1
|
Chen JY, Yang YJ, Meng XY, Lin RH, Tian XY, Zhang Y, Lai WF, Yang C, Ma XQ, Huang MQ. Oxysophoridine inhibits oxidative stress and inflammation in hepatic fibrosis via regulating Nrf2 and NF-κB pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155585. [PMID: 39068811 DOI: 10.1016/j.phymed.2024.155585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Hepatic fibrosis (HF) runs through multiple stages of liver diseases and promotes these diseases progression. Oxysophoridine (OSR), derived from Sophora alopecuroides l., is a bioactive alkaloid that has been reported to antagonize alcoholic hepatic injury. However, whether OSR suppresses HF and the mechanisms involved in Nrf2 remain unknown. PURPOSE Since the dysregulation of inflammation and oxidative stress is responsible for the excessive accumulation of extracellular matrix (ECM) and fibrosis in the liver. We hypothesized that OSR may attenuate HF by inhibiting inflammation and oxidative stress through activating Nrf2 signaling. METHODS In this study, we employed LPS-stimulated HSC-T6 cells, RAW264.7 cells, and a CCl4-induced C57BL/6 mouse fibrotic model to evaluate its suppressing inflammation and oxidative stress, as well as fibrosis. RESULTS The result showed that OSR significantly reduced α-SMA and TGF-β1 at a low dose of 10 μM in vitro and at a dose of 50 mg/kg in vivo, which is comparable to Silymarin, the only Chinese herbal active ingredient that has been marketed for anti-liver fibrosis. Moreover, OSR effectively suppressed the expression of iNOS at a dose of 10 μM and COX-2 at a dose of 40 μM, respectively. Furthermore, OSR demonstrated inhibitory effects on the IL-1β, IL-6, and TNF-α in vitro and almost extinguished cytokine storm in vivo. OSR exhibited antioxidative effects by reducing MDA and increasing GSH, thereby protecting the cell membrane against oxidative damage and reducing LDH release. Moreover, OSR effectively upregulated the protein levels of Nrf2, HO-1, and p62, but decreased p-NF-κB p65, p-IκBα, and Keap1. Alternatively, mechanisms involved in Nrf2 were verified by siNrf2 interference, siNrf2 interference revealed that the anti-fibrotic effect of OSR was attributed to its activation of Nrf2. CONCLUSION The present study provided an effective candidate for HF involved in both activation of Nrf2 and blockage of NF-κB, which has not been reported in the published work. The present study provides new insights for the identification of novel drug development for HF.
Collapse
Affiliation(s)
- Jian-Yu Chen
- Fujian University of Traditional Chinese Medicine, No.1, Hua Tuo Road, Min Hou Shang Jie, Fuzhou 350122, PR China
| | - Ying-Jie Yang
- Fujian University of Traditional Chinese Medicine, No.1, Hua Tuo Road, Min Hou Shang Jie, Fuzhou 350122, PR China
| | - Xiong-Yu Meng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053 Zhejiang Province, PR China
| | - Ru-Hui Lin
- Fujian University of Traditional Chinese Medicine, No.1, Hua Tuo Road, Min Hou Shang Jie, Fuzhou 350122, PR China
| | - Xiao-Yun Tian
- Fujian University of Traditional Chinese Medicine, No.1, Hua Tuo Road, Min Hou Shang Jie, Fuzhou 350122, PR China
| | - Ying Zhang
- Fujian University of Traditional Chinese Medicine, No.1, Hua Tuo Road, Min Hou Shang Jie, Fuzhou 350122, PR China
| | - Wen-Fang Lai
- Fujian University of Traditional Chinese Medicine, No.1, Hua Tuo Road, Min Hou Shang Jie, Fuzhou 350122, PR China.
| | - Chunxue Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China.
| | - Xue-Qin Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, PR China.
| | - Ming-Qing Huang
- Fujian University of Traditional Chinese Medicine, No.1, Hua Tuo Road, Min Hou Shang Jie, Fuzhou 350122, PR China.
| |
Collapse
|
2
|
Aanniz T, Zeouk I, Elouafy Y, Touhtouh J, Hassani R, Hammani K, Benali T, El-Shazly M, Khalid A, Abdalla AN, Aboulaghras S, Goh KW, Ming LC, Razi P, Bakrim S, Bouyahya A. Initial report on the multiple biological and pharmacological properties of hispolon: Exploring stochastic mechanisms. Biomed Pharmacother 2024; 177:117072. [PMID: 38991301 DOI: 10.1016/j.biopha.2024.117072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/15/2024] [Accepted: 06/29/2024] [Indexed: 07/13/2024] Open
Abstract
The development of natural substances derived from nature poses a significant challenge as technologies for the extraction and characterization of active principles advance. Hispolon has received a lot of attention in recent years, ascribable to its wide range of biological activities. It is a phenolic molecule that was extracted from several mushroom species such as Phellinus igniarius, Phellinus linteus, Phellinus lonicerinus, Phellinus merrillii, and Inonotus hispidus. To provide a comprehensive overview of the pharmacological activities of hispolon, this review highlights its anticancer, anti-inflammatory, antioxidant, antibacterial, and anti-diabetic activities. Several scientific research databases, including Google Scholar, Web of Science, PubMed, SciFinder, SpringerLink, Science Direct, Scopus, and, Wiley Online were used to gather the data on hispolon until May 2024. The in vitro and in vivo studies have revealed that hispolon exhibited significant anticancer properties through modifying several signaling pathways including cell apoptosis, cycle arrest, autophagy, and inhibition of angiogenesis and metastasis. Hispolon's antimicrobial activity was proven against many bacterial, fungal, and viral pathogens, highlighting its potential use as a novel antimicrobial agent. Additionally, hispolon displayed potent anti-inflammatory activity through the suppression of key inflammatory mediators, such as inducible NO synthase (iNOS), tumor necrosis factor-α (TNF-α), and cyclooxygenases-2 (COX-2), and the modulation of mitogen-activated protein kinases (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways. The antioxidant potential of hispolon was attributed to its capacity to neutralize reactive oxygen species (ROS) and to increase the activity of antioxidant enzymes, indicating a possible involvement in the prevention of oxidative stress-related illnesses. Hispolon's antidiabetic activity was associated with the inhibition of aldose reductase and α-glucosidase. Studies on hispolon emphasized its potential use as a promising scaffold for the development of novel therapeutic agents targeting various diseases, including cancer, infectious diseases, inflammatory disorders, and diabetes.
Collapse
Affiliation(s)
- Tarik Aanniz
- Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical and Pharmacy School, Mohammed V University, Rabat, Morocco
| | - Ikrame Zeouk
- Laboratoire de Pharmacologie, Toxicologie, Faculté de Médecine, de Pharmacie et de Médecine dentaire de Fès, Université Sidi Mohamed Ben Abdellah, Morocco
| | - Youssef Elouafy
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
| | - Jihane Touhtouh
- Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University of Fez, B.P. 1223 Taza-Gare, Taza, Morocco
| | - Rym Hassani
- Biology Department, University College AlDarb, Jazan University, Jazan 45142, Saudi Arabia
| | - Khalil Hammani
- Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University of Fez, B.P. 1223 Taza-Gare, Taza, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi 46030, Morocco
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt; Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, The German University in Cairo, Cairo 11432, Egypt
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia; Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P. O. Box 2404, Khartoum, Sudan.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Sara Aboulaghras
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| | - Pakhrur Razi
- Center of Disaster Monitoring and Earth Observation, Universitas Negeri Padang, Padang, Indonesia.
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| |
Collapse
|
3
|
Tee PYE, Krishnan T, Cheong XT, Maniam SAP, Looi CY, Ooi YY, Chua CLL, Fung SY, Chia AYY. A review on the cultivation, bioactive compounds, health-promoting factors and clinical trials of medicinal mushrooms Taiwanofungus camphoratus, Inonotus obliquus and Tropicoporus linteus. Fungal Biol Biotechnol 2024; 11:7. [PMID: 38987829 PMCID: PMC11238383 DOI: 10.1186/s40694-024-00176-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/09/2024] [Indexed: 07/12/2024] Open
Abstract
Medicinal mushrooms, such as Taiwanofungus camphoratus, Inonotus obliquus, and Tropicoporus linteus, have been used in traditional medicine for therapeutic purposes and promotion of overall health in China and many East Asian countries for centuries. Modern pharmacological studies have demonstrated the large amounts of bioactive constituents (such as polysaccharides, triterpenoids, and phenolic compounds) available in these medicinal mushrooms and their potential therapeutic properties. Due to the rising demand for the health-promoting medicinal mushrooms, various cultivation methods have been explored to combat over-harvesting of the fungi. Evidence of the robust pharmacological properties, including their anticancer, hypoglycemic, hypolipidemic, antioxidant, and antiviral activities, have been provided in various studies, where the health-benefiting properties of the medicinal fungi have been further proven through numerous clinical trials. In this review, the cultivation methods, available bioactive constituents, therapeutic properties, and potential uses of T. camphoratus, I. obliquus and T. linteus are explored.
