1
|
Guo R, Xue F, Zhang J, Li J, Li H, Qiao B. Cornel iridoid glycosides exerted neuroprotective effects against cerebral ischemia/reperfusion injury in rats via inhibiting TLR4/MyD88/NF-κB pathway. Eur J Pharmacol 2025; 1001:177742. [PMID: 40398794 DOI: 10.1016/j.ejphar.2025.177742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 05/10/2025] [Accepted: 05/15/2025] [Indexed: 05/23/2025]
Abstract
Inflammatory response plays a key role in the pathophysiological process of Ischemic stroke. Cornel iridoid glycosides (CIG), the primary components of Cornus officinalis Sieb. et Zucc., have demonstrated a wide range of anti-inflammatory pharmacological activities. This study aimed to investigate the neuroprotective effect of CIG against cerebral ischemia/reperfusion injury and to explore its anti-inflammatory mechanisms. Sprague-Dawley rats were pre-treated with CIG at doses of 1.25, 2.5, and 5 mL/kg and then subjected to transient middle cerebral artery occlusion/re-perfusion (tMCAO/R). The effectiveness of prevention was determined based on neurological function, cerebral infarction, edema, histological changes, microglia aggregation, and induction of inflammation cytokines using hematoxylin-eosin staining, TUNEL staining, and real-time quantitative PCR. Proteins involved in the canonical nuclear factor kappa B (NF-κB) signaling pathway were analyzed using immunofluorescence, western blot, and molecular docking analysis. The results showed that CIG could dose-dependently reduce the neurological deficit score, cerebral infarction and edema, and brain cells apoptosis caused by tMCAO/R injury. Additionally, CIG significantly inhibited the aggregation of microglia and decreased levels of tumor necrosis factor-α, interleukin-1β and interleukin-6 in a dose-dependent manner. Furthermore, the tMCAO/R rats pre-treated with CIG displayed inhibition of NF-κB nuclear translocation and down-regulations on TLR4, MyD88, TRAF6, and inhibitory kappa B. Molecular docking analysis revealed that the CIG components (morroniside, loganin, and cornuside I) exhibited good affinities with protein TLR4, MyD88, and TRAF6. CIG could alleviate cerebral ischemia/reperfusion injury by inhibiting microglia aggregation and reducing the neuroinflammatory response, which targets the TLR4/MyD88/NF-κB signaling pathway. Therefore, CIG might potentially serve as a new medicine candidate for the prevention of ischemic stroke.
Collapse
Affiliation(s)
- Rui Guo
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, PR China; Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, PR China
| | - Fangli Xue
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, PR China; Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, PR China
| | - Jianmei Zhang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, PR China; Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, PR China
| | - Jing Li
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, PR China; Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, PR China
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, Division of Medicine, Faculty of Medical Sciences, University College London, London, WC1E 6BT, United Kingdom
| | - Boling Qiao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, PR China; Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, PR China.
| |
Collapse
|
2
|
Liu Y, Wang C, Hui T, Yuan Y, Chen S, Li Y, Wang G, Kang J, Xue X. Cornus officinalis loganin attenuates acute lung injury in mice via regulating the PI3K/AKT/NLRP3 axis. JOURNAL OF ETHNOPHARMACOLOGY 2025:120104. [PMID: 40490233 DOI: 10.1016/j.jep.2025.120104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/24/2025] [Accepted: 06/04/2025] [Indexed: 06/11/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cornus officinalis (CO), a pharmaceutical and food product, can reduce inflammation, alleviate oxidative stress and lower blood sugar levels. In particular, CO has been used to treat severe COVID-19 patients during the pandemic, revealing its protective effects against pneumonia. AIM In this study, the mitigating effects of CO ethanol extract (COEE) on acute lung injury (ALI) and the molecular mechanism were investigated and the main active components of COEE were screened. METHODS The anti-inflammatory effects of CO on model animals assessed by evaluating the levels of proinflammatory factors and inflammasome components by HE staining technique, ELISA, RT-qPCR and immunofluorescence assays. Moreover, CCK8, LDH, and RT‒qPCR assays were also performed to assess the effect of CO on cell viability and its anti-inflammatory efficacy in vitro. The mRNA expression of inflammatory factors (IL-1β and TNF-α), and the protein expression of NLRP3 inflammasome members was evaluated. In addition, the molecular mechanisms and core pharmacodynamic components of CO were inferred by network pharmacology, and the relevant pathway targets were analysed and verified by immunohistochemistry, Western blotting and RT‒qPCR. In vivo and in vitro models were also established to verify the effects of the main active ingredient Loganin (LOG) on ALI and the related molecular mechanisms. RESULTS COEE significantly suppressed inflammation, mitigated lung tissue damage, and inhibited NLRP3 inflammasome activation in an LPS-induced murine ALI model and an inflammatory cell model. Network pharmacology screening and experimental data revealed that the PI3K/AKT signalling pathway is the direct target of CO, as COEE administration potently inhibited the activation of the PI3K/AKT/NLRP3 signalling pathway in vitro and in vivo, whereas the PI3K/AKT pathway agonist YS-49 apparently impaired the effects of COEE. Further studies revealed that LOG, a core ingredient in CO, mediated the effects of COEE via direct targeting of AKT1, and different doses of LOG had consistent and strong protective effects on ALI model mice. CONCLUSION COEE exerts therapeutic effects on LPS-induced ALI model mice by inhibiting the activation of the PI3K/AKT pathway and preventing the overactivation of the NLRP3 inflammasome, and LOG is the core medicinal substance. These findings also provide supporting evidence for the development of new nutraceuticals for the prevention and treatment of ALI.
Collapse
Affiliation(s)
- Yiran Liu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Changli Wang
- Department of Laboratory Pathology, Xijing 986 Hospital Department, Air Force Medical University, Xi'an, China
| | - Teng Hui
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yue Yuan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Shirong Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yan Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Gan Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jiefang Kang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| | - Xiaochang Xue
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
3
|
Qu Y, Ding M, Zhang M, Zheng L, Hu B, An H. Iridoid glycosides in kidney-tonifying Chinese medicinal herbs: Mechanisms and implications for Alzheimer's disease therapy. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119870. [PMID: 40288663 DOI: 10.1016/j.jep.2025.119870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 03/22/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alzheimer's disease (AD) is an incurable and irreversible type of dementia. Existing drugs cannot meet clinical needs; thus, developing new treatments is necessary. Traditional Chinese medicine (TCM) has been used in the prevention and treatment of AD. TCM holds the theory that "the kidney support brain function" and believes that dementia can be addressed from a kidney-based perspective. Kidney-tonifying herbs are a class of medicines that have the effect of tonifying the kidney and benefiting the brain. Some of these herbs have been shown to have anti-AD effects. Iridoid glycosides (IGs), which are important components of kidney-tonifying herbs, may have the potential to prevent and treat AD. However, their effects on AD have not yet been reviewed. AIM OF THE REVIEW This literature review provides a comprehensive summary of the potential of IGs in the prevention and treatment of AD. It also sets the foundation for future studies that will make the use of such drugs in clinical practice possible. MATERIAL AND METHODS Kidney-tonifying Chinese herbs were selected with reference to the Chinese Pharmacopoeia (2020 edition) and the textbook of Chinese Materia Medica (5th edition). Literature survey was conducted using PubMed, Web of Science, Google Scholar, and CNKI, with "Alzheimer's disease," "kidney-tonifying Chinese medicinal herbs," and "Iridoid Glycosides" as the primary keywords. RESULTS Kidney-tonifying herbal IGs include loganin, morroniside, verbenalin, cornuside, catalpol, rehmannioside A, geniposidic acid, and aucubin. These IGs have shown multiple pharmacological effects, including anti-AD effects. The effective mechanisms of IGs for AD treatment include anti-oxidative stress, inhibiting neuronal apoptosis, antagonizing amyloid neurotoxicity and tau protein hyperphosphorylation, regulating immune function, anti-inflammation, normalizing the function of the cholinergic nervous system, recuperating neurobiochemical, and regulating AD-related genes. Consequently, IGs can combat AD by modulating multiple targets and pathways. CONCLUSION Kidney-tonifying herbal IGs have great potential to combat AD.
Collapse
Affiliation(s)
- Yanjie Qu
- Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Minrui Ding
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Mengxue Zhang
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lan Zheng
- Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Bing Hu
- Cancer Institute, Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Hongmei An
- Department of Science & Technology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
4
|
Wang C, Jiang X, Han S, Zang H, Gao X. Loganin ameliorates left ventricular fibrosis and dysfunction induced by pressure overload via the Sirt1/AKT/TGF-β1 signaling pathway. J Nat Med 2025:10.1007/s11418-025-01911-9. [PMID: 40347371 DOI: 10.1007/s11418-025-01911-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/18/2025] [Indexed: 05/12/2025]
Abstract
Loganin (LG), a natural compound derived from Cornus officinalis Sieb. et Zucc., possesses diverse pharmacological properties, such as anti-inflammatory, anti-hypertrophic, and antioxidant effects. However, the role of LG in the pathogenesis of Heart Failure (HF) remains unclear. The current work aimed to explore the underlying mechanism of LG in pressure overload-induced HF, both in vivo and in vitro, using transverse aortic constriction (TAC) surgery or isoproterenol (ISO) administration. Following eight weeks of TAC surgery, histological assessments, including hematoxylin and eosin staining, wheat germ agglutinin staining, TUNEL assay, and Masson's trichrome staining, were conducted to evaluate the extent of cardiomyocyte remodeling. Additionally, RT-PCR and WB analyses were performed to detect the levels of various targets. Furthermore, H9C2 cardiomyocytes were treated with ISO to induce hypertrophy, and the effects of LG on cell viability, α-smooth muscle actin (α-SMA) expression, and molecular targets were investigated. Our findings revealed that LG treatment at 40 mg/kg/day significantly attenuated cardiac dysfunction, decreased left ventricular collagen deposition in both interstitial and perivascular spaces. Mechanistically, LG mitigated ISO-induced toxicity in H9C2 cardiomyocytes, decreasing cellular hypertrophy and α-SMA expression. Moreover, we observed a downregulation of Sirtuin 1 (Sirt1) at the molecular level, accompanied by reduced phosphorylation of Akt and transforming growth factor-β1 (TGF-β1). Notably, the administration of the Sirt1 inhibitor, EX527, effectively abolished the protective effects of LG. Therefore, the cardio-protective effects of LG were mediated through the activation of the Sirt1/Akt/TGF-β1 signaling pathway, leading to reduced fibrosis and improved cardiac function.
Collapse
Affiliation(s)
- Changbin Wang
- Department of Cardiology, The First Rongjun Youfu Hospital of Shandong Province, No. 23 Jiefang Road, Jinan, 25000, China
| | - Xiaoli Jiang
- Department of Cardiology, The First Rongjun Youfu Hospital of Shandong Province, No. 23 Jiefang Road, Jinan, 25000, China
| | - Shuhua Han
- Station for Fengming Community Health Service, People's Hospital of Zhoucun District, No. 999 Hengxing Road, Zibo, 255300, China
| | - Huimei Zang
- Center for Gene and Immunotherapy, The Second Hospital, Cheeloo College of Medicine, Shandong University, No.44 Wenhua West Road, Jinan, 250033, China
- Multidisciplinary Innovation Center for Nephrology of the Second Hospital, Cheeloo College of Medicine, Shandong University, No.44 Wenhua West Road, Jinan, 250033, China
| | - Xiaoyuan Gao
- Department of Cardiology, Jinan Central Hospital Affiliated to Shandong First Medical University, No.105 Jiefang Road, Jinan, 250033, China.
| |
Collapse
|
5
|
Gao G, Su X, Liu S, Wang P, Chen JJ, Liu T, Xu J, Zhang Z, Zhang X, Xie Z. Cornuside as a promising therapeutic agent for diabetic kidney disease: Targeting regulation of Ca 2+ disorder-mediated renal tubular epithelial cells apoptosis. Int Immunopharmacol 2025; 149:114190. [PMID: 39904045 DOI: 10.1016/j.intimp.2025.114190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Renal tubular epithelial cells (RTECs) apoptosis is the key factor in the development of diabetic kidney disease (DKD). Endoplasmic reticulum stress (ERS) leading to mitochondrial Ca2+ overload is one of the causes of apoptosis in RTECs. Corni Fructus (CF) is an herbal medicine, developed and applied as a functional food, and it is commonly used to treat DKD. Cornuside (Cor) is one of the main chemical components in CF. This research seeks to investigate the function of Cor in DKD and delve into its possible mechanisms. Cor significantly improved renal function and ameliorated renal pathological changes of db/db mice. Bioinformatics analyses suggested that the modulation of endoplasmic reticulum-induced intrinsic apoptosis pathway was a primary mechanism by which Cor ameliorated DKD. TUNEL assays and flow cytometry assays indicated that Cor effectively inhibited RTECs apoptosis in db/db mice and AGE-induced HK-2 cells. Further experimental studies showed that Cor mitigated ERS by inhibiting the activation of PERK/ATF4/CHOP signal pathway and down-regulation of VDAC1 protein expression, thus alleviating mitochondrial Ca2+ overload. More importantly, Cor directly targeted NEDD4 to facilitate VDAC1 degradation. Notably, the silencing of NEDD4 nearly abolished Cor's inhibitory effects on mitochondrial Ca2+ overload and apoptosis. In conclusion, Cor modulated Ca2+ homeostasis by alleviating ERS and targeting NEDD4, thus mitigating apoptosis of RTECs in DKD. These findings indicate that Cor has the potential for the treatment and drug development of DKD.
