1
|
Abubakar AS, Ahmad B, Ahmad N, Liu L, Liu B, Qu Y, Chen J, Chen P, Zhao H, Chen J, Chen K, Gao G, Zhu A. Physicochemical evaluation, structural characterization, in vitro and in vivo bioactivities of water-soluble polysaccharides from Luobuma (Apocynum L.) tea. Food Chem 2024; 460:140453. [PMID: 39067428 DOI: 10.1016/j.foodchem.2024.140453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
Luobuma tea is made from the leaves of Apocynum hendersonii (Bt) and A. venetum (Ht) and has been used for a very long time in China and Japan as herbal tea. This study isolated water-soluble polysaccharides from the two species` teas. Physicochemical properties, structural properties, in vitro and in vivo antioxidant and immunomodulatory activities were determined for the first time. The results showed that the Bt and Ht polysaccharides with molecular weights of 31.21 and 49.11 kDa, respectively, composed of arabinose, galactose, rhamnose, glucose, xylose, fucose, and mannose. A dose-dependent nitric oxide production and interleukin-6 inhibitory effects were obtained. Also, they suppressed the expression of cyclooxygenase-2, tumor necrosis factor-α and interleukin-6 mRNA in LPS-induced RAW 264.7 macrophages. Likewise, Bt and Ht have significantly reduced edema in the paws of mice after carrageenan injection. These results suggested that the Luobuma teas polysaccharides can be explored as potential antioxidants and anti-inflammatory agents.
Collapse
Affiliation(s)
- Aminu Shehu Abubakar
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Department of Agronomy, Bayero University Kano, PMB, 3011, Kano, Nigeria
| | - Bilal Ahmad
- College of Biology, Hunan University, Changsha 410082, China
| | - Nabi Ahmad
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha 410082, China
| | - Yatong Qu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China
| | - Jikang Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China; Yuelushan Laboratory, Changsha 410125, China
| | - Ping Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China; Yuelushan Laboratory, Changsha 410125, China
| | - Haohan Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China; Yuelushan Laboratory, Changsha 410125, China
| | - Jia Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China; Yuelushan Laboratory, Changsha 410125, China
| | - Kunmei Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China; Yuelushan Laboratory, Changsha 410125, China
| | - Gang Gao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China; Yuelushan Laboratory, Changsha 410125, China.
| | - Aiguo Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China; Yuelushan Laboratory, Changsha 410125, China.
| |
Collapse
|
2
|
Malićanin M, Karabegović I, Đorđević N, Mančić S, Stojanović SS, Brković D, Danilović B. Influence of the Extraction Method on the Biological Potential of Solidago virgaurea L. Essential Oil and Hydrolates. PLANTS (BASEL, SWITZERLAND) 2024; 13:2187. [PMID: 39204623 PMCID: PMC11359786 DOI: 10.3390/plants13162187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Solidago virgaurea L., or European goldenrod, has a long tradition in folk medicine due to the wide range of its biological activity. This paper aimed to investigate the antimicrobial and antioxidative potential of S. virgaurea essential oil and hydrolates obtained by traditional and novel extraction techniques. For that purpose, hydrodistillation, microwave-assisted hydrodistillation and solvent-free extraction were performed. Analysis of the composition of essential oils indicated the presence of 59 different compounds with cyclocolorenone, germacrene D and spathulenol being the dominant in all essential oil samples. Antimicrobial activity was detected in all the analyzed samples, with higher effect on Gram-positive microorganisms compared to Gram-negative. Regarding the type of performed extraction process, the introduction of microwaves induced higher antimicrobial and antioxidative potential in both essential oils and hydrolates. Hydrolates obtained in microwave-assisted processes had pronounced antioxidative activity, which creates a good basis for further investigation of this side product's potential use in the food, cosmetic and pharmaceutical industries.
Collapse
Affiliation(s)
- Marko Malićanin
- Faculty of Agriculture, University of Niš, Kosančićeva 4, 37000 Kruševac, Serbia
| | - Ivana Karabegović
- Faculty of Technology, University of Niš, Bulevar oslobodjenja 124, 16000 Leskovac, Serbia
| | - Natalija Đorđević
- Faculty of Technology, University of Niš, Bulevar oslobodjenja 124, 16000 Leskovac, Serbia
| | - Stojan Mančić
- Faculty of Technology, University of Niš, Bulevar oslobodjenja 124, 16000 Leskovac, Serbia
| | | | - Duško Brković
- Faculty of Agronomy in Čačak, University of Kragujevac, Cara Dušana 34, 32000 Čačak, Serbia
| | - Bojana Danilović
- Faculty of Technology, University of Niš, Bulevar oslobodjenja 124, 16000 Leskovac, Serbia
| |
Collapse
|
3
|
Angsusing J, Singh S, Samee W, Tadtong S, Stokes L, O’Connell M, Bielecka H, Toolmal N, Mangmool S, Chittasupho C. Anti-Inflammatory Activities of Yataprasen Thai Traditional Formulary and Its Active Compounds, Beta-Amyrin and Stigmasterol, in RAW264.7 and THP-1 Cells. Pharmaceuticals (Basel) 2024; 17:1018. [PMID: 39204123 PMCID: PMC11357128 DOI: 10.3390/ph17081018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Yataprasen (YTPS) remedy formulary, a national Thai traditional medicine formulary, comprises 13 herbal plants. It has been extensively prescribed to relieve osteoarthritis and musculoskeletal pain in the Thai traditional medicine healthcare system. The aim of this study was to investigate the antioxidant and anti-inflammatory properties of the bioactive compounds (β-amyrin and stigmasterol) of YTPS remedy formulary ethanolic extract, along with its composition. The YTPS formulary extract contains 70.30 nM of β-amyrin and 605.76 nM of stigmasterol. The YTPS formulary extract exhibited ABTS and DPPH free radical scavenging activity, with IC50 values of 144.50 ± 2.82 and 31.85 ± 0.18 µg/mL, respectively. The ethanolic extract of YTPS at a concentration of 1000 µg/mL showed a significant (p < 0.01) anti-inflammatory effect, mainly by reducing IL-6 and TNF-α release in response to LPS. NO production was prominently lowered by 50% at 24.76 ± 1.48 µg/mL, 55.52 ± 24.40 µM, and more than 570 µM of YTPS formulary extract, β-amyrin, and stigmasterol, respectively. Major components of YTPS, β-amyrin, and stigmasterol exerted significant anti-inflammatory effects by inhibiting LPS-induced IL-1β, IL-6, TNF-α secretion in THP-1 cells. Our findings suggest that the ethanolic extract from YTPS holds promise as an alternative topical treatment for osteoarthritis and inflammatory disorders, potentially with fewer side effects than non-steroidal anti-inflammatory medications (NSAIDs).