Collapse
Affiliation(s)
- Phoebe Yon Ern Tee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Thiiben Krishnan
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Xin Tian Cheong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Snechaa A P Maniam
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Yin Yin Ooi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Caroline Lin Lin Chua
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Shin-Yee Fung
- Department of Molecular Medicine, Faculty of Medicine Building, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Adeline Yoke Yin Chia
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia.
| |
Collapse
|
4
|
Liu S, Xie J, Duan C, Zhao X, Feng Z, Dai Z, Luo X, Li Y, Yang M, Zhuang R, Li J, Yin W. ADAR1 Inhibits Macrophage Apoptosis and Alleviates Sepsis-induced Liver Injury Through miR-122/BCL2A1 Signaling. J Clin Transl Hepatol 2024; 12:134-150. [PMID: 38343614 PMCID: PMC10851074 DOI: 10.14218/jcth.2023.00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/18/2023] [Accepted: 10/09/2023] [Indexed: 01/05/2025] Open
Abstract
BACKGROUND AND AIMS As sepsis progresses, immune cell apoptosis plays regulatory roles in the pathogenesis of immunosuppression and organ failure. We previously reported that adenosine deaminases acting on RNA-1 (ADAR1) reduced intestinal and splenic inflammatory damage during sepsis. However, the roles and mechanism of ADAR1 in sepsis-induced liver injury remain unclear. METHODS We performed transcriptome and single-cell RNA sequencing of peripheral blood mononuclear cells (PBMCs) from patients with sepsis to investigate the effects of ADAR1 on immune cell activities. We also employed a cecal ligation and puncture (CLP) sepsis mouse model to evaluate the roles of ADAR1 in sepsis-induced liver injury. Finally, we treated murine RAW 264.7 macrophages with lipopolysaccharide to explore the underlying ADAR1-mediated mechanisms in sepsis. RESULTS PBMCs from patients with sepsis had obvious apoptotic morphological features. Single-cell RNA sequencing indicated that apoptosis-related pathways were enriched in monocytes, with significantly elevated ADAR1 and BCL2A1 expression in severe sepsis. CLP-induced septic mice had aggravated liver injury and Kupffer cell apoptosis that were largely alleviated by ADAR1 overexpression. ADAR1 directly bound to pre-miR-122 to modulate miR-122 biosynthesis. miR-122 was an upstream regulator of BCL2A1. Furthermore, ADAR1 also reduced macrophage apoptosis in mice with CLP-induced sepsis through the miR-122/BCL2A1 signaling pathway and protected against sepsis-induced liver injury. CONCLUSIONS The findings show that ADAR1 alleviates macrophage apoptosis and sepsis-induced liver damage through the miR-122/BCL2A1 signaling pathway. The study provides novel insights into the development of therapeutic interventions in sepsis.
Collapse
Affiliation(s)
- Shanshou Liu
- Emergency Department, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jiangang Xie
- Emergency Department, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Chujun Duan
- Emergency Department, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xiaojun Zhao
- Emergency Department, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zhusheng Feng
- Emergency Department, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zheng Dai
- Emergency Department, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xu Luo
- Emergency Department, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yu Li
- Emergency Department, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Minghe Yang
- Third Student Brigade, School of Basic Medical Science, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Ran Zhuang
- Department of Immunology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Junjie Li
- Emergency Department, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Wen Yin
- Emergency Department, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
5
|
Wang X, Sun J, Wang S, Sun T, Zou L. Salicylic acid promotes terpenoid synthesis in the fungi Sanghuangporus baumii. Microb Biotechnol 2023; 16:1360-1372. [PMID: 37096757 DOI: 10.1111/1751-7915.14262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 03/21/2023] [Accepted: 03/26/2023] [Indexed: 04/26/2023] Open
Abstract
Sanghuangporus baumii is a medicinal fungi with anti-inflammatory, liver protection and antitumour effects. Terpenoids are one of the main medicinal ingredients of S. baumii. However, terpenoid production by wild-type S. baumii cannot meet the market demand, which affects its application in medical care. Therefore, exploring how to increase terpenoid content in S. baumii is a promising path in this research field. Salicylic acid (SA) is a secondary metabolite. In this study, a concentration of 350 μmol/L SA was added into fungal cultivations for 2 and 4 days, and then the transcriptome and metabolome of untreated mycelia and treated with SA were analysed. The expression of some genes in the terpenoids biosynthesis pathway increased in SA-induced cultivations, and the content of isopentenyl pyrophosphate (IPP) and geranylgeranyl-PP (GGPP) increased significantly as well as the contents of triterpenoids, diterpenoids, sesquiterpenoids and carotenoids. The gene FPS was considered to be a key gene regulating terpenoid biosynthesis. Therefore, FPS was overexpressed in S. baumii by Agrobacterium tumefaciens-mediated genetic transformation. The gene FPS and its downstream gene (LS) expression levels were confirmed to be increased in the FPS overexpressing transformant, and terpenoid content was 36.98% higher than that of the wild-type strain in the evaluated cultivation conditions.
Collapse
Affiliation(s)
- Xutong Wang
- College of Forestry, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin, 150040, Heilongjiang, China
- College of Forestry and Grassland Science, Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, Jilin, China
| | - Jian Sun
- College of Forestry, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin, 150040, Heilongjiang, China
| | - Shixin Wang
- College of Forestry, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin, 150040, Heilongjiang, China
| | - Tingting Sun
- Department of Food Engineering, Harbin University, Zhongxing Road 109, Nangang District, Harbin, 150086, Heilongjiang, China
| | - Li Zou
- College of Forestry, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin, 150040, Heilongjiang, China
| |
Collapse
|
6
|
Janpaijit S, Sillapachaiyaporn C, Theerasri A, Charoenkiatkul S, Sukprasansap M, Tencomnao T. Cleistocalyx nervosum var. paniala Berry Seed Protects against TNF-α-Stimulated Neuroinflammation by Inducing HO-1 and Suppressing NF-κB Mechanism in BV-2 Microglial Cells. Molecules 2023; 28:molecules28073057. [PMID: 37049819 PMCID: PMC10095692 DOI: 10.3390/molecules28073057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Sustained inflammatory responses have been implicated in various neurodegenerative diseases (NDDs). Cleistocalyx nervosum var. paniala (CN), an indigenous berry, has been reported to exhibit several health-beneficial properties. However, investigation of CN seeds is still limited. The objective of this study was to evaluate the protective effects of ethanolic seed extract (CNSE) and mechanisms in BV-2 mouse microglial cells using an inflammatory stimulus, TNF-α. Using LC-MS, ferulic acid, aurentiacin, brassitin, ellagic acid, and alpinetin were found in CNSE. Firstly, we examined molecular docking to elucidate its bioactive components on inflammation-related mechanisms. The results revealed that alpinetin, aurentiacin, and ellagic acid inhibited the NF-κB activation and iNOS function, while alpinetin and aurentiacin only suppressed the COX-2 function. Our cell-based investigation exhibited that cells pretreated with CNSE (5, 10, and 25 μg/mL) reduced the number of spindle cells, which was highly observed in TNF-α treatment (10 ng/mL). CNSE also obstructed TNF-α, IL-1β, and IL-6 mRNA levels and repressed the TNF-α and IL-6 releases in a culture medium of BV-2 cells. Remarkably, CNSE decreased the phosphorylated forms of ERK, p38MAPK, p65, and IκB-α related to the inhibition of NF-κB binding activity. CNSE obviously induced HO-1 protein expression. Our findings suggest that CNSE offers good potential for preventing inflammatory-related NDDs.
