1
|
Zhu R, Yan S, Zhao R, Zhang R, Shao M, Yu H, Fu Y. Effectiveness of different traditional Chinese medicine injections in patients with diabetic lower extremity arterial disease: A Bayesian network meta-analysis. Complement Ther Clin Pract 2025; 59:101936. [PMID: 39805184 DOI: 10.1016/j.ctcp.2025.101936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
BACKGROUND AND PURPOSE Numerous studies have demonstrated the effectiveness of Chinese medicine injections (CMIs) in treating diabetic lower extremity arterial disease (Dia-LEAD). However, with the variety of CMIs available, it has become challenging to determine the optimal choice for Dia-LEAD patients. This study aims to compare and rank the efficacy of CMIs for Dia-LEAD to provide references and evidence for clinicians in optimising drug selection. METHODS We conducted a comprehensive search for randomised controlled trials (RCTs) of CMIs for treating Dia-LEAD, which included the China National Knowledge Infrastructure (CNKI), Wanfang, China Weipu Science and Technology Journal Database (VIP), Chinese Biomedical Literature Database (CBM), PubMed, the Cochrane Library, Embase, and Web of Science, covering inception to 15 October 2023. We used the Cochrane Risk of Bias Tool 2.0 to assess bias risk, and RevMan 5.4.1, GeMTC, STATA 13.0, and R 4.2.1 for statistical analysis and visualization of the network meta-analysis. RESULTS We analysed 38 studies with 12 CMIs. Compared with other interventions, Shuxuening injection (SXN) + conventional treatment (CT) was superior in terms of the total effective rate (surface under the cumulative ranking (SUCRA) 86.2 %). Danshen injection (DS) + CT ranked first in improving the ankle-brachial index (ABI) (SUCRA 95.1 %) and dorsalis pedis artery blood flow (DPABF) (SUCRA 88.8 %). Danhong injection (DH) + CT showed the highest probability of effectiveness in improving the plasma viscosity (SUCRA 91.6 %). Chuanxiongqin injection (CXQ) + CT yielded favourable results in regulating fibrinogen levels (SUCRA 77.1 %). Furthermore, no significant differences in adverse reactions were detected between the treatment and control groups. CONCLUSION The study demonstrated that CMIs have potential as a complementary therapy for treating Dia-LEAD, and it supports the positive effects of combining CMIs with CT on a number of outcome indicators. Especially when it comes to improving the haemodynamics indices and the haemorheology indices, DS in combination with CT may be a more effective intervention. However, further confirmation in more rigorous, high-quality, and multicentre RCTs is needed to strengthen the validity and generalisability of the results.
Collapse
Affiliation(s)
- Rong Zhu
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China; School of the First Clinical, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shuxun Yan
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ruixia Zhao
- Henan Provincial Center for Evidence-based Medicine of Traditional Chinese Medicine, Zhengzhou, China
| | - Rongrong Zhang
- School of the First Clinical, Henan University of Chinese Medicine, Zhengzhou, China
| | - Mingyi Shao
- Department of Gastroenterology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Haibin Yu
- Department of Science and Technology, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yu Fu
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China.
| |
Collapse
|
2
|
Zhao D, Wen X, Wu J, Chen F. Photoimmunotherapy for cancer treatment based on organic small molecules: Recent strategies and future directions. Transl Oncol 2024; 49:102086. [PMID: 39181114 PMCID: PMC11387906 DOI: 10.1016/j.tranon.2024.102086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/25/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024] Open
Abstract
Photodynamic therapy (PDT) is considered as a promising anticancer approach, owning to its high efficiency and spatiotemporal selectivity. Ample evidence indicated that PDT can trigger immunogenic cell death by releasing antigens that activate immune cells to promote anti-tumor immunity. Nevertheless, the inherent nature of tumors and their complex heterogeneity often limits the efficiency of PDT, which can be overcome with a novel strategy of photo-immunotherapy (PIT) strategy. By exploring the principles of PDT induction and ICD enhancement, combined with other therapies such as chemotherapy or immune checkpoint blockade, the tailored solutions can be designed to address specific challenges of drug resistance, hypoxic conditions, and tumor immunosuppressive microenvironments (TIMEs), which enables targeted enhancement of systemic immunity to address most distant and recurrent cancers. The present article summarizes the specific strategies of PIT and discusses recent existing limitations. More importantly, we anticipate that the perspectives presented herein will help address the clinical translation challenges associated with PIT.
Collapse
Affiliation(s)
- Deming Zhao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xin Wen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Jiani Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Feihong Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
3
|
Liu R, Chen Y, Zhang X, Cai Y, Xu S, Xu Q, Li X, Li W, Liu P, Liu W. Pharmacological efficacy study of the cardio-cerebral stasis transforming medicines on cerebral ischemia and myocardial infarction in rats. Heliyon 2024; 10:e39162. [PMID: 39640627 PMCID: PMC11620065 DOI: 10.1016/j.heliyon.2024.e39162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
The purpose of this study was to investigate the efficacy and mechanisms of cardio-cerebral stasis transforming medicines (CCSTM) against cerebral infarction (CI) and myocardial infarction (MI). CI modeling was conducted using the refined Longa suture-occluded technique, while MI modeling was accomplished through the occlusion of the anterior descending branch of the left coronary artery. We found that compared with the model groups, CCSTM decreased the infarct size in models of CI and MI in a dose-dependent manner. After brain ischemia, CCSTM decreased the level of myeloperoxidase (MPO) and malondialdehyde (MDA), and increased the level of superoxide dismutase (SOD). Besides, CCSTM reduced the concentrations of lactate dehydrogenase (LDH), malondialdehyde MDA, and endothelin (ET) in the plasma of rats injured with MI. Histological examination of brain sections revealed that CCSTM alleviated cerebral damage after ischemia compared with the model group. CCSTM can reduce myocardial and cerebral infarction injury, and the oxidation level after myocardial and cerebral infarction in rats.