Collapse
Affiliation(s)
- Jaenjira Angsusing
- Ph.D. Degree Program in Pharmacy, Faculty of Pharmacy, Chiang Mai University, CMU Presidential Scholarship, Chiang Mai 50200, Thailand;
- Thai Traditional Medicine Research Institute, Department of Thai Traditional and Alternative Medicine, Ministry of Public Health, Bangkok 10100, Thailand;
| | - Sudarshan Singh
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Weerasak Samee
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok 26120, Thailand;
| | - Sarin Tadtong
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok 26120, Thailand;
| | - Leanne Stokes
- School of Pharmacy, University of East Anglia, Norwich, Norwich Research Park, Norfolk NR4 7TJ, UK; (L.S.); (M.O.); (H.B.)
| | - Maria O’Connell
- School of Pharmacy, University of East Anglia, Norwich, Norwich Research Park, Norfolk NR4 7TJ, UK; (L.S.); (M.O.); (H.B.)
| | - Hanna Bielecka
- School of Pharmacy, University of East Anglia, Norwich, Norwich Research Park, Norfolk NR4 7TJ, UK; (L.S.); (M.O.); (H.B.)
| | - Nopparut Toolmal
- Thai Traditional Medicine Research Institute, Department of Thai Traditional and Alternative Medicine, Ministry of Public Health, Bangkok 10100, Thailand;
| | - Supachoke Mangmool
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
4
|
Vigne S, Pot C. Implication of Oxysterols and Phytosterols in Aging and Human Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:231-260. [PMID: 38036883 DOI: 10.1007/978-3-031-43883-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Cholesterol is easily oxidized and can be transformed into numerous oxidation products, among which oxysterols. Phytosterols are plant sterols related to cholesterol. Both oxysterols and phytosterols can have an impact on human health and diseases.Cholesterol is a member of the sterol family that plays essential roles in biological processes, including cell membrane stability and myelin formation. Cholesterol can be metabolized into several molecules including bile acids, hormones, and oxysterols. On the other hand, phytosterols are plant-derived compounds structurally related to cholesterol, which can also have an impact on human health. Here, we review the current knowledge about the role of oxysterols and phytosterols on human health and focus on the impact of their pathways on diseases of the central nervous system (CNS), autoimmune diseases, including inflammatory bowel diseases (IBD), vascular diseases, and cancer in both experimental models and human studies. We will first discuss the implications of oxysterols and then of phytosterols in different human diseases.
Collapse
Affiliation(s)
- Solenne Vigne
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, Lausanne, Switzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, Lausanne, Switzerland.
| |
Collapse
|
5
|
Goda MS, El-Kattan N, Abdel-Azeem MA, Allam KAM, Badr JM, Nassar NA, Almalki AJ, Alharbi M, Elhady SS, Eltamany EE. Antimicrobial Potential of Different Isolates of Chaetomium globosum Combined with Liquid Chromatography Tandem Mass Spectrometry Chemical Profiling. Biomolecules 2023; 13:1683. [PMID: 38136556 PMCID: PMC10742071 DOI: 10.3390/biom13121683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/28/2023] [Accepted: 11/09/2023] [Indexed: 12/24/2023] Open
Abstract
The antimicrobial resistance of pathogenic microorganisms against commercial drugs has become a major problem worldwide. This study is the first of its kind to be carried out in Egypt to produce antimicrobial pharmaceuticals from isolated native taxa of the fungal Chaetomium, followed by a chemical investigation of the existing bioactive metabolites. Here, of the 155 clinical specimens in total, 100 pathogenic microbial isolates were found to be multi-drug resistant (MDR) bacteria. The Chaetomium isolates were recovered from different soil samples, and wild host plants collected from Egypt showed strong inhibitory activity against MDR isolates. Chaetomium isolates displayed broad-spectrum antimicrobial activity against C. albicans, Gram-positive, and Gram-negative bacteria, with inhibition zones of 11.3 to 25.6 mm, 10.4 to 26.0 mm, and 10.5 to 26.5 mm, respectively. As a consecutive result, the minimum inhibitory concentration (MIC) values of Chaetomium isolates ranged from 3.9 to 62.5 µg/mL. Liquid chromatography combined with tandem mass spectrometry (LC-MS/MS) analysis was performed for selected Chaetomium isolates with the most promising antimicrobial potential against MDR bacteria. The LC-MS/MS analysis of Chaetomium species isolated from cultivated soil at Assuit Governate, Upper Egypt (3), and the host plant Zygophyllum album grown in Wadi El-Arbaein, Saint Katherine, South Sinai (5), revealed the presence of alkaloids as the predominant bioactive metabolites. Most detected bioactive metabolites previously displayed antimicrobial activity, confirming the antibacterial potential of selected isolates. Therefore, the Chaetomium isolates recovered from harsh habitats in Egypt are rich sources of antimicrobial metabolites, which will be a possible solution to the multi-drug resistant bacteria tragedy.
Collapse
Affiliation(s)
- Marwa S. Goda
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.S.G.); (J.M.B.)
| | - Noura El-Kattan
- Department of Microbiology, Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes, Giza 11562, Egypt;
| | - Mohamed A. Abdel-Azeem
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Industries, Sinai University, Al-Arish, North Sinai 45511, Egypt;
| | - Kamilia A. M. Allam
- Department of Epidemiology, Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes, Giza 11562, Egypt;
| | - Jihan M. Badr
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.S.G.); (J.M.B.)
| | | | - Ahmad J. Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.J.A.); (M.A.)
| | - Majed Alharbi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.J.A.); (M.A.)