Collapse
Affiliation(s)
- Sakawrat Janpaijit
- Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chanin Sillapachaiyaporn
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Atsadang Theerasri
- Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Somsri Charoenkiatkul
- Institute of Nutrition, Salaya Campus, Mahidol University, Nakhonpathom 73170, Thailand
| | - Monruedee Sukprasansap
- Food Toxicology Unit, Institute of Nutrition, Salaya Campus, Mahidol University, Nakhonpathom 73170, Thailand
- Correspondence: (M.S.); (T.T.); Tel.: +66-28002380 (M.S.); +66-22181533 (T.T.)
| | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (M.S.); (T.T.); Tel.: +66-28002380 (M.S.); +66-22181533 (T.T.)
| |
Collapse
|
7
|
Peng S, Hou Y, Chen Z. Hispolon alleviates oxidative damage by stimulating the Nrf2 signaling pathway in PC12 cells. Arch Biochem Biophys 2022; 727:109303. [PMID: 35660410 DOI: 10.1016/j.abb.2022.109303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
Natural products derived from the daily diet are garnering increasing attention for neurodegenerative disease (ND) treatment. Hispolon (His), a small molecule from Phellinus linteus, has been reported to have various pharmacological activities. Here, we evaluated its protective effect on a neuron-like rat pheochromocytoma cell line (PC12). Results showed that His could restore cell death induced by oxidative damage. Nuclear factor-erythroid 2 (NF-E2)-related factor 2 (Nrf2) plays a significant role in maintaining cellular redox homeostasis. After treatment with His, some Nrf2-governed antioxidant genes were upregulated in a dose-dependent manner. However, the protective effect of His on PC12 cells was easily terminated by Nrf2 knockdown, demonstrating that Nrf2 is a critical component in this cytoprotective process. Taken together, our study showed that His was not only an effective activator of Nrf2 but also a promising candidate for ND treatment.
Collapse
Affiliation(s)
- Shoujiao Peng
- Department of General Surgery, Xiangya Hospital, Central South University (CSU), Changsha, Hunan, China; State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China; Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Yanan Hou
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zihua Chen
- Department of General Surgery, Xiangya Hospital, Central South University (CSU), Changsha, Hunan, China.
| |
Collapse
|
8
|
2,3,5,4′-Tetrahydroxystilbene-2-O-β-glucoside Attenuates Reactive Oxygen Species-Dependent Inflammation and Apoptosis in Porphyromonas gingivalis-Infected Brain Endothelial Cells. Antioxidants (Basel) 2022; 11:antiox11040740. [PMID: 35453424 PMCID: PMC9024880 DOI: 10.3390/antiox11040740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 12/04/2022] Open
Abstract
We recently reported that the periodontopathic bacteria Porphyromonas gingivalis (P. gingivalis) initiates an inflammatory cascade that disrupts the balance of reactive oxygen species (ROS), resulting in apoptotic cell death in brain endothelial cells. An extract from Polygonum multiflorum Thunb., 2,3,5,4′-Tetrahydroxystilbene-2-O-β-glucoside (THSG) has been well-reported to diminish the inflammation in many disease models. However, the effects of THSG in the area of the brain–oral axis is unknown. In this study, we examined the effects of THSG in P. gingivalis-stimulated inflammatory response and apoptotic cell death in brain endothelial cells. THSG treatment remarkably lessened the upregulation of IL-1β and TNF-α proteins in bEnd.3 cells infected with P. gingivalis. Treatment of THSG further ameliorated brain endothelial cell death, including apoptosis caused by P. gingivalis. Moreover, the present study showed that the inhibitory effects on NF-κB p65 and antiapoptotic properties of THSG is through inhibiting the ROS pathway. Importantly, the ROS inhibitory potency of THSG is similar to a ROS scavenger N-Acetyl-L-Cysteine (NAC) and NADPH oxidase inhibitor apocynin. Furthermore, the protective effect of THSG from P. gingivalis infection was further confirmed in primary mouse brain endothelial cells. Taken together, this study indicates that THSG attenuates an ROS-dependent inflammatory response and cell apoptosis in P. gingivalis-infected brain endothelial cells. Our results also suggest that THSG could be a potential herbal medicine to prevent the risk of developing cerebrovascular diseases from infection of periodontal bacteria.
Collapse
|
9
|
Chien CC, Wu MS, Chou SW, Jargalsaikhan G, Chen YC. Roles of reactive oxygen species, mitochondrial membrane potential, and p53 in evodiamine-induced apoptosis and G2/M arrest of human anaplastic thyroid carcinoma cells. Chin Med 2021; 16:134. [PMID: 34886886 PMCID: PMC8656090 DOI: 10.1186/s13020-021-00505-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Our previous studies have shown that evodiamine (EVO) as paclitaxel and nocodazole could trigger apoptosis in various human cancer cells including human renal cell carcinoma cells, colorectal carcinoma cells, and glioblastoma cells. This study aims to investigate the anti-cancer effects of EVO on human anaplastic thyroid carcinoma (ATC) cells, and underlining mechanism. METHODS Two different endogenous p53 status human anaplastic thyroid carcinoma (ATC) cells including SW1736 (wtp53) and KAT4B (mutp53) were applied in the present study. The cytotoxicity of EVO on ATC cells was measured by MTT assay, and apoptosis and G2/M arrest were detected by propidium iodide (PI) staining followed by flow cytometry. Expression of indicated proteins was evaluated by Western blotting analysis, and pharmacological studies using chemical inhibitors and siRNA were performed for elucidating underlying mechanism. The roles of mitochondrial membrane potential and reactive oxygen species were investigated by flow cytometry using DiOC6 and DCFH-DA dye, respectively. RESULTS SW1736 (wtp53) cells showed a higher apoptotic percentage than KAT4B (mutp53) cells in response to EVO stimulation via a flow cytometric analysis. Mechanistic studies showed that increased p53 and its downstream proteins, and disrupted MMP with increased intracellular peroxide production participated in EVO-induced apoptosis and G2/M arrest of SW1736 cells. In EVO-treated KAT4B cells, significant increases in G2/M percentage but little apoptotic events by EVO was observed. Structure-activity analysis showed that an alkyl group at position 14 was critical for induction of apoptosis related to ROS production and MMP disruption in SW1736 cells. CONCLUSION Evidence indicated that the endogenous p53 status affected the sensitivity of ATC cells to EVO-induced apoptosis and G2/M arrest, revealing the potential role of p53 related to increased ROS production and disrupted MMP in the anticancer actions of EVO, and alkylation at position 14 of EVO is a critical substitution for apoptosis of ATC cells.
Collapse
Affiliation(s)
- Chih-Chiang Chien
- Department of Nephrology, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Food Nutrition, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Ming-Shun Wu
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Wei Chou
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing St, 11031, Taipei, Taiwan
| | - Ganbolor Jargalsaikhan
- International MS/PhD Program in Medicine, College of Medicine, Taipei Medical University, 11031, Taipei, Taiwan.,Liver Center, 14230, Ulaanbaatar, Mongolia
| | - Yen-Chou Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing St, 11031, Taipei, Taiwan. .,International MS/PhD Program in Medicine, College of Medicine, Taipei Medical University, 11031, Taipei, Taiwan. .,Cancer Research Center and Orthopedics Research Center, Taipei Medical University Hospital, Taipei, Taiwan. .,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
10
|
Charoensaensuk V, Chen YC, Lin YH, Ou KL, Yang LY, Lu DY. Porphyromonas gingivalis Induces Proinflammatory Cytokine Expression Leading to Apoptotic Death through the Oxidative Stress/NF-κB Pathway in Brain Endothelial Cells. Cells 2021; 10:3033. [PMID: 34831265 PMCID: PMC8616253 DOI: 10.3390/cells10113033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/15/2022] Open
Abstract
Porphyromonas gingivalis, a periodontal pathogen, has been proposed to cause blood vessel injury leading to cerebrovascular diseases such as stroke. Brain endothelial cells compose the blood-brain barrier that protects homeostasis of the central nervous system. However, whether P. gingivalis causes the death of endothelial cells and the underlying mechanisms remain unclear. This study aimed to investigate the impact and regulatory mechanisms of P. gingivalis infection in brain endothelial cells. We used bEnd.3 cells and primary mouse endothelial cells to assess the effects of P. gingivalis on endothelial cells. Our results showed that infection with live P. gingivalis, unlike heat-killed P. gingivalis, triggers brain endothelial cell death by inducing cell apoptosis. Moreover, P. gingivalis infection increased intracellular reactive oxygen species (ROS) production, activated NF-κB, and up-regulated the expression of IL-1β and TNF-α. Furthermore, N-acetyl-L-cysteine (NAC), a most frequently used antioxidant, treatment significantly reduced P. gingivalis-induced cell apoptosis and brain endothelial cell death. The enhancement of ROS production, NF-κB p65 activation, and proinflammatory cytokine expression was also attenuated by NAC treatment. The impact of P. gingivalis on brain endothelial cells was also confirmed using adult primary mouse brain endothelial cells (MBECs). In summary, our results showed that P. gingivalis up-regulates IL-1β and TNF-α protein expression, which consequently causes cell death of brain endothelial cells through the ROS/NF-κB pathway. Our results, together with the results of previous case-control studies and epidemiologic reports, strongly support the hypothesis that periodontal infection increases the risk of developing cerebrovascular disease.