Collapse
Affiliation(s)
- Ruilian Liu
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
- The Hospital Affiliated to Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan Province, PR China
- Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
| | - Yangchu Chen
- Beijing Jianhua Research Institute of Medicine, Beijing, 100000, PR China
| | - Xili Zhang
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
- Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
| | - Yuhan Cai
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
- Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
| | - Shuang Xu
- The Hospital Affiliated to Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan Province, PR China
| | - Qian Xu
- The Hospital Affiliated to Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan Province, PR China
| | - Xin Li
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
| | - Wenjiao Li
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
- Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
| | - Pingan Liu
- Hunan Academy of Chinese Medicine, Changsha, 410017, Hunan Province, PR China
- Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
| | - Wenlong Liu
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
- Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
| |
Collapse
|
4
|
Wang Z, Huo M, Qiao L, Qiao Y, Zhang Y. SYSTCM: A systemic web platform for objective identification of pharmacological effects based on interplay of "traditional Chinese Medicine-components-targets". Comput Biol Med 2024; 179:108878. [PMID: 39043107 DOI: 10.1016/j.compbiomed.2024.108878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
Mechanism analysis is essential for the use and promotion of Traditional Chinese Medicine (TCM). Traditional methods of network analysis relying on expert experience lack an explanatory framework, prompting the application of deep learning and machine learning for objective identification of TCM pharmacological effects. A dataset was used to construct an interacted network graph between 424 molecular descriptors and 465 pharmacological targets to represent the relationship between components and pharmacological effects. Subsequently, the optimal identification model of pharmacological effects (IPE) was established through convolution neural networks of GoogLeNet structure. The AUC values are greater than 0.8, MCC values are greater than 0.7, and ACC values are greater than 0.85 across various test datasets. Subsequently, 18 recognition models of TCM efficacy (RTE) were created using support vector machines (SVM). Integration of pharmacological effects and efficacies led to the development of the systemic web platform for identification of pharmacological effects (SYSTCM). The platform, comprising 70,961 terms, including 636 Traditional Chinese Medicines (TCMs), 8190 components, 40 pharmacological effects, and 18 efficacies. Through the SYSTCM platform, (1) Total 100 components were predicted from TCMs with anti-inflammatory pharmacological effects. (2) The pharmacological effects of complete constituents were predicted from Coptidis Rhizoma (Huang Lian). (3) The principal components, pharmacological effects, and efficacies were elucidated from Salviae Miltiorrhizae radix et rhizome (Dan Shen). SYSTCM addresses subjectivity in pharmacological effect determination, offering a potential avenue for advancing TCM drug development and clinical applications. Access SYSTCM at http://systcm.cn.
Collapse
Affiliation(s)
- Zewen Wang
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mengqi Huo
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Liansheng Qiao
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yanjiang Qiao
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Yanling Zhang
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
5
|
Zhao Z, Wei G, Wang L, Jiang Y, Zhang X, Fang L, Du G, Kong L. Pretreatment with Dan-Shen-Yin granules alleviates ethanol-induced gastric mucosal damage in rats by inhibiting oxidative stress and apoptosis via Akt/Nrf2 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155866. [PMID: 39053247 DOI: 10.1016/j.phymed.2024.155866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Gastric ulcer (GU) is a common gastrointestinal disease with high morbidity that may be caused by various pathogenic factors. Dan-Shen-Yin (DSY), a traditional prescription, improves myocardial and gastrointestinal functions; however, its effect on GU and the underlying mechanisms requires further research. PURPOSE We aimed to evaluate the pharmacodynamics of DSY granules in GU using three different animal models and explore their potential mechanisms. METHODS DSY granules were manufactured and subjected to quality control by high-performance liquid chromatography (HPLC). Three GU models were established using ethanol, aspirin, or water immersion restraint combined with aspirin and examined using the Guth method and hematoxylin and eosin (H&E) staining. The effects of DSY granules on gastric mucosal glycoproteins and the release of defensive and aggressive factors in ethanol-induced GU were measured using periodic acid-Schiff (PAS) staining and ELISA. TUNEL staining and detection of apoptosis-related proteins were used to evaluate the role of DSY granules on apoptosis. Potential mechanisms were predicted using network pharmacology, molecular docking, and western blot to verify the related targets and pathways. RESULTS DSY granules were prepared for the first time and quality control standard was established. Pharmacodynamic evaluation indicated that DSY granules significantly reduced the GU index and gastric mucosal injury in the three GU models, and the GU inhibition rate of DSY granules was superior to omeprazole in ethanol-induced GU model (60.32 % vs. 21.96 %). Further studies in ethanol-induced GU model revealed that DSY granules increased the levels of the defensive factors (PGE2, NO, SOD, CAT, TAOC, and GSH) and decreased the levels of aggressive factors (MDA, TNF-α, and IL-1β), thereby inhibiting oxidative stress and inflammation, attenuating gastric mucosal injury. Moreover, the results of TUNEL staining and western blot showed that DSY granules suppressed apoptosis by reducing the ratios of Bax/Bcl-2 and cleaved-Caspase-3/Caspase-3. In addition, the results of network pharmacology and molecular docking suggested that the mechanisms of DSY granules against GU may be related to the Akt-related signaling pathway. Further study confirmed that DSY granules significantly reduced the ratio of p-Akt/Akt and promoted the expression of Nrf2 and NQO1, protecting the gastric mucosa. CONCLUSIONS Our results indicated that DSY granules had protective effects on GU caused by different mechanisms, especially ethanol-induced GU. DSY granules alleviated gastric mucosal damage by inhibiting oxidative stress, inflammation, and apoptosis, which may be associated with the regulation of Akt/Nrf2 signaling pathway. Therefore, DSY granules may be a promising drug for the treatment of GU.