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Enas E. Eltamany
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.S.G.); (J.M.B.)
| |
Collapse
|
6
|
Bakrim S, Benkhaira N, Bourais I, Benali T, Lee LH, El Omari N, Sheikh RA, Goh KW, Ming LC, Bouyahya A. Health Benefits and Pharmacological Properties of Stigmasterol. Antioxidants (Basel) 2022; 11:1912. [PMID: 36290632 PMCID: PMC9598710 DOI: 10.3390/antiox11101912] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 07/30/2023] Open
Abstract
Stigmasterol is an unsaturated phytosterol belonging to the class of tetracyclic triterpenes. It is one of the most common plant sterols, found in a variety of natural sources, including vegetable fats or oils from many plants. Currently, stigmasterol has been examined via in vitro and in vivo assays and molecular docking for its various biological activities on different metabolic disorders. The findings indicate potent pharmacological effects such as anticancer, anti-osteoarthritis, anti-inflammatory, anti-diabetic, immunomodulatory, antiparasitic, antifungal, antibacterial, antioxidant, and neuroprotective properties. Indeed, stigmasterol from plants and algae is a promising molecule in the development of drugs for cancer therapy by triggering intracellular signaling pathways in numerous cancers. It acts on the Akt/mTOR and JAK/STAT pathways in ovarian and gastric cancers. In addition, stigmasterol markedly disrupted angiogenesis in human cholangiocarcinoma by tumor necrosis factor-α (TNF-α) and vascular endothelial growth factor receptor-2 (VEGFR-2) signaling down-regulation. The association of stigmasterol and sorafenib promoted caspase-3 activity and down-regulated levels of the anti-apoptotic protein Bcl-2 in breast cancer. Antioxidant activities ensuring lipid peroxidation and DNA damage lowering conferred to stigmasterol chemoprotective activities in skin cancer. Reactive oxygen species (ROS) regulation also contributes to the neuroprotective effects of stigmasterol, as well as dopamine depletion and acetylcholinesterase inhibition. The anti-inflammatory properties of phytosterols involve the production of anti-inflammatory cytokines, the decrease in inflammatory mediator release, and the inhibition of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Stigmasterol exerts anti-diabetic effects by reducing fasting glucose, serum insulin levels, and oral glucose tolerance. Other findings showed the antiparasitic activities of this molecule against certain strains of parasites such as Trypanosoma congolense (in vivo) and on promastigotes and amastigotes of the Leishmania major (in vitro). Some stigmasterol-rich plants were able to inhibit Candida albicans, virusei, and tropicalis at low doses. Accordingly, this review outlines key insights into the pharmacological abilities of stigmasterol and the specific mechanisms of action underlying some of these effects. Additionally, further investigation regarding pharmacodynamics, pharmacokinetics, and toxicology is recommended.
Collapse
Affiliation(s)
- Saad Bakrim
- Molecular Engineering, Biotechnologies and Innovation Team, Geo-Bio-Environment Engineering and Innovation Laboratory, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Nesrine Benkhaira
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Department of Biology, Faculty of Sciences and Techniques, University Sidi Mohamed Ben Abdellah, Fez 1975, Morocco
| | - Ilhame Bourais
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Sidi Bouzid B.P. 4162, Morocco
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Ryan A. Sheikh
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| |
Collapse
|
7
|
Ortiz-López T, Borges-Argáez R, Ayora-Talavera G, Canto-Ramírez E, Cetina-Montejo L, May-May Á, Escalante-Erosa F, Cáceres-Farfán M. Bioassay-Guided Fractionation of Erythrostemon yucatanensis (Greenm.) Gagnon & GP Lewis Components with Anti-hemagglutinin Binding Activity against Influenza A/H1N1 Virus. Molecules 2022; 27:5494. [PMID: 36080262 PMCID: PMC9458041 DOI: 10.3390/molecules27175494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Erythrostemon yucatanensis (Greenm.) Gagnon & GP Lewis is a legume tree native to and widely distributed in southeast Mexico, where its branches are used in traditional medicine. An in vitro evaluation of the antiviral activity of extracts and fractions from the leaves, stem bark and roots against two strains of the AH1N1 influenza virus was performed, leading to the identification of bioactive compounds in this medicinal plant. In a cytopathic effect reduction assay, the fractions from the leaves and stem bark were the active elements at the co-treatment level. These were further fractionated based on their hemagglutination inhibition activity. The analysis of spectroscopy data identified a combination of phytosterols (β-sitosterol, stigmasterol and campesterol) in the stem bark active fraction as the main anti-hemagglutinin binding components, while 5-hydroxy-2(2-hydroxy-3,4,5-trimethoxyphenyl)-7-metoxi-4H(chromen-4-ona), which was isolated from the leaf extracts, showed a weak inhibition of viral hemagglutinin. Time of addition experiments demonstrated that the mixture of sterols had a direct effect on viral particle infectivity at the co-treatment level (IC50 = 3.125 µg/mL). This effect was also observed in the virus plaque formation inhibition assay, where the mixture showed 90% inhibition in the first 20 min of co-treatment at the same concentration. Additionally, it was found using qRT-PCR that the NP copy number was reduced by 92.85% after 60 min of co-treatment. These results are the first report of components with anti-hemagglutinin binding activity in the genus Erythrostemon sp.
