1
|
Ji X, Tan Z, Wang H, Yang S, Shi Z, Wang D. Construction of Fe and g-C 3N 4 codoped magnetic bamboo charcoal for enhanced catalytic degradation of tetracycline: Mechanism, degradation pathway, and ecological toxicity. ENVIRONMENTAL RESEARCH 2025; 266:120576. [PMID: 39653165 DOI: 10.1016/j.envres.2024.120576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/18/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
The well-designed bamboo charcoal (BC) composite Fe-g-C3N4/BC with multi-active sites of FeOx, FeNx, and g-C3N4, was fabricated in-situ by calcining Fe-melamine loaded bamboo charcoal (Fe-Me-BC) under nitrogen atmosphere. The as-synthesized Fe-g-C3N4/BC(550) exhibited a mesoporous structure with a large specific surface area of 108.23 m2/g. The adsorption of tetracycline (TCL) on Fe-g-C3N4/BC(550) was calculated following the Langmuir isotherm model, and showed a maximum adsorption capacity of 19.92 mg/g. Furthermore, the pseudo-second-order kinetic model showed a good fit for the TCL adsorption process on Fe-g-C3N4/BC(550). The Fe-g-C3N4/BC(550)/H2O2 system exhibited excellent photo-Fenton catalytic performance in degrading TCL with a degradation efficiency reaching up to 98.9% within 5 min under visible-light. The effects of initial pH value and coexisting anions on TCL degradation were determined. As narrow band gap semiconductors, g-C3N4, Fe3O4, and Fe2O3 in the Fe-g-C3N4/BC exhibited good visible-light-driven photocatalytic activity. Moreover, photogenerated electrons could further activate H2O2 to produce high concentrations of ∙OH radicals. This outstanding photo-Fenton catalytic performance can be ascribed to the synergistic effect of g-C3N4/Fe3O4-Fe2O3/FexN multi-active sites as well as the excellent adsorption ability and conductivity provided by bamboo charcoal. This work presents a convenient approach for constructing economical catalysts for environmental remediation through g-C3N4 and Fe-N codoped BC.
Collapse
Affiliation(s)
- Xuebing Ji
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, 650224, PR China
| | - Ziguang Tan
- College of Materials and Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Huan Wang
- College of Materials and Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Silin Yang
- Yunnan Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous Rural Areas, Kunming, 650224, PR China.
| | - Zhengjun Shi
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, 650224, PR China
| | - Dawei Wang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, 650224, PR China; College of Materials and Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China.
| |
Collapse
|
2
|
Bose S, Kumar M. Comparative evaluation of α-Bi 2O 3/CoFe 2O 4 and ZnO/CoFe 2O 4 heterojunction nanocomposites for microwave induced catalytic degradation of tetracycline. CHEMOSPHERE 2024; 364:143071. [PMID: 39128776 DOI: 10.1016/j.chemosphere.2024.143071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/26/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Two microwave (MW) responsive heterojunction nanocomposite catalysts, i.e., α-Bi2O3/CoFe2O4 (BO/CFO) and ZnO/CoFe2O4 (ZO/CFO), with weight% ratio of 70/30, 50/50, 30/70 were synthesized by sequential thermal decomposition and co-precipitation methods, and used for the degradation of tetracycline (TC) under MW irradiation. The formation of desired catalysts was confirmed through the characterization results of XRD, FT-IR, SEM, VSM, UV-DRS, XPS, BET, etc. Using batch MW experiments, the catalyst dose, pH, initial TC concentration, reaction temperature, and MW power were optimized for TC removal. Under the following reaction conditions: catalyst dose ∼1 g/L, initial TC concentration ∼1 mg/L, temperature ∼90 °C, MW ∼450 W, BO/CFO, and ZO/CFO showed ∼97.55% and 88.23% TC degradation, respectively, after 5 min. The difference in the catalytic response against TC degradation indicated the difference in reflective loss (RL) between these two catalysts. The presence of other competitive anions has affected the removal efficiency of TC due to the scavenging effect. The radical trapping study revealed the significant contribution of TC degradation by hydroxyl radicals in the case of ZO/CFO, whereas for BO/CFO, superoxide (●O2-) and hydroxyl radicals (●OH) both played influential roles. The Z-scheme heterojunction of BO/CFO allowed the formation of ●O2- but the same was inhibited in type-II heterojunction of ZO/CFO due to the valance band position. The dielectric loss, magnetic loss, interfacial polarization, and high electrical conductivity, 'hotspots' were produced over the catalyst surface alongside electron-hole separation at heterojunctions, which were responsible for the generation of reactive oxygen species. In addition, Co3+/Co2+ and Fe3+/Fe2+ redox cycles have promoted ●O2- and sulfate radical production during persulfate application. Among the two MW responsive catalysts, BO/CFO could be a potential material for rapidly destroying emerging organic pollutants from wastewater without applying other oxidative chemicals under MW irradiation.
