119559. [PMID: 38969316 DOI: 10.1016/j.envres.2024.119559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
Anthropogenic activities significantly impact river ecosystem nutrient fluxes and microbial metabolism. Here, we examined the seasonal and spatial variation of sediments physicochemical parameters and the associated microbiome in the Pengxi river, a representative tributary of Three Gorges Reservoir, in response to seasonal impoundment and land use change by human activities. Results revealed that seasonal impoundment and land use change enhanced total organic carbon (TOC), total nitrogen (TN) and ammonium nitrogen (NH4+-N) concentration in the sediment, but have different effects on sediment microbiome. Sediment microbiota showed higher similarity during the seasonal high-water level (HWL) in consecutive two years. The abundant phyla Acidobacteria, Gemmatimonadetes, Cyanobacteria, Actinobacteria and Planctomycetes significantly increased as water level increased. Along the changes in bacterial taxa, we also observed changes in predicted carbon fixation functions and nitrogen-related functions, including the significantly higher levels of Calvin cycle, 4HB/3HP cycle, 3HP cycle and assimilatory nitrate reduction, while significantly lower level of denitrification. Though land use change significantly increased TOC, TN and NH4+-N concentration, its effects on spatial variation of bacterial community composition and predicted functions was not significant. The finding indicates that TGR hydrologic changes and land use change have different influences on the carbon and nitrogen fluxes and their associated microbiome in TGR sediments. A focus of future research will be on assessing on carbon and nitrogen flux balance and the associated carbon and nitrogen microbial cycling in TGR sediment.
Collapse
Affiliation(s)
- Wei Tang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Renjie Ni
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Xingzu Wang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| | - Liyan Song
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China.
| |
Collapse
|
4
|
Ouyang H, Chen J, Lin L, Zheng H, Xie C, Wang C, Wang Z. Metabarcoding and co-occurrence network reveal significant effects of mariculture on benthic eukaryotic microalgal community: A case study in Daya Bay of the South China Sea. MARINE POLLUTION BULLETIN 2024; 207:116832. [PMID: 39128232 DOI: 10.1016/j.marpolbul.2024.116832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Benthic eukaryotic microalgae were analyzed by metabarcoding the partial 18S rRNA gene in Daya Bay bi-monthly in 2021. Altogether 941 eukaryotic microalgal OTUs were detected, belonging to 27 classes of 8 phyla. Dinophyta and Chlorophyta were the dominant phyla. Microalgal community in the mariculture zone differed significantly from those in non-mariculture zone, reflected by low alpha diversity indexes and increasing abundance and richness of chlorophytes and correspondingly decreasing of dinoflagellates. The abundant occurrences of the pico- and nano-sized taxa such as the chlorophyte Picochlorum in the mariculture zone suggested that nutrient enrichment might result in the miniaturization of the benthic eukaryotic microalgae. The co-occurrence network suggested more negative interactions between taxa in the mariculture zone. A total of 41 algal bloom and/or harmful algal bloom (HAB) species were detected in this study, suggesting a high potential risk of HABs in Daya Bay, especially for the recurrent bloom species Scrippsiella acuminata.
Collapse
Affiliation(s)
- Hong Ouyang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jiazhuo Chen
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lanping Lin
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hu Zheng
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Changliang Xie
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Chaofan Wang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhaohui Wang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
5
|
Xue H, Wan W, Zhang W, Geng J, Li S, Yang Y. Eutrophication-induced shifts cause diverse responses in the phoD community of a plateau freshwater lake. ENVIRONMENTAL RESEARCH 2024; 263:119947. [PMID: 39276827 DOI: 10.1016/j.envres.2024.119947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Eutrophication is a critical environmental challenge affecting lakes globally. Mitigating trophic level under endogenous phosphorus release is an unsolved problem in eutrophic lakes. However, understanding the dynamics and assembly of microbial communities encoding the alkaline phosphatase (phoD community) and their responses during trophic transitions in eutrophic lakes is limited. In this study, we compared the composition and assembly mechanisms of phoD communities in four seasons in the Yilong Lake, a shallow lake of the Yunnan-Guizhou Plateau. The lake exhibits slightly eutrophic conditions in summer and mesotrophic conditions in spring, autumn, and winter. By analyzing seasonal variations, we observed that during summer, the relative abundance of Pseudomonas in the water had the highest value, while the Shannon-Wiener index of phoD communities was lowest. Mantel tests showed an increased Bray-Curtis dissimilarity of phoD communities in the water with rising eutrophication, a trend not observed in sediment. Notably, eutrophication heightened the homogeneity selection governing the assembly of phoD communities in water. The co-occurrence networks showed that the OTUs in the summer exhibited closer interconnections than those in other seasons. Additionally, the topological parameters from networks indicated that eutrophication is poised to instigate changes and modulate the dynamics of the microbial phoD community, resulting in markedly distinct seasonal behaviors. pH was identified as a critical factor directly influencing phoD community diversity via partial least squares path modeling (PLS-PM). This study shed light on our understanding of the seasonal dynamics of phoD communities and their pivotal role in phosphorus cycling in eutrophic lakes.
Collapse
Affiliation(s)
- Hui Xue
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjie Wan
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, the Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, China
| | - Weihong Zhang
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, the Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, China
| | - Jun Geng
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyue Li
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yuyi Yang
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, the Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, China.
| |
Collapse
|
6
|
Freches A, Fradinho JC. The biotechnological potential of the Chloroflexota phylum. Appl Environ Microbiol 2024; 90:e0175623. [PMID: 38709098 PMCID: PMC11218635 DOI: 10.1128/aem.01756-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024] Open
Abstract
In the next decades, the increasing material and energetic demand to support population growth and higher standards of living will amplify the current pressures on ecosystems and will call for greater investments in infrastructures and modern technologies. A valid approach to overcome such future challenges is the employment of sustainable bio-based technologies that explore the metabolic richness of microorganisms. Collectively, the metabolic capabilities of Chloroflexota, spanning aerobic and anaerobic conditions, thermophilic adaptability, anoxygenic photosynthesis, and utilization of toxic compounds as electron acceptors, underscore the phylum's resilience and ecological significance. These diverse metabolic strategies, driven by the interplay between temperature, oxygen availability, and energy metabolism, exemplify the complex adaptations that enabled Chloroflexota to colonize a wide range of ecological niches. In demonstrating the metabolic richness of the Chloroflexota phylum, specific members exemplify the diverse capabilities of these microorganisms: Chloroflexus aurantiacus showcases adaptability through its thermophilic and phototrophic growth, whereas members of the Anaerolineae class are known for their role in the degradation of complex organic compounds, contributing significantly to the carbon cycle in anaerobic environments, highlighting the phylum's potential for biotechnological exploitation in varying environmental conditions. In this context, the metabolic diversity of Chloroflexota must be considered a promising asset for a large range of applications. Currently, this bacterial phylum is organized into eight classes possessing different metabolic strategies to survive and thrive in a wide variety of extreme environments. This review correlates the ecological role of Chloroflexota in such environments with the potential application of their metabolisms in biotechnological approaches.
