1
|
Rosso B, Vezzaro L, Bravo B, Sambo F, Biondi S, Barbante C, Gambaro A, Corami F. From the highway to receiving water bodies: identification and simultaneous quantification of small microplastics (< 100 µm) in highway stormwater runoff. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61845-61859. [PMID: 39441510 DOI: 10.1007/s11356-024-35302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Highway stormwater (HSW) runoff is among the environment's most important sources of microplastics. This study aimed to characterize via vibrational spectroscopy and quantify SMPs (small microplastics < 100 µm) in HSW runoff from a trafficked highway entering a facility equipped with a filtration system and in those flowing out to the receiving water body near agricultural activities. Samples of the inlet runoff (from the highway) and outlet runoff (the discharge into the environment) were collected in different periods to investigate potential seasonal and spatial differences. The sampling, methodology, and analysis were thoroughly carried out to quantify and simultaneously identify SMPs via Micro-FTIR to obtain a specific novel dataset to assess the environmental quality of highway pollution. A significant difference between inlet and outlet samples was reported; the highest abundance in inlet samples was 39813 ± 277 SMPs L.1 (SW10 IN; average length of 77 µm), while the highest one in outlet samples was 15173 ± 171 SMPs L-1 (SW10 OUT; SMPs' average length of 63 µm). Polyamide 6 (PA 6) and High-Density Polyethylene (HDPE) were predominant. Our results show that these HSW treatment plants, designed for managing regulated pollutants, can intercept SMPs, improving the quality of HSW runoff discharged into the environment.
Collapse
Affiliation(s)
- Beatrice Rosso
- Institute of Polar Sciences, CNR-ISP, Via Torino, 155, 30172, Venezia, Mestre, Italy
- Department of Environmental Sciences, Informatics and Statistics, Campus Scientifico - Ca' Foscari University of Venice, Via Torino, 155, 30172, Venezia, Mestre, Italy
| | - Luca Vezzaro
- Department of Environmental and Resource Engineering - DTU Sustain, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kongens Lyngby, Denmark
| | - Barbara Bravo
- Thermo Fisher Scientific, Str. Rivoltana Km4, 20090, Rodano (MI), Italy
| | | | | | - Carlo Barbante
- Institute of Polar Sciences, CNR-ISP, Via Torino, 155, 30172, Venezia, Mestre, Italy
- Department of Environmental Sciences, Informatics and Statistics, Campus Scientifico - Ca' Foscari University of Venice, Via Torino, 155, 30172, Venezia, Mestre, Italy
| | - Andrea Gambaro
- Institute of Polar Sciences, CNR-ISP, Via Torino, 155, 30172, Venezia, Mestre, Italy
- Department of Environmental Sciences, Informatics and Statistics, Campus Scientifico - Ca' Foscari University of Venice, Via Torino, 155, 30172, Venezia, Mestre, Italy
| | - Fabiana Corami
- Institute of Polar Sciences, CNR-ISP, Via Torino, 155, 30172, Venezia, Mestre, Italy.
- Department of Environmental Sciences, Informatics and Statistics, Campus Scientifico - Ca' Foscari University of Venice, Via Torino, 155, 30172, Venezia, Mestre, Italy.
| |
Collapse
|
2
|
Farina A, Ruffino B, Kutay E, Anctil A. Leaching behavior of metals from asphalt mixtures modified with crumb rubber from scrap tires. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 179:44-54. [PMID: 38458146 DOI: 10.1016/j.wasman.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/26/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
There are concerns about the potential toxicity of bitumen and recycled materials such as reclaimed asphalt pavements from end-of-life roads and crumb rubber from scrap tires used in asphalt mixtures because they contain metals that may be released into the groundwater. This study investigated the potential metal leaching of laboratory-prepared asphalt mixtures modified with polymer coated rubber (PCR) with wet and dry technology, devulcanized rubber (DVR), compared to an unmodified control mixture and a blend modified with a synthetic polymer (SBS). The objectives were to i) quantify concentrations of metals released, ii) calculate the flux rate, the cumulative mass release, and the assessment ratio for each metal, iii) verify if the metals exceeded the EPA drinking water limit, and, finally, iv) assess the source of metals release. Zinc had the highest concentration among all metals and was present in eluates from all mixtures. The cumulative zinc concentration from DVR mixture was 41% and 34% higher than the control and SBS mixtures, respectively. For PCR wet, the cumulative zinc concentration was 9% higher than the control blend and 1% lower than the SBS mix. The assessment ratio indicated that all metal concentrations would not exceed the drinking water limit, except for zinc, for which further evaluations were required. The main source of zinc may derive from aggregates. This work showed that crumb rubber might not be the only source of metal leaching, and its use in asphalt pavements does not cause a metal leaching higher than other materials.