Collapse
Affiliation(s)
- Tania Ortiz-López
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Chuburná de Hidalgo, Mérida 97205, Mexico
| | - Rocío Borges-Argáez
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Chuburná de Hidalgo, Mérida 97205, Mexico
| | - Guadalupe Ayora-Talavera
- Departamento de Virología, Centro de Investigaciones Regionales, Universidad Autónoma de Yucatán, Paseo de Las Fuentes, Mérida 97225, Mexico
| | | | | | - Ángel May-May
- Independent Researchers, Mérida, Yucatán 97000, Mexico
| | - Fabiola Escalante-Erosa
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Chuburná de Hidalgo, Mérida 97205, Mexico
| | - Mirbella Cáceres-Farfán
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Chuburná de Hidalgo, Mérida 97205, Mexico
| |
Collapse
|
8
|
Monteiro J, Passero LFD, Jesus JA, Laurenti MD, Lago JHG, Soares MG, Batista ANL, Batista JM, Sartorelli P. Absolute configuration and antileishmanial activity of (-)-cyclocolorenone isolated from Duguetia lanceolata (Annonaceae). Curr Top Med Chem 2022; 22:1626-1633. [PMID: 35796444 DOI: 10.2174/1568026622666220707095718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/13/2022] [Accepted: 05/26/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The fractionation of the n-hexane phase of the EtOH extract from the leaves of Duguetia lanceolata (Annonaceae) led to the identification of the sesquiterpene (-)- cyclocolorenone. OBJECTIVE Chemical characterization, including determination of the absolute stereochemistry, and in vitro evaluation of antileishmanial activity of the sesquiterpene (-)-cyclocolorenone, isolated from D. lanceolata were carried out. METHODS (-)-Cyclocolorenone was isolated from D. lanceolata leaves using different chromatographic steps and its structure was defined by analysis of NMR and ESI-HRMS data. Additionally, the absolute configuration of (-)-cyclocolorenone was ambiguously assigned by means of vibrational circular dichroism (VCD). Antileishmanial activity of (-)-cyclocolorenone was evaluated on promastigote and amastigote forms of Leishmania (Leishmania) amazonensis. The integrity of the cell membrane of L. (L.) amazonensis was analyzed using the SYTOX green probe. RESULTS (-)-(1R,6S,7R,10R)-Cyclocolorenone displayed activity against promastigotes and amastigotes forms of L. (L.) amazonensis with IC50 of 4.54 and 28.44 , respectively. Furthermore, this compound was non-toxic in J774 macrophage cells (CC50 > 458.71 ) with a selectivity index > 100 (promastigotes) and > 32.2 (amastigotes). Additionally, (-)-cyclocolorenone was observed to target the parasite cell membrane. CONCLUSION Obtained data suggested that (-)-cyclocolorenone, in which absolute configuration was determined, can be considered as a scaffold for the development of new drugs for the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Jackson Monteiro
- Department of Chemistry, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| | - Luiz Felipe D Passero
- Instituto de Biociências, Universidade Estadual Paulista, São Vicente, Brazil.,Institute for Advanced Studies of Ocean, UNESP, São Vicente, Brazil
| | - Jéssica A Jesus
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Márcia D Laurenti
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - João H G Lago
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
| | - Marisi G Soares
- Instituto de Química, Universidade Federal de Alfenas, Alfenas, Brazil
| | | | - João M Batista
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, Brazil
| | - Patricia Sartorelli
- Department of Chemistry, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| |
Collapse
|
9
|
Binary Effects of Gynostemma Gold Nanoparticles on Obesity and Inflammation via Downregulation of PPARγ/CEPBα and TNF-α Gene Expression. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092795. [PMID: 35566145 PMCID: PMC9104634 DOI: 10.3390/molecules27092795] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/23/2022] [Accepted: 04/23/2022] [Indexed: 02/07/2023]
Abstract
Nanoscience is a multidisciplinary skill with elucidated nanoscale particles and their advantages in applications to various fields. Owing to their economical synthesis, biocompatible nature, and widespread biomedical and environmental applications, the green synthesis of metal nanoparticles using medicinal plants has become a potential research area in biomedical research and functional food formulations. Gynostemma pentaphyllum (GP) has been extensively used in traditional Chinese medicine to cure several diseases, including diabetes mellitus (DM). This is the first study in which we examined the efficacy of G. pentaphyllum gold nanoparticles (GP-AuNPs) against obesity and related inflammation. GP extract was used as a capping agent to reduce Au2+ to Au0 to form stable gold nanoparticles. The nanoparticles were characterized by using UV–VIS spectroscopy, and TEM images were used to analyze morphology. In contrast, the existence of the functional group was measured using FTIR, and size and shape were examined using XRD analysis. In vitro analysis on GP-AuNPs was nontoxic to RAW 264.7 cells and 3T3-L1 cells up to a specific concentration. It significantly decreased lipid accumulation in 3T3-L1 obese and reduced NO production in Raw 264.7 macrophage cells. The significant adipogenic genes PPARγ and CEPBα and a major pro-inflammatory cytokine TNF-α expression were quantified using RT-PCR. The GP-AuNPs decreased the face of these genes remarkably, revealing the antiadipogenic and anti-inflammatory activity of our synthesized GP-AuNPs. This study represents thorough research on the antiobesity effect of Gynostemma pentaphyllum gold nanoparticles synthesized using a green approach and the efficacy instead of related inflammatory responses.
Collapse
|
10
|
Fatima H, Shahid M, Pruitt C, Pung MA, Mills PJ, Riaz M, Ashraf R. Chemical Fingerprinting, Antioxidant, and Anti-Inflammatory Potential of Hydroethanolic Extract of Trigonella foenum-graecum. Antioxidants (Basel) 2022; 11:364. [PMID: 35204245 PMCID: PMC8869320 DOI: 10.3390/antiox11020364] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
In the current study, the antioxidant and anti-inflammatory potential of hydroethanolic extract of T. foenum-graecum seeds was evaluated. Phenolic profiling of T. foenum-graecum was conducted through high-performance liquid chromatography-photodiode array (HPLC-PDA) as well as through the mass spectrometry technique to characterize compounds responsible for bioactivity, which confirmed almost 18 compounds, 13 of which were quantified through a chromatographic assay. In vitro antioxidant analysis of the extract exhibited substantial antioxidant activities with the lowest IC50 value of both DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid) inhibition assays. The extract was found to be non-toxic against human RBCs and murine macrophage RAW 264.7 cells. Moreover, the extract significantly (p < 0.001) reduced the lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF-α), intrlukin-6 (IL-6), prostaglandin E2 (PGE2), and nitric oxide (NO) in RAW 264.7 cells in a concentration-dependent manner. The hydroethanolic extract of T. foenum-graecum exhibited considerable anti-inflammatory potential by decreasing the cellular infiltration to the inflammatory site in both carrageenan-induced peritonitis and an air pouch model of inflammation. Pretreatment with T. foenum-graecum extract caused significant improvement in antioxidants such as superoxide dismutase (SOD), CAT (catalase), malondialdehyde (MDA), and myeloperoxidase (MPO) against oxidative stress induced by carrageenan. Based on our results of in vivo and in vitro experimentation, we concluded that hydroethanolic extract of T. foenum-graecum is a potential source of phenolic compounds with antioxidant and anti-inflammatory potential.