Collapse
Affiliation(s)
- André Freches
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
- Department of Chemistry, UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Joana Costa Fradinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
- Department of Chemistry, UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| |
Collapse
|
7
|
Wang H, Wang Z, Yu J, Ma C, Liu L, Xu D, Zhang J. The function and keystone microbiota in typical habitats under the influence of anthropogenic activities in Baiyangdian Lake. ENVIRONMENTAL RESEARCH 2024; 247:118196. [PMID: 38253195 DOI: 10.1016/j.envres.2024.118196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/18/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
Microbe is an essential driver in regulating the biochemical cycles of carbon, nitrogen, and sulfur. In freshwater lake, microbial communities and functions are influenced by multiple factors, especially anthropogenic activities. Baiyangdian Lake consisted of various habitats, and was frequently interfered with human activities. In this study, 16 S rRNA sequencing and metagenomic sequencing were performed to characterize the microbial communities, determine keystone taxa and reveal dominated metabolic functions in typical habitats in Baiyangdian Lake. The results showed that the diversity of microbial community was significantly higher in sediment compared with corresponding water sample. Microbial community showed strong spatial heterogeneity in sediment, and temporal heterogeneity in water. As for different habitats, significantly higher alpha diversity was observed in ecotone, where the interference of human activities was relatively weak. The shared OTUs were distinguished from the keystone taxa, which indicated the uniqueness of microbiota in different ecological habitat. Moreover, the interactions of microbial in ecological restoration area (abandoned fish pond) were relatively simple, suggesting that this ecosystem was relatively fragile compared with others. Based on the metagenomic sequencing, we recognized that the canal, open water, and abandoned fish pond were beneficial for methanogenic and the ecotone might be a hot zone for the oxidation of methane. Notably, most of the microbes that participated in these predominant metabolisms were unclassified, which indicated the hug potential for exploring functional microorganisms in Baiyangdian Lake. This study provided a comprehensive understanding of the ecology characteristics of microbiota in habitats undergoing various human interference in Baiyangdian Lake.
Collapse
Affiliation(s)
- Hongjie Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; College of Life Science, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Zhixin Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China
| | - Jie Yu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Congli Ma
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; College of Life Science, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Ling Liu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Dong Xu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China
| | - Jing Zhang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; College of Life Science, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China.
| |
Collapse
|
8
|
Ma J, Yao Z, Zhang M, Gao J, Li W, Yang W. Microbial and environmental medium-driven responses to phosphorus fraction changes in the sediments of different lake types during the freezing period. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25147-25162. [PMID: 38468006 DOI: 10.1007/s11356-024-32798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/03/2024] [Indexed: 03/13/2024]
Abstract
The comparative study of the transformation among sediment phosphorus (P) fractions in different lake types is a global issue in lake ecosystems. However, interactions between sediment P fractions, environmental factors, and microorganisms vary with the nutrient status of lakes. In this study, we combine sequential extraction and metagenomics sequencing to assess the characteristics of P fractions and transformation in sediments from different lake types in the Inner Mongolian section of the Yellow River Basin. We then further explore the response of relevant microbial and environmental drivers to P fraction transformation and bioavailability in sediments. The sediments of all three lakes exhibited strong exogenous pollution input characteristics, and higher nutritional conditions led to enhanced sediment P fraction transformation ability. The transformation capacity of the sediment P fractions also differed among the different lake types at the same latitudes, which is affected by many factors such as lake environmental factors and microorganisms. Different drivers reflected the mutual control of weakly adsorbed phosphorus (WA-P), potential active phosphorus (PA-P), Fe/Al-bound phosphorus (NaOH-P), and Ca-bound phosphorus (HCl-P) with the bio-directly available phosphorus (Bio-P). The transformation of NaOH-P in reducing environments can improve P bioavailability, while HCl-P is not easily bioavailable in weakly alkaline environments. There were significant differences in the bacterial community diversity and composition between the different lake types at the same latitude (p < 0.05), and the role of P fractions was stronger in the sediments of lakes with rich biodiversity than in poor biodiversity. Lake eutrophication recovery was somewhat hindered by the microbial interactions of P cycling and P fractions within the sediment. This study provides data and theoretical support for exploring the commonalities and differences among different lake types in the Inner Mongolian section of the Yellow River Basin. Besides, it is representative and typical for promoting the optimization of ecological security patterns in ecologically fragile watersheds.
Collapse
Affiliation(s)
- Jie Ma
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014000, China
- Autonomous Region Level Ecological Protection and Comprehensive Utilization Cooperative Innovation Center for the Inner Mongolia Section of the Yellow River Basin, Baotou, 014000, China
| | - Zhi Yao
- Autonomous Region Level Ecological Protection and Comprehensive Utilization Cooperative Innovation Center for the Inner Mongolia Section of the Yellow River Basin, Baotou, 014000, China
- School of Mining and Coal, Inner Mongolia University of Science and Technology, Baotou, 014000, China
| | - Mingyu Zhang
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014000, China
- Autonomous Region Level Ecological Protection and Comprehensive Utilization Cooperative Innovation Center for the Inner Mongolia Section of the Yellow River Basin, Baotou, 014000, China
| | - Jingtian Gao
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014000, China
- Autonomous Region Level Ecological Protection and Comprehensive Utilization Cooperative Innovation Center for the Inner Mongolia Section of the Yellow River Basin, Baotou, 014000, China
| | - Weiping Li
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014000, China
- Autonomous Region Level Ecological Protection and Comprehensive Utilization Cooperative Innovation Center for the Inner Mongolia Section of the Yellow River Basin, Baotou, 014000, China
| | - Wenhuan Yang
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014000, China.
- Autonomous Region Level Ecological Protection and Comprehensive Utilization Cooperative Innovation Center for the Inner Mongolia Section of the Yellow River Basin, Baotou, 014000, China.
| |
Collapse
|
9
|
Chen J, Zhang J, Wang C, Wang P, Gao H, Zhang B, Feng B. Nitrate input inhibited the biodegradation of erythromycin through affecting bacterial network modules and keystone species in lake sediments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120530. [PMID: 38452622 DOI: 10.1016/j.jenvman.2024.120530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/01/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Antibiotic contamination and excessive nitrate loads are generally concurrent in aquatic ecosystems. However, little is known about the effects of nitrate input on the biodegradation of antibiotics. In this study, the effects of nitrate input on microbial degradation of erythromycin, a typical macrolide antibiotic widely detected in lake sediments, were investigated. The results showed that the nitrate input significantly inhibited the erythromycin removal and such an inhibitory effect was strengthened with the increased input dosages. Nitrate input significantly increased sediment nitrite concentration, indicating enhanced denitrification under high nitrate pressure. Bacterial network module and keystone species analysis showed that nitrate input enriched the keystone species involved in denitrification (e.g., Simplicispira and Denitratisoma). In contrast, some potential erythromycin-degrading bacteria (e.g., Desulfatiglandales, Pseudomonadales, Nitrospira) were inhibited by nitrate input. The variations in dominant bacterial groups implied competition between denitrification and erythromycin degradation in response to nitrate input. Based on the partial least squares path modeling analysis, keystone species (total effect: 0.419) and bacterial module (total effect: 0.403) showed strong association with erythromycin removal percentage. This indicated that the inhibitory effect of nitrate input on erythromycin degradation was mainly explained by bacterial network modules and keystone species. These findings will help us to assess the bioremediation potential of antibiotic-contaminated sediments suffering from excessive nitrogen discharge concurrently.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Jingjing Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Bo Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Bingbing Feng
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| |
Collapse
|
10
|
Manirakiza B, Zhang S, Addo FG, Yu M, Alklaf SA. Interactions between water quality and microbes in epiphytic biofilm and superficial sediment of lake in trophic agriculture area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169321. [PMID: 38103607 DOI: 10.1016/j.scitotenv.2023.169321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/05/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Epiphytic and superficial sediment biofilm-dwelling microbial communities play a pivotal role in water quality regulation and biogeochemical cycling in shallow lakes. However, the interactions are far from clear between water physicochemical parameters and microbial community on aquatic plants and in surface sediments of lake in trophic agriculture area. This study employed Illumina sequencing, Partial Least Squares Path Modeling (PLS-PM), and physico-chemical analytical methods to explore the interactions between water quality and microbes (bacteria and eukaryotes) in three substrates of trophic shallow Lake Cyohoha North, Rwanda. The Lake Cyohoha was significantly polluted with total phosphorus (TP), total nitrogen (TN), nitrate nitrogen (NO3-N), and ammonia nitrogen (NH3-N) in the wet season compared to the dry season. PLS-PM revealed a strong positive correlation (+0.9301) between land use types and physico-chemical variables in the rainy season. In three substrates of the trophic lake, Proteobacteria, Cyanobacteria, Firmicutes, and Actinobacteria were dominant phyla in the bacterial communities, and Rotifers, Platyhelminthes, Gastrotricha, and Ascomycota dominated in microeukaryotic communities. As revealed by null and neutral models, stochastic processes predominantly governed the assembly of bacterial and microeukaryotic communities in biofilms and surface sediments. Network analysis revealed that the microbial interconnections in Ceratophyllum demersum were more stable and complex compared to those in Eichhornia crassipes and sediments. Co-occurrence network analysis (|r| > 0.7, p < 0.05) revealed that there were complex interactions among physicochemical parameters and microbes in epiphytic and sediment biofilms, and many keystone microbes on three substrates played important role in nutrients removal, food web and microbial community stable. These findings emphasize that eutrophic water influence the structure, composition, and interactions of microbes in epiphytic and surface sediment biofilms, and provided new insights into the interconnections between water quality and microbial community in presentative substrates in tropical lacustrine ecosystems in agriculturally polluted areas. The study provides useful information for water quality protection and aquatic plants restoration for policy making and catchment management.