Collapse
Affiliation(s)
- Vichuda Charoensaensuk
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (V.C.); (Y.-H.L.)
| | - Yen-Chou Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Yun-Ho Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (V.C.); (Y.-H.L.)
| | - Keng-Liang Ou
- 3D Global Biotech Inc., New Taipei City 22175, Taiwan;
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
- Laboratory for Neural Repair, China Medical University Hospital, Taichung 40447, Taiwan
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Photonics and Communication Engineering, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
11
|
Islam MT, Ali ES, Khan IN, Shaw S, Uddin SJ, Rouf R, Dev S, Saravi SSS, Das N, Tripathi S, Yele SU, Das AK, Shilpi JA, Mishra SK, Mubarak MS. Anticancer Perspectives on the Fungal-Derived Polyphenolic Hispolon. Anticancer Agents Med Chem 2021; 20:1636-1647. [PMID: 32560616 DOI: 10.2174/1871520620666200619164947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cancer is a dreadful disease causing thousands of deaths per year worldwide, which requires precision diagnostics and therapy. Although the selection of therapeutic regimens depends on the cancer type, chemotherapy remains a sustainable treatment strategy despite some of its known side-effects. To date, a number of natural products and their derivatives or analogues have been investigated as potent anticancer drugs. These drug discoveries have aimed for targeted therapy and reduced side-effects, including natural therapeutic regimens. OBJECTIVE This review introduces a prospective fungal-derived polyphenol, Hispolon (HIS), as an anticancer agent. Accordingly, this review focuses on exploring the anticancer effect of hispolon based on information extracted from databases such as PubMed, ScienceDirect, MedLine, Web of Science, and Google Scholar. METHODS A literature search in PubMed, ScienceDirect, MedLine, Web of Science, and Google Scholar was accomplished, using the keyword 'Hispolon', pairing with 'cancer', 'cytotoxicity', 'cell cycle arrest', 'apoptosis', 'metastasis', 'migration', 'invasion', 'proliferation', 'genotoxicity', 'mutagenicity', 'drug-resistant cancer', 'autophagy', and 'estrogen receptor. RESULTS Database-dependent findings from reported research works suggest that HIS can exert anticancer effects by modulating multiple molecular and biochemical pathways, including cell cycle arrest, apoptosis, autophagy, inhibition of proliferation, metastasis, migration, and invasion. Moreover, HIS inhibits the estrogenic activity and exhibits chemoprevention prospects, possibly due to its protective effects such as anticancer and anti-inflammatory mechanisms. To date, a number of HIS derivatives and analogues have been introduced for their anticancer effects in numerous cancer cell lines. CONCLUSION Data obtained from this review suggest that hispolon and some of its derivatives can be promising anticancer agents, and may become plant-based cancer chemotherapeutic leads for the development of potent anticancer drugs, alone or in combination with other chemotherapeutic agents.
Collapse
Affiliation(s)
- Muhammad T Islam
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam,Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Eunus S Ali
- Gaco Pharmaceuticals and Research Laboratory, Dhaka-1000, Bangladesh,College of Medicine and Public Health, Flinders University, Bedford Park-5042, Australia
| | - Ishaq N Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, 25100, Pakistan
| | - Subrata Shaw
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna-9208, Bangladesh
| | - Razina Rouf
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science & Technology University, Gopalganj, Bangladesh
| | - Shrabanti Dev
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna-9208, Bangladesh
| | - Seyed S S Saravi
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MS, USA,Department of Toxicology-Pharmacology, Faculty of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Niranjan Das
- Netaji Subhas Mahavidyalaya, Tripura University, Udaipur, India
| | - Swati Tripathi
- Amity Institute of Microbial Technology, Amity University, Noida - 201313, India
| | - Santosh U Yele
- School of Pharmacy and Technology Management, SVKM’s NMIMS, Shirpur, India
| | - Asish K Das
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna-9208, Bangladesh
| | - Jamil A Shilpi
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna-9208, Bangladesh
| | - Siddhartha K Mishra
- Cancer Biology Laboratory, School of Biological Sciences (Zoology), Dr. Harisingh Gour Central University, Sagar, 470003, India
| | | |
Collapse
|
12
|
Min GJ, Kang HW. Artificial Cultivation Characteristics and Bioactive Effects of Novel Tropicoporus linteus (Syn. Phellinus linteus) Strains HN00K9 and HN6036 in Korea. MYCOBIOLOGY 2021; 49:161-172. [PMID: 37970180 PMCID: PMC10635112 DOI: 10.1080/12298093.2021.1892568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 01/01/2021] [Accepted: 01/02/2021] [Indexed: 11/17/2023]
Abstract
Phellinus strains were collected from different areas in Korea. Of them, the fast mycelial growing strains were artificially cultivated on the oak logs to produce fruiting body. The varieties, Phellinus linteus ASI26099 (Korea Sanghwang) and P. baumii PBJS (Jangsoo Sanghwang) were grown under the same conditions as controls. Their cultivating characteristics including mycelial colonization, pinhead formation, and fruiting body formation rate were investigated on the logs. Basidiocarps of Phellinus strains HN00K9, HN6036, and ASI26099 were concentrically zonate and shallowly sulcate, and dark chestnut showing typical characteristics of Tropicoporus linteus (synonyum: P. linteus, Inonotus linteus, polyporus linteus), which is distinguishably different to PBJS. HN00K9 showed the highest yield of fruiting body among the mushroom strains. The β-glucan content in fruiting bodies of HN00K9 was 20% higher than those of other strains. Bioactive effects of polysaccharide samples from fruiting bodies of Phellinus strains, HN00K9, HN6036, ASI26099, and PBJS were assessed on cell viability and cytokine (IL-6 and TNF-α) inhibition and finally on anticancer to different human cancer cells.
Collapse
Affiliation(s)
- Gyeong-Jin Min
- Graduate School of Future Convergence Technology, Hankyong National University, Ansung, Korea
| | - Hee-Wan Kang
- Department of Horticultural Biotechnology, Division of Biotechnology, Hankyong National University, Anseong, Korea
- Institute of Genetic Engineering, Hankyong National University, Anseong, Korea
| |
Collapse
|
13
|
Thimmuri D, P A S, N P S, Khan A, Gawali B, Rajdev B, Adhikari C, V R, Sharma P, Naidu V. Hispolon inhibits RANKL induced osteoclast differentiation in vitro. Immunol Lett 2021; 231:35-42. [PMID: 33428992 DOI: 10.1016/j.imlet.2021.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 11/30/2020] [Accepted: 01/06/2021] [Indexed: 11/19/2022]
Abstract
Hispolon (HISP) is a bioactive compound isolated from Phellinu linteus. It has various pharmacological activities, including antioxidant, anti-inflammatory, and anti-cancer. However, its anti-osteoclastogenic activity has not yet been reported. Hence, in the current study, we have explored the anti-osteoclastogenic activity of HISP and elucidated the molecular mechanisms. HISP inhibited the RANKL induced differentiation of RAW 264.7 cells into osteoclasts in a dose-dependent manner. Mechanistic studies showed that HISP inhibited RANKL-mediated activation of NF-κB and MAPK signaling pathways in osteoclast precursors RAW 264.7 cells. In addition, Hispolon also downregulated the expression of master transcriptional factors essential for osteoclast differentiation, such as NFATc1 and c-FOS. In conclusion, these findings establish molecular mechanisms behind the anti-osteoclastogenic activity of HISP.