Collapse
Affiliation(s)
- Ziyuan Zhao
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Guangyi Wei
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Longrui Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yinru Jiang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xinyi Zhang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lianhua Fang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Guanhua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Linglei Kong
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
6
|
Xu R, Bi Y, He X, Zhang Y, Zhao X. Kidney-tonifying blood-activating decoction delays ventricular remodeling in rats with chronic heart failure by regulating gut microbiota and metabolites and p38 mitogen-activated protein kinase/p65 nuclear factor kappa-B/aquaporin-4 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118110. [PMID: 38580189 DOI: 10.1016/j.jep.2024.118110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 04/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Myocardial infarction has likely contributed to the increased prevalence of heart failure(HF).As a result of ventricular remodeling and reduced cardiac function, colonic blood flow decreases, causing mucosal ischemia and hypoxia of the villous structure of the intestinal wall.This damage in gut barrier function increases bowel wall permeability, leading to fluid metabolism disorder,gut microbial dysbiosis, increased gut bacteria translocation into the circulatory system and increased circulating endotoxins, thus promoting a typical inflammatory state.Traditional Chinese Medicine plays a key role in the prevention and treatment of HF.Kidney-tonifying Blood-activating(KTBA) decoction has been proved for clinical treatment of chronic HF.However,the mechanism of KTBA decoction on chronic HF is still unclear. AIMS OF THE STUDY The effect of KTBA decoction on gut microbiota and metabolites and p38MAPK/p65NF-κB/AQP4 signaling in rat colon was studied to investigate the mechanism that KTBA decoction delays ventricular remodeling and regulates water metabolism disorder in rats with HF after myocardial infarction based on the theory of "Kidney Storing Essence and Conducting Water". MATERIAL AND METHODS In vivo,a rat model of HF after myocardial infarction was prepared by ligating the left anterior descending coronary artery combined with exhaustive swimming and starvation.The successful modeling rats were randomly divided into five groups:model group, tolvaptan group(gavaged 1.35mg/(kg•D) tolvaptan),KTBA decoction group(gavaged 15.75g/(kg•D) of KTBA decoction),KTBA decoction combined with SB203580(p38MAPK inhibitor) group(gavaged 15.75g/(kg•D) of KTBA decoction and intraperitoneally injected 1.5mg/(kg•D) of SB203580),and KTBA decoction combined with PDTC(p65NF-kB inhibitor) group(gavaged 15.75g/(kg•D) of KTBA decoction and intraperitoneally injected 120mg/(kg•D) of PDTC).The sham-operation group and model group were gavaged equal volume of normal saline.After 4 weeks of intervention with KTBA decoction,the effect of KTBA decoction on the cardiac structure and function of chronic HF model rats was observed by ultrasonic cardiogram.General state and cardiac index in rats were evaluated.Enzyme linked immunosorbent assay(ELISA) was used to measure N-terminal pro-brain natriuretic peptide (NT-proBNP) concentration in rat serum.Hematoxylin and eosin(H&E) staining,and transmission electron microscope(TEM) were used to observe the morphology and ultrastructure of myocardial and colonic tissue,and myocardial fibrosis was measured by Masson's staining.Cardiac E-cadherin level was detected by Western blot.The mRNA expression and protein expression levels of p38MAPK,I-κBα, p65NF-κB,AQP4,Occludin and ZO-1 in colonic tissue were detected by reverse transcription-quantitative real-time polymerase chain reaction(RT-qPCR) and immunohistochemistry. Protein expression of p38MAPK, p-p38MAPK,I-κBα,p-I-κBα,p65NF-κB, p-p65NF-κB,AQP4,Occludin and ZO-1 in rat colon was detected using Western blot.Colonic microbiota and serum metabolites were respectively analyzed by amplicon sequencing and liquid chromatography-mass spectrometry.In vitro, CCD-841CoN cell was placed in the ischemic solution under hypoxic conditions (94%N2,5%CO2,and 1%O2) in a 37 °C incubator to establish an ischemia and hypoxia model.The CCD-841CoN cells were divided into 7 groups, namely blank group and model group with normal rat serum plus control siRNA, tolvaptan group with rat serum containing tolvaptan plus control siRNA, KTBA group with rat serum containing KTBA plus control siRNA, KTBA plus p38MAPK siRNA group, KTBA plus p65NF-κB siRNA group,and KTBA plus AQP4siRNA group.After 24h and 48h of intervention with KTBA decoction,RT-qPCR,immunofluorescence and Western blot was used to detect the mRNA expression and protein expression levels of p38MAPK,I-κBα,p65NF-κB,AQP4, Occludin and ZO-1 in CCD-841CoN cells. RESULTS Compared with the