Collapse
Affiliation(s)
- Saptarshi Bose
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
| | - Mathava Kumar
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India.
| |
Collapse
|
3
|
Fan J, Wang R, Zheng X, Jiang H, Hu X. Single-Atom Iron Catalysts with Core-Shell Structure for Peroxymonosulfate Oxidation. Molecules 2024; 29:3508. [PMID: 39124914 PMCID: PMC11313843 DOI: 10.3390/molecules29153508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The chemical tolerance of ketoenamine covalent organic frameworks (COFs) is excellent; however, the tight crystal structure and low surface area limit their applications in the field of catalysis. In this work, a porous single-atom iron catalyst (FeSAC) with a core-shell structure and high surface area was synthesized by using Schiff base COF nanospheres as the core and ketoenamine COF nanosheets growth on the surfaces. Surface defects were created using sodium cyanoborohydride etching treatment to increase specific surface area. The dye degradation experiments by peroxymonosulfate (PMS) catalyzed by the FeSAC proved that methylene blue can be degraded with a degradation rate constant of 0.125 min-1 under the conditions of 0.1 g L-1 catalyst dosage and 0.05 g L-1 peroxymonosulfate. The FeSAC/PMS system effectively degrades various pollutants in the pH range of 4-10 with over 80% efficiency for four cycles and can be recovered by soaking in iron salt solution. Free radical quenching experiments confirmed that singlet oxygen and superoxide radicals are the main active species for catalysis.
Collapse
Affiliation(s)
| | | | | | | | - Xiuli Hu
- Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
4
|
Jiang X, Meng S, Nan Z. Singlet Oxygen Formation Mechanism for the H 2O 2-Based Fenton-like Reaction Catalyzed by the Carbon Nitride Homojunction. Inorg Chem 2024; 63:6701-6713. [PMID: 38563144 DOI: 10.1021/acs.inorgchem.3c04626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The singlet oxygen (1O2) oxidation process activated by metal-free catalysts has recently attracted considerable attention for organic pollutant degradation; however, the 1O2 formation remains controversial. Simultaneously, the catalytic activity of the metal-free catalyst limits the practical application. In this study, carbon nitride (HCCN) containing an intramolecular homojunction, a kind of metal-free catalyst, exhibits excellent activity compared to g-C3N4 (CN) and crystalline carbon nitride (HCN) for tetracycline hydrochloride degradation through the H2O2-based Fenton-like reaction. The rate constant for HCCN increased about 16.1 and 8.9 times than that of CN and HCN, respectively. The activity of HCCN was enhanced, and the dominant reactive oxygen species (ROS) changed from hydroxyl radicals (•OH) to 1O2 with an increase in pH from 4.5 to 11.5. A novel formation pathway of 1O2 was revealed. This result is different from the normal reference, in which •OH is always the primary ROS in the H2O2-based Fenton-like reaction. This study may provide a possible strategy for the investigation on the nonradical oxidation process in the Fenton-like reaction.