Collapse
Affiliation(s)
- Hina Fatima
- Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan;
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, CA 92093, USA; (C.P.); (M.A.P.)
- Faculty of Life Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Chris Pruitt
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, CA 92093, USA; (C.P.); (M.A.P.)
| | - Meredith A. Pung
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, CA 92093, USA; (C.P.); (M.A.P.)
| | - Paul J. Mills
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, CA 92093, USA; (C.P.); (M.A.P.)
| | - Muhammad Riaz
- Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha 40100, Pakistan;
| | - Rizwan Ashraf
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan;
| |
Collapse
|
11
|
Alonso-Castro AJ, Arana-Argáez V, Yáñez-Barrientos E, Torres-Romero JC, Chable-Cetz RJ, Worbel K, Euan-Canto ADJ, Wrobel K, González-Ibarra A, Solorio-Alvarado CR, Juárez-Vázquez MDC. Pharmacological activities of Asclepias curassavica L. (Apocynaceae) aerial parts. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114554. [PMID: 34438037 DOI: 10.1016/j.jep.2021.114554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Asclepias curassavica L. (Apocynaceae) is a perennial shrub used in the folk treatment of parasitism, pain, and inflammation. AIM OF THE STUDY This work assessed the antiparasitic, anti-inflammatory, antinociceptive, and sedative effects of an ethanol extract from the aerial parts of Asclepias curassavica (ACE). MATERIALS AND METHODS The antiparasitic activity against Trichomonas vaginalis was evaluated using the trypan blue exclusion test. The in vitro anti-inflammatory actions of ACE (1-200 μg/ml) were analyzed using LPS-stimulated primary murine macrophages. The in vivo pharmacological activity of ACE (50-200 mg/kg p.o.) was evaluated using animal models of inflammation (TPA-induced ear edema test and carrageenan-induced paw edema test) and nociception (acetic acid-induced writhing test, formalin-induced licking test, and hot plate test). RESULTS ACE showed poor antiparasitic effects against Trichomonas vaginalis (IC50 = 302 μg/ml). ACE increased the production of IL-10 in both in vitro assays (EC50 = 3.2 pg/ml) and in vivo assays (ED50 = 111 mg/kg). ACE showed good antinociceptive actions (ED50 = 158 mg/kg in phase 1 and ED50 = 83 mg/kg in phase 2) in the formalin test. Pre-treatment with naloxone blocked the antinociceptive response induced by ACE. In addition, ACE did not induce sedative effects or motor coordination deficits in mice. CONCLUSION Findings showed that the anti-inflammatory activity of ACE is associated with increasing levels of IL-10 in both in vitro and in vivo assays, whereas the antinociceptive effect is associated with the participation of the opioidergic system, without inducing sedation or motor coordination impairment.
Collapse
Affiliation(s)
- Angel Josabad Alonso-Castro
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico.
| | - Victor Arana-Argáez
- Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico.
| | - Eunice Yáñez-Barrientos
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico.
| | | | | | - Katarzyna Worbel
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico.
| | | | - Kazimierz Wrobel
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico.
| | - Alan González-Ibarra
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico.
| | | | | |
Collapse
|
12
|
Ahmed AMA, Rahman MA. Wild epiphytic Bangladeshi orchids Cymbidium aloifolium (L.) Sw. and Papilionanthe teres (Roxb.) Lindl. potentially modulates the immune functions in Swiss albino mice. J Adv Vet Anim Res 2021; 8:479-488. [PMID: 34722747 PMCID: PMC8520151 DOI: 10.5455/javar.2021.h537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 11/03/2022] Open
Abstract
Objective This research investigated the immunomodulatory potentials of two medicinally important wild epiphytic Bangladeshi orchids Cymbidium aloifolium and Papilionanthe teres using Swiss albino mice. Materials and Methods Orchid extracts were prepared using a cold methanol extraction procedure. To assess the immunomodulatory action, Swiss albino mice of either sex weighing 25-35 gm were divided into five groups each with six animals. Sheep red blood cells (SRBC) of 0.5 × 109 cells/ml were used to immunize all mice on the 7th day, and a booster dose of the same quantity of SRBC was given on the 11th day of the experiment. After 14 days of oral treatment with 100 and 200 mg/kg bw of orchid extract, the mice were sacrificed to collect serum and organs. Hematological assays, delayed type of hypersensitivity assays, phagocytic index (PI), and histopathological investigations were used to assess in vivo immunomodulatory efficacy. Results The body weight changes of the experimental animals were considerably greater at 100 mg/kg bw than at a higher dose (200 mg/kg bw). There was a substantial improvement of relative organ weights of the thymus and spleen at the low dose, but no effect on kidney weights was evident. The liver weight increased significantly (p < 0.05) at both doses. Total neutrophil, leukocyte, and lymphocyte counts, hemoglobin percentage, delayed hypersensitivity reaction, and PI were all significantly (p < 0.05) increased in mice receiving the lower dose. In contrast to the control group, the higher dose reduced immunological response, suggesting the negative influence of a higher dose of extracts on the immune reaction. Conclusions The results demonstrate that orchid extracts can potentially modulate the innate immune system in the experimental animal.