Collapse
Affiliation(s)
- Gai Gao
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, 450046, China
| | - Xuan Su
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, 450046, China
| | - Shuyan Liu
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, 450046, China
| | - Pan Wang
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, 450046, China
| | - Jenny Jie Chen
- International Academic Affairs Department, Management and Science University, University Drive, Off Persiaran Olahraga, Section 13, 40100, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Tongxiang Liu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Jiangyan Xu
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, 450046, China
| | - Zhenqiang Zhang
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, 450046, China.
| | - Xiaowei Zhang
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, 450046, China.
| | - Zhishen Xie
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, 450046, China.
| |
Collapse
|
6
|
Badoni S, Rawat D, Mahato AK, Jangwan NS, Ashraf GM, Alexiou A, Tayeb HO, Alghamdi BS, Papadakis M, Singh MF. Therapeutic Potential of Cornus Genus: Navigating Phytochemistry, Pharmacology, Clinical Studies, and Advanced Delivery Approaches. Chem Biodivers 2024; 21:e202301888. [PMID: 38403786 DOI: 10.1002/cbdv.202301888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024]
Abstract
The genus Cornus (Cornaceae) plants are widely distributed in Europe, southwest Asia, North America, and the mountains of Central America, South America, and East Africa. Cornus plants exhibit antimicrobial, antioxidative, antiproliferative, cytotoxic, antidiabetic, anti-inflammatory, neuroprotective and immunomodulatory activities. These plants are exploited to possess various phytoconstituents such as triterpenoids, iridoids, anthocyanins, tannins and flavonoids. Pharmacological research and clinical investigations on various Cornus species have advanced significantly in recent years. Over the past few decades, a significant amount of focus has also been made into developing new delivery systems for Cornus mas and Cornus officinalis. This review focuses on the morphological traits, ethnopharmacology, phytochemistry, pharmacological activities and clinical studies on extracts and active constituents from plants of Cornus genus. The review also highlights recent novel delivery systems for Cornus mas and Cornus officinalis extracts to promote sustained and targeted delivery in diverse disorders. The overwhelming body of research supports the idea that plants from the genus Cornus have therapeutic potential and can be investigated in the future for treatingseveral ailments.
Collapse
Affiliation(s)
- Subhashini Badoni
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| | - Deepshikha Rawat
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| | - Arun Kumar Mahato
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| | - Nitish Singh Jangwan
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, Delhi, 110017, India
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, Research Institute for Medical and Health Sciences, College of Health Sciences, University of Sharjah
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, Wien, 1030, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Haythum O Tayeb
- The Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Division of Neurology, Department of Internal Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Badrah S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marios Papadakis
- Department of SurgeryI. I., University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany
| | - Mamta F Singh
- College of Pharmacy, COER University, Roorkee, 247667, Uttarakhand, India
| |
Collapse
|
7
|
Han Q, Li Y, Yu Y, Yuan H, Wang Z, Guo Y, Shi J, Xue Y, Liu X. Exploring the mechanism of diabetic cardiomyopathy treated with Qigui Qiangxin mixture based on UPLC-Q/TOF-MS, network pharmacology and experimental validation. Sci Rep 2024; 14:12119. [PMID: 38802644 PMCID: PMC11130275 DOI: 10.1038/s41598-024-63088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024] Open
Abstract
Despite its effectiveness in treating diabetic cardiomyopathy (DCM), Qigui Qiangxin Mixture (QGQXM) remains unclear in terms of its active ingredients and specific mechanism of action. The purpose of this study was to explore the active ingredients and mechanism of action of QGQXM in the treatment of DCM through the comprehensive strategy of serum pharmacology, network pharmacology and combined with experimental validation. The active ingredients of QGQXM were analyzed using Ultra-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UPLC-Q/TOF-MS). Network pharmacology was utilized to elucidate the mechanism of action of QGQXM for the treatment of DCM. Finally, in vivo validation was performed by intraperitoneal injection of STZ combined with high-fat feeding-induced DCM rat model. A total of 25 active compounds were identified in the drug-containing serum of rats, corresponding to 121 DCM-associated targets. GAPDH, TNF, AKT1, PPARG, EGFR, CASP3, and HIF1 were considered as the core therapeutic targets. Enrichment analysis showed that QGQXM mainly treats DCM by regulating PI3K-AKT, MAPK, mTOR, Insulin, Insulin resistance, and Apoptosis signaling pathways. Animal experiments showed that QGQXM improved cardiac function, attenuated the degree of cardiomyocyte injury and fibrosis, and inhibited apoptosis in DCM rats. Meanwhile, QGQXM also activated the PI3K/AKT signaling pathway, up-regulated Bcl-2, and down-regulated Caspase9, which may be an intrinsic mechanism for its anti-apoptotic effect. This study preliminarily elucidated the mechanism of QGQXM in the treatment of DCM and provided candidate compounds for the development of new drugs for DCM.
Collapse
Affiliation(s)
- Quancheng Han
- Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Yan Li
- Cardiology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jing Shi Road, Lixia District, Jinan, People's Republic of China
| | - Yiding Yu
- Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Huajing Yuan
- Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Ziqi Wang
- Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Yonghong Guo
- Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Jingle Shi
- Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Yitao Xue
- Cardiology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jing Shi Road, Lixia District, Jinan, People's Republic of China.
| | - Xiujuan Liu
- Cardiology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jing Shi Road, Lixia District, Jinan, People's Republic of China.
| |
Collapse
|
8
|
Wang Z, Yin G, Liao X, Zhou Z, Cao Y, Li X, Wu W, Zhang S, Lou Q. Cornus officinalis var. koreana Kitam extracts alleviate cadmium-induced renal fibrosis by targeting matrix metallopeptidase 9. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117824. [PMID: 38278375 DOI: 10.1016/j.jep.2024.117824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cornus officinalis var. koreana Kitam (Cornus officinalis) is a commonly used Chinese herbal medicine and has a good clinical efficacy in kidney and liver diseases. Recent years, a number of studies reported the significant effects of Cornus officinalis on renal fibrosis. However, it is still unclear about the underlying specific mechanism, the bioactive ingredients, and the target gene regulatory network. AIM OF THE STUDY We investigated the impact of Cornus officinalis extract on cadmium-induced renal fibrosis, screened the bioactive ingredients of Cornus officinalis using a pharmacological sub-network analysis, and explored the regulatory effects of Cornus officinalis extracts on target gene matrix metallopeptidase 9 (MMP9). METHODS Male C57BL/6N mice were treated with single or combinatorial agents such as saline, cadmium chloride, Cornus officinalis, Isoginkgetin and FSL-1. Isoginkgetin is a compound with anti-MMP9 activity. FSL-1 can induce MMP9 expression. Masson staining and Western blot and immunohistochemistry analyses were used for assessing renal fibrosis. In addition, wound healing model was established using BUMPT (Boston university mouse proximal tubular) cells to investigate how Cornus officinalis affected cadmium-induced cell migration. The main Cornus officinalis bioactive compounds were identified by UHPLC-MS (Ultra-high-performance liquid chromatography - mass spectrometry). The MMP9 target for Cornus officinalis active ingredients were confirmed through a pharmacological sub-network analysis. RESULTS Aqueous extracts of Cornus officinalis protected from renal dysfunction and kidney fibrosis induced by cadmium chloride in mice. In vitro experiments validated that Cornus officinalis extracts inhibited cell migration ability especially in cadmium chloride condition. The sub-network analysis and chemical components profiling technique revealed the active compounds of Cornus officinalis. Cellular thermal shift assay verified the binding abilities of three active components Daidzein, N-Acetyl-L-tyrosine or Swertisin with matrix metalloproteinase-9. Gelatin zymography assay revealed that the activity of MMP9 was inhibited by the three active components. We further confirmed that MMP9 was involved in the process of Cornus officinalis extracts reducing renal fibrosis. Cornus officinalis attenuated the cadmium-induced renal fibrosis was correlated with decreased expression of MMP9, collagen I, α-SMA (alpha-smooth muscle actin) and vimentin. CONCLUSIONS This study demonstrated that Cornus officinalis extracts could alleviate the cadmium chloride-induced renal fibrosis by targeting MMP9, and might provide new insights into the mechanism of treating renal fibrosis by Cornus officinalis.
Collapse
Affiliation(s)
- Zhonghang Wang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, PR China
| | - Guanyi Yin
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, PR China
| | - Xiaochen Liao
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, PR China
| | - Ziou Zhou
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, PR China
| | - Yaping Cao
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, PR China
| | - Xuemiao Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, PR China
| | - Wenbin Wu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, PR China
| | - Shuanglin Zhang
- The First Affiliated Hospital of Henan University, Kaifeng, 475004, PR China
| | - Qiang Lou
- Huaihe Hospital of Henan University, Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475000, PR China; Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, PR China.
| |
Collapse
|
9
|
Zheng S, Xu Y, Zhang Y, Long C, Chen G, Jin Z, Jiang S, Chen J, Qin Y. Efficacy and safety of traditional Chinese medicine decoction as an adjuvant treatment for diabetic nephropathy: a systematic review and meta-analysis of randomized controlled trials. Front Pharmacol 2024; 15:1327030. [PMID: 38783937 PMCID: PMC11111926 DOI: 10.3389/fphar.2024.1327030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Objective: This study aimed to assess the efficacy and safety of traditional Chinese medicine decoction as an adjunctive treatment for diabetic nephropathy in systematic evaluations. Methods: A comprehensive search was conducted in PubMed, Web of Science, Cochrane Library, Embase, China National Knowledge Infrastructure (CNKI), and Wanfang databases, covering the period from January 2013 to July 2023. The search was restricted to randomized controlled trials (RCTs) conducted within the past decade that investigated the use of TCM decoction as an adjunctive treatment for diabetic nephropathy. The control group received western medicine treatment, while the intervention group received TCM decoction in addition to the conventional treatment. Endnote and Excel were employed for literature management and data organization, and Revman 5.3 and Stata 16 software were used for the analyses. Results: 66 RCTs involving 6,951 participants were included in this study. The clinical efficacy of TCM decoction as an adjunctive treatment for diabetic nephropathy was found to be significantly higher than that of the control group (OR = 3.12, 95% CI [2.70, 3.60], I2 = 0%, p < 0.00001). The incidence of adverse events did not differ significantly between the intervention group and the control group (OR = 0.94, 95% CI [0.60, 1.48], I2 = 0%, p = 0.94). According to the secondary outcomes of renal function and blood glucose indicators, the intervention group showed better therapeutic efficacy compared to the control group. The most frequently used TCM categories were tonifying medicine, blood-activating medicine, astringent medicine, diuretic medicine, heat-clearing medicine, and laxative medicine. Among them, the top five frequently used Chinese medicine were Astragalus mongholicus Bunge [Fabaceae; Astragali mongholici radix](58 times), Salvia miltiorrhiza Bunge [Lamiaceae; Radix et rhizoma salviae miltiorrhizae] (42 times), Dioscorea oppositifolia L. [Dioscoreaceae; Dioscoreae rhizoma] (38 times), Poria cocos (Schw.) Wolf [Polyporaceae; Poria] (38 times), and Cornus officinalis Siebold & Zucc. [Cornaceae; Corni fructus] (35 times). Conclusion: The combined use of TCM decoction with western medicine in the treatment of diabetic nephropathy can enhance clinical effectiveness and 2 This is a provisional file, not the final typeset article achieve superior therapeutic effects in comparison to western medicine alone, without significant risks. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/#recordDetails, identifier [CRD42022529144].
Collapse
Affiliation(s)
- Shuyu Zheng
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxi Xu
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya Zhang
- Department of Endocrinology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caiyi Long
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guo Chen
- Department of Infectious Diseases, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhao Jin
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shui Jiang
- Good Clinical Practice Department, Chengdu Jingdongfang Hospital, Chengdu, China
| | - Junyu Chen
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulian Qin
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Zhou TY, Tian N, Li L, Yu R. Iridoids modulate inflammation in diabetic kidney disease: A review. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:210-222. [PMID: 38631983 DOI: 10.1016/j.joim.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 02/18/2024] [Indexed: 04/18/2024]
Abstract
In recent years, preclinical research on diabetic kidney disease (DKD) has surged to the forefront of scientific and clinical attention. DKD has become a pervasive complication of type 2 diabetes. Given the complexity of its etiology and pathological mechanisms, current interventions, including drugs, dietary modifications, exercise, hypoglycemic treatments and lipid-lowering methods, often fall short in achieving desired therapeutic outcomes. Iridoids, primarily derived from the potent components of traditional herbs, have been the subject of long-standing research. Preclinical data suggest that iridoids possess notable renal protective properties; however, there has been no summary of the research on their efficacy in the management and treatment of DKD. This article consolidates findings from in vivo and in vitro research on iridoids in the context of DKD and highlights their shared anti-inflammatory activities in treating this condition. Additionally, it explores how certain iridoid components modify their chemical structures through the regulation of intestinal flora, potentially bolstering their therapeutic effects. This review provides a focused examination of the mechanisms through which iridoids may prevent or treat DKD, offering valuable insights for future research endeavors. Please cite this article as: Zhou TY, Tian N, Li L, Yu R. Iridoids modulate inflammation in diabetic kidney disease: A review. J Integr Med. 2024; 22(3): 210-222.