Collapse
Affiliation(s)
- Dinesh Thimmuri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, 40, Balanagar, Hyderabad, Telangana, 500037, India
| | - Shantanu P A
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Sila Katamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup, Assam, 781101, India
| | - Syamprasad N P
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Sila Katamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup, Assam, 781101, India
| | - Aasiya Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, 40, Balanagar, Hyderabad, Telangana, 500037, India
| | - Basveshwar Gawali
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Sila Katamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup, Assam, 781101, India
| | - Bishal Rajdev
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Sila Katamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup, Assam, 781101, India
| | - Chanakya Adhikari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Sila Katamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup, Assam, 781101, India
| | - Ravichandiran V
- National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, No-168 Chunilal Bhawan, Kolkata, West Bengal, 700054, India
| | - Pawan Sharma
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Vgm Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Sila Katamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup, Assam, 781101, India.
| |
Collapse
|
14
|
Fan HC, Hsieh YC, Li LH, Chang CC, Janoušková K, Ramani MV, Subbaraju GV, Cheng KT, Chang CC. Dehydroxyhispolon Methyl Ether, A Hispolon Derivative, Inhibits WNT/β-Catenin Signaling to Elicit Human Colorectal Carcinoma Cell Apoptosis. Int J Mol Sci 2020; 21:ijms21228839. [PMID: 33266494 PMCID: PMC7700694 DOI: 10.3390/ijms21228839] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is the fourth leading cause of cancer mortality worldwide. Aberrant activation of WNT/β-catenin signaling present in the vast majority of CRC cases is indispensable for CRC initiation and progression, and thus is a promising target for CRC therapeutics. Hispolon is a fungal-derived polyphenol with a pronounced anticancer effect. Several hispolon derivatives, including dehydroxyhispolon methyl ether (DHME), have been chemically synthesized for developing lead molecules with stronger anticancer activity. Herein, a DHME-elicited anti-CRC effect with the underlying mechanism is reported for the first time. Specifically, DHME was found to be more cytotoxic than hispolon against a panel of human CRC cell lines, while exerting limited toxicity to normal human colon cell line CCD 841 CoN. Additionally, the cytotoxic effect of DHME appeared to rely on inducing apoptosis. This notion was evidenced by DHME-elicited upregulation of poly (ADP-ribose) polymerase (PARP) cleavage and a cell population positively stained by annexin V, alongside the downregulation of antiapoptotic B-cell lymphoma 2 (BCL-2), whereas the blockade of apoptosis by the pan-caspase inhibitor z-VAD-fmk attenuated DHME-induced cytotoxicity. Further mechanistic inquiry revealed the inhibitory action of DHME on β-catenin-mediated, T-cell factor (TCF)-dependent transcription activity, suggesting that DHME thwarted the aberrantly active WNT/β-catenin signaling in CRC cells. Notably, ectopic expression of a dominant–active β-catenin mutant (∆N90-β-catenin) abolished DHME-induced apoptosis while also restoring BCL-2 expression. Collectively, we identified DHME as a selective proapoptotic agent against CRC cells, exerting more potent cytotoxicity than hispolon, and provoking CRC cell apoptosis via suppression of the WNT/β-catenin signaling axis.
Collapse
Affiliation(s)
- Hueng-Chuen Fan
- Department of Pediatrics, Department of Medical Research, Tungs’ Taichung Metroharbor Hospital, Wuchi, Taichung 43503, Taiwan;
- Department of Rehabilitation, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 35664, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ya-Chu Hsieh
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-C.H.); (L.-H.L.)
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (C.-C.C.); (K.J.)
| | - Li-Hsuan Li
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-C.H.); (L.-H.L.)
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (C.-C.C.); (K.J.)
| | - Ching-Chin Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (C.-C.C.); (K.J.)
| | - Karolína Janoušková
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (C.-C.C.); (K.J.)
- University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Modukuri V. Ramani
- Department of Organic Chemistry, Andhra University, Visakhapatnam 530 003, India; (M.V.R.); (G.V.S.)
| | - Gottumukkala V. Subbaraju
- Department of Organic Chemistry, Andhra University, Visakhapatnam 530 003, India; (M.V.R.); (G.V.S.)
| | - Kur-Ta Cheng
- Department of Biochemistry and Molecular Cell Biology, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: or (C.-C.C.); (K.-T.C.)
| | - Chia-Che Chang
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-C.H.); (L.-H.L.)
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (C.-C.C.); (K.J.)
- Department of Life Sciences, The iEGG and Animal Biotechnology Research Center, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan
- Correspondence: or (C.-C.C.); (K.-T.C.)
| |
Collapse
|
15
|
Sarfraz A, Rasul A, Sarfraz I, Shah MA, Hussain G, Shafiq N, Masood M, Adem Ş, Sarker SD, Li X. Hispolon: A natural polyphenol and emerging cancer killer by multiple cellular signaling pathways. ENVIRONMENTAL RESEARCH 2020; 190:110017. [PMID: 32768475 PMCID: PMC7406431 DOI: 10.1016/j.envres.2020.110017] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 05/15/2023]
Abstract
Nature as an infinite treasure of chemotypes and pharmacophores will continue to play an imperative role in the drug discovery. Natural products (NPs) such as plant and fungal metabolites have emerged as leads in drug discovery during recent years due to their efficacy, safety and selectivity. The current review summarizes natural sources as well as pharmacological potential of hispolon which is a major constituent of traditional medicinal mushroom Phellinus linteus. The study aims to update the scientific community about recent developments of hispolon in the arena of natural drugs by providing insights into its present status in therapeutic pursuits. Hispolon, a polyphenol has been reported to possess anticancer, antidiabetic, antioxidant, antiviral and anti-inflammatory activities. It fights against cancer via induction of apoptosis, halting cell cycle and inhibition of metastasis by targeting various cellular signaling pathways including PI3K/Akt, MAPK and NF-κB. The current review proposes that hispolon provides a novel opportunity for pharmacological applications and its styrylpyrone carbon skeleton might serve as an attractive scaffold for drug development. However, future researches are recommended to assess bioavailability, toxicological limits, pharmacokinetic and pharmacodynamic profiles of hispolon, in order to establish its potential as a potent multi-targeted drug in the near future.
Collapse
Affiliation(s)
- Ayesha Sarfraz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan.
| | - Iqra Sarfraz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan.
| | - Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Nusrat Shafiq
- Department of Chemistry, Government College Woman University, Faisalabad, 38000, Pakistan
| | - Muqaddas Masood
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Şevki Adem
- Department of Chemistry, Faculty of Sciences, Çankırı Karatekin University, Uluyazı Campus Çankırı, Turkey
| | - Satyajit D Sarker
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, England, UK
| | - Xiaomeng Li
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
16
|
Chen YF, Wu SN, Gao JM, Liao ZY, Tseng YT, Fülöp F, Chang FR, Lo YC. The Antioxidant, Anti-Inflammatory, and Neuroprotective Properties of the Synthetic Chalcone Derivative AN07. Molecules 2020; 25:molecules25122907. [PMID: 32599797 PMCID: PMC7355731 DOI: 10.3390/molecules25122907] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/25/2022] Open
Abstract
Chalcones belong to a class of biologically active polyphenolic natural products. As a result of their simple chemical nature, they are easily synthesized and show a variety of promising biological activities. 2-Hydroxy-4′-methoxychalcone (AN07) is a synthetic chalcone derivate with potential anti-atherosclerosis effects. In this study, we demonstrated the novel antioxidant, anti-inflammatory, and neuroprotective effects of AN07. In RAW 264.7 macrophages, AN07 attenuated lipopolysaccharide (LPS)-induced elevations in reactive oxygen species (ROS) level and oxidative stress via down-regulating gp91phox expression and stimulating the antioxidant system of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) pathways, which were accompanied by increased glutathione (GSH) levels. Additionally, AN07 attenuated LPS-induced inflammatory factors, including NO, inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and phosphorylated inhibitor of nuclear factor kappa B-alpha (p-IκBα) in RAW 264.7 macrophages. However, the effects of AN07 on promoting nuclear Nrf2 levels and decreasing COX-2 expressions were significantly abrogated by the peroxisome proliferator-activated receptor-γ (PPARγ) antagonist GW9662. In human dopaminergic SH-SY5Y cells treated with or without methylglyoxal (MG), a toxic endogenous by-product of glycolysis, AN07 up-regulated neurotrophic signals including insulin-like growth factor 1 receptor (IGF-1R), p-Akt, p-GSK3β, glucagon-like peptide 1 receptor (GLP-1R), and brain-derived neurotrophic factor (BDNF). AN07 attenuated MG-induced apoptosis by up-regulating the B-cell lymphoma 2 (Bcl-2) protein and down-regulating the cytosolic expression of cytochrome c. AN07 also attenuated MG-induced neurite damage via down-regulating the Rho-associated protein kinase 2 (ROCK2)/phosphorylated LIM kinase 1 (p-LIMK1) pathway. Moreover, AN07 ameliorated the MG-induced down-regulation of neuroprotective Parkinsonism-associated proteins parkin, pink1, and DJ-1. These findings suggest that AN07 possesses the potentials to be an anti-inflammatory, antioxidant, and neuroprotective agent
Collapse
Affiliation(s)
- Yih-Fung Chen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-F.C.); (F.-R.C.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan City 70101, Taiwan;
| | - Jia-Mao Gao
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-M.G.); (Z.-Y.L.); (Y.-T.T.)