Collapse
Affiliation(s)
- Benjamin Manirakiza
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; University of Rwanda (UR), College of Science and Technology (CST), Department of Biology, 3900, Kigali, Rwanda
| | - Songhe Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China.
| | - Felix Gyawu Addo
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Ma Yu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Salah Alden Alklaf
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
11
|
Wang Z, Ruan X, Li R, Zhang Y. Microbial interaction patterns and nitrogen cycling regularities in lake sediments under different trophic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167926. [PMID: 37863216 DOI: 10.1016/j.scitotenv.2023.167926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
Exploring how nitrogen (N) cycling microbes interact in eutrophic lake sediments and how biogenic elements influence the nitrogen cycle is crucial for understanding biogeochemical cycles and nitrogen accumulation mechanisms. In this study, sediment samples were collected from various areas of Taihu Lake with different trophic conditions in all four seasons from 2015 to 2017. Using high-throughput sequencing and molecular ecological network analysis, we investigated the microbial interaction patterns and the role of nitrogen cycling in sediments from lakes with different trophic conditions. The results showed distinct structures of sediment microbial networks between lake areas with different trophic conditions. In the more eutrophic region, network indices indicate higher transfer efficiency of energy, material, and information, more significant competition, and weaker niche differentiation of the microbial community. The sedimentary environment in the moderately eutrophic area exhibited greater potential for denitrification, nitrification, and anammox compared to the mesotrophic area, but the inhibition between N functional microbes and limitations in N removal processes were also more likely to occur. The topological structure of the networks showed that the carbon (C), sulfur (S), and iron (Fe) cycles had a strong influence on the nitrogen cycle in both lake areas. In the moderately eutrophic lake area, C- and S-cycling functional bacteria facilitated a closed cycle of the coupled N fixation-nitrification-DNRA (dissimilatory nitrate reduction to ammonium) process and reduced N removal. In the mesotrophic lake area, C- and S-cycling functional bacteria promoted both N fixation and mineralization, and Fe-cycling functional bacteria coupled with denitrifiers enhanced the nitrogen removal process of products from nitrogen fixation and mineralization. This study improved the understanding of the nitrogen cycling mechanism in lake sediments under different trophic conditions.
Collapse
Affiliation(s)
- Ziwei Wang
- Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China; MOE Key Laboratory of Surficial Geochemistry, Nanjing University, Nanjing 210023, China
| | - Xiaohong Ruan
- Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China; MOE Key Laboratory of Surficial Geochemistry, Nanjing University, Nanjing 210023, China.
| | - Rongfu Li
- Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China; MOE Key Laboratory of Surficial Geochemistry, Nanjing University, Nanjing 210023, China
| | - Yaping Zhang
- Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China; MOE Key Laboratory of Surficial Geochemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
12
|
Xie C, Ouyang H, Zheng H, Wang M, Gu J, Wang Z, Tang Y, Xiao L. Community structure and association network of prokaryotic community in surface sediments from the Bering-Chukchi shelf and adjacent sea areas. Front Microbiol 2024; 14:1312419. [PMID: 38264483 PMCID: PMC10803617 DOI: 10.3389/fmicb.2023.1312419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
The Bering-Chukchi shelf is one of the world's most productive areas and characterized by high benthic biomass. Sedimentary microbial communities play a crucial role in the remineralization of organic matter and associated biogeochemical cycles, reflecting both short-term changes in the environment and more consistent long-term environmental characteristics in a given habitat. In order to get a better understanding of the community structure of sediment-associated prokaryotes, surface sediments were collected from 26 stations in the Bering-Chukchi shelf and adjacent northern deep seas in this study. Prokaryote community structures were analyzed by metabarcoding of the 16S rRNA gene, and potential interactions among prokaryotic groups were analyzed by co-occurrence networks. Relationships between the prokaryote community and environmental factors were assessed. Gammaproteobacteria, Alphaproteobacteria, and Flavobacteriia were the dominant bacterial classes, contributing 35.0, 18.9, and 17.3% of the bacterial reads, respectively. The phototrophic cyanobacteria accounted for 2.7% of the DNA reads and occurred more abundantly in the Bering-Chukchi shelf. Prokaryotic community assemblages were different in the northern deep seas compared to the Bering-Chukchi shelf, represented by the lowered diversity and the increased abundant operational Taxonomic Units (OTU), suggesting that the abundant taxa may play more important roles in the northern deep seas. Correlation analysis showed that latitude, water depth, and nutrients were important factors affecting the prokaryote community structure. Abundant OTUs were distributed widely in the study area. The complex association networks indicated a stable microbial community structure in the study area. The high positive interactions (81.8-97.7%) in this study suggested that symbiotic and/or cooperative relationships accounted for a dominant proportion of the microbial networks. However, the dominant taxa were generally located at the edge of the co-occurrence networks rather than in the major modules. Most of the keystone OTUs were intermediately abundant OTUs with relative reads between 0.01 and 1%, suggesting that taxa with moderate biomass might have considerable impacts on the structure and function of the microbial community. This study enriched the understanding of prokaryotic community in surface sediments from the Bering-Chukchi shelf and adjacent sea areas.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhaohui Wang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yali Tang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Lijuan Xiao
- College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
13
|
Zhang X, Chen G, Kang J, Bello A, Fan Z, Liu P, Su E, Lang K, Ma B, Li H, Xu X. β-Glucosidase-producing microbial community in composting: Response to different carbon metabolic pressure influenced by biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119506. [PMID: 37951109 DOI: 10.1016/j.jenvman.2023.119506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/12/2023] [Accepted: 10/27/2023] [Indexed: 11/13/2023]
Abstract
Poor management of agricultural waste will cause a lot of environment pollution and the composting process is one of the most effective measures for resource reuse of agricultural waste. β-Glucosidase-producing microbial communities play a vital role in cellulose degradation during composting and regulate cellulase production via differentially expressed glucose/non-glucose tolerant β-glucosidase genes. Biochar is widely used as an amendment in compost to accelerate cellulose degradation during composting. However, Biochar-mediated impacts on β-glucosidase-producing microbial communities in compost are unclear. Here, different carbon metabolism pressures were set in natural and biochar compost to elucidate the regulation mechanism and interaction of the β-glucosidase microbial community. Results showed that the addition of biochar decreased the transcription of β-glucosidase genes and led to a reduction of β-glucosidase activity. Micromonospora and Cellulosimicrobium were the predominant functional communities determining cellulose degradation during biochar compost. Biochar addition strengthened the response of the functional microbial community to carbon metabolism pressure. And adding biochar altered the key β-glucosidase-producing microbial communities, influencing cellulase and the interaction between these communities to respond to the different carbon metabolic pressure of compost. Biochar also shifted the co-occurrence network of β-glucosidase-producing microbial community by changing the keystone species. Furthermore, co-occurrence network analysis revealed that high glucose decreased the complexity and stability of the functional microbial network. Most functional microorganisms from Streptomyces produce non-glucose tolerant β-glucosidase, which were the key bacterial communities affecting β-glucosidase activity in the non-glucose treatment. This study provides new insights into the response of functional microbial communities and the regulation of enzyme production during the transformation of cellulosic biomass.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Guangxin Chen
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Jingxue Kang
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Ayodeji Bello
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Zhihua Fan
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Peizhu Liu
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Erlie Su
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Kaice Lang
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Bo Ma
- School of Animal Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Hongtao Li
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiuhong Xu
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
14
|
Song W, Li Y. Tidal flat microbial communities between the Huaihe estuary and Yangtze River estuary. ENVIRONMENTAL RESEARCH 2023; 238:117141. [PMID: 37717808 DOI: 10.1016/j.envres.2023.117141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/02/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Tidal flats have important ecological functions and offer great economic value. Using field sampling, numerical simulation, and high-throughput sequencing, the ecological state of typical tidal flats along the eastern coast of China was investigated. The findings demonstrated that the area may be separated into subregions with notable differences in the features of microbial communities due to the variations in water quality and total pollutant discharge of seagoing rivers. With a ratio of 62%, the development of the microbial community revealed that homogenous selection predominated. In general, the formation of microbial communities follows deterministic processes, especially those of environmental selection. The wetland microbial communities are impacted by pollutants discharged into the sea from the Huaihe River and the Yangtze River. The Yangtze River's nitrogen pollutants affected the wetland zone, and denitrification dominated. The study established ecological patterns between the river and the sea and we offer suggestions for managing watersheds and safeguarding the ecology of coastal tidal flats.