model, KTBA decoction improved the general state, decraesed the serum NT-proBNP level,HW/BW ratio, LVIDd and LVIDs, increased E-cadherin level,EF and FS,reduced number of collagen fibers deposited in the myocardial interstitium,and recovered irregular arrangement of myofibril and swollen or vacuolated mitochondria with broken crista in myocardium.Moreover, KTBA decoction inhibited the expression of p38MAPK,I-κBα,and p65NF-κB and upregulated AQP4, Occludin and ZO-1 in colon tissues and CCD-841CoN cells.Additionally,p38siRNA or SB203580, p65siRNA or PDTC, and AQP4siRNA partially weakened the protective effects of KTBA in vitro and vivo.Notably,The LEfSe analysis results showed that there were six gut biomaker bacteria in model group, including Allobaculum, Bacillales,Turicibacter, Turicibacterales,Turicibacteraceae,and Bacilli. Besides, three gut biomaker bacteria containing Deltaproteobacteria, Desulfovibrionaceae,and Desulfovibrionales were enriched by KTBA treatment in chronic HF model.There were five differential metabolites, including L-Leucine,Pelargonic acid, Capsidiol,beta-Carotene,and L- Erythrulose, which can be regulated back in the same changed metabolic routes by the intervention of KTBA.L-Leucine had the positive correlation with Bacillales, Turicibacterales,Turicibacteraceae,and Turicibacter.L-Leucine significantly impacts Protein digestion and absorption, Mineral absorption,and Central carbon metabolism in cancer regulated by KTBA, which is involved in the expression of MAPK and tight junction in intestinal epithelial cells. CONCLUSIONS KTBA decoction manipulates the expression of several key proteins in the p38MAPK/p65NF-κB/AQP4 signaling pathway, modulates gut microbiota and metabolites toward a more favorable profile, improves gut barrier function, delays cardiomyocyte hypertrophy and fibrosis,and improves cardiac function.
Collapse
Affiliation(s)
- Rui Xu
- Liaoning University of Traditional Chinese Medicine,Shenyang,Liaoning 110847,China
| | - Yanping Bi
- Jilin Hospital of Integrated Traditional Chinese and Western Medicine,Jilin,Jilin 132000,China
| | - Xiaoteng He
- Liaoning University of Traditional Chinese Medicine,Shenyang,Liaoning 110847,China
| | - Yan Zhang
- The Affiliated Hospital, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, China.
| | - Xin Zhao
- The Second Hospital, Dalian Medical University, Dalian, Liaoning 116023, China.
| |
Collapse
|
7
|
Zhang W, Xiong P, Liu J, Hu H, Song L, Liu X, Jia B. A systematic review and meta-analysis of Danshen combined with mesalazine for the treatment of ulcerative colitis. Front Pharmacol 2024; 15:1334474. [PMID: 38881869 PMCID: PMC11176616 DOI: 10.3389/fphar.2024.1334474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/22/2024] [Indexed: 06/18/2024] Open
Abstract
Purpose: Current pharmacological treatments for Ulcerative Colitis (UC) have limitations. Therefore, it is important to elucidate any available alternative or complementary treatment, and Chinese herbal medicine shows the potential for such treatment. As a traditional Chinese herbal medicine, Danshen-related preparations have been reported to be beneficial for UC by improving coagulation function and inhibiting inflammatory responses. In spite of this, the credibility and safety of this practice are incomplete. Therefore, in order to investigate whether Danshen preparation (DSP) is effective and safe in the treatment of UC, we conducted a systematic review and meta-analysis. Methods: PubMed, Embase, Cochrane Library, Web of Science, China National Knowledge Infrastructure, Wanfang Database and CQVIP Database were searched for this review.The main observation indexes were the effect of DSP combined with mesalazine or DSP on the effective rate, platelet count (PLT), mean platelet volume (MPV) and C-reactive protein (CRP) of UC. The Cochrane risk of bias tool was used to assess the risk of bias. The selected studies were evaluated for quality and data processing using RevMan5.4 and Stata17.0 software. Results: A total of 37 studies were included. Among them, 26 clinical trials with 2426 patients were included and 11 animal experimental studies involving 208 animals were included. Meta-analysis results showed that compared with mesalazine alone, combined use of DSP can clearly improve the clinical effective rate (RR 0.86%, 95% CI:0.83-0.88, p < 0.00001) of UC. Furthermore it improved blood coagulation function by decreasing serum PLT and increasing MPV levels, and controlled inflammatory responses by reducing serum CRP, TNF-α, IL-6, and IL-8 levels in patients. Conclusion: Combining DSP with mesalazine for UC can enhance clinical efficacy. However, caution should be exercised in interpreting the results of this review due to its flaws, such as allocation concealment and uncertainty resulting from the blinding of the study. Systematic Review Registration: http://www.crd.york.ac.uk/PROSPERO/myprospero.php, identifier PROSPERO: CRD42022293287.