Collapse
Affiliation(s)
- A M Abu Ahmed
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh.,Department of Genetic Engineering and Biotechnology, University of Chittagong, Chittagong, Bangladesh
| | - Md Atiar Rahman
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
| |
Collapse
|
13
|
Xool-Tamayo J, Chan-Zapata I, Arana-Argaez VE, Villa-de la Torre F, Torres-Romero JC, Araujo-Leon JA, Aguilar-Ayala FJ, Rejón-Peraza ME, Castro-Linares NC, Vargas-Coronado RF, Cauich-Rodríguez JV. In vitro and in vivo anti-inflammatory properties of Mayan propolis. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220935280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction Propolis has been used traditionally for different human diseases and even recently as dental biomaterials because of its antibacterial, antimycotic, and anti-inflammatory properties. However, a proper correlation between in vitro and in vivo anti-inflammatory properties has not been clearly established. Methods The composition of propolis was determined by high-performance liquid chromatography–ultraviolet mass spectrometry (HPLC-UV-MS). Viability of ethanolic propolis solution was evaluated by thiazolyl blue tetrazolium bromide (MTT) assay on murine macrophages. The anti-inflammatory properties were assessed both in vitro through the enzyme-linked immunosorbent assay (ELISA) quantification of various cytokines and in vivo by induced edemas. Results Chemical analysis showed pinocembrin, pinobanksin-3-O-acetate, and pinobanksin-3-O-propionate as the main components of propolis. Macrophage viability was high (106%) when propolis was used up to 50 µg/mL. ELISA studies showed a reduction in the expression of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) up to 145 pg/mL, 350 pg/mL, and 210 pg/mL, respectively, while the anti-inflammatory cytokines (IL-10 and IL-4) were increased up to 833 pg/mL and 446 pg/mL. Finally, edema was reduced on paw and ear mice by 9% and 22%, respectively. Conclusion Mayan propolis has strong in vitro anti-inflammatory properties without compromising macrophage viability, resulting in a low-to-mild in vivo anti-inflammatory response.
Collapse
Affiliation(s)
- Jorge Xool-Tamayo
- Centro de Investigación Científica de Yucatán, Hidalgo, Mérida, México
| | - Ivan Chan-Zapata
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, México
| | | | | | - Julio César Torres-Romero
- Laboratorio de Bioquímica y Genética Molecular, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, México
| | | | | | | | | | | | | |
Collapse
|
14
|
Vilahur G, Ben-Aicha S, Diaz-Riera E, Badimon L, Padró T. Phytosterols and Inflammation. Curr Med Chem 2020; 26:6724-6734. [PMID: 29932029 DOI: 10.2174/0929867325666180622151438] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 01/27/2018] [Accepted: 01/31/2018] [Indexed: 02/08/2023]
Abstract
Besides the well-characterized effect of foods and supplements enriched with plant sterols/stanols on serum LDL-C concentrations, evidence is now emerging that phytosterols exert beneficial effects on non-lipid variables such as inflammatory and oxidative stress markers, coagulation parameters and endothelial function. This makes sterols and stanols an attractive alternative for dietary interventions in cardiovascular disease prevention, particularly in populations at low or medium risk. This review aims to summarize the current knowledge derived from experimental studies and human data on the anti-inflammatory effects of phytosterols/stanols and their relevance in promoting atheroprotection and preventing cardiovascular disease. The anti-inflammatory effects induced by plant sterols/stanols have been demonstrated in in vitro studies and in experimental animal models. However, not all the beneficial effects seen at an experimental level have translated into clinical benefit. Indeed, clinical studies that evaluate the association between phytosterols consumption and inflammatory variables (CRP and cytokines) are inconsistent and have not yet provided a solid answer. Plant sterols have been proposed as useful adjuncts to statin therapy to further reduce the risk of cardiovascular disease. However, there is limited available data and more research needs to be done.
Collapse
Affiliation(s)
- Gemma Vilahur
- Cardiovascular Program ICCC, Research Institute - Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain.,CIBERCV Instituto de Salud Carlos III, Barcelona, Spain
| | - Soumaya Ben-Aicha
- Cardiovascular Program ICCC, Research Institute - Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Elisa Diaz-Riera
- Cardiovascular Program ICCC, Research Institute - Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Program ICCC, Research Institute - Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain.,CIBERCV Instituto de Salud Carlos III, Barcelona, Spain.,Cardiovascular Research Chair, UAB, Barcelona, Spain
| | - Teresa Padró
- Cardiovascular Program ICCC, Research Institute - Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain.,CIBERCV Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
15
|
Arana-Argáez VE, Domínguez F, Moreno DA, Isiordia-Espinoza MA, Lara-Riegos JC, Ceballos-Góngora E, Zapata-Morales JR, Franco-de la Torre L, Sánchez-Enríquez S, Alonso-Castro AJ. Anti-inflammatory and antinociceptive effects of an ethanol extract from Senna septemtrionalis. Inflammopharmacology 2019; 28:541-549. [PMID: 31679123 DOI: 10.1007/s10787-019-00657-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022]
Abstract
Senna septemtrionalis (Viv.) H.S. Irwin & Barneby (Fabaceae) is a medicinal plant used as a folk remedy for inflammation and pain. The objective of this study was to evaluate the anti-inflammatory and antinociceptive actions of an ethanol extract of Senna septemtrionalis aerial parts (SSE). The in vitro anti-inflammatory effects of SSE were assessed using LPS-stimulated macrophages and the subsequent quantification of the levels of cytokines (IL-6, IL-1β, and TNF-α) with ELISA kits, nitric oxide (NO), and hydrogen peroxide (H2O2). The in vivo anti-inflammatory actions of SSE were evaluated with the TPA-induced ear oedema test and the carrageenan-induced paw oedema test. The antinociceptive actions of SSE (10-200 mg/kg p.o.) were assessed using three models: two chemical assays (formalin-induced orofacial pain and acetic acid-induced visceral pain) and one thermal assay (hot plate). SSE showed in vitro anti-inflammatory actions with IC50 values calculated as follows: 163.3 µg/ml (IL-6), 154.7 µg/ml (H2O2) and > 200 µg/ml (IL-1β, TNF-α, and NO). SSE showed also in vivo anti-inflammatory actions in the TPA test (40% of inhibition of ear oedema) and the carrageenan test (ED50 = 137.8 mg/kg p.o.). SSE induced antinociceptive activity in the formalin orofacial pain test (ED50 = 80.1 mg/kg) and the acetic acid-induced writhing test (ED50 = 110 mg/kg). SSE showed no antinociceptive actions in the hot plate assay. The pre-treatment with glibenclamide abolished the antinociceptive action shown by SSE alone. Overall, SSE exerted in vitro and in vivo anti-inflammatory actions, and in vivo antinociceptive effects by the possible involvement of ATP-sensitive K + channels.