Collapse
Affiliation(s)
- Weiwei Song
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing, 210098, China.
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
15
|
Wang SH, Yuan SW, Che FF, Wan X, Wang YF, Yang DH, Yang HJ, Zhu D, Chen P. Strong bacterial stochasticity and fast fungal turnover in Taihu Lake sediments, China. ENVIRONMENTAL RESEARCH 2023; 237:116954. [PMID: 37619629 DOI: 10.1016/j.envres.2023.116954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Understanding the assembly and turnover of microbial communities is crucial for gaining insights into the diversity and functioning of lake ecosystems, a fundamental and central issue in microbial ecology. The ecosystem of Taihu Lake has been significantly jeopardized due to urbanization and industrialization. In this study, we examined the diversity, assembly, and turnover of bacterial and fungal communities in Taihu Lake sediment. The results revealed strong bacterial stochasticity and fast fungal turnover in the sediment. Significant heterogeneity was observed among all sediment samples in terms of environmental factors, especially ORP, TOC, and TN, as well as microbial community composition and alpha diversity. For instance, the fungal richness index exhibited an approximate 3-fold variation. Among the environmental factors, TOC, TN, and pH had a more pronounced influence on the bacterial community composition compared to the fungal community composition. Interestingly, species replacement played a dominant role in microbial beta diversity, with fungi exhibiting a stronger pattern. In contrast, stochastic processes governed the community assembly of both bacteria and fungi, but were more pronounced for bacteria (R2 = 0.7 vs. 0.5). These findings deepen the understanding of microbial assembly and turnover in sediments under environmental stress and provide essential insights for maintaining the multifunctionality of lake ecosystems.
Collapse
Affiliation(s)
- Shu-Hang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Sheng-Wu Yuan
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fei-Fei Che
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xin Wan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Yi-Fei Wang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Dian-Hai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Hai-Jiang Yang
- Key Laboratory of Western China's Environmental Systems (MOE), College of Earth and Environmental Sciences, Lanzhou University, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Peng Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
16
|
Yang S, Huang T, Zhang H, Guo H, Xu J, Cheng Y. Pollutants reduction via artificial mixing in a drinking water reservoir: Insights into bacterial metabolic activity, biodiversity, interactions and co-existence of core genera. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165473. [PMID: 37454840 DOI: 10.1016/j.scitotenv.2023.165473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/17/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Endogenous pollution due to long periods of hypolimnetic anoxia in stratified reservoirs has become a worldwide concern, which can threaten metabolic activity, biodiversity, water quality security, and ultimately human health. In the present study, an artificial mixing system applied in a drinking water reservoir was developed to reduce pollutants, and the biological mechanism involved was explored. After approximately 44 days of system operation, the reservoir content was completely mixed resulting in the disappearance of anoxic layers. Furthermore, the metabolic activity estimated by the Biolog-ECO microplate technique and biodiversity was enhanced. 16S rRNA gene sequencing indicated a great variability on the composition of bacterial communities. Co-occurrence network analysis showed that interactions among bacteria were significantly affected by the proposed mixing system. Bacteria exhibited a more mutualistic state and >10 keystone genera were identified. Pollutants, including nitrogen, phosphorus, organic matter, iron, and manganese decreased by 30.63-80.15 %. Redundancy discriminant analysis revealed that environmental factors, especially the temperature and dissolved oxygen, were crucial drivers of the bacterial community structure. Furthermore, Spearman's correlation analysis between predominant genera and pollutants suggested that core genus played a vital role in pollutant reduction. Overall, our findings highlight the importance and provide insights on the artificial mixing systems' microbial mechanisms of reducing pollutants in drinking water reservoirs.
Collapse
Affiliation(s)
- Shangye Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Haihan Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Honghong Guo
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jin Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ya Cheng
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
17
|
Chen Y, Lu Y, Xu J, Feng Y, Li X. Antibiotics and their associations with antibiotic resistance genes and microbial communities in estuarine and coastal sediment of Quanzhou Bay, Southeast China. MARINE POLLUTION BULLETIN 2023; 195:115539. [PMID: 37714074 DOI: 10.1016/j.marpolbul.2023.115539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/03/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
The antibiotic concentrations spanned from 11.2 to 173.8 ng/g, with quinolones and tetracyclines being observed to be prevalent. The amount of microbial biomass as determined by Phospholipid fatty acid (PLFA) ranged from 2.92 to 10.99 mg kg-1, with G- bacteria dominating. A total of 254 distinct ARGs and 10 MEGs were identified, with multidrug ARGs having the highest relative abundance (1.18 × 10-2 to 3.00 × 10-1 copies/16S rRNA gene copies), while vancomycin and sulfonamide resistance genes were the least abundant. Results from canonical-correlation analyses combined with redundancy analysis indicated that macrolides were significantly related to the shifts of microbial community structure in sediments, particularly in G+ bacteria that were more sensitive to antibiotic residues. It was observed that sulfonamide ARGs had a greater correlation with residual antibiotics than other ARGs. This study provided a field evidence that multiple residual antibiotics from coastal sites could cause fundamental shifts in microbial community and their associated ARGs.