Collapse
Affiliation(s)
- Wei Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Peiyu Xiong
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Junyu Liu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hengchang Hu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Li Song
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinglong Liu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Bo Jia
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Liu J, Deng L, Qu L, Li X, Wang T, Chen Y, Jiang M, Zou W. Herbal medicines provide regulation against iron overload in cardiovascular diseases: Informing future applications. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117941. [PMID: 38387684 DOI: 10.1016/j.jep.2024.117941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 02/04/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Iron is an essential micronutrient for maintaining physiological activities, especially for highly active cardiomyocytes. Inappropriate iron overload or deficiency has a significant impact on the incidence and severity of cardiovascular diseases (CVD). Iron overload exerts potentially deleterious effects on doxorubicin (DOX) cardiomyopathy, atherosclerosis, and myocardial ischemia-reperfusion injury (MI/RI) by participating in lipid peroxides production. Notably, iron overload-associated cell death has been defined as a possible mechanism for ferroptosis. At present, some traditional herbal medicines and extracts have been included in the study of regulating iron overload and the subsequent therapeutic effect on CVD. AIM OF THE STUDY To give an outline of iron metabolism and ferroptosis in cardiomyocytes and to focus on herbal medicines and extracts to prevent iron overload in CVD. MATERIALS AND METHODS Literature information was systematically collected from ScienceDirect, PubMed, Google Scholar, Web of Science, China National Knowledge Infrastructure, WanFang data, as well as classic books and clinical reports. RESULTS After understanding the mechanism of iron overload on CVD, this paper reviews the therapeutic function of various herbal medicines in eliminating iron overload in CVD. These include Chinese herbal compound prescriptions (Salvia miltiorrhiza injection, Gegen Qinlian decoction, Tongxinluo, Banxia-Houpu decoction), plant extracts, phenylpropanoids, flavonoids, terpenoids, and polyphenols. Among them, flavonoids are considered to be the most promising compounds because of their prominent iron chelation. Mechanically, these herbal medicines act on the Nrf2 signaling pathway, AMPK signaling pathway, and KAT5/GPX4 signaling pathway, thereby attenuating iron overload and lipid peroxidation in CVD. CONCLUSION Our review provides up-to-date information on herbal medicines that exert cardiovascular protective effects by modulating iron overload and ferroptosis. These herbal medicines hold promise as a template for preventing iron overload in CVD.
Collapse
Affiliation(s)
- Jia Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Liangyan Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Liping Qu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xiaofen Li
- School of Basic Medicine Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, PR China
| | - Tao Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yuanyuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Miao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Wenjun Zou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
9
|
Liu Y, Su W, Li P, Zeng X, Zheng Y, Wang Y, Peng W, Wu H. Exploring the Mechanism of Fufang Danshen Tablet against Atherosclerosis by Network Pharmacology and Experimental Validation. Pharmaceuticals (Basel) 2024; 17:643. [PMID: 38794213 PMCID: PMC11124970 DOI: 10.3390/ph17050643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/04/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Atherosclerosis is the main pathological basis of cardiovascular diseases (CVDs). Fufang Danshen Tablet (FDT) is a traditional Chinese medicine that has been clinically used to treat CVDs for more than 40 years. Nevertheless, owing to the complexity of the ingredients, the pharmacological mechanism of FDT in the treatment of CVDs has not been fully elucidated. In this study, an integrated strategy of UFLC-Q-TOF-MS/MS, network pharmacology, molecular biology, and transcriptomics was used to elucidate the mechanisms of action of FDT in the treatment of atherosclerosis. In total, 22 absorbed constituents were identified in rat serum after oral administration of FDT. In silico, network pharmacology studies have shown that FDT regulates four key biological functional modules for the treatment of atherosclerosis: oxidative stress, cell apoptosis, energy metabolism, and immune/inflammation. In animal experiments, FDT exerted protective effects against atherosclerosis by reducing the plaque area and lipid levels in ApoE-/- mice. Furthermore, we found that FDT inhibited inflammatory macrophage accumulation by regulating the expression of Selp and Ccl2, which are both involved in monocyte adhesion and migration. The inhibition of monocyte recruitment by FDT is a new perspective to elucidate the anti-atherosclerotic mechanism of FDT, which has not been adopted in previous studies on FDT. Our results may help to elucidate the therapeutic mechanism of FDT against CVDs and provide potential therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hao Wu
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Y.L.); (W.S.); (P.L.); (X.Z.); (Y.Z.); (Y.W.); (W.P.)
| |
Collapse
|
10
|
Wang Z, Liu C, Wei J, Yuan H, Shi M, Zhang F, Zeng Q, Huang A, Du L, Li Y, Guo Z. Network and Experimental Pharmacology on Mechanism of Yixintai Regulates the TMAO/PKC/NF-κB Signaling Pathway in Treating Heart Failure. Drug Des Devel Ther 2024; 18:1415-1438. [PMID: 38707614 PMCID: PMC11069381 DOI: 10.2147/dddt.s448140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Objective This study aims to explore the mechanism of action of Yixintai in treating chronic ischemic heart failure by combining bioinformatics and experimental validation. Materials and Methods Five potential drugs for treating heart failure were obtained from Yixintai (YXT) through early mass spectrometry detection. The targets of YXT for treating heart failure were obtained by a search of online databases. Gene ontology (GO) functional enrichment analysis and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses were conducted on the common targets using the DAVID database. A rat heart failure model was established by ligating the anterior descending branch of the left coronary artery. A small animal color Doppler ultrasound imaging system detected cardiac function indicators. Hematoxylin-eosin (HE), Masson's, and electron microscopy were used to observe the pathological morphology of the myocardium in rats with heart failure. The network pharmacology analysis results were validated by ELISA, qPCR, and Western blotting. Results A total of 107 effective targets were obtained by combining compound targets and eliminating duplicate values. PPI analysis showed that inflammation-related proteins (TNF and IL1B) were key targets for treating heart failure, and KEGG enrichment suggested that NF-κB signaling pathway was a key pathway for YXT treatment of heart failure. Animal model validation results indicated the following: YXT can significantly reduce the content of intestinal microbiota metabolites such as trimethylamine oxide (TMAO) and improve heart failure by improving the EF and FS values of heart ultrasound in rats and reducing the levels of serum NT-proBNP, ANP, and BNP to improve heart failure. Together, YXT can inhibit cardiac muscle hypertrophy and fibrosis in rats and improve myocardial ultrastructure and serum IL-1β, IL-6, and TNF-α levels. These effects are achieved by inhibiting the expressions of NF-κB and PKC. Conclusion YXT regulates the TMAO/PKC/NF-κB signaling pathway in heart failure.