| | - Zhi-Yao Liao
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-M.G.); (Z.-Y.L.); (Y.-T.T.)
| | - Yu-Ting Tseng
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-M.G.); (Z.-Y.L.); (Y.-T.T.)
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary;
- MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-F.C.); (F.-R.C.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Ching Lo
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-F.C.); (F.-R.C.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-M.G.); (Z.-Y.L.); (Y.-T.T.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-7312-1101 (ext. 2139)
| |
Collapse
|
17
|
Small molecule inhibitors and stimulators of inducible nitric oxide synthase in cancer cells from natural origin (phytochemicals, marine compounds, antibiotics). Biochem Pharmacol 2020; 176:113792. [PMID: 31926145 DOI: 10.1016/j.bcp.2020.113792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
Nitric oxide synthases (NOS) are a family of isoforms, which generate nitric oxide (NO). NO is one of the smallest molecules in nature and acts mainly as a potent vasodilator. It participates in various biological processes ranging from physiological to pathological conditions. Inducible NOS (iNOS, NOS2) is a calcium-independent and inducible isoform. Despite high iNOS expression in many tumors, the role of iNOS is still unclear and complex with both enhancing and prohibiting actions in tumorigenesis. Nature presents a broad variety of natural stimulators and inhibitors, which may either promote or inhibit iNOS response. In the present review, we give an overview of iNOS-modulating agents with a special focus on both natural and synthetic molecules and their effects in related biological processes. The role of iNOS in physiological and pathological conditions is also discussed.
Collapse
|
18
|
X-ray crystal structures, density functional theory and docking on deacetylase enzyme for antiproliferative activity of hispolon derivatives on HCT116 colon cancer. Bioorg Med Chem 2019; 27:3805-3812. [DOI: 10.1016/j.bmc.2019.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/28/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022]
|
19
|
Wu MS, Chien CC, Chang J, Chen YC. Pro-apoptotic effect of haem oxygenase-1 in human colorectal carcinoma cells via endoplasmic reticular stress. J Cell Mol Med 2019; 23:5692-5704. [PMID: 31199053 PMCID: PMC6653387 DOI: 10.1111/jcmm.14482] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 01/01/2023] Open
Abstract
Several biological effects of haem oxygenase (HO)‐1, including anti‐inflammatory, antiapoptotic and antioxidative properties were reported; however, the role of HO‐1 in apoptosis is still unclear. In the presence of stimulation by cobalt protoporphyrin (CoPP), an HO‐1 inducer, apoptotic characteristics were observed, including DNA laddering, hypodiploid cells, and cleavages of caspase (Casp)‐3 and poly(ADP) ribose polymerase (PARP) proteins in human colon carcinoma COLO205, HCT‐15, LOVO and HT‐29 cells in serum‐free (SF) conditions with increased HO‐1, but not heat shock protein 70 (HSP70) or HSP90. The addition of 10% foetal bovine serum (FBS) or 1% bovine serum albumin accordingly inhibited CoPP‐induced apoptosis and HO‐1 protein expression in human colon cancer cells. CoPP‐induced apoptosis of colon cancer cells was prevented by the addition of the pan‐caspase inhibitor, Z‐VAD‐FMK (VAD), and the Casp‐3 inhibitor, Z‐DEVD‐FMK (DEVD). N‐Acetyl cysteine inhibited reactive oxygen species‐generated H2O2‐induced cell death with reduced intracellular peroxide production, but did not affect CoPP‐induced apoptosis in human colorectal carcinoma (CRC) cells. Two CoPP analogs, ferric protoporphyrin and tin protoporphyrin, did not affect the viability of human CRC cells or HO‐1 expression by those cells, and knockdown of HO‐1 protein expression by HO‐1 small interfering (si)RNA reversed the cytotoxic effect elicited by CoPP. Furthermore, the carbon monoxide (CO) donor, CORM, but not FeSO4 or biliverdin, induced DNA ladders, and cleavage of Casp‐3 and PARP proteins in human CRC cells. Increased phosphorylated levels of the endoplasmic reticular (ER) stress proteins, protein kinase R‐like ER kinase (PERK), and eukaryotic initiation factor 2α (eIF2α) by CORM and CoPP were identified, and the addition of the PERK inhibitor, GSK2606414, inhibited CORM‐ and CoPP‐induced apoptosis. Increased GRP78 level and formation of the HO‐1/GRP78 complex were detected in CORM‐ and CoPP‐treated human CRC cells. A pro‐apoptotic role of HO‐1 against the viability of human CRC cells via induction of CO and ER stress was firstly demonstrated herein.
Collapse
Affiliation(s)
- Ming-Shun Wu
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Chiang Chien
- Department of Nephrology, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Food Nutrition, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Jungshan Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Chou Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Cancer Research Center and Orthopedics Research Center, Taipei Medical University Hospital, Taipei, Taiwan.,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
20
|
Chen W, Tan H, Liu Q, Zheng X, Zhang H, Liu Y, Xu L. A Review: The Bioactivities and Pharmacological Applications of Phellinus linteus. Molecules 2019; 24:molecules24101888. [PMID: 31100959 PMCID: PMC6572527 DOI: 10.3390/molecules24101888] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022] Open
Abstract
Phellinus linteus is a popular medicinal mushroom that is widely used in China, Korea, Japan, and other Asian countries. P. linteus comprises various bioactive components, such as polysaccharides, triterpenoids, phenylpropanoids, and furans, and has proven to be an effective therapeutic agent in traditional Chinese medicine for the treatment and the prevention of various diseases. A number of studies have reported that P. linteus possesses many biological activities useful for pharmacological applications, including anticancer, anti-inflammatory, immunomodulatory, antioxidative, and antifungal activities, as well as antidiabetic, hepatoprotective, and neuroprotective effects. This review article briefly presents the recent progress made in understanding the bioactive components, biological activities, pharmacological applications, safety, and prospects of P. linteus, and provides helpful references and promising directions for further studies of P. linteus.