Collapse
Affiliation(s)
- Tong-Yi Zhou
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Na Tian
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Liu Li
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Rong Yu
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China; Hunan Provincial Key Laboratory of Translational Research in Traditional Chinese Medicine Prescriptions and Zheng, Changsha 410208, Hunan Province, China.
| |
Collapse
|
11
|
Fletcher JD, Olsson GE, Zhang YC, Burkhardt BR. Oral gavage delivery of Cornus officinalis extract delays type 1 diabetes onset and hyperglycemia in non-obese diabetic (NOD) mice. FEBS Open Bio 2024; 14:434-443. [PMID: 38129973 PMCID: PMC10909980 DOI: 10.1002/2211-5463.13758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease initiated by genetic predisposition and environmental influences, which result in the specific destruction of insulin-producing pancreatic β-cells. Currently, there are over 1.6 million cases of T1D in the United States with a worldwide incidence rate that has been increasing since 1990. Here, we examined the effect of Cornus officinalis (CO), a well-known ethnopharmacological agent, on a T1D model of the non-obese diabetic (NOD) mouse. A measured dose of CO extract was delivered into 10-week-old NOD mice by oral gavage for 15 weeks. T1D incidence and hyperglycemia were significantly lower in the CO-treated group as compared to the water gavage (WT) and a no handling or treatment control group (NHT) following treatment. T1D onset per group was 30%, 60% and 86% for the CO, WT and NHT groups, respectively. Circulating C-peptide was higher, and pancreatic insulitis was decreased in non-T1D CO-treated mice. Our findings suggest that CO may have therapeutic potential as both a safe and effective interventional agent to slow early stage T1D progression.
Collapse
Affiliation(s)
- Justin D. Fletcher
- Department of Molecular BiosciencesUniversity of South FloridaTampaFLUSA
| | - Grace E. Olsson
- Department of Molecular BiosciencesUniversity of South FloridaTampaFLUSA
| | | | - Brant R. Burkhardt
- Department of Molecular BiosciencesUniversity of South FloridaTampaFLUSA
| |
Collapse
|
12
|
Liang L, Cao W, Li L, Liu W, Wei X, Chen J, Ren G, Duan X. Effect of gum arabic and thermal modification of whey protein isolate on the characteristics of Cornus officinalis flavonoid microcapsules. J Food Sci 2024; 89:1012-1021. [PMID: 38174800 DOI: 10.1111/1750-3841.16897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Whey protein isolates (WPIs) were treated at 50, 60, 70, and 80°C to obtain thermally modified WPI. Gum arabic (GA) and thermal modification of WPI were used as novel wall materials to improve the quality of Cornus officinalis flavonoid (COF) microcapsules using microwave freeze-drying technique in this study. Results showed that all the thermal modification treatment decreased emulsifying activity index of WPI, whereas the solubility and emulsifying stability index (ESI) of WPI gradually increased with the increase of heating temperature. Compared to the untreated protein, the thermal modification treatment at 70°C increased the solubility and ESI of WPI by 14.91% ± 0.71% and 26.70% ± 0.94%, respectively. The microcapsules prepared with the modified protein at 60°C had the highest encapsulation efficiency (95.13% ± 2.36%), the lowest moisture content (1.42% ± 0.34%), and the highest solubility (84.41% ± 0.91). Scanning electron microscopy images showed that COF microcapsules were uniformly spherical, and the sizes of the microcapsules were in the following order: 12.42 ± 0.37 µm (80°C) > 11.7 ± 0.23 µm (untreated group) > 9.44 ± 0.33 µm (60°C) > 9.24 ± 0.14 µm (50°C) > 7.69 ± 0.29 µm (70°C). In the simulated in vitro digestion experiments, the release rate of COF microcapsules in the gastric digestion phase was less than that in the intestinal digestion phase, and it reached 66.46% at intestinal digestion phase. These results suggested that heated WPI and GA could be an effective nanocarrier to enhance the stability of COF.
Collapse
Affiliation(s)
- Luodan Liang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Weiwei Cao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Linlin Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Wenchao Liu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Xinyu Wei
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Junliang Chen
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Guangyue Ren
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Xu Duan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
13
|
Kim H, Hong JY, Lee J, Yeo C, Jeon WJ, Lee YJ, Ha IH. Immune-boosting effect of Yookgong-dan against cyclophosphamide-induced immunosuppression in mice. Heliyon 2024; 10:e24033. [PMID: 38293434 PMCID: PMC10826668 DOI: 10.1016/j.heliyon.2024.e24033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Immune responses must be strictly regulated to prevent autoimmune and infectious diseases and to protect against infectious agents. As people age, their immunity wanes, leading to a decrease in lymphocyte production in bone marrow and thymus and a decline in the efficacy of mature lymphocytes in secondary lymphoid organs. This study explores the immune-boosting potential of Yookgong-dan (YGD) in enhancing the immune system by activating immune cells. In our in vitro experiments, cyclophosphamide (Cy) treatment led to a significant decrease in primary splenocyte viability. However, subsequent treatment with YGD significantly improved cell viability, with doses ranging between 1 and 25 μg/mL in Cy-treated splenocytes. Flow cytometry analysis demonstrated that the Cy group exhibited reduced positivity of CD3+ T cells and CD45+ leukocytes compared to the blank group. In contrast, treatment with YGD led to a notable, dose-responsive increase in these immune cell types. In our in vivo experiments, YGD was orally administered to Cy-induced immunosuppressed mice at 20 and 100 mg/kg doses for 10 days. The results indicated a dose-dependent elevation in immunoglobulin (Ig)G and IgM levels in the serum, emphasizing the immunostimulatory effect of YGD. Furthermore, the Cy-treated group showed decreased T cells, B (CD19+) cells, and leukocytes in the total splenocyte population. Yet, YGD treatment resulted in a dose-dependent reversal of this pattern, suggesting its ability to counter immunosuppression. Notably, YGD was found to effectively stimulate T (CD4+ and CD8+) lymphocyte subsets and natural killer cells, along with enhancing Th1/Th2 cytokines in immunosuppressed conditions. These outcomes correlated with the modulation of BCL-2 and BAX expression, which are critical for apoptosis. In conclusion, YGD has the potential to bolster immune functionality through the activation of immune cells, thereby enhancing the immune system's capacity to combat diseases and improve overall health and wellness.
Collapse
Affiliation(s)
- Hyunseong Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, South Korea
| | - Jin Young Hong
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, South Korea
| | - Junseon Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, South Korea
| | - Changhwan Yeo
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, South Korea
| | - Wan-Jin Jeon
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, South Korea
| | - Yoon Jae Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, South Korea
| | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, South Korea
| |
Collapse
|
14
|
Deng W, Liu Y, Guo Y, Chen J, Abdu HI, Khan MRU, Palanisamy CP, Pei J, Abd El-Aty AM. A comprehensive review of Cornus officinalis: health benefits, phytochemistry, and pharmacological effects for functional drug and food development. Front Nutr 2024; 10:1309963. [PMID: 38274211 PMCID: PMC10809406 DOI: 10.3389/fnut.2023.1309963] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Cornus officinalis sieb. et zucc, a deciduous tree or shrub, is renowned for its "Cornus flesh" fruit, which is widely acknowledged for its medicinal value when matured and dried. Leveraging C. officinalis as a foundational ingredient opens avenues for the development of environmentally friendly health foods, ranging from beverages and jams to preserves and canned products. Packed with diverse bioactive compounds, this species manifests a spectrum of pharmacological effects, including anti-inflammatory, antioxidant, antidiabetic, immunomodulatory, neuroprotective, and cardiovascular protective properties. Methods This study employs CiteSpace visual analysis software and a bibliometric analysis platform, drawing upon the Web of Science (WOS) database for literature spanning the last decade. Through a comprehensive analysis of available literature from WOS and Google Scholar, we present a thorough summary of the health benefits, phytochemistry, active compounds, and pharmacological effects of C. officinalis. Particular emphasis is placed on its potential in developing functional drugs and foods. Results and Discussion While this review enhances our understanding of C. officinalis as a prospective therapeutic agent, its clinical applicability underscores the need for further research and clinical studies to validate findings and establish safe and effective clinical applications.
Collapse
Affiliation(s)
- Wenhui Deng
- College of Physical Education, Shaanxi University of Technology, Hanzhong, China
| | - Yuchen Liu
- Shaanxi Province Key Laboratory of Bioresources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Yaodong Guo
- College of Health Management, Shangluo University, Shangluo, Shaanxi, China
- ShaanxiUnion Research Center of University and Enterprise for Health Food Ingredient and Walnut Industry, Shangluo, Shaanxi, China
| | - Jie Chen
- College of Health Management, Shangluo University, Shangluo, Shaanxi, China
- ShaanxiUnion Research Center of University and Enterprise for Health Food Ingredient and Walnut Industry, Shangluo, Shaanxi, China
| | - Hassan Idris Abdu
- College of Health Management, Shangluo University, Shangluo, Shaanxi, China
- ShaanxiUnion Research Center of University and Enterprise for Health Food Ingredient and Walnut Industry, Shangluo, Shaanxi, China
| | - Muhmmad R. U. Khan
- Shaanxi Province Key Laboratory of Bioresources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
- College of Health Management, Shangluo University, Shangluo, Shaanxi, China
- ShaanxiUnion Research Center of University and Enterprise for Health Food Ingredient and Walnut Industry, Shangluo, Shaanxi, China
- Pak-Austria Fachhochschule lnstitute of Applied Sciences and Technology, Haripur, Pakistan
| | - Chella Perumal Palanisamy
- Shaanxi Province Key Laboratory of Bioresources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Jinjin Pei
- Shaanxi Province Key Laboratory of Bioresources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Türkiye
| |
Collapse
|
15
|
Tang X, Huang Y, Fang X, Tong X, Yu Q, Zheng W, Fu F. Cornus officinalis: a potential herb for treatment of osteoporosis. Front Med (Lausanne) 2023; 10:1289144. [PMID: 38111697 PMCID: PMC10725965 DOI: 10.3389/fmed.2023.1289144] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
Osteoporosis (OP) is a systemic metabolic skeletal disorder characterized by a decline in bone mass, bone mineral density, and deterioration of bone microstructure. It is prevalent among the elderly, particularly postmenopausal women, and poses a substantial burden to patients and society due to the high incidence of fragility fractures. Kidney-tonifying Traditional Chinese medicine (TCM) has long been utilized for OP prevention and treatment. In contrast to conventional approaches such as hormone replacement therapy, TCM offers distinct advantages such as minimal side effects, low toxicity, excellent tolerability, and suitability for long-term administration. Extensive experimental evidence supports the efficacy of kidney-tonifying TCM, exemplified by formulations based on the renowned herb Cornus officinalis and its bioactive constituents, including morroniside, sweroside, flavonol kaempferol, Cornuside I, in OP treatment. In this review, we provide a comprehensive elucidation of the underlying pathological principles governing OP, with particular emphasis on bone marrow mesenchymal stem cells, the homeostasis of osteogenic and osteoclastic, and the regulation of vascular and immune systems, all of which critically influence bone homeostasis. Furthermore, the therapeutic mechanisms of Cornus officinalis-based TCM formulations and Cornus officinalis-derived active constituents are discussed. In conclusion, this review aims to enhance understanding of the pharmacological mechanisms responsible for the anti-OP effects of kidney-tonifying TCM, specifically focusing on Cornus officinalis, and seeks to explore more efficacious and safer treatment strategies for OP.
Collapse
Affiliation(s)
- Xinyun Tang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Yuxin Huang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Xuliang Fang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Xuanying Tong
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Qian Yu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Wenbiao Zheng
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, China
| | - Fangda Fu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
16
|
Li X, Guo L, Huang F, Xu W, Peng G. Cornuside inhibits glucose-induced proliferation and inflammatory response of mesangial cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:513-520. [PMID: 37884283 PMCID: PMC10613572 DOI: 10.4196/kjpp.2023.27.6.513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/26/2023] [Accepted: 07/18/2023] [Indexed: 10/28/2023]
Abstract
Cornuside is a secoiridoid glucoside compound extracted from the fruits of Cornus officinalis. Cornuside has immunomodulatory and anti-inflammatory properties; however, its potential therapeutic effects on diabetic nephropathy (DN) have not been completely explored. In this study, we established an in vitro model of DN through treating mesangial cells (MMCs) with glucose. MMCs were then treated with different concentrations of cornuside (0, 5, 10, and 30 μM). Cell viability was determined using cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays. Levels of proinflammatory cytokines, including interleukin (IL)-6, tumor necrosis factor-α, and IL-1β were examined using enzyme-linked immunosorbent assay. Reverse transcription quantitative real-time polymerase chain reaction and Western blotting were performed to detect the expression of AKT and nuclear factor-kappa B (NF-κB)-associated genes. We found that cornuside treatment significantly reduced glucose-induced increase in MMC viability and expression of pro-inflammatory cytokines. Moreover, cornuside inhibited glucose-induced phosphorylation of AKT and NF-κB inhibitor alpha, decreased the expression of proliferating cell nuclear antigen and cyclin D1, and increased the expression of p21. Our study indicates that the anti-inflammatory properties of cornuside in DN are due to AKT and NF-κB inactivation in MMCs.