Collapse
Affiliation(s)
- Ziyan Wang
- First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Chengxin Liu
- First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Jiaming Wei
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Hui Yuan
- First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Min Shi
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Fei Zhang
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Qinghua Zeng
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Aisi Huang
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Lixin Du
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Ya Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Zhihua Guo
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| |
Collapse
|
11
|
Liu Y, Li Q, Shao C, She Y, Zhou H, Guo Y, An H, Wang T, Yang J, Wan H. Exploring the Potential Mechanisms of Guanxinshutong Capsules in Treating Pathological Cardiac Hypertrophy based on Network Pharmacology, Computer-Aided Drug Design, and Animal Experiments. ACS OMEGA 2024; 9:18083-18098. [PMID: 38680308 PMCID: PMC11044149 DOI: 10.1021/acsomega.3c10009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/15/2024] [Accepted: 03/08/2024] [Indexed: 05/01/2024]
Abstract
Cardiovascular diseases (CVDs) are significant causes of morbidity and mortality worldwide, and pathological cardiac hypertrophy (PCH) is an essential predictor of many heart diseases. Guanxinshutong capsule (GXST) is a Chinese patent medicine widely used in the clinical treatment of CVD, In our previous research, we identified 111 compounds of GXST. In order to reveal the potential molecular mechanisms by which GXST treats PCH, this study employed network pharmacology methods to screen for the active ingredients of GXST in treating PCH and predicted the potential targets. The results identified 26 active ingredients of GXST and 110 potential targets for PCH. Through a protein-protein interaction (PPI) network, gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, we confirmed AKT1, MAPK1, and MAPK3 as the core proteins in GXST treatment of PCH, thus establishing the PI3K/AKT and MAPK signaling pathways as the significant mechanisms of GXST in treating PCH. The results of molecular docking (MD) demonstrate that flavonoid naringenin and diterpenoid tanshinone iia have the highest binding affinity with the core protein. Before performing molecular dynamics simulations (MDSs), the geometric structure of naringenin and tanshinone iia was optimized using density functional theory (DFT) at the B97-3c level, and RESP2 atomic charge calculations were carried out at the B3LYP-D3(BJ)/def2-TZVP level. Further MDS results demonstrated that in the human body environment, the complex of naringenin and tanshinone iii with core proteins exhibited high stability, flexibility, and low binding free energy. Additionally, naringenin and tanshinone iia showed favorable absorption, distribution, metabolism, excretion, and toxicity (ADMET) characteristics and passed the drug similarity (DS) assessment. Ultrasound cardiograms and cardiac morphometric measurements in animal experiments demonstrate that GXST can improve the PCH induced by isoproterenol (ISO). Protein immunoblotting results indicate that GXST increases the expression of P-eNOS and eNOS by activating the PI3K/AKT signaling pathway and the MAPK signaling pathway, further elucidating the mechanism of action of GXST in treating PCH. This study contributes to the elucidation of the key ingredients and molecular mechanisms of GXST in treating PCH.
Collapse
Affiliation(s)
- Yuanfeng Liu
- College
of Life Science, Zhejiang Chinese Medical
University, Hangzhou, Zhejiang 310053, China
| | - Qixiang Li
- College
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 310053, China
| | - Chongyu Shao
- College
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 310053, China
- Key
Laboratory of TCM Encephalopathy of Zhejiang Province, No.548, Hangzhou, Zhejiang 310053, China
| | - Yong She
- College
of Life Science, Zhejiang Chinese Medical
University, Hangzhou, Zhejiang 310053, China
| | - Huifen Zhou
- College
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 310053, China
- Key
Laboratory of TCM Encephalopathy of Zhejiang Province, No.548, Hangzhou, Zhejiang 310053, China
| | - Yan Guo
- Hangzhou
TCM Hospital Affiliated to Zhejiang Chinese Medical University Hangzhou, Zhejiang 310053, China
| | - Huiyan An
- College
of Life Science, Zhejiang Chinese Medical
University, Hangzhou, Zhejiang 310053, China
| | - Ting Wang
- College
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 310053, China
| | - Jiehong Yang
- College
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 310053, China
- Key
Laboratory of TCM Encephalopathy of Zhejiang Province, No.548, Hangzhou, Zhejiang 310053, China
| | - Haitong Wan
- College
of Basic Medical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 310053, China
- Key
Laboratory of TCM Encephalopathy of Zhejiang Province, No.548, Hangzhou, Zhejiang 310053, China