Collapse
Affiliation(s)
- Yongshan Chen
- Key Laboratory of Rural Environmental Remediation and Waste Recycling (Quanzhou Normal University), Fujian Province University, 362000, Quanzhou 362000, PR China; School of Resource and Environmental Science, Quanzhou Normal University, Quanzhou 362000, PR China.
| | - Yue Lu
- School of Resource and Environmental Science, Quanzhou Normal University, Quanzhou 362000, PR China
| | - Jinghua Xu
- Key Laboratory of Rural Environmental Remediation and Waste Recycling (Quanzhou Normal University), Fujian Province University, 362000, Quanzhou 362000, PR China; School of Resource and Environmental Science, Quanzhou Normal University, Quanzhou 362000, PR China
| | - Ying Feng
- Key Laboratory of Rural Environmental Remediation and Waste Recycling (Quanzhou Normal University), Fujian Province University, 362000, Quanzhou 362000, PR China; School of Resource and Environmental Science, Quanzhou Normal University, Quanzhou 362000, PR China
| | - Xiaofeng Li
- School of Resource and Environmental Science, Quanzhou Normal University, Quanzhou 362000, PR China
| |
Collapse
|
18
|
Yang C, Zhang H, Feng Y, Hu Y, Chen S, Guo S, Zeng Z. Effect of microbial communities on nitrogen and phosphorus metabolism in rivers with different heavy metal pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87398-87411. [PMID: 37421527 DOI: 10.1007/s11356-023-28688-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
Small urban and rural rivers usually face heavy metal pollution as a result of urbanization and industrial and agricultural activities. To elucidate the metabolic capacity of microbial communities on nitrogen and phosphorus cycle in river sediments under different heavy metal pollution backgrounds, this study collected samples in situ from two typical rivers, Tiquan River and Mianyuan River, with different heavy metal pollution levels. The microbial community structure and metabolic capacity of nitrogen and phosphorus cycles of sediment microorganisms were analyzed by high-throughput sequencing. The results showed that the major heavy metals in the sediments of the Tiquan River were Zn, Cu, Pb, and Cd with the contents of 103.80, 30.65, 25.95, and 0.44 mg/kg, respectively, while the major heavy metals in the sediments of the Mianyuan River were Cd and Cu with the contents of 0.60 and 27.81 mg/kg, respectively. The dominant bacteria Steroidobacter, Marmoricola, and Bacillus in the sediments of the Tiquan River had positive correlations with Cu, Zn, and Pb while are negatively correlated with Cd. Cd had a positive correlation with Rubrivivax, and Cu had a positive correlation with Gaiella in the sediments of the Mianyuan River. The dominant bacteria in the sediments of the Tiquan River showed strong phosphorus metabolic ability, and the dominant bacteria in the sediments of the Mianyuan River showed strong nitrogen metabolic ability, corresponding to the lower total phosphorus content in the Tiquan River and the higher total nitrogen content in the Mianyuan River. The results of this study showed that resistant bacteria became dominant bacteria due to the stress of heavy metals, and these bacteria showed strong nitrogen and phosphorus metabolic ability. It can provide theoretical support for the pollution prevention and control of small urban and rural rivers and have positive significance for maintaining the healthy development of rivers.
Collapse
Affiliation(s)
- Cheng Yang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Han Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yuanyuan Feng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yuansi Hu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Sikai Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Shanshan Guo
- China 19th Metallurgical Corporation, Chengdu, 610031, China
| | - Zhuo Zeng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
19
|
Yan F, Wang S, Huang Z, Liu Y, He L, Qian F. Microbial ecological responses of partial nitritation/anammox granular sludge to real water matrices and its potential application. ENVIRONMENTAL RESEARCH 2023; 226:115701. [PMID: 36931374 DOI: 10.1016/j.envres.2023.115701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/01/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Granular sludges are commonly microbial aggregates used to apply partial nitritation/anammox (PN/A) processes during efficient biological nitrogen removal from ammonium-rich wastewater. Considering keystone taxa of anammox bacteria (AnAOB) in granules and their sensitivity to unfavorable environments, it is essential to investigate microbial responses of autotrophic PN/A granules to real water matrices containing organic and inorganic pollutants. In this study, tap water, surface water, and biotreated wastewater effluents were fed into a series of continuous PN/A granular reactors, respectively, and the differentiation in functional activity, sludge morphology, microbial community structure, and nitrogen metabolic pathways was analyzed by integrating kinetic batch testing, size characterization, and metagenomic sequencing. The results showed that feeding of biotreated wastewater effluents causes significant decreases in nitrogen removal activity and washout of AnAOB (dominated by Candidatus Kuenenia) from autotrophic PN/A granules due to the accumulation of heavy metals and formation of cavities. Microbial co-occurrence networks and nitrogen cycle-related genes provided evidence for the high dependence of symbiotic heterotrophs (such as Proteobacteria, Chloroflexi, and Bacteroidetes) on anammox metabolism. The enhancement of Nitrosomonas nitritation in the granules would be considered as an important contributor to greenhouse gas (N2O) emissions from real water matrices. In a novel view on the application of microbial responses, we suggest a bioassay of PN/A granules by size characterization of red-color cores in ecological risk assessment of water environments.
Collapse
Affiliation(s)
- Feng Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99 Xuefu Road, Suzhou, 215009, People's Republic of China
| | - Suqin Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99 Xuefu Road, Suzhou, 215009, People's Republic of China
| | - Ziheng Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99 Xuefu Road, Suzhou, 215009, People's Republic of China
| | - Yaru Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99 Xuefu Road, Suzhou, 215009, People's Republic of China
| | - Lingli He
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99 Xuefu Road, Suzhou, 215009, People's Republic of China
| | - Feiyue Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99 Xuefu Road, Suzhou, 215009, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, No. 99 Xuefu Road, Suzhou, 215009, People's Republic of China.
| |
Collapse
|
20
|
Wei L, Zhang Y, Zhang Y, Xu X, Zhu L. Unraveling the response of water quality and microbial community to lake water backflowing in one typical estuary of Lake Taihu, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:642. [PMID: 37145346 DOI: 10.1007/s10661-023-11190-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/01/2023] [Indexed: 05/06/2023]
Abstract
To investigate the effect of lake water backflowing on the aquatic ecosystem in the estuary, surface water samples in the backflowing and unbackflowing areas were collected from one typical estuary of Lake Taihu, Xitiaoxi River. 16S rRNA sequencing and redundancy analysis were conducted to quantitatively elucidate the correlation between microbial community and water quality parameters. Results indicated lake water backflowing would affect the relative distribution of nitrogen species and increase the concentration of total nitrogen (TN) and nitrate, especially in the outlets of municipal sewage and agricultural drainage. For backflowing areas, more frequent water exchange could lower the seasonal fluctuation of the abundance and diversity of microbial community. RDA results showed crucial water quality parameters that greatly influence bacterial community were total organic carbon (TOC), total dissolved solids (TDS), salinity (SAL), ammonia, nitrate, TN for backflowing areas, and TOC, TDS, SAL, ammonia, TN without nitrate for unbackflowing areas. Verrucomicrobia, Proteobacteria, Microcystis, and Arcobacter were dominant with 27.7%, 15.7%, 30.5%, and 25.7% contribution to the overall water quality in backflowing areas. Chloroflexi, Verrucomicrobia, Flavobacterium, and Nostocaceae were dominant with 25.0%, 18.4%, 22.3%, and 11.4% contribution to the overall water quality in unbackflowing areas. And lake water backflowing might mainly affect the amino acid and carbohydrate metabolism based on the metabolism function prediction. A better understanding of the spatiotemporal changes in water quality parameters and microbial community was obtained from this research to comprehensively assess the effect of lake water backflowing on the estuarine ecosystem.
Collapse
Affiliation(s)
- Lecheng Wei
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou, 310058, China
| | - Yajie Zhang
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou, 310058, China
| | - Ye Zhang
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou, 310058, China
| | - Xiangyang Xu
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China
- Zhejiang Provincial Engineering Laboratory of Water Pollution Control, 388 Yuhangtang Road, Hangzhou, 310058, China
| | - Liang Zhu
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China.