Collapse
Affiliation(s)
- Xiaoxin Li
- Prevention Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, China
- Nanjing University of Traditional Chinese Medicine, Nanjing 210023, China
| | - Lizhong Guo
- Nanjing University of Traditional Chinese Medicine, Nanjing 210023, China
| | - Fei Huang
- Department of Endocrinology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, China
| | - Wei Xu
- Cardiovascular Department, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, China
| | - Guiqing Peng
- Respiratory Department, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, China
| |
Collapse
|
17
|
Kong X, Zhao Y, Wang X, Yu Y, Meng Y, Yan G, Yu M, Jiang L, Song W, Wang B, Wang X. Loganin reduces diabetic kidney injury by inhibiting the activation of NLRP3 inflammasome-mediated pyroptosis. Chem Biol Interact 2023; 382:110640. [PMID: 37473909 DOI: 10.1016/j.cbi.2023.110640] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/19/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Diabetic kidney disease (DKD) is an essential cause of end-stage renal disease. The ongoing inflammatory response in the proximal tubule promotes the progression of DKD. Timely and effective blockade of the inflammatory process to protect the kidney during DKD progression is a proven strategy. The purpose of this study was to investigate the protective effect of loganin on diabetic nephropathy in vivo and in vitro and whether this effect was related to the inhibition of pyroptosis. The results indicated that loganin reduced fasting blood glucose, blood urea nitrogen and serum creatinine concentrations, and alleviated renal pathological changes in DKD mice. In parallel, loganin downregulated the expression of pyroptosis related proteins in the renal tubules of DKD mice and decreased serum levels of interleukin-1beta (IL-1β) and interleukin-18 (IL-18). Furthermore, in vitro experiments showed that loganin attenuated high glucose-induced HK-2 cell injury by reducing the expression of pyroptosis-related proteins, and cytokine levels were also decreased. These fundings were also confirmed in the polyphyllin VI (PPVI) -induced HK-2 cell pyroptosis model. Loganin reduces high glucose induced HK-2 cells pyroptosis by inhibiting reactive oxygen species (ROS) production and NOD-like receptor protein 3 (NLRP3) inflammasome activation. In conclusion, the inhibition of pyroptosis via inhibition of the NLRP3/Caspase-1/Gasdermin D (GSDMD) pathway might be an essential mechanism for loganin treatment of DKD.
Collapse
Affiliation(s)
- Xiangri Kong
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China; Endocrinology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Yunyun Zhao
- Endocrinology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Xingye Wang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China; Department of Cardiovascular Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Yongjiang Yu
- Endocrinology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Ying Meng
- College of Clinical Medical, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Guanchi Yan
- Endocrinology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Miao Yu
- Endocrinology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Lihong Jiang
- Department of Cardiovascular Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Wu Song
- College of Clinical Medical, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China.
| | - Bingmei Wang
- College of Clinical Medical, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China.
| | - Xiuge Wang
- Endocrinology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China.
| |
Collapse
|
18
|
Zhou S, Liu J, Tan L, Wang Y, Li J, Wang Y, Ding C, Long H. Changes in metabolites in raw and wine processed Corni Fructus combination metabolomics with network analysis focusing on potential hypoglycemic effects. Front Pharmacol 2023; 14:1173747. [PMID: 37608891 PMCID: PMC10440738 DOI: 10.3389/fphar.2023.1173747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023] Open
Abstract
Introduction: Corni Fructus (CF) is a Chinese herbal medicine used for medicinal and dietary purposes. It is available commercially in two main forms: raw CF (unprocessed CF) and wine-processed CF. Clinical observations have indicated that wine-processed CF exhibits superior hypoglycemic activity compared to its raw counterpart. However, the mechanisms responsible for this improvement are not well understood. Methods: To address this gap in knowledge, we conducted metabolomics analysis using ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry (UPLC-QTOF-MS) to compare the chemical composition of raw CF and wine-processed CF. Subsequently, network analysis, along with immunofluorescence assays, was employed to elucidate the potential targets and mechanisms underlying the hypoglycemic effects of metabolites in CF. Results: Our results revealed significant compositional differences between raw CF and wine-processed CF, identifying 34 potential markers for distinguishing between the two forms of CF. Notably, wine processing led to a marked decrease in iridoid glycosides and flavonoid glycosides, which are abundant in raw CF. Network analysis predictions provided clues that eight compounds might serve as hypoglycemic metabolites of CF, and glucokinase (GCK) and adenylate cyclase (ADCYs) were speculated as possible key targets responsible for the hypoglycemic effects of CF. Immunofluorescence assays confirmed that oleanolic acid and ursolic acid, two bioactive compounds present in CF, significantly upregulated the expression of GCK and ADCYs in the HepG2 cell model. Discussion: These findings support the notion that CF exerted hypoglycemic activity via multiple components and targets, shedding light on the impact of processing methods on the chemical composition and hypoglycemic activity of Chinese herbal medicine.
Collapse
Affiliation(s)
- Siqian Zhou
- Center for Medical Research and Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
- Hunan University of Chinese Medicine, Changsha, China
| | - Jian Liu
- Center for Medical Research and Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Leihong Tan
- Department of Pharmacy, The Second Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yikun Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jing Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Yajing Wang
- Hunan University of Chinese Medicine, Changsha, China
| | | | - Hongping Long
- Center for Medical Research and Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
- Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
19
|
Wang CF, Liu Y, Du SZ, Chen YG, Zhan R. Immunosuppressive diarylpropane dimer and spirocyclic-monomers from Horsfieldia kingii. Bioorg Chem 2023; 134:106438. [PMID: 36848715 DOI: 10.1016/j.bioorg.2023.106438] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/09/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023]
Abstract
Horsfiequinone G (1), a dimeric diarylpropane featuring an unprecedentedly oxo-6/7/6 fused ring system, a new flavane, horsfielenide F (2), three naturally occurring spirocyclic monomers containing all-carbon quaternary centers, horspirotone A (3), horspirotone B (4), and methyl spirobroussonin B (5), along with horsfiequinone A (6) were isolated from Horsfieldia kingii. Their structures and absolute configurations were determined by the inspection of extensive spectroscopic data and electronic circular dichroism (ECD) calculations. Biological evaluations of these isolates revealed that compounds 1 - 3 and 5 - 6 exhibited specifically immunosuppressive activities against Con A-induced T lymphocytes with IC50 values ranging from 2.07 to 12.34 μM (selectivity indices = 2.3-25.2). Compound 1 also suppressed the secretion of inflammatory factors like IL-1β and IL-6 in RAW264.7 cells which could present a new class of nonsteroidal anti-inflammatory agent. Finally, the primary structure-activity relationship (SAR) was also discussed.
Collapse
Affiliation(s)
- Chao-Fan Wang
- School of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Ying Liu
- School of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Shou-Zhen Du
- School of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Ye-Gao Chen
- School of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Rui Zhan
- School of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| |
Collapse
|
20
|
Yang M, Hao Z, Wang X, Zhou S, Xiao C, Zhu D, Yang Y, Wei J, Zheng X, Feng W. Four undescribed iridoid glycosides with antidiabetic activity from fruits of Cornus officinalis Sieb. Et Zucc. Fitoterapia 2023; 165:105393. [PMID: 36528150 DOI: 10.1016/j.fitote.2022.105393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Four novel iridoid glycosides neocornuside E-H (1-4), together with nine known ones (5-13), were isolated from fruits of Cornus officinalis. Their chemical structures were determined on the basis of spectroscopic analyses and comparing of the literature data. All of the isolated compounds were evaluated for their antidiabetic activity in insulin resistant HepG2 cells. Compounds 2, 4, 5, 8, and 12 exhibited antidiabetic activities with EC50 values of 40.12, 2.54, 70.43, 15.31, and 4.86 μM, respectively. Flow Sight cytometry analysis indicated that compounds 2, 4, 5, 8, and 12 improved the ability of 2-NBDG uptake of insulin-induced HepG2 cells.
Collapse
Affiliation(s)
- Meng Yang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China
| | - Zhiyou Hao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China
| | - Xiaolan Wang
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Shiqi Zhou
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China
| | - Chaoyuan Xiao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China
| | - Denghui Zhu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China
| | - Ying Yang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China
| | - Junjun Wei
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China
| | - Xiaoke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China.
| | - Weisheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China.
| |
Collapse
|
21
|
Zhan R, Zhang XY, Li ZY, Liu B, Chen YG. Immunosuppressive Bibenzyl-phenylpropane Hybrids from Dendrobium devonianum. Chem Biodivers 2023; 20:e202201185. [PMID: 36795028 DOI: 10.1002/cbdv.202201185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/17/2023]
Abstract
Two new bibenzyl-phenylpropane hybrids, dendrophenols A and B (1 and 2), along with nine known bibenzyls, were isolated from the aerial part of Dendrobium devonianum Paxt. Their structures were determined by extensive spectroscopic methods and methylation. Bioassays revealed that compounds 1-9 were specifically immunosuppressive to T lymphocytes with IC50 values ranging from 0.41 to 9.4 μM, of which compounds 1 (IC50 =1.62 μM) and 2 (IC50 =0.41 μM) were promising immunosuppressive agents for T lymphocytes with the selectivity indices of 19.9 and 79.5, respectively.
Collapse
Affiliation(s)
- Rui Zhan
- School of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650050, P. R. China
| | - Xin-Yue Zhang
- School of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650050, P. R. China
| | - Zhi-Yuan Li
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Bo Liu
- School of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650050, P. R. China
| | - Ye-Gao Chen
- School of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650050, P. R. China
| |
Collapse
|
22
|
Activation of Nrf2/HO-1 antioxidant signaling correlates with the preventive effect of loganin on oxidative injury in ARPE-19 human retinal pigment epithelial cells. Genes Genomics 2023; 45:271-284. [PMID: 36018494 DOI: 10.1007/s13258-022-01302-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/03/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Loganin, a type of iridoid glycoside derived from Corni Fructus, is known to have beneficial effects various chronic diseases. However, studies on mechanisms related to antioxidant efficacy in human retinal pigment epithelial (RPE) cells have not yet been conducted. OBJECTIVES This study was to investigate whether loganin could inhibit oxidative stress-mediated cellular damage caused by hydrogen peroxide (H2O2) in human RPE ARPE-19 cells. METHODS The preventive effect of loganin on H2O2-induced cytotoxicity, reactive oxygen species (ROS) generation, DNA damage and apoptosis was investigated. In addition, immunofluorescence staining and immunoblotting analysis were applied to evaluate the related mechanisms. RESULTS The loss of cell viability and increased ROS accumulation in H2O2-treated ARPE-19 cells were significantly abrogated by loganin pretreatment, which was associated with activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and increased expression of heme oxygenase-1 (HO-1). Loganin also markedly attenuated H2O2-induced DNA damage, ultimately ameliorating apoptosis. In addition, H2O2-induced mitochondrial dysfunction was reversed in the presence of loganin as indicated by preservation of mitochondrial integrity, decrease of Bax/Bcl-2 expression ratio, reduction of caspase-3 activity and suppression of cytochrome c release into the cytoplasm. However, zinc protoporphyrin, a selective inhibitor of HO-1, remarkably alleviated the preventive effect offered by loganin against H2O2-mediated ARPE-19 cell injury, suggesting a critical role of Nrf2-mediated activation of HO-1 in the antioxidant activity of loganin. CONCLUSION The results of this study suggest that loganin-induced activation of the Nrf2/HO-1 axis is at least involved in protecting at least ARPE-19 cells from oxidative injury.
Collapse
|
23
|
Funari CS, Rinaldo D, Bolzani VS, Verpoorte R. Reaction of the Phytochemistry Community to Green Chemistry: Insights Obtained Since 1990. JOURNAL OF NATURAL PRODUCTS 2023; 86:440-459. [PMID: 36638830 DOI: 10.1021/acs.jnatprod.2c00501] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review article aims to study how phytochemists have reacted to green chemistry insights since 1990, the year when the U.S. Environmental Protection Agency launched the "Pollution Prevention Act". For each year in the period 1990 to 2019, three highly cited phytochemistry papers that provided enough information about the experimental procedures utilized were sampled. The "greenness" of these procedures was assessed, particularly for the use of solvents. The highly hazardous diethyl ether, benzene, and carbon tetrachloride did not appear in the papers sampled after 2010. Advances in terms of sustainability were observed mainly in the extraction stage. Similar progress was not observed in purification procedures, where chloroform, dichloromethane, and hexane regularly have been employed. Since replacing such solvents in purification procedures should be a major goal, potential alternative approaches are discussed. Moreover, some current initiatives toward a more sustainable phytochemical research considering aspects other than only solvents are highlighted. Although some advances have been achieved, it is believed that natural products chemists can play a major role in developing a novel ecological paradigm in chemistry. To contribute to this objective, six principles for performing natural products chemistry consistent with the guidelines of green chemistry are proposed.