Collapse
Affiliation(s)
- Xuan Jiang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Suhang Meng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Zhaodong Nan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
5
|
Si G, Yang J, Zhang L, Gao J, Zhang S, Ni S, Peng Y. NH 2-MIL-101(Fe)-mediated photo-Fenton reaction enhanced simultaneous removal of nitrogen and refractory organics in anammox process through interfacial electron transfer. BIORESOURCE TECHNOLOGY 2024; 395:130390. [PMID: 38301944 DOI: 10.1016/j.biortech.2024.130390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/14/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
In this study, H2O2 (0.1 ‰) and NH2-MIL-101(Fe)-driven (150 mg/L) photo-Fenton-coupled anammox were proposed to simultaneously improve the removal efficiency of nitrogen and humic acid. Long-term experiments showed that the total nitrogen removal efficiency was increased by the photo-Fenton reaction to 91.9 ± 1.5 % by altering the bioavailability of refractory organics. Correspondingly, the total organic carbon removal efficiency was significantly increased. Microbial community analyses indicated that Candidatus_Brocadia maintained high activity during photo-Fenton reaction and was the most abundant genus in the reactor. Dissimilatory nitrate reduction to ammonium process and denitrification process were enhanced, resulting in reduced NO3--N production. The establishment of electron transfer between microorganisms and NH2-MIL-101 (Fe) improved the charge separation efficiency of the quantum dots and increased the intracellular adenosine triphosphate content of anammox bacteria. These results indicated that photo-Fenton-anammox process promoted the removal of nitrogen and refractory organics in one reactor which had good economic value and application prospects.
Collapse
Affiliation(s)
- Guangchao Si
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China.
| | - Jiachun Yang
- China Coal Technology & Engineering Group Co. Ltd., Tokyo 100-0011, Japan.
| | - Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China.
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Shujun Zhang
- Research and Development Center of Beijing Drainage Group Co. Ltd, Beijing 100124, China.
| | - Shouqing Ni
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| |
Collapse
|
6
|
Zong Z, Gilbert E, Wong CCY, Usadi L, Qin Y, Huang Y, Raymond J, Hankins N, Kwan J. Efficient sonochemical catalytic degradation of tetracycline using TiO 2 fractured nanoshells. ULTRASONICS SONOCHEMISTRY 2023; 101:106669. [PMID: 37925913 PMCID: PMC10632962 DOI: 10.1016/j.ultsonch.2023.106669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Overexposure to antibiotics originating in wastewater has profound environmental and health implications. Conventional treatment methods are not fully effective in removing certain antibiotics, such as the commonly used antibiotic, tetracycline, leading to its accumulation in water catchments. Alternative antibiotic removal strategies are garnering attention, including sonocatalytic oxidative processes. In this work, we investigated the degradation of tetracycline using a combination of TiO2 fractured nanoshells (TFNs) and an advanced sonochemical reactor design. The study encompassed an examination of multiple process parameters to understand their effects on the degradation of tetracycline. These included tetracycline adsorption on TFNs, reaction time, initial tetracycline concentration, solvent pH, acoustic pressure amplitude, number of acoustic cycles, catalyst dosage, TFNs' reusability, and the impact of adjuvants such as light and H2O2. Though TFNs adsorbed tetracycline, the addition of ultrasound was able to degrade tetracycline completely (with 100% degradation) within six minutes. Under the optimal operating conditions, the proposed sonocatalytic system consumed 80% less energy compared to the values reported in recently published sonocatalytic research. It also had the lowest CO2 footprint when compared to the other sono-/photo-based technologies. This study suggests that optimizing the reaction system and operating the reaction under low power and at a lower duty cycle are effective in achieving efficient cavitation for sonocatalytic reactions.
Collapse
Affiliation(s)
- Zhiyuan Zong
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - Emma Gilbert
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - Cherie C Y Wong
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - Lillian Usadi
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - Yi Qin
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - Yihao Huang
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - Jason Raymond
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - Nick Hankins
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - James Kwan
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK.
| |
Collapse
|
7
|
Li D, Yang J, Lv S, Li X, Shao L, Zhou C, Xu F. Insights into the Degradation Mechanisms of TCH by Magnetic Fe 3S 4/Cu 2O Composite. Inorg Chem 2023. [PMID: 37368987 DOI: 10.1021/acs.inorgchem.3c01176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Unique Fe3S4/Cu2O composites were constructed with high Fenton-like photocatalytic activity through the impregnation coprecipitation method. The structure, morphology, optical, magnetic, and photocatalytic properties of the as-prepared composites were explored in detail. The findings suggest that small Cu2O particles were grown on the surface of Fe3S4. The removal efficiency of TCH by Fe3S4/Cu2O was 65.7, 4.75, and 3.67 times higher than that of pure Fe3S4, Cu2O, and the Fe3S4 + Cu2O mixture, respectively, when the mass ratio of Fe3S4 and Cu2O was 1:1 at pH 7.2. The synergistic effect between Cu2O and Fe3S4 was the main factor for TCH degradation. The Cu+ species from Cu2O increased the Fe3+/Fe2+ cycle during the Fenton reaction. •O2- and h+ were the main active radicals; however, •OH and e- played the second role in the photocatalytic degradation reaction. Moreover, the Fe3S4/Cu2O composite retained good recyclability and versatility, and could be conveniently separated by a magnet.