Collapse
Affiliation(s)
- Wenhua Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Huiying Tan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Qian Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Xiaohua Zheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Hua Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yuhong Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Lingchuan Xu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
- Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
21
|
Ji M, Li S, Dong Q, Hu W. Impact of Early High-protein Diet on Neurofunctional Recovery in Rats with Ischemic Stroke. Med Sci Monit 2018; 24:2235-2243. [PMID: 29654641 PMCID: PMC5912094 DOI: 10.12659/msm.906533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Ischemic stroke, featuring high incidence, morbidity, and mortality, is one of the three major diseases troubling human beings. The purpose of the study was to examine the impact of early high-protein diet on neurofunctional recovery in rats with ischemic stroke as well as their cerebral infarct areas and molecular expressions of oxidative stress. MATERIAL AND METHODS The middle cerebral artery occlusion model (MCAO) was established, and 48 adult, male Sprague Dawley (SD) rats of clean grade aged seven to eight months (250-280 g body weight) were randomized into four groups: the MCAO group with high-protein diet (MH), the MCAO group with standard-protein diet (MS), the sham group with high-protein diet (SH), and the sham group with standard-protein diet (SS). High-protein diet intervention started on the first day of the surgery, and the rats' body weights and their neurological deficit scores were measured on each postoperative day while the scores of motors coordination and balance ability were recorded every other day. In addition, their cerebral infant areas and the molecular expressions of oxidative stress injuries were detected as well. RESULTS Compared to the MS group, the rats in the MH group gained faster weight growth (p<0.05), presented significantly lower neurological impairment scores (p<0.05), remarkably improved motor coordination and balance ability (p<0.05) as well as showed smaller cerebral infarct areas (p<0.05), increased expression of SOD (superoxide dismutase), and reduced expressions of MDA (malondialdehyde) and iNOS (inducible nitric oxide synthase). However, there was no significant difference between the SS group and the SH group (p>0.05). CONCLUSIONS Early high-protein diet facilitates the recovery of body weights and neurological functions as well the reduction of the cerebral infarct areas of rats, thus alleviating ischemic stroke-caused oxidative stress injuries.
Collapse
Affiliation(s)
- Meng Ji
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China (mainland)
| | - Shujuan Li
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China (mainland)
| | - Qian Dong
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China (mainland)
| | - Wenli Hu
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China (mainland)
| |
Collapse
|
22
|
Wu MS, Chien CC, Cheng KT, Subbaraju GV, Chen YC. Hispolon Suppresses LPS- or LTA-Induced iNOS/NO Production and Apoptosis in BV-2 Microglial Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:1649-1666. [PMID: 29121802 DOI: 10.1142/s0192415x17500896] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hispolon (HIS) is an active polyphenol compound derived from Phellinus linteus (Berkeley & Curtis), and our previous study showed that HIS effectively inhibited inflammatory responses in macrophages [Yang, L.Y., S.C. Shen, K.T. Cheng, G.V. Subbaraju, C.C. Chien and Y.C. Chen. Hispolon inhibition of inflammatory apoptosis through reduction of iNOS/NO production via HO-1 induction in macrophages. J. Ethnopharmacol. 156: 61-72, 2014]; however, its effect on neuronal inflammation is still undefined. In this study, HIS concentration- and time-dependently inhibited lipopolysaccharide (LPS)- and lipoteichoic acid (LTA)-induced inducible nitric oxide (NO) synthase (iNOS)/NO production with increased heme oxygenase (HO)-1 proteins in BV-2 microglial cells. Accordingly, HIS protected BV-2 cells from LPS- or LTA-induced apoptosis, characterized by decreased DNA ladder formation, and caspase-3 and poly(ADP ribose) polymerase (PARP) protein cleavage in BV-2 cells. Similarly, the NOS inhibitor, N-nitro-L-arginine methyl ester (NAME), inhibited LPS- or LTA-induced apoptosis of BV-2 cells, but neither NAME nor HIS showed any inhibition of NO production or cell death induced by the NO donor, sodium nitroprusside (SNP), indicating the involvement of NO in the inflammatory apoptosis of microglial cells. Activation of c-Jun N-terminal kinase (JNK) and nuclear factor (NF)-[Formula: see text]B contributed to LPS- or LTA-induced iNOS/NO production and apoptosis of BV-2 cells, and that was suppressed by HIS. Additionally, HIS possesses activity to induce HO-1 protein expression via activation of extracellular signal-regulated kinase (ERK) in BV-2 cells, and application of the HO inhibitor, tin protoporphyrin (SnPP), or knockdown of HO-1 protein by HO-1 small interfering (si)RNA significantly reversed HIS inhibition of NO production and cell death in BV-2 cells stimulated by LPS. Results of an analysis of the effects of HIS and two structurally related chemicals, i.e. dehydroxy-HIS (D-HIS) and HIS-methyl ester (HIS-ME), showed that HIS expressed the most potent inhibitory effects on iNOS/NO production, JNK activation, and apoptosis in BV-2 microglial cells activated by LPS with increased HO-1 protein expression. Overall these results suggested that HIS possesses inhibitory activity against LPS- or LTA-induced inflammatory responses including iNOS/NO production and apoptosis in BV-2 microglial cells and that the mechanisms involve upregulation of the HO-1 protein and downregulation of JNK/NF-[Formula: see text]B activation. A critical role of hydroxyl at position C3 in the anti-inflammatory actions of HIS against activated BV-2 microglial cells was suggested.
Collapse
Affiliation(s)
- Ming-Shun Wu
- * Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,† Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Chiang Chien
- ¶ Department of Nephrology, Chi-Mei Medical Center, Tainan, Taiwan.,∥ Department of Food Nutrition, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Kur-Ta Cheng
- ‡ Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Yen-Chou Chen
- § Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,†† Cancer Research Center and Orthopedics Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
23
|
|
24
|
Hong D, Park MJ, Jang EH, Jung B, Kim NJ, Kim JH. Hispolon as an inhibitor of TGF-β-induced epithelial-mesenchymal transition in human epithelial cancer cells by co-regulation of TGF-β-Snail/Twist axis. Oncol Lett 2017; 14:4866-4872. [PMID: 29085494 DOI: 10.3892/ol.2017.6789] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 02/13/2017] [Indexed: 01/11/2023] Open
Abstract
Hispolon (HPL), isolated from Phellinus linteus, has been used to treat various types of pathology, including inflammation, gastroenteric disorders, lymphatic diseases and numerous cancer subtypes. HPL has previously been reported to demonstrate a significant therapeutic efficacy against various types of cancer cells, including melanoma, leukemia, hepatocarcinoma, bladder and gastric cancer cells. However, its potential role in the epithelial-mesenchymal transition (EMT) has not been demonstrated. The present study investigated the effects of HPL on the EMT. Transforming growth factor β (TGF-β) induced enhanced cell migration and invasion, EMT-associated phenotypic changes. In the present study, HPL recovered the reduction of E-cadherin expression level in TGF-β treated cancer cells, which was regulated by the expression of Snail and Twist. HPL downregulated Snail and Twist, an effect that was enhanced by TGF-β. These findings provide novel evidence that HPL suppresses cancer cell migration and invasion by inhibiting EMT. Therefore, HPL may be a potent anticancer agent, inhibiting metastasis.
Collapse
Affiliation(s)
- Darong Hong
- Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Min-Ju Park
- Department of Pharmacy, Graduate School, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Eun Hyang Jang
- Department of Pharmacy, Graduate School, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Bom Jung
- Department of Pharmacy, Graduate School, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Nam-Jung Kim
- Department of Pharmacy, Graduate School, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong-Ho Kim
- Department of Pharmacy, Graduate School, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
25
|
Ho HY, Ho YC, Hsieh MJ, Yang SF, Chuang CY, Lin CW, Hsin CH. Hispolon suppresses migration and invasion of human nasopharyngeal carcinoma cells by inhibiting the urokinase-plasminogen activator through modulation of the Akt signaling pathway. ENVIRONMENTAL TOXICOLOGY 2017; 32:645-655. [PMID: 27037602 DOI: 10.1002/tox.22266] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/11/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
Hispolon has been reported to possess antioxidant, antiinflammatory, and antitumor activities. However, the effect of hispolon on the metastasis of nasopharyngeal carcinoma (NPC) remains unclear. In this study, we investigated how the antimetastatic activity and relevant signaling pathways of hispolon affected three NPC cell lines. The results revealed that hispolon significantly reduced the migration and invasion of three NPC cells in a dose-dependent manner from 0 to 50 µM. Hispolon also significantly inhibited the activity and expression of urokinase-plasminogen activator (uPA) as well as the phosphorylation of Akt. Moreover, blocking the Akt pathway also enhanced the antimetastatic ability of hispolon in the NPC cells. In conclusion, hispolon inhibited uPA expression and NPC cell metastasis by downregulating Akt signal pathways; therefore, hispolon exerts beneficial effects in chemoprevention. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 645-655, 2017.