Collapse
Affiliation(s)
- Angela Farina
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, United States.
| | - Barbara Ruffino
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Emin Kutay
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, United States
| | - Annick Anctil
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, United States
| |
Collapse
|
3
|
Na Nagara V, Sarkar D, Boufadel M, Datta R. Green engineered mulch for phosphorus and metal removal from stormwater runoff in bioretention systems. CHEMOSPHERE 2023; 331:138779. [PMID: 37116722 DOI: 10.1016/j.chemosphere.2023.138779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/23/2023] [Accepted: 04/23/2023] [Indexed: 05/19/2023]
Abstract
Phosphorus and metals in stormwater runoff are major causes of water quality degradation. Bioretention systems are increasingly implemented to improve stormwater quality and to better manage stormwater quantity. Many studies have focused on modifying the composition of the soil bed to improve pollutant removal. However, the pollutant removal performance of bioretention systems can diminish over time, such as when clogging of the media occurs. Sediment accumulation on the soil surface may inhibit infiltration into the soil bed, thus limiting pollutant removal. Soil replacement may be eventually required as pollutants accumulate in the soil. In this study, a green retrofit material, called green engineered mulch (GEM), was generated by coating regular wood mulch with aluminum-based water treatment residuals (WTR) via a simple and low-energy process (patent pending). The GEM was developed to serve as a green retrofit for bioretention systems to enhance the removal of phosphorus and metals from stormwater runoff. The GEM was placed in a rain garden in Secaucus, NJ, USA for 15 months, during which 12 storm events (ranging from 6.0 mm to 89.6 mm) were monitored. Runoff and infiltrate samples were analyzed for dissolved and total concentrations of phosphorus and metals, along with other key water quality parameters. The GEM significantly reduced (p < 0.05) the total concentrations of phosphorus and metals in stormwater infiltrate compared to the inlet, unlike the regular mulch. Minimal or no contact with the GEM resulted in no significant pollutant removal from surface runoff. No significant pollutant export from the GEM was observed. The spent GEM can be disposed of as non-hazardous waste in municipal landfills. This study demonstrates that the GEM is a safe and effective retrofit. Moreover, the GEM is a simple and economical retrofit solution that can be used in place of regular mulch in bioretention systems.
Collapse
Affiliation(s)
- Viravid Na Nagara
- Department of Civil, Environmental, and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Dibyendu Sarkar
- Department of Civil, Environmental, and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA.
| | - Michel Boufadel
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Rupali Datta
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA
| |
Collapse
|
4
|
Lin AM, Timshina AS, Magnuson JK, Bowden JA, Townsend TG. Emerging polycyclic aromatic hydrocarbon (PAH) and trace metal leachability from reclaimed asphalt pavement (RAP). CHEMOSPHERE 2023; 333:138937. [PMID: 37187368 DOI: 10.1016/j.chemosphere.2023.138937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
The environmental risks associated with the storage, reuse, and disposal of unencapsulated reclaimed asphalt pavement (RAP) has been previously examined, but because of a lack of standardized column testing protocols and recent interest on emerging constituents with higher toxicity, questions surrounding leaching risks from RAP continue. To address these concerns, RAP from six, discrete stockpiles in Florida was collected and leach tested following the most up-to-date, standard column leaching protocol - United States Environmental Protection Agency (US EPA) Leaching Environmental Assessment Framework (LEAF) Method 1314. Sixteen EPA priority polycyclic aromatic hydrocarbons (PAHs), 23 emerging PAHs, identified through relevance in literature, and heavy metals were investigated. Column testing showed minimal leaching of PAHs; only eight compounds, three priority PAHs and five emerging PAHs, were released at quantifiable concentrations, and where applicable, were below US EPA Regional Screening Levels (RSL). Though emerging PAHs were identified more frequently, in most cases, priority compounds dominated contributions to overall PAH concentration and benzo(a)pyrene (BaP) equivalent toxicity. Except for arsenic, molybdenum, and vanadium in two samples, metals were found below limits of detection (LOD) or below risk thresholds. Arsenic and molybdenum concentrations diminished over time with increased exposure to liquid, but elevated vanadium concentrations persisted in one sample. Further batch testing linked vanadium to the aggregate component of the sample, unlikely to be encountered in typical RAP sources. As demonstrated by generally low constituent mobility observed during testing, the leaching risks associated with the beneficial reuse of RAP are limited, and under typical reuse conditions, factors of dilution and attenuation would likely reduce leached concentrations below relevant risk-based thresholds at a point of compliance. When considering emerging PAHs with higher toxicities, analyses indicated minimal impact to overall leachate toxicity, further suggesting that with proper management, this heavily recycled waste stream is unlikely to pose leaching risk.
Collapse
Affiliation(s)
- Ashley M Lin
- Department of Environmental Engineering Sciences, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Alina S Timshina
- Department of Environmental Engineering Sciences, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Jordan K Magnuson
- Department of Environmental Engineering Sciences, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - John A Bowden
- Department of Environmental Engineering Sciences, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA; Center for Environmental and Human Toxicology, Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Timothy G Townsend
- Department of Environmental Engineering Sciences, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|