Collapse
Affiliation(s)
- Víctor Ermilo Arana-Argáez
- Facultad de Química, Universidad Autónoma de Yucatán, Calle 43, Calle 90 613 x, Inalámbrica, 97069, Mérida, Yucatán, Mexico
| | - Fabiola Domínguez
- Laboratorio de Biotecnología de Productos Naturales, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Km 4.5 Carretera Federal Atlixco-Metepec, C.P. 74360, Metepec, Puebla, Mexico
| | - Diego A Moreno
- Phytochemistry and Healthy Foods Lab., Food Science and Technology Department, CEBAS-CSIC, Campus Universitario Espinardo - 25, 30100, Espinardo, Murcia, Spain
| | - Mario Alberto Isiordia-Espinoza
- Departamento de Clínicas, División de Ciencias Biomédicas, Centro Universitario de los Altos, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, 47620, Tepatitlán de Morelos, Jalisco, Mexico
| | - Julio Cesar Lara-Riegos
- Facultad de Química, Universidad Autónoma de Yucatán, Calle 43, Calle 90 613 x, Inalámbrica, 97069, Mérida, Yucatán, Mexico
| | - Emanuel Ceballos-Góngora
- Facultad de Química, Universidad Autónoma de Yucatán, Calle 43, Calle 90 613 x, Inalámbrica, 97069, Mérida, Yucatán, Mexico
| | - Juan Ramón Zapata-Morales
- División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, C.P. 36050, Guanajuato, Gto, Mexico
| | - Lorenzo Franco-de la Torre
- Departamento de Clínicas, División de Ciencias Biomédicas, Centro Universitario de los Altos, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, 47620, Tepatitlán de Morelos, Jalisco, Mexico
| | - Sergio Sánchez-Enríquez
- Departamento de Clínicas, División de Ciencias Biomédicas, Centro Universitario de los Altos, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, 47620, Tepatitlán de Morelos, Jalisco, Mexico
| | - Angel Josabad Alonso-Castro
- División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N, C.P. 36050, Guanajuato, Gto, Mexico.
| |
Collapse
|
16
|
Lavatera critica controls systemic insulin resistance by ameliorating adipose tissue inflammation and oxidative stress using bioactive compounds identified by GC-MS. Biomed Pharmacother 2018; 106:183-191. [PMID: 29958142 DOI: 10.1016/j.biopha.2018.06.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 06/14/2018] [Accepted: 06/21/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Lavatera critica, a leafy green herb, is reported to have many pharmacological activities; but, the improvement of insulin sensitivity against the high gram-fat diet (HGFD)-caused insulin resistance (IR) has not yet been studied. OBJECTIVE This study evaluated the role of Lavatera critica leaf extract (LCE) in systemic insulin resistance through the alleviation of adipose tissue inflammation and oxidative damage in HGFD fed mice. METHODS The mice were fed with HGFD for 10 weeks and the diet was supplemented with LCE each day for the next five weeks. Body weight, food intake, leptin, blood glucose, insulin, insulin resistance, and pro- and anti-inflammatory genes expression were assessed on day 106. RESULTS The HGFD control mice displayed markedly elevated adipose tissue inflammation, oxidative stress, insulin inactivity, and hyperglycemia. Administration of LCE in the HGFD mice, especially a dose of 100 mg/kg, lowered the body weight, food intake, plasma leptin, plasma glucose, plasma insulin, insulin resistance, and increased the food efficacy ratio when compared with the HGFD control mice. The oral glucose tolerance test (OGTT) revealed that LCE prevented further increase in the circulating levels after the glucose load. LCE-treated mice demonstrated a marked suppression of pro-inflammatory cytokines mRNA expression. On the other hand, the mice showed a higher anti-inflammatory genes mRNA expression in the adipose tissue. In addition, LCE treatment improved the oxidative damage as evidenced by the reduced levels of lipid hydroperoxides and thiobarbituric acid reactive substances coupled with the increased antioxidants (superoxide dismutase, total glutathione, glutathione/glutathione disulfide ratio and glutathione peroxidase) in the adipose tissue, plasma and erythrocytes. Gas chromatography-mass spectrometry analysis of the bioactive compounds revealed the presence of 9, 12, 15-octadecatrienoic acid, vitamin E, phytol, hexadecanoic acid, benzenepropanoic acid, and stigmasterol. CONCLUSIONS These findings prove that LCE improves the insulin-sensitizing activity in the mouse model of HGFD-caused IR, probably due to the amelioration of adipose tissue inflammation and oxidative damage. Hence, the LCE could serve as a useful anti-diabetic agent.
Collapse
|
17
|
Design, synthesis and ability of non-gold complexed substituted purine derivatives to inhibit LPS-induced inflammatory response. Eur J Med Chem 2018; 149:10-21. [PMID: 29494841 DOI: 10.1016/j.ejmech.2018.02.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 11/21/2022]
Abstract
In order to study the anti-inflammatory activity of novel 6-substituted and 6,9-disubstituted purine derivatives, 20 compounds, L1-10 and W1-10, derived from purine and lacking a gold complex were designed, synthesized and their anti-inflammatory activity was screened. LPS-induced TNF-α, IL-1β, IL-6, PGE2, NO, COX-2 and iNOS mRNA were evaluated, and western blot and NF-κB p65 translocation assay were performed in RAW 264.7 macrophages. Furthermore, carrageenan-induced hind paw edema experiments were performed in mice. Compound L1, L4, W2, and W4 markedly exerted a dose-dependent inhibition of TNF-α, IL-1β, IL-6 and PGE2 release induced by LPS in RAW 264.7 macrophages. Moreover, these compounds strongly inhibited LPS-induced NO, COX-2 and iNOS mRNA in the same cells. Anti-inflammatory activity tests in vivo showed that L1 and L4 were more effective than Au(L3)(PPh3), a known anti-inflammatory agent, at 2-5 h, and W4 was the most effective at 3-5 h after dosing. Thus, W2, W4, and L1, L4, could effectively inhibit LPS-induced inflammatory response in vitro and in vivo suggesting a promising role as anti-inflammatory agents.