Collapse
Affiliation(s)
- Hsin-Yu Ho
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yung-Chuan Ho
- School of Applied Chemistry, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Ju Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Changhua Christian Hospital, Cancer Research Center, Changhua, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Yi Chuang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, 110 Chien-Kuo N. Road, Section 1, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chung-Han Hsin
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
26
|
|
27
|
Jang EH, Jang SY, Cho IH, Hong D, Jung B, Park MJ, Kim JH. Hispolon inhibits the growth of estrogen receptor positive human breast cancer cells through modulation of estrogen receptor alpha. Biochem Biophys Res Commun 2015; 463:917-22. [PMID: 26056942 DOI: 10.1016/j.bbrc.2015.06.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/05/2015] [Indexed: 11/18/2022]
Abstract
Human estrogen receptor α (ERα) is a nuclear transcription factor that is a major therapeutic target in breast cancer. The transcriptional activity of ERα is regulated by certain estrogen-receptor modulators. Hispolon, isolated from Phellinus linteus, a traditional medicinal mushroom called Sanghwang in Korea, has been used to treat various pathologies, such as inflammation, gastroenteric disorders, lymphatic diseases, and cancers. In this latter context, Hispolon has been reported to exhibit therapeutic efficacy against various cancer cells, including melanoma, leukemia, hepatocarcinoma, bladder cancer, and gastric cancer cells. However, ERα regulation by Hispolon has not been reported. In this study, we investigated the effects of Hispolon on the growth of breast cancer cells. We found that Hispolon decreased expression of ERα at both mRNA and the protein levels in MCF7 and T47D human breast cancer cells. Luciferase reporter assays showed that Hispolon decreased the transcriptional activity of ERα. Hispolon treatment also inhibited expression of the ERα target gene pS2. We propose that Hispolon, an anticancer drug extracted from natural sources, inhibits cell growth through modulation of ERα in estrogen-positive breast cancer cells and is a candidate for use in human breast cancer chemotherapy.
Collapse
Affiliation(s)
- Eun Hyang Jang
- Department of Pharmacy, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Soon Young Jang
- Department of Pharmacy, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - In-Hye Cho
- Department of Pharmacy, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Darong Hong
- Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Bom Jung
- Department of Pharmacy, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Min-Ju Park
- Department of Pharmacy, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Jong-Ho Kim
- Department of Pharmacy, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea.
| |
Collapse
|
28
|
Balaji NV, Ramani MV, Viana AG, Sanglard LP, White J, Mulabagal V, Lee C, Gana TJ, Egiebor NO, Subbaraju GV, Tiwari AK. Design, synthesis and in vitro cell-based evaluation of the anti-cancer activities of hispolon analogs. Bioorg Med Chem 2015; 23:2148-2158. [PMID: 25842364 DOI: 10.1016/j.bmc.2015.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/20/2015] [Accepted: 03/01/2015] [Indexed: 01/18/2023]
Abstract
Phytochemicals play an important role in cancer therapy. Hispolon and 26 of its analogs (9 known and 17 new) were synthesized and evaluated for their antiproliferative activities in a panel of six independent human cancer cell lines using the in vitro cell-based MTT assay. Among the hispolon analogs tested, compound VA-2, the most potent overall, produced its most significant effect in the colon cancer cell lines HCT-116 (IC₅₀ 1.4 ± 1.3 μM) and S1 (IC₅₀ 1.8 ± 0.9 μM) compared to its activity in the normal HEK293/pcDNA3.1 cell line (IC₅₀ 15.8±3.7 μM; p<0.01 for each comparison). Based on our results, VA-2 was about 9- to 11-times more potent in colon cancer cells and 2- to 3-times more potent in prostate cancer cells compared to HEK293/pcDNA3.1 cells. Morphological analysis of VA-2 showed significant reduction of cell number, while the cells' sizes were also markedly increased and were obvious at 68 h of treatment with 1 μM in HCT-116 (colon) and PC-3 (prostate) cancer cells. A known analog, compound VA-4, prepared by simple modifications on the aromatic functional groups of hispolon, inhibited prostate and colon cancer cell lines with IC₅₀ values <10 μM. In addition, hispolon isoxazole and pyrazole analogs, VA-7 and VA-15 (known), respectively, have shown significant activity with the mean ICv values in the range 3.3-10.7 μM in all the cancer cell lines tested. Activity varied among the analogs in which aromatic functional groups and β-diketone functional groups are modified. But the activity of analogs VA-16 to VA-27 was completely lost when the side chain double-bond was hydrogenated indicating the crucial role of this functionality for anticancer activity. Furthermore, many of the compounds synthesized were not substrates for the ABCB1-transporter, the most common cause of multidrug resistance in anti-cancer drugs, suggesting they may be more effective anticancer agents.
Collapse
Affiliation(s)
- Neduri V Balaji
- Natsol Laboratories Private Limited, II Floor, Research & Development Building, Ramky Commercial Hub, J. N. Pharmacity, Visakhapatnam, India
| | - Modukuri V Ramani
- Natsol Laboratories Private Limited, II Floor, Research & Development Building, Ramky Commercial Hub, J. N. Pharmacity, Visakhapatnam, India
| | - Arabela G Viana
- Department of Biomedical Sciences, CVMNAH, Tuskegee University, Tuskegee, AL, USA
| | - Leticia P Sanglard
- Department of Biomedical Sciences, CVMNAH, Tuskegee University, Tuskegee, AL, USA
| | - Jason White
- Department of Biomedical Sciences, CVMNAH, Tuskegee University, Tuskegee, AL, USA
| | - Vanisree Mulabagal
- Department of Chemical Engineering, Tuskegee University, Tuskegee, AL, USA
| | - Crystal Lee
- Department of Biomedical Sciences, CVMNAH, Tuskegee University, Tuskegee, AL, USA
| | | | - Nosa O Egiebor
- Department of Chemical Engineering, University of Mississippi, MS, USA
| | - Gottumukkala V Subbaraju
- Natsol Laboratories Private Limited, II Floor, Research & Development Building, Ramky Commercial Hub, J. N. Pharmacity, Visakhapatnam, India
| | - Amit K Tiwari
- Department of Biomedical Sciences, CVMNAH, Tuskegee University, Tuskegee, AL, USA.,Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, OH, USA
| |
Collapse
|
29
|
Litvinova L, Atochin DN, Fattakhov N, Vasilenko M, Zatolokin P, Kirienkova E. Nitric oxide and mitochondria in metabolic syndrome. Front Physiol 2015; 6:20. [PMID: 25741283 PMCID: PMC4330700 DOI: 10.3389/fphys.2015.00020] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/12/2015] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome (MS) is a cluster of metabolic disorders that collectively increase the risk of cardiovascular disease. Nitric oxide (NO) plays a crucial role in the pathogeneses of MS components and is involved in different mitochondrial signaling pathways that control respiration and apoptosis. The present review summarizes the recent information regarding the interrelations of mitochondria and NO in MS. Changes in the activities of different NO synthase isoforms lead to the formation of metabolic disorders and therefore are highlighted here. Reduced endothelial NOS activity and NO bioavailability, as the main factors underlying the endothelial dysfunction that occurs in MS, are discussed in this review in relation to mitochondrial dysfunction. We also focus on potential therapeutic strategies involving NO signaling pathways that can be used to treat patients with metabolic disorders associated with mitochondrial dysfunction. The article may help researchers develop new approaches for the diagnosis, prevention and treatment of MS.
Collapse
Affiliation(s)
- Larisa Litvinova
- Laboratory of Immunology and Cellular Biotechnologies, Innovation Park of the Immanuel Kant Baltic Federal UniversityKaliningrad, Russia
| | - Dmitriy N. Atochin
- Cardiology Division, Department of Medicine, Cardiovascular Research Center, Harvard Medical School, Massachusetts General HospitalBoston, MA, USA
| | - Nikolai Fattakhov
- Laboratory of Immunology and Cellular Biotechnologies, Innovation Park of the Immanuel Kant Baltic Federal UniversityKaliningrad, Russia
| | - Mariia Vasilenko
- Laboratory of Immunology and Cellular Biotechnologies, Innovation Park of the Immanuel Kant Baltic Federal UniversityKaliningrad, Russia
| | - Pavel Zatolokin
- Department of Reconstructive and Endoscopic Surgery, Kaliningrad Regional HospitalKaliningrad, Russia
| | - Elena Kirienkova
- Laboratory of Immunology and Cellular Biotechnologies, Innovation Park of the Immanuel Kant Baltic Federal UniversityKaliningrad, Russia
| |
Collapse
|