| |
Collapse
|
12
|
Dai Q, Pan Y, Zhu X, Chen M, Xie L, Zhu Y, Wan G. Network Pharmacology along with Molecular Docking to Explore the Mechanism of Danshen Injection against Anthracycline-induced Cardiotoxicity and Transcriptome Validation. Curr Pharm Des 2024; 30:952-967. [PMID: 38482629 DOI: 10.2174/0113816128289845240305070522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/20/2024] [Indexed: 06/21/2024]
Abstract
INTRODUCTION Although anthracyclines have demonstrated efficacy in cancer therapy, their utilization is constrained by cardiotoxicity. In contrast, Danshen injection (DSI), derived from Salvia miltiorrhiza, has a longstanding tradition of being employed to ameliorate cardiovascular ailments, including anthracycline- induced cardiotoxicity (AIC). Nonetheless, there is a notable dearth of comprehensive systematic investigation into the molecular mechanisms underlying DSI's effects on AIC. Consequently, this study was undertaken to explore the underlying mechanism by which DSI acted against AIC. METHODS Employing network pharmacology approach, the current investigation undertook a comprehensive analysis of the impact of DSI on AIC, which was further validated by transcriptome sequencing with in vitro AIC model. Additionally, molecular docking was conducted to evaluate the binding of active ingredients to core targets. A total of 3,404 AIC-related targets and 12 active ingredients in DSI, including chrysophanol, luteolin, tanshinone IIA, isoimperatorin, among others, were collected by differentially expressed analysis and database search, respectively. RESULTS The network pharmacology and enrichment analysis suggested 102 potential targets and 29 signaling pathways associated with the protective effect of DSI on AIC. Three core targets (CA12, NOS3, and POLH) and calcium signaling pathways were further validated by transcriptomic analysis of the in-vitro model. The high affinity of the active ingredients binding to corresponding targets was confirmed by molecular docking. CONCLUSION The present study suggested that DSI might exert a cardioprotective effect on AIC via the inhibition of CA12, NOS3, and POLH, as well as the modulation of calcium signaling. Further experiments are warranted to verify the findings.
Collapse
Affiliation(s)
- Quankai Dai
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yijun Pan
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Xiwen Zhu
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Mengyao Chen
- Department of Oncology, Renmin Hospital, Institute of Medicine and Nursing, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Lin Xie
- Department of Oncology, Renmin Hospital, Institute of Medicine and Nursing, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yu Zhu
- Department of Research and Teaching, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Guoxing Wan
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| |
Collapse
|
13
|
Chen YH, Chen CT, Wu HP. Effect of Danshen for improving clinical outcomes in patients with bladder cancer: a retrospective, population-based study. Front Pharmacol 2023; 14:1260683. [PMID: 38146460 PMCID: PMC10749307 DOI: 10.3389/fphar.2023.1260683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/25/2023] [Indexed: 12/27/2023] Open
Abstract
Introduction: Traditional Chinese Medicine (TCM) has a broad application in healthcare, with Danshen being a notable herb used in Eastern medicine for cancer treatment. This study aims to explore the relationship between Danshen use and cardiovascular risks among bladder cancer patients. Methods: Patients were selected based on a confirmed diagnosis of bladder cancer with specific inclusion and exclusion criteria to control for certain comorbidities and treatments. Utilizing Taiwan's National Health Insurance data from 2003 to 2013, this retrospective, population-based study identified three groups: 525 patients treated with Danshen, 6,419 patients not treated with TCM, and 4,356 patients treated with TCM but not with Danshen. The Cox proportional hazard model was employed to estimate the risks of Major Adverse Cardiovascular Events (MACE) and mortality while accounting for various confounders. Results: The overall incidence of MACEs was significantly lower in the Danshen group (5%) compared to the TCM (8.1%) and non-TCM (9.9%) groups (p < 0.001). The Cox model revealed that bladder cancer patients treated with Danshen had the lowest risk of MACE (adjusted hazard ratio, 0.56; 95% confidence interval, 0.38-0.84) and all-cause mortality (adjusted hazard ratio, 0.60; 95% confidence interval, 0.44-0.82). Discussion: The findings suggest that Danshen reduces the risk of MACE and all-cause mortality in bladder cancer patients, highlighting its potential benefits. This underpins the necessity for further research to substantiate the cardiovascular benefits of Danshen in bladder cancer patients and potentially broaden its application in oncology healthcare.