- Zhejiang Provincial Engineering Laboratory of Water Pollution Control, 388 Yuhangtang Road, Hangzhou, 310058, China.
| |
Collapse
|
21
|
Gao H, Chen J, Wang C, Wang P, Wang R, Hu Y, Pan Y. Diversity and interaction of bacterial and microeukaryotic communities in sediments planted with different submerged macrophytes: Responses to decabromodiphenyl ether. CHEMOSPHERE 2023; 322:138186. [PMID: 36806803 DOI: 10.1016/j.chemosphere.2023.138186] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Although various persistent organic pollutants (POPs) can affect microbial communities and functions in aquatic ecosystems, little is known about how bacteria and microeukaryotes respond to the POPs in sediments planted with different submerged macrophytes. Here, a 60-day microcosm experiment was carried out to investigate the changes in the diversity and interaction of bacterial and microeukaryotic communities in sediments collected from Taihu lake, either with decabromodiphenyl ether (BDE-209) own or combined with two common submerged macrophyte species (Vallisneria natans and Hydrilla verticillate). The results showed that BDE-209 significantly decreased the bacterial α-diversity but increased the microeukaryotic one. In sediments planted with submerged macrophytes, the negative effect of BDE-209 on bacterial diversity was weakened, and its positive effect on microeukaryotic one was strengthened. Co-occurrence network analysis revealed that the negative relationship was dominant in bacterial and microeukaryotic communities, while the cooperative relationship between microbial species was increased in planted sediments. Among nine keystone species, one belonging to bacterial family Thermoanaerobaculaceae was enriched by BDE-209, and others were inhibited. Notably, such inhibition was weakened, and the stimulation was enhanced in planted sediments. Together, these observations indicate that the responses of bacteria and microeukaryotes to BDE-209 are different, and their communities under BDE-209 contamination are more stable in sediments planted with submerged macrophytes. Moreover, the effects of plant species on the microbial responses to BDE-209 need to be explored by more specific field studies in the future.
Collapse
Affiliation(s)
- Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Rong Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Yu Hu
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Ying Pan
- School of Ecology, Sun Yat-sen University, Shenzhen, 518000, China
| |
Collapse
|
22
|
Zhu Y, Xu Y, Xu J, Meidl P, He Y. Contrasting response strategies of microbial functional traits to polycyclic aromatic hydrocarbons contamination under aerobic and anaerobic conditions. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131548. [PMID: 37141779 DOI: 10.1016/j.jhazmat.2023.131548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/06/2023] [Accepted: 04/29/2023] [Indexed: 05/06/2023]
Abstract
PAHs (Polycyclic aromatic hydrocarbons) are widely distributed in soil ecosystems, but our knowledge regarding the impacts of PAHs effects on soil microbial functional traits is limited. In this study, we evaluated the response and regulating strategies of microbial functional traits that are associated with the typical C, N, P, S cycling processes in a pristine soil under aerobic and anaerobic conditions after the addition of PAHs. Results revealed that indigenous microorganisms had strong degradation potential and adaptability to PAHs especially under aerobic conditions, while anaerobic conditions favored the degradation of high molecular weight PAHs. PAHs exhibited contrasting effects on soil microbial functional traits under different aeration conditions. It would probably change microbial carbon source utilization preference, stimulate inorganic P solubilization and strengthen the functional interactions between soil microorganisms under aerobic conditions, while might cause the increase of H2S and CH4 emissions under anaerobic conditions. This research provides an effective theoretical support for the ecological risk assessment of soil PAHs pollution.
Collapse
Affiliation(s)
- Yanjie Zhu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan Xu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou 310058, China; College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peter Meidl
- Institute of Biology, Freie Universität Berlin, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou 310058, China.
| |
Collapse
|
23
|
Zhu X, Deng Y, Huang T, Han C, Chen L, Zhang Z, Liu K, Liu Y, Huang C. Vertical variations in microbial diversity, composition, and interactions in freshwater lake sediments on the Tibetan plateau. Front Microbiol 2023; 14:1118892. [PMID: 36970704 PMCID: PMC10031068 DOI: 10.3389/fmicb.2023.1118892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/16/2023] [Indexed: 03/11/2023] Open
Abstract
Microbial communities in freshwater lake sediments exhibit a distinct depth-dependent variability. Further exploration is required to understand their biodiversity pattern and microbial interactions in vertical sediments. In this study, sediment cores from two freshwater lakes, Mugecuo (MGC) and Cuopu (CP), on the Tibetan plateau were sampled and subsequently sliced into layers at a depth of every centimeter or half a centimeter. Amplicon sequencing was used to analyze the composition, diversity, and interaction of microbial communities. Results showed that sediment samples of both lakes could be clustered into two groups at a sediment depth of about 20 cm, with obvious shifts in microbial community compositions. In lake MGC, the richness component dominated β-diversity and increased with depth, indicating that the microbial communities in the deep layer of MGC was selected from the surface layer. Conversely, the replacement component dominated β-diversity in CP, implying a high turnover rate in the surface layer and inactive seed banks with a high variety in the deep layer. A co-occurrence network analysis showed that negative microbial interactions were prevalent in the surface layers with high nutrient concentrations, while positive microbial interactions were more common in the deep layers with low nutrient concentrations, suggesting that microbial interactions are influenced by nutrient conditions in the vertical sediments. Additionally, the results highlight the significant contributions of abundant and rare taxa to microbial interactions and vertical fluctuations of β-diversity, respectively. Overall, this work deepens our understanding of patterns of microbial interactions and vertical fluctuation in β-diversity in lake sediment columns, particularly in freshwater lake sediments from the Tibetan plateau.
Collapse
Affiliation(s)
- Xinshu Zhu
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Yongcui Deng
- School of Geography, Nanjing Normal University, Nanjing, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
- *Correspondence: Yongcui Deng, ; Tao Huang,
| | - Tao Huang
- School of Geography, Nanjing Normal University, Nanjing, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
- *Correspondence: Yongcui Deng, ; Tao Huang,
| | - Cheng Han
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Lei Chen
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Zhigang Zhang
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, China
| | - Changchun Huang
- School of Geography, Nanjing Normal University, Nanjing, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
| |
Collapse
|
24
|
Yang S, Wan R, Yang G, Li B, Dong L. Combining historical maps and landsat images to delineate the centennial-scale changes of lake wetlands in Taihu Lake Basin, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117110. [PMID: 36584513 DOI: 10.1016/j.jenvman.2022.117110] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/03/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Lake wetlands (LWs) are essential components of the ecosystem and play an irreplaceable role in flood regulation, carbon fixation, and biodiversity maintenance. Continuous monitoring of LWs' change is necessary in the context of increased human disturbance and climate change, particularly in Taihu Lake Basin, China, an area exposed to early human exploitation. Yet, long-time series of LWs detection in this region is still unavailable due to the data limitation. To quantify the spatiotemporal dynamics of LWs and the associated driving forces, we combined 236 historical topographic maps and thousands of Landsat satellite images from the 1910s to 2021 to delineate the centennial-scale changes of lake wetlands for the first time in this region. We also applied land use transitions and statistical analyses to quantitively explore the climatic and anthropogenic factors behind LWs variations. Our results document a dramatic decline in the area and number of LWs in the Taihu Lake Basin over the last century and a shift in the 2000s: Taihu Lake Basin has seen a total of 89.15% loss in lake littoral wetlands and a decrease of 14.5% in the whole lake wetlands area, with a net reduction of 68 (from 156 in the 1910s to 88 in the 2021) lakes. This decrease has been especially predominant during the 1910s-2000s, because of the policy initiatives for reclamation and aquacultural industries. The area and number of LWs have gradually been recovered since the 2000s as the country strengthened concern on the ecological restoration and sustainable development. The statistical results suggested that human activities played a dominant role in the LWs changes, with GDP and population explained 80.74% of the changes, coupled with climatic contribution of only around 20%. This long-term investigation will provide baseline information for future lake wetlands monitoring. Our findings could also provide a guidance for decision makers regarding water resources management, environmental protection and land-use planning in urban areas.