Collapse
Affiliation(s)
- Dan Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, P. R. China
| | - Jiahui Yang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, P. R. China
| | - Shuang Lv
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, P. R. China
| | - Xiaopeng Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, P. R. China
| | - Li Shao
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, P. R. China
| | - Caiyun Zhou
- School of Nursing, Nanchang University, Nanchang 330031, P. R. China
| | - Feigao Xu
- College of Chemistry & Chemical Engineering, Nanchang University, Nanchang 330031, P. R. China
| |
Collapse
|
8
|
Jiang X, Nan Z. Tuning Band Gap in Fe-Doped g-C 3N 4 by Zn for Enhanced Fenton-Like Catalytic Performance. Inorg Chem 2023; 62:8357-8371. [PMID: 37186873 DOI: 10.1021/acs.inorgchem.3c00890] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Multiple oxidation states of first-row transition-metal cations were always doped in g-C3N4 to enhance the catalytic activity by the synergistic action between the cations in the Fenton-like reaction. It remains a challenge for the synergistic mechanism when the stable electronic centrifugation (3d10) of Zn2+ was used. In this work, Zn2+ was facilely introduced in Fe-doped g-C3N4 (named xFe/yZn-CN). Compared with Fe-CN, the rate constant of the tetracycline hydrochloride (TC) degradation increased from 0.0505 to 0.0662 min-1 for 4Fe/1Zn-CN. The catalytic performance was more outstanding than those of similar catalysts reported. The catalytic mechanism was proposed. With the introduction of Zn2+ in 4Fe/1Zn-CN, the atomic percent of Fe (Fe2+ and Fe3+) and the molar ratio of Fe2+ to Fe3+ at the catalyst's surface increased, where Fe2+ and Fe3+ were the active sites for adsorption and degradation. In addition, the band gap of 4Fe/1Zn-CN decreased, leading to enhanced electron transfer and conversion from Fe3+ to Fe2+. These changes resulted in the excellent catalytic performance of 4Fe/1Zn-CN. Radicals •OH, •O2-, and 1O2 formed in the reaction and took different actions under various pH values. 4Fe/1Zn-CN exhibited excellent stability after five cycles under the same conditions. These results may give a strategy for synthesizing Fenton-like catalysts.
Collapse
Affiliation(s)
- Xuan Jiang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Zhaodong Nan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
9
|
Wu Q, Siddique MS, Wang H, Cui L, Wang H, Pan M, Yan J. Visible-light-driven iron-based heterogeneous photo-Fenton catalysts for wastewater decontamination: A review of recent advances. CHEMOSPHERE 2023; 313:137509. [PMID: 36495983 DOI: 10.1016/j.chemosphere.2022.137509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Visible-light-driven heterogeneous photo-Fenton process has emerged as the most promising Fenton-derived technology for wastewater decontamination, owing to its prominent superiorities including the potential utilization of clean energy (solar light), and acceleration of ≡Fe(II)/≡Fe(III) dynamic cycle. As the core constituent, catalysts play a pivotal role in the photocatalytic activation of H2O2 to yield reactive oxidative species (ROS). To date, all types of iron-based heterogeneous photo-Fenton catalysts (Fe-HPFCs) have been extensively reported by the scientific community, and exhibited satisfactory catalytic performance towards pollutants decomposition, sometimes even exceeding the homogeneous counterparts (Fe(II)/H2O2). However, the relevant reviews on Fe-HPFCs, especially from the viewpoint of catalyst-self design are extremely limited. Therefore, this state-of-the-art review focuses on the available Fe-HPFCs in literatures, and gives their classification based on their self-characteristics and modification strategies for the first time. Two classes of representative Fe-HPFCs, conventional inorganic semiconductors of Fe-containing minerals and newly emerging Fe-based metal-organic frameworks (Fe-MOFs) are comprehensively summarized. Moreover, three universal strategies including (i) transition metal (TMs) doping, (ii) construction of heterojunctions with other semiconductors or plasmonic materials, and (iii) combination with supporters were proposed to tackle their inherent defects, viz., inferior light-harvesting capacity, fast recombination of photogenerated carriers, slow mass transfer and low exposure and uneven dispersion of active sites. Lastly, a critical emphasis was also made on the challenges and prospects of Fe-HPFCs in wastewater treatment, providing valuable guidance to researchers for the reasonable construction of high-performance Fe-HPFCs.