Collapse
|
18
|
Kumar S, Singh R, Malik S, Manne U, Mishra M. Prostate cancer health disparities: An immuno-biological perspective. Cancer Lett 2018; 414:153-165. [PMID: 29154974 PMCID: PMC5743619 DOI: 10.1016/j.canlet.2017.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/09/2017] [Accepted: 11/11/2017] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PCa) is the most commonly diagnosed malignancy in males, and, in the United States, is the second leading cause of cancer-related death for men older than 40 years. There is a higher incidence of PCa for African Americans (AAs) than for European-Americans (EAs). Investigations related to the incidence of PCa-related health disparities for AAs suggest that there are differences in the genetic makeup of these populations. Other differences are environmentally induced (e.g., diet and lifestyle), and the exposures are different. Men who immigrate from Eastern to Western countries have a higher risk of PCa than men in their native countries. However, the number of immigrants developing PCa is still lower than that of men in Western countries, suggesting that genetic factors are involved in the development of PCa. Altered genetic polymorphisms are associated with PCa progression. Androgens and the androgen receptor (AR) are involved in the development and progression of PCa. For populations with diverse racial/ethnic backgrounds, differences in lifestyle, diet, and biology, including genetic mutations/polymorphisms and levels of androgens and AR, are risk factors for PCa. Here, we provide an immuno-biological perspective on PCa in relation to racial/ethnic disparities and identify factors associated with the disproportionate incidence of PCa and its clinical outcomes.
Collapse
Affiliation(s)
- Sanjay Kumar
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Shalie Malik
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA; Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Upender Manne
- Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Manoj Mishra
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA.
| |
Collapse
|
19
|
Rodriguez Villanueva J, Martín Esteban J, Rodríguez Villanueva L. Solving the puzzle: What is behind our forefathers' anti-inflammatory remedies? JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2017; 6:128-143. [PMID: 28163971 PMCID: PMC5289082 DOI: 10.5455/jice.20161204021732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/16/2016] [Indexed: 12/13/2022]
Abstract
Inflammation is a ubiquitous host response in charge of restoring normal tissue structure and function but is a double-edged sword, as the uncontrolled or excessive process can lead to the injury of host cells, chronic inflammation, chronic diseases, and also neoplastic transformation. Throughout history, a wide range of species has been claimed to have anti-inflammatory effects worldwide. Among them, Angelica sinensis, Tropaeolum majus, Castilleja tenuiflora, Biophytum umbraculum, to name just a few, have attracted the scientific and general public attention in the last years. Efforts have been made to assess their relevance through a scientific method. However, inflammation is a complex interdependent process, and phytomedicines are complex mixtures of compounds with multiple mechanisms of biological actions, which restricts systematic explanation. For this purpose, the omics techniques could prove extremely useful. They provide tools for interpreting and integrating results from both the classical medical tradition and modern science. As a result, the concept of network pharmacology applied to phytomedicines emerged. All of this is a step toward personalized therapy.
Collapse
Affiliation(s)
- Javier Rodriguez Villanueva
- Department of Biomedical Sciences, Pharmacy and Pharmaceutical Technology Unit, Faculty of Pharmacy, University of Alcalá, Ctra. de Madrid-Barcelona (Autovía A2) Km. 33,600 28805 Alcalá de Henares, Madrid, Spain
| | - Jorge Martín Esteban
- Faculty of Pharmacy, University of Alcalá, Ctra. de Madrid-Barcelona (Autovía A2) Km. 33,600 28805 Alcalá de Henares, Madrid, Spain
| | - Laura Rodríguez Villanueva
- Faculty of Pharmacy, University of Alcalá, Ctra. de Madrid-Barcelona (Autovía A2) Km. 33,600 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
20
|
Elucidation of the Anti-Inflammatory Mechanisms of Bupleuri and Scutellariae Radix Using System Pharmacological Analyses. Mediators Inflamm 2017; 2017:3709874. [PMID: 28190938 PMCID: PMC5278517 DOI: 10.1155/2017/3709874] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/13/2016] [Accepted: 12/22/2016] [Indexed: 12/14/2022] Open
Abstract
Objective. This study was aimed at elucidating the molecular mechanisms underlying the anti-inflammatory effect of the combined application of Bupleuri Radix and Scutellariae Radix and explored the potential therapeutic efficacy of these two drugs on inflammation-related diseases. Methods. After searching the databases, we collected the active ingredients of Bupleuri Radix and Scutellariae Radix and calculated their oral bioavailability (OB) and drug-likeness (DL) based on the absorption-distribution-metabolism-elimination (ADME) model. In addition, we predicted the drug targets of the selected active components based on weighted ensemble similarity (WES) and used them to construct a drug-target network. Gene ontology (GO) analysis and KEGG mapper tools were performed on these predicted target genes. Results. We obtained 30 compounds from Bupleuri Radix and Scutellariae Radix of good quality as indicated by ADME assays, which possess potential pharmacological activity. These 30 ingredients have a total of 121 potential target genes, which are involved in 24 biological processes related to inflammation. Conclusions. Combined application of Bupleuri Radix and Scutellariae Radix was found not only to directly inhibit the synthesis and release of inflammatory cytokines, but also to have potential therapeutic effects against inflammation-induced pain. In addition, a combination therapy of these two drugs exhibited systemic treatment efficacy and provided a theoretical basis for the development of drugs against inflammatory diseases.
Collapse
|