Collapse
Affiliation(s)
- Su Yang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Rongrong Wan
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing, 211135, China.
| | - Guishan Yang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing, 211135, China.
| | - Bing Li
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Lifang Dong
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing, 211135, China
| |
Collapse
|
25
|
Shao Y, He Q, Fu Y, Liu Y. Construction of the comprehensive evaluation system of waterbody pollution degree and the response of sedimentary microbial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120837. [PMID: 36493934 DOI: 10.1016/j.envpol.2022.120837] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/06/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
This study proposed and established a comprehensive evaluation system for the pollution degree of the waterbody by taking overlying water and sediment as a whole. By dividing different sampling points into three gradients according to the pollution degree, the changes in sedimentary microbes under various pollution gradients were compared. The results showed that microbial diversity, abundance and specific OTUs decreased significantly with the increase in pollution degree. Meanwhile, Firmicutes, Bacteroidota and Caldiseriota increased in the severely polluted group, while Chloroflexi and Acidobacteriota decreased. Spearman correlation analysis and co-occurrence network revealed that COD, pH in overlying water, and Mn, Fe in sediments were the most significant pollution degree evaluation indicators affecting sedimentary microorganisms, which drove the sedimentary microbial communities dominated by Proteobacteria and Firmicutes. FAPROTAX functional prediction indicated that increased pollution levels led to the weakening of functional genes related to nitrogen metabolism and sulfur metabolism and the increase of functional genes related to carbon metabolism in sediment microorganisms. This study not only provided new insights into waterbody pollution evaluation but also verified the feasibility of this evaluation method by the response of sedimentary microbial communities to different pollution degrees.
Collapse
Affiliation(s)
- Yitong Shao
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Qi He
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yongsheng Fu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yiqing Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| |
Collapse
|
26
|
Chen D, Samwini AMN, Manirakiza B, Addo FG, Numafo-Brempong L, Baah WA. Effect of erythromycin on epiphytic bacterial communities and water quality in wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159008. [PMID: 36162586 DOI: 10.1016/j.scitotenv.2022.159008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
The occurrence of antibiotics such as erythromycin (ERY) under macrolide group, has long been acknowledged for negatively affecting ecosystems in freshwater environments. However, the effects of ERY on water quality and microbial communities in epiphytic biofilms are poorly understood. Here, Scanning Electron Microscopy (SEM), High-throughput sequencing, and physicochemical analytical methods were employed to unravel the impact of ERY on the water quality and bacterial morphology, biodiversity, composition, interaction, and ecological function in epiphytic biofilms attached to Vallisneria natans and artificial plants in mesocosmic wetlands. The study showed that ERY exposure significantly impaired the nutrient removal capacity (TN, TP, and COD) and altered the epiphytic bacterial morphology of V. natans and artificial plants. ERY did not affect the bacterial α-diversity. Notwithstanding ERY decreased the bacterial composition, but the relative abundance of Proteobacteria and Patescibacteria spiked by 62.2 % and 54 %, respectively, in V. natans, while Desulfobacteria and Chloroflexi increased by 8.9 % and 11.2 %, respectively, in artificial plants. Notably, ERY disturbed the food web structure and metabolic pathways such as carbohydrate metabolism, amino acid metabolism, energy metabolism, cofactor and vitamin metabolism, membrane transport, and signal transduction. This study revealed that ERY exposure disrupted the bacterial morphology, composition, interaction or food web structure, and metabolic functions in epiphytic biofilm. These data underlined that ERY negatively impacts epiphytic bacterial communities and nutrient removal in wetlands.
Collapse
Affiliation(s)
- Deqiang Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Abigail Mwin-Nea Samwini
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Benjamin Manirakiza
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; University of Rwanda (UR), College of Science and Technology (CST), Department of Biology, P.O. Box 3900, Kigali, Rwanda.
| | - Felix Gyawu Addo
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Lydia Numafo-Brempong
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Wambley Adomako Baah
- College of Harbour, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, China
| |
Collapse
|
27
|
Qin Z, Zhao Z, Xia L, Wang S, Yu G, Miao A. Responses of abundant and rare prokaryotic taxa in a controlled organic contaminated site subjected to vertical pollution-induced disturbances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158625. [PMID: 36089032 DOI: 10.1016/j.scitotenv.2022.158625] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/20/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Soil microbiota as the key role mediates the natural attenuation process of organic contaminated sites, and therefore illuminating the mechanisms underlying the responses of abundant and rare species is essential for understanding ecological processes, maintaining ecosystem stability, and regulating natural attenuation well. Here, we explored the distributional characteristics, ecological diversities, and co-occurrence patterns of abundant and rare prokaryotic subcommunities using 16S rRNA high-throughput sequencing in vertical soil profiles of a controlled organic contaminated site. Results showed that abundant prokaryotic taxa were widespread across all soil samples, whereas rare counterparts were unbalancedly distributed. Rare subcommunity had more taxonomic groups and higher α- and β-diversities than abundant subcommunity. Both of these two subcommunities surviving in the organic polluted site possessed the potential of degrading organic contaminants. Abundant subcommunity was little affected by abiotic factors and mainly shaped by soil depth, while rare one was sensitive to environmental disturbances and presented a non-depth-dependent structure. Co-occurrence analysis revealed that rare taxa were more situated at the center of the network and more inclined to cooperate with non-abundant species than abundant taxa, which might play crucial roles in enhancing the resilience and resistance of prokaryotic community and maintaining its structure and stability. Overall, our results suggest that abundant and rare prokaryotic subcommunities present different responses to physicochemical factors and pollution characteristics along vertical soil profiles of organic contaminated sites undergoing natural attenuation.
Collapse
Affiliation(s)
- Zhirui Qin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Zhenhua Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA.
| | - Liling Xia
- Nanjing Vocational University of Industry Technology, Nanjing 210016, China
| | - Shiyu Wang
- Beijing Municipal Ecological and Environmental Monitoring Center, Beijing 100048, China
| | - Guangwen Yu
- China National Chemical Civil Engineering Co., Ltd, Nanjing 210031, China
| | - Aihua Miao
- China National Chemical Civil Engineering Co., Ltd, Nanjing 210031, China
| |
Collapse
|
28
|
Shen Z, Xie G, Zhang Y, Yu B, Shao K, Gao G, Tang X. Similar assembly mechanisms but distinct co-occurrence patterns of free-living vs. particle-attached bacterial communities across different habitats and seasons in shallow, eutrophic Lake Taihu. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120305. [PMID: 36181942 DOI: 10.1016/j.envpol.2022.120305] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Eutrophication due to nitrogen and phosphorus input is an increasing problem in lake ecosystems. Free-living (FL) and particle-attached (PA) bacterial communities play a primary role in mediating biogeochemical processes in these lakes and in responding to eutrophication. However, knowledge of factors governing function, assembly mechanisms, and co-occurrence patterns of these communities remain poorly understood and are key challenges in microbial ecology. To address this knowledge gap, we collected 96 samples from Lake Taihu across four seasons and investigated the bacterial community using 16S rRNA gene sequencing. Our results demonstrate that the α-diversity, β-diversity, community composition, and functional composition of FL and PA bacterial communities exhibited differing spatiotemporal dynamics. FL and PA bacterial communities displayed similar distance-decay relationships across seasons. Deterministic processes (i.e., environmental filtering and species interaction) were the primary factors shaping community assembly in both FL and PA bacteria. Similar environmental factors shaped bacterial community structure while different environmental factors drove bacterial functional composition. Habitat filtering influenced enrichment of bacteria within specific functional groups. Among them, the FL bacterial community appeared to play a critical role in methane-utilization, whereas the PA bacteria contributed more to biogeochemical cycling of carbon. FL and PA bacterial communities exhibited distinct co-occurrence pattern across different seasons. In the FL network, Methylotenera and Methylophilaceae were identified as keystone taxa, while Burkholderiaceae and the hgcI clade were keystone taxa in the PA network. The PA bacterial community appeared to possess greater stability in the face of environmental change than did FL counterparts. These results broaden our knowledge of the driving factors, co-occurrence patterns, and assembly processes in FL and PA bacterial communities in eutrophic ecosystems and provide improved insight into the underlying mechanisms responsible for these results.