Collapse
Affiliation(s)
- Cristiano S Funari
- Green Biotech Network, School of Agricultural Sciences, São Paulo State University (UNESP), 18610-034Botucatu, Brazil
| | - Daniel Rinaldo
- Green Biotech Network, School of Sciences, São Paulo State University (UNESP), 17033-360Bauru, Brazil
| | - Vanderlan S Bolzani
- NuBBE, Institute of Chemistry, São Paulo State University (UNESP), 14800-900Araraquara, Brazil
| | - Robert Verpoorte
- Natural Products Laboratory, Institute of Biology, Leiden University, PO Box 9505, 2300RALeiden, The Netherlands
| |
Collapse
|
24
|
New Type of Tannins Identified from the Seeds of Cornus officinalis Sieb. et Zucc. by HPLC-ESI-MS/MS. Molecules 2023; 28:molecules28052027. [PMID: 36903273 PMCID: PMC10004147 DOI: 10.3390/molecules28052027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
There is a lack of information on the compound profile of Cornus officinalis Sieb. et Zucc. seeds. This greatly affects their optimal utilization. In our preliminary study, we found that the extract of the seeds displayed a strong positive reaction to the FeCl3 solution, indicating the presence of polyphenols. However, to date, only nine polyphenols have been isolated. In this study, HPLC-ESI-MS/MS was employed to fully reveal the polyphenol profile of the seed extracts. A total of 90 polyphenols were identified. They were classified into nine brevifolincarboxyl tannins and their derivatives, 34 ellagitannins, 21 gallotannins, and 26 phenolic acids and their derivatives. Most of these were first identified from the seeds of C. officinalis. More importantly, five new types of tannins were reported for the first time: brevifolincarboxyl-trigalloyl-hexoside, digalloyl-dehydrohexahydroxydiphenoyl (DHHDP)-hexdside, galloyl-DHHDP-hexoside, DHHDP-hexahydroxydiphenoyl(HHDP)-galloyl-gluconic acid, and peroxide product of DHHDP-trigalloylhexoside. Moreover, the total phenolic content was as high as 79,157 ± 563 mg gallic acid equivalent per 100 g in the seeds extract. The results of this study not only enrich the structure database of tannins, but also provide invaluable aid to its further utilization in industries.
Collapse
|
25
|
Sun X, Xue S, Cui Y, Li M, Chen S, Yue J, Gao Z. Characterization and identification of chemical constituents in Corni Fructus and effect of storage using UHPLC-LTQ-Orbitrap-MS. Food Res Int 2023; 164:112330. [PMID: 36737923 DOI: 10.1016/j.foodres.2022.112330] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Corni Fructus (CF) has been widely used as both traditional medicine and food; however, systematic studies on its chemical profile and the impact of storage periods on the indicative components are lacking. In this study, UHPLC-LTQ-Orbitrap-MS was used to investigate the fragmentation behaviors of multiple compounds from CF and the content variety of its indicative components for different storage periods. The major basic components of CF were determined to be iridoid glucosides, pentacyclic triterpenoids, phenolic acids, tannins and flavonoids. The characteristic cleavage pathways of the iridoid glucosides, pentacyclic triterpenoids, phenolic acids, tannins and flavonoids were further investigated and elaborated, which could assist in identifying the structures of similar components of other Chinese herbal medicines. Using accurate mass measurements for each precursor ion and the subsequent fragmented ions, and then comparing with standards and literature data, a total of 130 components, including 69 iridoid glucosides, 9 pentacyclic triterpenoids, 16 phenolic acids, 20 tannins and 16 flavonoids, 47 of which are potentially new compounds, were identified. The storage period studies indicated that the contents of 19 indicative components in CF changed differently with the prolongation of the storage period. Among them, morroniside, loganin, sweroside, cornuside, gallic acid, oleanolic acid and ursolic acid were the most important. These results provide abundant information for the identification and improved understanding of the chemical constituents in CF to clarify the content variety of its indicative components for different storage periods.
Collapse
Affiliation(s)
- Xiaoya Sun
- School of Pharmacy, Henan University of Chinese Medicine, No. 156, Jinshui East Road, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine Resources and Chinese Medicine Chemistry, Henan University of Chinese Medicine, No. 156, Jinshui East Road, Zhengzhou 450046, China; Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, No. 156, Jinshui East Road, Zhengzhou 450046, China
| | - Shujuan Xue
- School of Pharmacy, Henan University of Chinese Medicine, No. 156, Jinshui East Road, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine Resources and Chinese Medicine Chemistry, Henan University of Chinese Medicine, No. 156, Jinshui East Road, Zhengzhou 450046, China; Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, No. 156, Jinshui East Road, Zhengzhou 450046, China
| | - Yongxia Cui
- School of Pharmacy, Henan University of Chinese Medicine, No. 156, Jinshui East Road, Zhengzhou 450046, China
| | - Meng Li
- School of Pharmacy, Henan University of Chinese Medicine, No. 156, Jinshui East Road, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine Resources and Chinese Medicine Chemistry, Henan University of Chinese Medicine, No. 156, Jinshui East Road, Zhengzhou 450046, China; Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, No. 156, Jinshui East Road, Zhengzhou 450046, China
| | - Suiqing Chen
- School of Pharmacy, Henan University of Chinese Medicine, No. 156, Jinshui East Road, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine Resources and Chinese Medicine Chemistry, Henan University of Chinese Medicine, No. 156, Jinshui East Road, Zhengzhou 450046, China; Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, No. 156, Jinshui East Road, Zhengzhou 450046, China.
| | - Jingyang Yue
- School of Pharmacy, Henan University of Chinese Medicine, No. 156, Jinshui East Road, Zhengzhou 450046, China
| | - Zhining Gao
- School of Pharmacy, Henan University of Chinese Medicine, No. 156, Jinshui East Road, Zhengzhou 450046, China
| |
Collapse
|
26
|
Hu YK, Liu YM, Bai XL, Ma C, Liao X. Screening of Monoamine Oxidase B Inhibitors from Fragaria nubicola by Ligand Fishing and Their Neuroprotective Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:512-521. [PMID: 36562659 DOI: 10.1021/acs.jafc.2c06630] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Fragaria nubicola, known as Tibetan strawberry, is an edible plant possessing various health-promoting effects. However, its functional compositions were rarely studied. In this work, monoamine oxidase B (MAO-B) inhibitors in this plant were rapidly screened using the enzyme-functionalized magnetic nanoparticles coupled with UPLC-QTOF-MS. Two inhibitors, quercetin-3-O-β-d-glucuronide-6″-methyl ester (1) and kaempferol-3-O-β-d-glucuronide-6″-methyl ester (2), were identified from this plant with the IC50 values of 19.44 ± 1.17 and 22.63 ± 1.78 μM, respectively. Enzyme kinetic analysis and molecular docking were carried out to investigate the mechanism of inhibition. Contents of both compounds as well as those of total phenolics and flavonoids were quantified to be 24.76 ± 1.26, 35.59 ± 1.17, 837.67 ± 10.62, and 593.46 ± 10.37 μg/g, respectively. In addition, both compounds exhibited significant neuroprotective effects on 6-hydroxydopamine-induced PC12 cells. This is the first report on the neuroprotective components of F. nubicola, suggesting its potential for developing neuroprotective functional food.
Collapse
Affiliation(s)
- Yi-Kao Hu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu610041, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yi-Ming Liu
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi39217, United States
| | - Xiao-Lin Bai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu610041, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Chao Ma
- Phytochemistry Laboratory, Tibet Plateau Institute of Biology, Lhasa850001, China
| | - Xun Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu610041, China
| |
Collapse
|
27
|
Yang M, Hao Z, Wang X, Zhou S, Zhu D, Yang Y, Wei J, Li M, Zheng X, Feng W. Neocornuside A–D, Four Novel Iridoid Glycosides from Fruits of Cornus officinalis and Their Antidiabetic Activity. Molecules 2022; 27:molecules27154732. [PMID: 35897906 PMCID: PMC9331380 DOI: 10.3390/molecules27154732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
Four previously undescribed iridoid glycosides neocornuside A–D (1–4), along with six known ones (5–10), were isolated from Cornus officinalis fruit. Their structures were elucidated by extensive spectroscopic (NMR, UV, IR, and MS) analysis and comparison with data reported in the literature. All isolates were assessed for their antidiabetic activity on the relative glucose consumption in insulin-induced insulin-resistant HepG2 cells. The results showed that compounds 1, 3, and 7 exhibited significant antidiabetic activities with EC50 values of 0.582, 1.275, and 0.742μM, respectively. Moreover, compounds 1, 3, and 7 could improve the ability of 2-NBDG uptake of insulin-induced HepG2 cells.
Collapse
Affiliation(s)
- Meng Yang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (M.Y.); (Z.H.); (S.Z.); (D.Z.); (Y.Y.); (J.W.); (M.L.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China;
| | - Zhiyou Hao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (M.Y.); (Z.H.); (S.Z.); (D.Z.); (Y.Y.); (J.W.); (M.L.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China;
| | - Xiaolan Wang
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China;
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Shiqi Zhou
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (M.Y.); (Z.H.); (S.Z.); (D.Z.); (Y.Y.); (J.W.); (M.L.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China;
| | - Denghui Zhu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (M.Y.); (Z.H.); (S.Z.); (D.Z.); (Y.Y.); (J.W.); (M.L.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China;
| | - Ying Yang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (M.Y.); (Z.H.); (S.Z.); (D.Z.); (Y.Y.); (J.W.); (M.L.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China;
| | - Junjun Wei
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (M.Y.); (Z.H.); (S.Z.); (D.Z.); (Y.Y.); (J.W.); (M.L.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China;
| | - Meng Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (M.Y.); (Z.H.); (S.Z.); (D.Z.); (Y.Y.); (J.W.); (M.L.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China;
| | - Xiaoke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (M.Y.); (Z.H.); (S.Z.); (D.Z.); (Y.Y.); (J.W.); (M.L.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China;
- Correspondence: (X.Z.); (W.F.)
| | - Weisheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (M.Y.); (Z.H.); (S.Z.); (D.Z.); (Y.Y.); (J.W.); (M.L.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China;
- Correspondence: (X.Z.); (W.F.)
| |
Collapse
|
28
|
Zhang F, Yan Y, Zhang J, Li L, Wang YW, Xia CY, Lian WW, Peng Y, Zheng J, He J, Xu JK, Zhang WK. Phytochemistry, synthesis, analytical methods, pharmacological activity, and pharmacokinetics of loganin: A comprehensive review. Phytother Res 2022; 36:2272-2299. [PMID: 35583806 DOI: 10.1002/ptr.7347] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/13/2021] [Accepted: 11/21/2021] [Indexed: 10/18/2022]
Abstract
Iridoid glycosides (IGs) are found in many medicinal and edible plants, such as Gardenia jasminoides, Cistanche tubulosa, Eucommia ulmoides, Rehmanniae Radix, Lonicera japonica, and Cornus officinalis. Loganin, an IG, is one of the main active ingredient of Cornus officinalis Sieb. et Zucc., which approved as a medicinal and edible plant in China. Loganin has been widely concerned due to its extensive pharmacological effects, including anti-diabetic, antiinflammatory, neuroprotective, and anti-tumor activities, etc. Studies have shown that these underlying mechanisms include anti-oxidation, antiinflammation and anti-apoptosis by regulating a variety of signaling pathways, such as STAT3/NF-κB, JAK/STAT3, TLR4/NF-κB, PI3K/Akt, MCP-1/CCR2, and RAGE/Nox4/p65 NF-κB signaling pathways. In order to better understand the research status of loganin and promote its application in human health, this paper systematically summarized the phytochemistry, analysis methods, synthesis, pharmacological properties and related mechanisms, and pharmacokinetics based on the research in the past decades.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, People's Republic of China.,Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Yu Yan
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Jia Zhang
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Li Li
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Yu-Wei Wang
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Cong-Yuan Xia
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Wen-Wen Lian
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, People's Republic of China
| | - Jun He
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Jie-Kun Xu
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Wei-Ku Zhang
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, People's Republic of China
| |
Collapse
|
29
|
Corni Fructus Alleviates UUO-Induced Renal Fibrosis via TGF-β/Smad Signaling. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5780964. [PMID: 35572722 PMCID: PMC9106464 DOI: 10.1155/2022/5780964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 04/20/2022] [Indexed: 11/18/2022]
Abstract
Renal fibrosis is a type of chronic kidney disease (CKD) induced by infiltration of inflammatory cells, myofibroblast accumulation, and ECM production in the kidney. From a long time ago, Corni Fructus (CF) is known to supplement the liver and kidney with its tepid properties. In this study, we investigated the renal protective mechanism of CF, which is known to supplement the kidney, in rat model of unilateral ureteral obstruction (UUO). After inducing UUO through surgery, the group was separated (
) and the drug was administered for 2 weeks; normal rats (normal), water-treated UUO rats (control), CF 100 mg/kg-treated UUO rats (CF100), and CF 200 mg/kg-treated UUO rats (CF200). As a result of histopathological examination of kidney tissue with H&E, MT, and PAS staining, it was confirmed that the infiltration of inflammatory cells and the erosion of collagen were relatively decreased in the kidneys treated with CF. Also, CF significantly reduced the levels of MDA and BUN in serum. As a result of confirming the expression of the factors through western blotting, CF treatment significantly reduced the expression of NADPH oxidase and significantly regulated the AMPK/LKB1/NF-κB pathway associated with inflammation. In addition, it downregulated the expression of major fibrotic signaling factors, such as α-SMA, collagen I, MMP-2, and TIMP-1, and significantly regulated the TGF-β1/Smad pathway, which is known as a major regulator of renal fibrosis. Taken together, these findings indicate that CF can alleviate renal fibrosis by regulating the TGF-β1/Smad pathway through inhibition of oxidative stress in UUO.