Collapse
Affiliation(s)
- Qiangshun Wu
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Muhammad Saboor Siddique
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100086, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huijuan Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Liqiang Cui
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Hui Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Mei Pan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Jinlong Yan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| |
Collapse
|
10
|
Pandey Y, Verma A, Toor AP. Abatement of paraquat contaminated water using solar assisted heterogeneous photo-Fenton like treatment with iron-containing industrial wastes as catalysts. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116550. [PMID: 36347188 DOI: 10.1016/j.jenvman.2022.116550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/26/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Owing to the tremendous increase of chemicals for agricultural practices, the quality of water has degraded significantly and requires inevitable attention. With this in mind, present work aims at treating Paraquat (PQ) contaminated water using Fe containing industrial waste as a catalyst via photo-Fenton treatment. Utilizing the industrially generated Fe rich waste by-products i.e., Fly ash (FA), Foundry sand (FS), Red mud (RM), and Blast sand (BS) as catalysts marks the novelty of the work since this idea of using waste for treating waste serves the dual purpose of environment remediation:first by treating wastewater and second by resolving the issue of solid waste disposal. In the present study, 25 mg/L PQ was subjected to both UV and solar radiations in the presence of FeSO4, FA, FS, RM, and BS as catalysts. The presence of Fe in the catalysts was verified using analytical techniques namely FTIR, FESEM-EDX, and their XRD was also analyzed. The system was further optimized for various parameters and results indicated maximum PQ degradation under UV radiations was attained in the order FeSO4 (73%) > BS (65%) > FS (46%) > RM (37%) > FA (14%) within 60 min which significantly increased with introduction of solar radiations to 83% for Fe salt and 76% for BS justifying the potential of using waste for treating waste. Further, to enhance the real-life utilization of industrial waste, Fe2O3/BS heterojunction (Fe-BS) was synthesized which along with leading to 88% degradation of PQ, also showed 82% COD removal indicating that the catalyst not only degrades the pollutant but also converts it into a lower toxic form. Further, the intermediates formed during the process were analyzed using LCMS.
Collapse
Affiliation(s)
- Yamini Pandey
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Anoop Verma
- Thapar Institute of Engg. & Technology, Patiala, Punjab, India
| | - Amrit Pal Toor
- Energy Research Centre, Panjab University, Chandigarh, India; Dr. SSB University Institute of Chemical Engg & Technology, Panjab University, Chandigarh, India.
| |
Collapse
|
11
|
Photo-Fenton Degradation of Ciprofloxacin by Novel Graphene Quantum Dots/α-FeOOH Nanocomposites for the Production of Safe Drinking Water from Surface Water. WATER 2022. [DOI: 10.3390/w14142260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the current work, novel graphene quantum dots (GQDs)-doped goethite (α-FeOOH) nanocomposites (GQDs/α-FeOOH) were prepared by following a feasible hydrolysis method and applied for ciprofloxacin (CIP) removal. Results showed that the CIP degradation efficiency was significant (93.73%, 0.0566 min−1) in the GQDs/α-FeOOH + H2O2 + Vis system using much lower amounts of H2O2 (0.50 mM), which is 3.9 times the α-FeOOH + H2O2 + Vis system. It was found that •OH, O2•−, and 1O2 were mainly responsible for CIP degradation in the GQDs/α-FeOOH photo-Fenton system. GQDs/α-FeOOH demonstrated broad-spectrum UV–vis-IR responsiveness in the degradation of ciprofloxacin as a function of the doping of GQDs. Additionally, GQDs/α-FeOOH showed outstanding durability (recyclability up to 3 cycles with a lower iron leaking amount, 0.020 mg L−1), a broad range of application pH, and a pretty acceptable catalytic efficacy in a variety of surface water matrices. Overall, GQDs/α-FeOOH have been shown to be an effective photocatalyst for the remediation of emerging contaminants via the workable exploitation of solar energy.
Collapse
|