Collapse
Affiliation(s)
- Zhen Shen
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guijuan Xie
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Yuqing Zhang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Bobing Yu
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keqiang Shao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Guang Gao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiangming Tang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
29
|
Zhang C, Li M, Sun J, Zhang S, Huang J. The mechanism of C-N-S interconnection degradation in organic-rich sediments by Ca(NO 3) 2 - CaO 2 synergistic remediation. ENVIRONMENTAL RESEARCH 2022; 214:113992. [PMID: 35921905 DOI: 10.1016/j.envres.2022.113992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
The rebound of black-odorous occurred in organic-rich sediments has become a critical issue due to its great harm to the ecological environment. Elements such as S, C, and N play a crucial role in the biogeochemical cycle of black-odorous rivers. As electronic acceptors, Ca(NO3)2 and CaO2 can effectively remove acidified volatile sulfide (AVS) and organic matter to control the black-odorous rebound. However, the remediation mechanisms in organic-rich sediments by Ca(NO3)2 and CaO2 are unclear. The present study explored the mechanism of C-N-S interconnection degradation in organic-rich urban river sediments by adding different ratios and sequences of Ca(NO3)2 and CaO2. The results showed that Ca(NO3)2 remediation followed by CaO2 and the accepted electron ratio 1:1 of Ca(NO3)2 to CaO2 is an effective method for controlling the rebound of black-odorous and reducing the accumulation NO2--N. Mainly attributed to that, CaO2 enhanced the degradation of organic matter by stimulating enzymatic activities in the sediments, which is also the main reason for controlling the rebound of black-odorous. Since CaO2 releases O2 and •OH, which inhibit nosZgenes, NO2--N accumulates when remedied simultaneously with Ca(NO3)2 and CaO2. Co-occurrence network analysis illustrated that sulfur-driven autotrophic denitrification bacteria, heterotrophic denitrifying bacteria, and sulfate-reducing bacteria interact strongly inside one module, clarifying a solid interaction of C-N-S substances among these bacteria. Our results reveal the C-N-S interconnection degradation mechanism and provide a new perspective on applying biochemical remediation in organic-rich urban river sediments.
Collapse
Affiliation(s)
- Chao Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China.
| | - Meng Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China; North China Municipal Engineering Design & Research Institute Co, LTD, Tianjin, 300074, China
| | - Jingmei Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Shiwei Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Jianjun Huang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China.
| |
Collapse
|
30
|
Song W, Liao Z, Wang L, Li Y, Zhang W, Ji Y, Chen J. The distribution and ecological risks of antibiotics in the sediments from a diverging area of the bifurcated river: Effects of hydrological properties. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115787. [PMID: 35947903 DOI: 10.1016/j.jenvman.2022.115787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
The hydrodynamics in the diverging area become complicated because of the basin hydrological conditions, making the distribution of antibiotics largely uncertain and thus bringing uncertain ecological risks of antibiotics. Through field sampling, experiments and numerical simulations, the distribution of antibiotics, its responses to hydrological conditions were studied. Antibiotics in the bifurcated river sediments was mainly distributed in the branch mouth. The hydrodynamic regions were affected by the hydrological frequency. Notably, the center of the low-velocity area moved upstream and gradually expands to the entire tributary as the hydrological frequency shifted from high to low. ENRO (enrofloxacin) and OFC (ofloxacin) were the key hazardous antibiotics affecting the ecological health in the diverging area, and their concentrations are mainly affected by sediment particle size (D < 0.15 mm) and oxygen content. The ecological risk of antibiotics in the diverging area were gradually decreased with the increase of the distance from the central area. The water physical and chemical properties, altered by the river basin hydrological conditions, play an important role in influencing the distribution of antibiotic concentrations, and ultimately posing great threat to aquatic ecosystem. The research provides a scientific basis for antibiotic risk control in the diverging area under different hydrological conditions.
Collapse
Affiliation(s)
- Weiwei Song
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Ziying Liao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Yuang Ji
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Jiaying Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
31
|
Zheng F, Zhang T, Yin S, Qin G, Chen J, Zhang J, Zhao D, Leng X, An S, Xia L. Comparison and interpretation of freshwater bacterial structure and interactions with organic to nutrient imbalances in restored wetlands. Front Microbiol 2022; 13:946537. [PMID: 36212857 PMCID: PMC9533089 DOI: 10.3389/fmicb.2022.946537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/30/2022] [Indexed: 01/18/2023] Open
Abstract
Chemical oxygen demand to nitrogen (COD/N) and nitrogen to phosphorus (N/P) ratios have distinct effects on bacterial community structure and interactions. However, how organic to nutrient imbalances affect the structure of freshwater bacterial assemblages in restored wetlands remains poorly understood. Here, the composition and dominant taxa of bacterial assemblages in four wetlands [low COD/N and high N/P (LH), low COD/N and low N/P (LL), high COD/N and high N/P (HH), and high COD/N and low N/P (HL)] were investigated. A total of 7,709 operational taxonomic units were identified by high throughput sequencing, and Actinobacteria, Proteobacteria, and Cyanobacteria were the most abundant phyla in the restored wetlands. High COD/N significantly increased bacterial diversity and was negatively correlated with N/P (R 2 = 0.128; p = 0.039), and the observed richness (Sobs) indices ranged from 860.77 to 1314.66. The corresponding Chao1 and phylogenetic diversity (PD) values ranged from 1533.42 to 2524.56 and 127.95 to 184.63. Bacterial beta diversity was negatively related to COD/N (R 2 = 0.258; p < 0.001). The distribution of bacterial assemblages was mostly driven by variations in ammonia nitrogen (NH4 +-N, p < 0.01) and electrical conductivity (EC, p < 0.01), which collectively explained more than 80% of the variation in bacterial assemblages. However, the dominant taxa Proteobacteria, Firmicutes, Cyanobacteria, Bacteroidetes, Verrucomicrobia, Planctomycetes, Chloroflexi, and Deinococcus-Thermus were obviously affected by variation in COD/N and N/P (p < 0.05). The highest node and edge numbers and average degree were observed in the LH group. The co-occurrence networkindicated that LH promoted bacterial network compactness and bacterial interaction consolidation. The relationships between organic to nutrient imbalances and bacterial assemblages may provide a theoretical basis for the empirical management of wetland ecosystems.
Collapse
Affiliation(s)
- Fuchao Zheng
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
- Nanjing University Ecology Research Institute of Changshu, Changshu, Jiangsu, China
| | - Tiange Zhang
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
- Nanjing University Ecology Research Institute of Changshu, Changshu, Jiangsu, China
| | - Shenglai Yin
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Ge Qin
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
| | - Jun Chen
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
| | - Jinghua Zhang
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
| | - Dehua Zhao
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
| | - Xin Leng
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
| | - Shuqing An
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
- Nanjing University Ecology Research Institute of Changshu, Changshu, Jiangsu, China
| | - Lu Xia
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
32
|
The Spatiotemporal Characteristics of Water Quality and Main Controlling Factors of Algal Blooms in Tai Lake, China. SUSTAINABILITY 2022. [DOI: 10.3390/su14095710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Taking Tai Lake in China as the research area, a 3D water environment mathematical model was built. Combined with the LHS and Morris uncertainty and sensitivity analysis methods, the uncertainty and sensitivity analysis of total phosphorus (TP), total nitrogen (TN), dissolved oxygen (DO), and chlorophyll a (Chl-a) were carried out. The main conclusions are: (1) The performance assessment of the 3D water environment mathematical model is good (R2 and NSE > 0.8) and is suitable for water quality research in large shallow lakes. (2) The time uncertainty study proves that the variation range of Chl-a is much larger than that of the other three water quality parameters and is more severe in summer and autumn. (3) The spatial uncertainty study proves that Chl-a is mainly present in the northwest lake area (heavily polluted area) and the other three water quality indicators are mainly present in the center. (4) The sensitivity results show that the main controlling factors of DO are ters (0.15) and kmsc (0.12); those of TN and TP are tetn (0.58) and tetp (0.24); and those of Chl-a are its own growth rate (0.14), optimal growth temperature (0.12), death rate (0.12), optimal growth light (0.11), and TP uptake rate (0.11). Thus, TP control is still the key treatment method for algal blooms that can be implemented by the Chinese government.
Collapse
|