Collapse
|
30
|
Chen L, Ma Q, Zhang G, Lei Y, Wang W, Zhang Y, Li T, Zhong W, Ming Y, Song G. Protective effect and mechanism of loganin and morroniside on acute lung injury and pulmonary fibrosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154030. [PMID: 35279615 DOI: 10.1016/j.phymed.2022.154030] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 02/10/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Loganin and morroniside are two iridoid glycosides with anti-inflammatory, antioxidant and anti-tumor effects. Whether they have effect on acute lung injury and pulmonary fibrosis are still unknown. PURPOSE To explore the potential effects of loganin and morroniside against acute lung cancer and pulmonary fibrosis, and the underlying molecular mechanism. STUDY DESIGN AND METHODS Cell and animal models of acute lung injury were established by the induction of LPS. After intervention with loganin and morroniside, the pathological symptom of lung tissue was assessed, pro-inflammatory factors in cells and lung tissues were detected, NF- κB/STAT3 signaling pathway related proteins were detected by western blotting. Mice pulmonary fibrosis model was induced by bleomycin, pathological symptom was assessed by HE and Masson staining. Fibrosis related indicators were detected by qPCR or western blot. CD4+/CD8+ was detected by flow cytometry. RESULTS Loganin and morroniside relieved the pathological symptom of lung tissue in acute lung injury, pro-inflammatory factors such as IL-6, IL-1β, TNF-α mRNA were inhibited. Expression of p-p65 and STAT3 in lung tissues were also downregulated. In addition, loganin and morroniside downregulated the expression of collagen fiber, hydroxyproline and TGF-β1, collagen I and α-SMA mRNA in lung tissues of pulmonary fibrosis model. This study proved that loganin and morroniside have protective effect on acute lung injury and pulmonary fibrosis, and may provide theoretical basis for the development of new clinical drugs.
Collapse
Affiliation(s)
- Lianghua Chen
- Key Laboratory of Fujian Province for physiology and Biochemistry of Subtropical Plant, Fujian Institute of Subtropical Botany, Xiamen, Fujian 361006, China
| | - Qiujuan Ma
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Gongye Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yongbin Lei
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Weiwei Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yuqi Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Tingting Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Wei Zhong
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yanlin Ming
- Key Laboratory of Fujian Province for physiology and Biochemistry of Subtropical Plant, Fujian Institute of Subtropical Botany, Xiamen, Fujian 361006, China
| | - Gang Song
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
31
|
Tenuta MC, Deguin B, Loizzo MR, Cuyamendous C, Bonesi M, Sicari V, Trabalzini L, Mitaine-Offer AC, Xiao J, Tundis R. An Overview of Traditional Uses, Phytochemical Compositions and Biological Activities of Edible Fruits of European and Asian Cornus Species. Foods 2022; 11:1240. [PMID: 35563963 PMCID: PMC9102190 DOI: 10.3390/foods11091240] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 02/05/2023] Open
Abstract
Cornus species are widely distributed in central and southern Europe, east Africa, southwest Asia, and America. Several species are known for edible fruits, especially Cornus mas and Cornus officinalis. These delicious fruits, characterized by their remarkable nutritional and biological values, are widely used in traditional medicine. In contrast to the other edible Cornus species, C. mas and C. officinalis are the most studied for which little information is available on the main phytochemicals and their biological activities. Fruits are characterised by several classes of secondary metabolites, such as flavonoids, phenolic acids, lignans, anthocyanins, tannins, triterpenoids, and iridoids. The available phytochemical data show that the different classes of metabolites have not been systematically studied. However, these edible species are all worthy of interest because similarities have been found. Thus, this review describes the traditional uses of Cornus species common in Europe and Asia, a detailed classification of the bioactive compounds that characterize the fruits, and their beneficial health effects. Cornus species are a rich source of phytochemicals with nutritional and functional properties that justify the growing interest in these berries, not only for applications in the food industry but also useful for their medicinal properties.
Collapse
Affiliation(s)
- Maria C. Tenuta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.T.); (M.R.L.); (M.B.); (R.T.)
- Faculté de Pharmacie de Paris, Université Paris Cité, U.M.R. n°8038-CiTCoM-(CNRS, Université de Paris Cité), F-75006 Paris, France;
| | - Brigitte Deguin
- Faculté de Pharmacie de Paris, Université Paris Cité, U.M.R. n°8038-CiTCoM-(CNRS, Université de Paris Cité), F-75006 Paris, France;
| | - Monica R. Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.T.); (M.R.L.); (M.B.); (R.T.)
| | - Claire Cuyamendous
- Faculté de Pharmacie de Paris, Université Paris Cité, U.M.R. n°8038-CiTCoM-(CNRS, Université de Paris Cité), F-75006 Paris, France;
| | - Marco Bonesi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.T.); (M.R.L.); (M.B.); (R.T.)
| | - Vincenzo Sicari
- Department of Agraria, “Mediterranea” University of Reggio Calabria, 89124 Reggio Calabria, Italy;
| | - Lorenza Trabalzini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Anne-Claire Mitaine-Offer
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Institut Agro, Laboratoire de Pharmacognosie, UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, BP 87900, CEDEX, F-21079 Dijon, France;
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Universidade de Vigo, Ourense Campus, E-32004 Ourense, Spain;
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.T.); (M.R.L.); (M.B.); (R.T.)
| |
Collapse
|
32
|
Zhang X, Zhang H, Jiao P, Xia M, Tang B. Preparation and Evaluation of Antioxidant Activities of Bioactive Peptides Obtained from Cornus officinalis. Molecules 2022; 27:molecules27041232. [PMID: 35209021 PMCID: PMC8878057 DOI: 10.3390/molecules27041232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/10/2022] Open
Abstract
The present study is a preparation of bioactive peptides from Cornus officinalis proteins by the compound enzymatic hydrolysis method. Response surface methodology (RSM) coupled with Box–Behnken design (BBD) is used to optimize the preparation process of Cornus officinalis peptides. The effects of independent variables, such as the amount of enzyme, pH value, time, extraction times and the ratio of material to liquid on the yield of peptides, are also investigated. The analysis results of the RSM model show that the optimum conditions for the extraction of Cornus officinalis peptides were a pH value of 6.76, temperature of 48.84 °C and the amount of enzyme of 0.19%. Under optimal conditions, the yield of peptides was 36.18 ± 0.26 %, which was close to the predicted yield by the RSM model. Additionally, the prepared Cornus officinalis peptides showed significant antioxidant activity; the scavenging rates of the peptides for DPPH and ·OH were 48.47% and 29.41%, respectively. The results of the cell proliferation assay revealed that the prepared Cornus officinalis peptides could promote embryo fibroblast cells proliferation and repair oxidative damage cells. These results have a practical application value in the design of novel functional food formulations by using Cornus officinalis.
Collapse
Affiliation(s)
- Xin Zhang
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, Nanyang 473061, China
| | - Hao Zhang
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Pengfei Jiao
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Mengrong Xia
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Bo Tang
- College of Food and Bioengineering, Bengbu University, Bengbu 233030, China
| |
Collapse
|
33
|
Bai C, Gao P, Cao B, Zhao N, Zhang M, Lu Y, Zhao P, Zhang B, Xue Y, Yang J, Liang H, Li G. Development and optimization of novel processing methods of fruit extracts of medicinal crop Cornus officinalis. INDUSTRIAL CROPS AND PRODUCTS 2021; 174:114177. [DOI: 10.1016/j.indcrop.2021.114177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
|
34
|
Physicochemical Characterization of the Loganic Acid-IR, Raman, UV-Vis and Luminescence Spectra Analyzed in Terms of Quantum Chemical DFT Approach. Molecules 2021; 26:molecules26227027. [PMID: 34834118 PMCID: PMC8622970 DOI: 10.3390/molecules26227027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
The molecular structure and vibrational spectra of loganic acid (LA) were calculated using B3LYP density functional theory, the 6–311G(2d,2p) basis set, and the GAUSSIAN 03W program. The solid-phase FTIR and FT-Raman spectra of LA were recorded in the 100–4000 cm−1 range. The assignment of the observed bands to the respective normal modes was proposed on the basis of the PED approach. The stability of the LA molecule was considered using NBO analysis. The electron absorption and luminescence spectra were measured and discussed in terms of the calculated singlet, triplet, HOMO, and LUMO electron energies. The Stokes shift derived from the optical spectra was 20,915 cm−1.
Collapse
|
35
|
Czerwińska ME, Bobińska A, Cichocka K, Buchholz T, Woliński K, Melzig MF. Cornus mas and Cornus officinalis-A Comparison of Antioxidant and Immunomodulatory Activities of Standardized Fruit Extracts in Human Neutrophils and Caco-2 Models. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112347. [PMID: 34834710 PMCID: PMC8618406 DOI: 10.3390/plants10112347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 05/06/2023]
Abstract
Fruits of Cornus mas and Cornus officinalis are representative plant materials traditionally used in Europe and Asia, respectively, in the treatment of diabetes and diabetes-related complications, which are often mediated by pathogenic inflammatory agents. Additionally, due to the fact of mutual infiltration of Asian and European medicines, the differentiation as well as standardization of traditional prescriptions seem to be crucial for ensuring the quality of traditional products. The objective of this study was a comparison of biological activity of extracts from fruits of C. mas and C. officinalis by an assessment of their effect on reactive oxygen species (ROS) generation in human neutrophils as well as cytokines secretion both in neutrophils (tumor necrosis factor α, TNF- α; interleukin 8, IL-8; interleukin 1β, IL-1β) and in human colon adenocarcinoma cell line Caco-2 (IL-8). To evaluate the phytochemical differences between the studied extracts as well as to provide a method for standardization procedures, a quantitative analysis of iridoids, such as loganin, sweroside, and loganic acid, found in extracts of Cornus fruits was performed with HPLC-DAD. All standardized extracts significantly inhibited ROS production, whereas the aqueous-alcoholic extracts were particularly active inhibitors of IL-8 secretion by neutrophils. The aqueous-methanolic extract of C. officinalis fruit, decreased IL-8 secretion by neutrophils to 54.64 ± 7.67%, 49.68 ± 6.55%, 50.29 ± 5.87% at concentrations of 5, 50, and 100 µg/mL, respectively, compared to LPS-stimulated control (100%). The aqueous extract of C. officinalis fruit significantly inhibited TNF-α release by neutrophils at concentrations of 50 and 100 µg/mL. On the other hand, the aqueous-ethanolic extract of C. mas fruit showed the propensity to increase TNF-α and IL-1β secretion. The modulatory activity of the Cornus extracts was noted in the case of secretion of IL-8 in Caco-2 cells. The effect was comparable with dexamethasone. The content of loganin in aqueous and aqueous-methanolic extract of C. officinalis fruit was higher than in the aqueous-ethanolic extract of C. mas fruit, which was characterized by a significant quantity of loganic acid. In conclusion, the immunomodulatory effect observed in vitro may partially confirm the traditional use of Cornus fruits through alleviation of the development of diabetes-derived inflammatory complications. Loganin and loganic acid are significant markers for standardization of C. mas and C. officinalis fruit extracts, respectively.
Collapse
Affiliation(s)
- Monika E. Czerwińska
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
- Correspondence: ; Tel.: +48-221-166-185
| | - Agata Bobińska
- Student Scientific Association “Farmakon”, Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (A.B.); (K.C.)
| | - Katarzyna Cichocka
- Student Scientific Association “Farmakon”, Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (A.B.); (K.C.)
| | - Tina Buchholz
- Institute of Pharmacy, Freie Universitaet Berlin, Königin-Luise-Str. 2+4, D-14195 Berlin, Germany; (T.B.); (M.F.M.)
| | - Konrad Woliński
- Polish Academy of Sciences Botanical Garden, Center for Biological Diversity Conservation in Powsin, Prawdziwka 2, 02-973 Warsaw, Poland;
| | - Matthias F. Melzig
- Institute of Pharmacy, Freie Universitaet Berlin, Königin-Luise-Str. 2+4, D-14195 Berlin, Germany; (T.B.); (M.F.M.)
| |
Collapse
|
36
|
Schreck K, Melzig MF. Traditionally Used Plants in the Treatment of Diabetes Mellitus: Screening for Uptake Inhibition of Glucose and Fructose in the Caco2-Cell Model. Front Pharmacol 2021; 12:692566. [PMID: 34489694 PMCID: PMC8417609 DOI: 10.3389/fphar.2021.692566] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/15/2021] [Indexed: 01/11/2023] Open
Abstract
The traditional use of plants and their preparations in the treatment of diseases as a first medication in the past centuries indicates the presence of active components for specific targets in the natural material. Many of the tested plants in this study have been traditionally used in the treatment of Diabetes mellitus type 2 and associated symptoms in different cultural areas. Additionally, hypoglycemic effects, such as a decrease in blood glucose concentration, have been demonstrated in vivo for these plants. In order to determine the mode of action, the plants were prepared as methanolic and aqueous extracts and tested for their effects on intestinal glucose and fructose absorption in Caco2 cells. The results of this screening showed significant and reproducible inhibition of glucose uptake between 40 and 80% by methanolic extracts made from the fruits of Aronia melanocarpa, Cornus officinalis, Crataegus pinnatifida, Lycium chinense, and Vaccinium myrtillus; the leaves of Brassica oleracea, Juglans regia, and Peumus boldus; and the roots of Adenophora triphylla. Furthermore, glucose uptake was inhibited between 50 and 70% by aqueous extracts made from the bark of Eucommia ulmoides and the fruit skin of Malus domestica. The methanolic extracts of Juglans regia and Peumus boldus inhibited the fructose transport between 30 and 40% in Caco2 cells as well. These findings can be considered as fundamental work for further research regarding the treatment of obesity-correlated diseases, such as Diabetes mellitus type 2.
Collapse
Affiliation(s)
| | - Matthias F. Melzig
- Pharmaceutical Biology, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| |
Collapse
|
37
|
Sun J, Ren J, Hu X, Hou Y, Yang Y. Therapeutic effects of Chinese herbal medicines and their extracts on diabetes. Biomed Pharmacother 2021; 142:111977. [PMID: 34364042 DOI: 10.1016/j.biopha.2021.111977] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
With the improvement of people's living standards and changes in the environment, the incidence of diabetes has increased rapidly. It has gradually become one of the main diseases threatening the health and life of modern people, bringing a great burden to the society. Although the existing treatment methods can effectively control the symptoms of diabetes and delay its progression, they have not brought satisfactory improvement in the quality of life and treatment of patients. Traditional Chinese herbal medicines and their extracts combine thousands of years of experience and the scientific basis provided by modern experimental research, which is expected to bring a qualitative leap in the clinical management of diabetes. Therefore, this article systematically reviews studies on the effects of Chinese herbal medicine and its extracts on diabetes and its complications, and aims to bring new ideas and options for the clinical treatment of diabetes.
Collapse
Affiliation(s)
- Jie Sun
- Department of Diabetes, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Jiangong Ren
- Department of Diabetes, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Xuejian Hu
- Department of Diabetes, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Yuanhua Hou
- Department of Diabetes, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Yan Yang
- Department of Diabetes, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China.
| |
Collapse
|
38
|
Halder S, Anand U, Nandy S, Oleksak P, Qusti S, Alshammari EM, El-Saber Batiha G, Koshy EP, Dey A. Herbal drugs and natural bioactive products as potential therapeutics: A review on pro-cognitives and brain boosters perspectives. Saudi Pharm J 2021; 29:879-907. [PMID: 34408548 PMCID: PMC8363108 DOI: 10.1016/j.jsps.2021.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 07/04/2021] [Indexed: 12/25/2022] Open
Abstract
Memory, one of the most vital aspects of the human brain, is necessary for the effective survival of an individual. 'Memory' can be defined in various ways but in an overall view, memory is the retention of the information that the brain grasps. Different factors are responsible for the disbalance in the brain's hippocampus region and the acetylcholine level, which masters the memory and cognitive functions. Plants are a source of pharmacologically potent drug molecules of high efficacy. Recently herbal medicine has evolved rapidly, gaining great acceptance worldwide due to their natural origin and fewer side effects. In this review, the authors have discussed the mechanisms and pharmacological action of herbal bioactive compounds to boost memory. Moreover, this review presents an update of different herbs and natural products that could act as memory enhancers and how they can be potentially utilized in the near future for the treatment of severe brain disorders. In addition, the authors also discuss the differences in biological activity of the same herb and emphasize the requirement for a higher standardization in cultivation methods and plant processing. The demand for further studies evaluating the interactions of herbal drugs is mentioned.
Collapse
Affiliation(s)
- Swati Halder
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Uttpal Anand
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Samapika Nandy
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Safaa Qusti
- Biochemistry Department, Faculty of Science, king Abdulaziz University, Jeddah, Saudi Arabia
| | - Eida M. Alshammari
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Eapen P. Koshy
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| |
Collapse
|
39
|
Klymenko S, Kucharska AZ, Sokół-Łętowska A, Piórecki N, Przybylska D, Grygorieva O. Iridoids, Flavonoids, and Antioxidant Capacity of Cornus mas, C. officinalis, and C. mas × C. officinalis Fruits. Biomolecules 2021; 11:biom11060776. [PMID: 34064234 PMCID: PMC8224299 DOI: 10.3390/biom11060776] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
The fruits of Cornus mas and Cornus officinalis have been known and appreciated in folk medicine for years and have a high biological value, which is mainly connected with their polyphenols and iridoids content. However, hybrids of C. mas × C. officinalis have not been investigated. The aim of this study was to evaluate the iridoids, anthocyanins, and flavonols content, and antioxidant capacity of Cornus mas, Cornus officinalis, and C. mas × C. officinalis. Iridoids and flavonoids were quantified by the High-Performance Liquid Chromatography (HPLC) method. Antioxidant capacity (AC) was measured using 2,2-diphenyl-1-picrylhydrazyl (DPPH•), 2,2′-azino-bis (3-ethyl benzothiazoline-6-sulfonic acid (ABTS•+), and ferric reducing antioxidant power (FRAP) tests. Total phenolic content (TPC) was evaluated using the Folin–Ciocalteu reagent. Among the C. mas cultivars and C. officinalis genotypes, there was considerable variation in the content of iridoids, flavonoids, and AC. Interspecific hybrids C. mas × C. officinalis contained more iridoids than C. mas and more anthocyanins than C. officinalis and additionally had higher AC and TPC than C. officinalis and most C. mas. AC, TPC, and the presence of iridoids, anthocyanins, and flavonols in hybrids C. mas × C. officinalis are reported for the first time. The Cornus species deserve special attention due to their highly biologically active substances, as well as useful medicinal properties.
Collapse
Affiliation(s)
- Svitlana Klymenko
- Department of Fruit Plants Acclimatisation, M.M. Gryshko National Botanical Gardens of Ukraine National Academy of Sciences, 01014 Kyiv, Ukraine; (S.K.); (O.G.)
| | - Alicja Zofia Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (A.Z.K.); (A.S.-Ł.)
| | - Anna Sokół-Łętowska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (A.Z.K.); (A.S.-Ł.)
| | - Narcyz Piórecki
- Arboretum and Institute of Physiography in Bolestraszyce, 37-722 Przemyśl, Poland;
- Institute of Physical Culture Sciences, Medical College, University of Rzeszów, 35-959 Rzeszów, Poland
| | - Dominika Przybylska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (A.Z.K.); (A.S.-Ł.)
- Correspondence:
| | - Olga Grygorieva
- Department of Fruit Plants Acclimatisation, M.M. Gryshko National Botanical Gardens of Ukraine National Academy of Sciences, 01014 Kyiv, Ukraine; (S.K.); (O.G.)
| |
Collapse
|
40
|
Li Q, Hu S, Huang L, Zhang J, Cao G. Evaluating the Therapeutic Mechanisms of Selected Active Compounds in Cornus Officinalis and Paeonia Lactiflora in Rheumatoid Arthritis via Network Pharmacology Analysis. Front Pharmacol 2021; 12:648037. [PMID: 33967784 PMCID: PMC8097135 DOI: 10.3389/fphar.2021.648037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/18/2021] [Indexed: 11/18/2022] Open
Abstract
Cornus officinalis Sieb et. Zucc and Paeonia lactiflora Pall. have exhibited favorable therapeutic effects against rheumatoid arthritis (RA), but the specific mechanisms of their active compounds remain unclear. The aim of this study was to comprehensively analyze the therapeutic mechanisms of selected active compounds in Cornus officinalis (loganin, ursolic acid, and morroniside) and Paeonia lactiflora (paeoniflorin and albiflorin) via network pharmacology. The pharmacological properties of the five active compounds were evaluated and their potential target genes were identified by database screening. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional analysis were performed to determine the enriched molecular pathways associated with the active compounds. Using network pharmacology tools, eight genes (IL1β, VEGFA, STAT3, TP53, IL6, TNF, FOS, and LGALS3) were identified as common targets between RA and the five active compounds. Molecular docking simulation revealed the compound-target relationship between the five active compounds and three selected targets from the eight common ones (LGALS3, STAT3, and VEGFA). The compound-target relationships were subsequently validated via preliminary in vivo experiments in a rat model of collagen-induced arthritis. Rats subjected to collagen-induced arthritis showed increased protein expression of LGALS3, STAT3, and VEGFA in synovial tissues. However, treatment using Cornus officinalis or/and Paeonia lactiflora, as well as their most drug-like active compounds (ursolic acid or/and paeoniflorin, respectively, identified based on pharmacological properties), attenuated the expression of these three targets, as previously predicted. Collectively, network pharmacology allowed the pharmacological and molecular roles of Cornus officinalis and Paeonia lactiflora to be systematically revealed, further establishing them as important candidate drugs in the treatment and management of RA.
Collapse
Affiliation(s)
- Qinglin Li
- Scientific Research Department, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shaoqi Hu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lichuang Huang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jida Zhang
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gang Cao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
41
|
Gao X, Liu Y, An Z, Ni J. Active Components and Pharmacological Effects of Cornus officinalis: Literature Review. Front Pharmacol 2021; 12:633447. [PMID: 33912050 PMCID: PMC8072387 DOI: 10.3389/fphar.2021.633447] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/24/2021] [Indexed: 12/17/2022] Open
Abstract
Cornus officinalis Sieb. et Zucc. (Shanzhuyu), a herb and food plant in east Asia, has the properties of tonifying the liver and kidney, and nourishing the essence according to the theory of traditional Chinese medicine. C. officinalis has been commonly used to treat asthenia diseases, liver, and kidney diseases, and reproductive system diseases since ancient times. The objectives of this article were to review the pharmacological effects and phytochemistry of C. officinalis. We conducted a literature review of the pharmacological effects of C. officinalis by different systems and compared the effects with the traditional usages, discussed the research status and potential blanks to be filled. The experimental studies showed that C. officinalis extract and its active components had various pharmacological effects such as anti-oxidation, anti-apoptosis, anti-inflammation, anti-diabetes, anti-osteoporosis, immunoregulation, neuroprotection, and cardiovascular protection, but clinical studies are still needed to assess whether the reported pharmacological activities have confirmed efficacy.
Collapse
Affiliation(s)
- Xue Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Liu
- School of Chinese Materia Medica, Tianjin University of Chinese Medicine, Tianjin, China
| | - Zhichao An
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jian Ni
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
42
|
Xue Y, Cao B, Liang H, Yang J, Gao P, Mao M, Li G, Bai C. Environmental shifts have important impacts on the functional traits and bioactive products of medicinal crop Cornus officinalis. INDUSTRIAL CROPS AND PRODUCTS 2021; 162:113304. [DOI: 10.1016/j.indcrop.2021.113304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
|
43
|
Antiosteoarthritic Effect of Morroniside in Chondrocyte Inflammation and Destabilization of Medial Meniscus-Induced Mouse Model. Int J Mol Sci 2021; 22:ijms22062987. [PMID: 33804203 PMCID: PMC7999654 DOI: 10.3390/ijms22062987] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is a common degenerative disease that results in joint inflammation as well as pain and stiffness. A previous study has reported that Cornus officinalis (CO) extract inhibits oxidant activities and oxidative stress in RAW 264.7 cells. In the present study, we isolated bioactive compound(s) by fractionating the CO extract to elucidate its antiosteoarthritic effects. A single bioactive component, morroniside, was identified as a potential candidate. The CO extract and morroniside exhibited antiosteoarthritic effects by downregulating factors associated with cartilage degradation, including cyclooxygenase-2 (Cox-2), matrix metalloproteinase 3 (Mmp-3), and matrix metalloproteinase 13 (Mmp-13), in interleukin-1 beta (IL-1β)-induced chondrocytes. Furthermore, morroniside prevented prostaglandin E2 (PGE2) and collagenase secretion in IL-1β-induced chondrocytes. In the destabilization of the medial meniscus (DMM)-induced mouse osteoarthritic model, morroniside administration attenuated cartilage destruction by decreasing expression of inflammatory mediators, such as Cox-2, Mmp3, and Mmp13, in the articular cartilage. Transverse microcomputed tomography analysis revealed that morroniside reduced DMM-induced sclerosis in the subchondral bone plate. These findings suggest that morroniside may be a potential protective bioactive compound against OA pathogenesis.
Collapse
|
44
|
Thu NT, The Hung N, Thuy An NT, Vinh LB, Binh BT, Thu NTB, Khoi NM, Ha DT. Four new phenolic compounds from the fruit of Cornus officinalis (Cornaceae) and their anti-inflammatory activity in RAW 264.7 cells. Nat Prod Res 2021; 36:3806-3812. [PMID: 33593150 DOI: 10.1080/14786419.2021.1887865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Using various chromatographic methods, four new phenolics, coroffesters A-D (1 - 4) were isolated from the fruit of Cornus officinalis (Cornaceae). Their structures (1 - 4) were elucidated unambiguously by spectroscopic methods such as one- and two-dimensional nuclear magnetic resonance (1 D- and 2 D-NMR) spectroscopy and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). The anti-inflammatory activity of the isolated compounds was also evaluated. All compounds (1 - 4) showed moderate inhibitory activity against NO production in a dose-dependent manner in RAW 264.7 cells.
Collapse
Affiliation(s)
- Nguyen Thi Thu
- Department of Analytical Chemistry and Standardization, National Institute of Medical Materials, Hanoi, Vietnam
| | | | | | - Le Ba Vinh
- College of Pharmacy, Wonkwang University, Iksan, Republic of Korea.,Institute of Marine Biochemistry (IMBC), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Bui Thi Binh
- Falculty of pharmacy, Thai Binh University of Medicine and Pharmacy, Thái Bình, Vietnam
| | | | - Nguyen Minh Khoi
- Department of Analytical Chemistry and Standardization, National Institute of Medical Materials, Hanoi, Vietnam
| | - Do Thi Ha
- Department of Analytical Chemistry and Standardization, National Institute of Medical Materials, Hanoi, Vietnam
| |
Collapse
|
45
|
Park E, Lee CG, Yun SH, Hwang S, Jeon H, Kim J, Yeo S, Jeong H, Yun SH, Jeong SY. Ameliorative Effects of Loganin on Arthritis in Chondrocytes and Destabilization of the Medial Meniscus-Induced Animal Model. Pharmaceuticals (Basel) 2021; 14:ph14020135. [PMID: 33567513 PMCID: PMC7914920 DOI: 10.3390/ph14020135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 01/21/2023] Open
Abstract
Arthritis is a common inflammatory disease that causes pain, stiffness, and joint swelling. Here, we investigated the ameliorative effects of loganin on arthritis in vitro and in vivo. A single bioactive compound was fractionated and isolated from Cornus officinalis (CO) extract to screen for anti-arthritic effects. A single component, loganin, was identified as a candidate. The CO extract and loganin inhibited the expression of factors associated with cartilage degradation, such as cyclooxygenase-2 (COX-2), matrix metalloproteinase 3 (MMP-3), and matrix metalloproteinase 13 (MMP-13), in interukin-1 beta (IL-1β)-induced chondrocyte inflammation. In addition, prostaglandin and collagenase levels were reduced following treatment of IL-1β-induced chondrocytes with loganin. In the destabilization of the medial meniscus (DMM)-induced mouse model, loganin administration attenuated cartilage degeneration by inhibiting COX-2, MMP-3, and MMP-13. Transverse micro-CT images revealed that loganin reduced DMM-induced osteophyte formation. These results indicate that loganin has protective effects in DMM-induced mice.
Collapse
Affiliation(s)
- Eunkuk Park
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea; (E.P.); (C.G.L.); (S.H.Y.); (S.H.); (H.J.); (J.K.)
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea
| | - Chang Gun Lee
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea; (E.P.); (C.G.L.); (S.H.Y.); (S.H.); (H.J.); (J.K.)
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea
| | - Seung Hee Yun
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea; (E.P.); (C.G.L.); (S.H.Y.); (S.H.); (H.J.); (J.K.)
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea
| | - Seokjin Hwang
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea; (E.P.); (C.G.L.); (S.H.Y.); (S.H.); (H.J.); (J.K.)
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea
| | - Hyoju Jeon
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea; (E.P.); (C.G.L.); (S.H.Y.); (S.H.); (H.J.); (J.K.)
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea
| | - Jeonghyun Kim
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea; (E.P.); (C.G.L.); (S.H.Y.); (S.H.); (H.J.); (J.K.)
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea
| | - Subin Yeo
- Nine B Co. Ltd., Daejeon 34121, Korea; (S.Y.); (H.J.); (S.-H.Y.)
| | - Hyesoo Jeong
- Nine B Co. Ltd., Daejeon 34121, Korea; (S.Y.); (H.J.); (S.-H.Y.)
| | - Seong-Hoon Yun
- Nine B Co. Ltd., Daejeon 34121, Korea; (S.Y.); (H.J.); (S.-H.Y.)
| | - Seon-Yong Jeong
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea; (E.P.); (C.G.L.); (S.H.Y.); (S.H.); (H.J.); (J.K.)
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea
- Nine B Co. Ltd., Daejeon 34121, Korea; (S.Y.); (H.J.); (S.-H.Y.)
- Correspondence:
| |
Collapse
|
46
|
Park S, Moon BR, Kim JE, Kim HJ, Zhang T. Aqueous Extracts of Morus alba Root Bark and Cornus officinalis Fruit Protect against Osteoarthritis Symptoms in Testosterone-Deficient and Osteoarthritis-Induced Rats. Pharmaceutics 2020; 12:pharmaceutics12121245. [PMID: 33371279 PMCID: PMC7767081 DOI: 10.3390/pharmaceutics12121245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
Water extracts of both Morus alba L. root bark (MBW) and Cornus officinalis Siebold and Zucc fruit (CFW) have traditionally been used to promote men's health in the elderly in Asia. We determined that the 12-week consumption of MBW and CFW could alleviate testosterone-deficiency syndrome and osteoarthritis (OA) symptoms in testosterone-deficient rats, and the action mechanisms were explored. Rats with bilateral orchiectomy (ORX) were fed a 45% fat diet containing either 0.5% MBW (ORX-MBW), 0.5% CFW(ORX-CFW), or 0.5% dextrin (ORX-CON). Sham-operated rats also received 0.5% dextrin (Non-ORX-CON). After 8 weeks of treatment, all rats had an injection of monoiodoacetate (MIA) into the left knee, and they continued the same diet for the additional 4 weeks. ORX-CFW and ORX-MBW partially prevented the reduction of serum testosterone concentrations and decreased insulin resistance, compared to the ORX-CON. ORX-CFW and ORX-MBW protected against the reduction of bone mineral density (BMD) and lean body mass (LBM) compared to the ORX-CON. The limping and edema scores were lower in the order of the ORX-CON, ORX-CRF = ORX-MBW, and Non-ORX-CON (p < 0.05). The scores for pain behaviors, measured by weight-distribution on the OA leg and maximum running velocity on a treadmill, significantly decreased in the same order as limping scores. ORX-MBW protected against the increased expression of matrix metalloproteinase (MMP)-3 and MMP-13 and reduced the production of inflammatory markers such as TNF-α and IL-1β, by MIA in the articular cartilage, compared to the ORX-CON (p < 0.05). The cartilage damage near the tidemark of the knee and proteoglycan loss was significantly less in ORX-MBW than ORX-CON. In conclusion, MBW, possibly CFW, could be effective alternative therapeutic agents for preventing osteoarthritis in testosterone-deficient elderly men.
Collapse
Affiliation(s)
- Sunmin Park
- Department Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 31499, Korea; (B.R.M.); (J.E.K.); (H.J.K.); (T.Z.)
- Department of Bio-Convergence System, Hoseo University, Asan 31499, Korea
- Correspondence: ; Tel.: +82-41-540-5345; Fax: +82-41-548-0670
| | - Bo Reum Moon
- Department Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 31499, Korea; (B.R.M.); (J.E.K.); (H.J.K.); (T.Z.)
| | - Ji Eun Kim
- Department Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 31499, Korea; (B.R.M.); (J.E.K.); (H.J.K.); (T.Z.)
| | - Hyun Joo Kim
- Department Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 31499, Korea; (B.R.M.); (J.E.K.); (H.J.K.); (T.Z.)
| | - Ting Zhang
- Department Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 31499, Korea; (B.R.M.); (J.E.K.); (H.J.K.); (T.Z.)
- Department of Bio-Convergence System, Hoseo University, Asan 31499, Korea
| |
Collapse
|
47
|
Du Q, Fu YX, Shu AM, Lv X, Chen YP, Gao YY, Chen J, Wang W, Lv GH, Lu JF, Xu HQ. Loganin alleviates macrophage infiltration and activation by inhibiting the MCP-1/CCR2 axis in diabetic nephropathy. Life Sci 2020; 272:118808. [PMID: 33245967 DOI: 10.1016/j.lfs.2020.118808] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND/AIMS The theory of inflammation is one of the important theories in the pathogenesis of diabetic nephropathy (DN). We herein aimed to explore whether loganin affected macrophage infiltration and activation upon diabetic nephropathy (DN) by a spontaneous DN mice and a co-culture system of glomerular mesangial cells (GMCs) and macrophage cells (RAW264.7) which was induced by advanced glycation end products (AGEs). METHODS AND KEY FINDINGS Loganin showed remarkable capacity on protecting renal from damage by mitigating diabetic symptoms, improving the histomorphology of the kidney, decreasing the expression of extracellular matrix such as FN, COL-IV and TGF-β, reversing the production of IL-12 and IL-10 and decreasing the number of infiltrating macrophages in the kidney. Moreover, loganin showed markedly effects by suppressing iNOS and CD16/32 expressions (M1 markers), increasing Arg-1 and CD206 expressions (M2 markers), which were the phenotypic transformation of macrophage. These effects may be attributed to the inhibition of the receptor for AGEs (RAGE) /monocyte chemotactic protein-1 (MCP-1)/CC chemokine receptor 2 (CCR2) signaling pathway, with significantly down-regulated expressions of RAGE, MCP-1 and CCR2 by loganin. Loganin further decreased MCP-1 secretion when RAGE was silenced, which means other target was involved in regulating the MCP-1 expression. While loganin combinated with the inhibitor of CCR2 exerted stronger anti-inhibition effects of iNOS expression, suggesting that CCR2 was the target of loganin in regulating the activation of macrophages. SIGNIFICANCE Loganin could ameliorate DN kidney damage by inhibiting macrophage infiltration and activation via the MCP-1/CCR2 signaling pathway in DN.
Collapse
Affiliation(s)
- Qiu Du
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Pharmacy, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China
| | - Ying-Xue Fu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China
| | - An-Mei Shu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China
| | - Xing Lv
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China; Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai 201210, China
| | - Yu-Ping Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China
| | - Yu-Yan Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China
| | - Jing Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China
| | - Wei Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China
| | - Gao-Hong Lv
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China
| | - Jin-Fu Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China
| | - Hui-Qin Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China.
| |
Collapse
|
48
|
Wang X, Zhong XJ, Zhou N, Ji LL, Li JJ, Cai N, Wang QB, Lin PC, Shang XY. Secoiridoid glycosides from the fruits of Cornus officinalis. Nat Prod Res 2020; 36:2329-2335. [PMID: 33930987 DOI: 10.1080/14786419.2020.1834547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Five new secoiridoid glycosides, cornusphenosides E-I (1-5), were isolated and characterized from an active fraction of ethanol extract of the fruits of Cornus officinalis. Their structures were determined by extensive spectroscopic data analysis, including 2 D NMR and HRESIMS experiments. In the preliminary assay, compound 5 (when evaluated at 10 μM) showed the neuroprotective effect against H2O2-induced SH-SY5Y cell damage.
Collapse
Affiliation(s)
- Xin Wang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Xiang-Jian Zhong
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Na Zhou
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Lin-Lin Ji
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Jin-Jie Li
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Ning Cai
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Qing-Bo Wang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Peng-Cheng Lin
- Qinghai Provincial Key Laboratory of Phytochemistry for Tibetan Plateau, Qinghai University for Nationalities, Xining, China
| | - Xiao-Ya Shang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| |
Collapse
|
49
|
Cheng YC, Chu LW, Chen JY, Hsieh SL, Chang YC, Dai ZK, Wu BN. Loganin Attenuates High Glucose-Induced Schwann Cells Pyroptosis by Inhibiting ROS Generation and NLRP3 Inflammasome Activation. Cells 2020; 9:cells9091948. [PMID: 32842536 PMCID: PMC7564733 DOI: 10.3390/cells9091948] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is caused by hyperglycemia, which induces oxidative stress and inflammatory responses that damage nerve tissue. Excessive generation of reactive oxygen species (ROS) and NOD-like receptor protein 3 (NLRP3) inflammasome activation trigger the inflammation and pyroptosis in diabetes. Schwann cell dysfunction further promotes DPN progression. Loganin has been shown to have antioxidant and anti-inflammatory neuroprotective activities. This study evaluated the neuroprotective effect of loganin on high-glucose (25 mM)-induced rat Schwann cell line RSC96 injury, a recognized in vitro cell model of DPN. RSC96 cells were pretreated with loganin (0.1, 1, 10, 25, 50 μM) before exposure to high glucose. Loganin’s effects were examined by CCK-8 assay, ROS assay, cell death assay, immunofluorescence staining, quantitative RT–PCR and western blot. High-glucose-treated RSC96 cells sustained cell viability loss, ROS generation, NF-κB nuclear translocation, P2 × 7 purinergic receptor and TXNIP (thioredoxin-interacting protein) expression, NLRP3 inflammasome (NLRP3, ASC, caspase-1) activation, IL-1β and IL-18 maturation and gasdermin D cleavage. Those effects were reduced by loganin pretreatment. In conclusion, we found that loganin’s antioxidant effects prevent RSC96 Schwann cell pyroptosis by inhibiting ROS generation and suppressing NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Yu-Chi Cheng
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-C.C.); (Y.-C.C.)
| | - Li-Wen Chu
- Department of Nursing, and Department of Cosmetic Application and Management, Yuh-Ing Junior College of Health Care and Management, Kaohsiung 80776, Taiwan;
| | - Jun-Yih Chen
- Division of Neurosurgery, Fooyin University Hospital, Pingtung 92847, Taiwan;
- School of Nursing, Fooyin University, Kaohsiung 83102, Taiwan
| | - Su-Ling Hsieh
- Department of Pharmacy, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
| | - Yu-Chin Chang
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-C.C.); (Y.-C.C.)
| | - Zen-Kong Dai
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Pediatrics, Division of Pediatric Cardiology and Pulmonology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Correspondence: (Z.-K.D.); (B.-N.W.); Tel.: +886-7-3121101-6507 (Z.-K.D.); +886-7-3121101-2139 (B.-N.W.); Fax: +886-7-3208316 (Z.-K.D.); +886-7-3234686 (B.-N.W.)
| | - Bin-Nan Wu
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-C.C.); (Y.-C.C.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Correspondence: (Z.-K.D.); (B.-N.W.); Tel.: +886-7-3121101-6507 (Z.-K.D.); +886-7-3121101-2139 (B.-N.W.); Fax: +886-7-3208316 (Z.-K.D.); +886-7-3234686 (B.-N.W.)
| |
Collapse
|
50
|
Wu Y, Wang L, Bian Y, Zhou Z, Wang Y, Cao L, Gu S. Production and characteristics of high quality vinegar from Cornus officinalis produced by a two-stage fermentative process. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00473-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|