Collapse
Affiliation(s)
- Yi-Hsin Chen
- Department of Nephrology, Taichung Tzu Chi Hospital, Taichung, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Artificial Intelligence and Data Science, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Tsung Chen
- Department of Nephrology, Taichung Tzu Chi Hospital, Taichung, Taiwan
| | - Han-Ping Wu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Pediatrics, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| |
Collapse
|
14
|
Fan S, Xiao G, Ni J, Zhao Y, Du H, Liang Y, Lv M, He S, Fan G, Zhu Y. Guanxinning injection ameliorates cardiac remodeling in HF mouse and 3D heart spheroid models via p38/FOS/MMP1-mediated inhibition of myocardial hypertrophy and fibrosis. Biomed Pharmacother 2023; 162:114642. [PMID: 37027988 DOI: 10.1016/j.biopha.2023.114642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Heart failure (HF) is a cardiovascular disease with high morbidity and mortality. Guanxinning injection (GXNI) is clinically used for the treatment of coronary heart disease, but its therapeutic efficacy and potential mechanism for HF are poorly understood. This study aimed to evaluate the therapeutic potential of GXNI on HF, with a special focus on its role in myocardial remodeling. METHODS 3D cardiac organoids and transverse aortic constriction (TAC) mouse models were established and utilized. Heart function and pathology were evaluated by echocardiography, hemodynamic examination, tail-cuff blood pressure and histopathology. Key targets and pathways regulated by GXNI in HF mouse heart were revealed via RNA-seq and network pharmacology analysis, and were verified by RT-PCR, Western blot, immunohistochemistry and immunofluorescence. RESULTS GXNI significantly inhibited cardiac hypertrophy and cells death. It protected mitochondrial function in cardiac hypertrophic organoids and markedly improved cardiac function in HF mice. Analysis of GXNI-regulated genes in HF mouse hearts revealed that IL-17A signaling in fibroblasts and the corresponding p38/c-Fos/Mmp1 pathway prominently mediated cardiac. Altered expressions of c-Fos, p38 and Mmp1 by GXNI in heart tissues and in cardiac organoids were validated by RT-PCR, WB, IHC, and IF. H&E and Masson staining confirmed that GXNI substantially ameliorated myocardial hypertrophy and fibrosis in HF mice and in 3D organoids. CONCLUSION GXNI inhibited cardiac fibrosis and hypertrophy mainly via down-regulating p38/c-Fos/Mmp1 pathway, thereby ameliorating cardiac remodeling in HF mice. Findings in this study provide a new strategy for the clinical application of GXNI in the treatment of heart failure.
Collapse
Affiliation(s)
- Siwen Fan
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Guangxu Xiao
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Jingyu Ni
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yuhan Zhao
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Hongying Du
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Yingran Liang
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Ming Lv
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Shuang He
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China
| | - Guanwei Fan
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine and Tianjin Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, JingHai District, Tianjin 301617, China.
| |
Collapse
|
15
|
Zhang Z, Chen F, Wan J, Liu X. Potential traditional Chinese medicines with anti-inflammation in the prevention of heart failure following myocardial infarction. Chin Med 2023; 18:28. [PMID: 36932409 PMCID: PMC10022008 DOI: 10.1186/s13020-023-00732-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
Inflammation plays an important role in the development of heart failure (HF) after myocardial infarction (MI). Suppression of post-infarction inflammatory cascade has become a new strategy to delay or block the progression of HF. At present, there are no approved anti-inflammatory drugs used to prevent HF following MI. Traditional Chinese medicine (TCM) has been used clinically for cardiovascular disease for a long time. Here, we summarized the recent progress about some TCM which could both improve cardiac function and inhibit inflammation in patients or experimental models with MI or HF, in order to provide evidence for their potential application in reducing the onset of HF following MI. Among them, single Chinese medicinal herbs (eg. Astragalus and Salvia miltiorrhiza) and Chinese herbal formulas (eg. Gualou Xiebai Decoction and Sini Tang) are discussed separately. The main targets for their anti-inflammation effect are mainly involved the TLR4/NF-κB signaling, as well as pro-inflammatory cytokines IL-1β, IL-6 or TNF-α. It is worthy of further evaluating their potential, experimentally or clinically, in the prevention or delay of HF following MI.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200082, China
| | - Fei Chen
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200082, China
| | - Jingjing Wan
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200082, China.
| | - Xia Liu
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200082, China.
| |
Collapse
|
16
|
Su Y, Lu K, Huang Y, Zhang J, Sun X, Peng J, Zhou Y, Zhao L. Targeting Warburg effect to rescue the suffocated photodynamic therapy: A cancer-specific solution. Biomaterials 2023; 294:122017. [PMID: 36680943 DOI: 10.1016/j.biomaterials.2023.122017] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
The cancer photodynamic therapy (PDT) is limited by a congenital defect, namely the tumor hypoxia. Cancer cells are characterized by the vigorous oxygen-consuming glycolysis, which is well-known as the "Warburg effect" and one of the primary causes for the hypoxia. Herein, we employed the glucose metabolism as the cancer-specific target to enhance the performance of PDT. The Salvianolic acid B as the inhibitor of glucose uptake and aerobic glycolysis was concomitantly delivered with the photosensitizer chlorin e6 by a redox-responsive organosilica cross-linked micelle. The results demonstrated that the Salvianolic acid B suppressed the glucose metabolism, retarded the oxygen consumption to retain adequate oxygen as the ammo for PDT, which remarkably improve the efficacy of PDT both in vitro and in vivo. Our study not only provides an alternative strategy to address the hypoxia problem for PDT, but also enhances the selectivity of the treatment by targeting the cancer-specific Warburg effect.
Collapse
Affiliation(s)
- Yaoquan Su
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Keqiang Lu
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Yuhang Huang
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Jingyu Zhang
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China.
| | - Juanjuan Peng
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China.
| | - Yunyun Zhou
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China.
| | - Lingzhi Zhao
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China.
| |
Collapse
|
17
|
Shen H, Zhou P, Shen L, Ju C, Du H, Qu X. Effectiveness and safety of selected traditional Chinese medicine injections in patients with combined diabetes mellitus and coronary heart disease: A systematic review and network meta-analysis of randomized clinical trials. Front Pharmacol 2023; 13:1060956. [PMID: 36699083 PMCID: PMC9868408 DOI: 10.3389/fphar.2022.1060956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
Background: In view of the high morbidity and mortality of Diabetes mellitus-Coronary heart disease (DM-CHD) in diabetics, the combination therapy of traditional Chinese medicine injections (TCMIs) and conventional therapy (CT) is receiving extensive attention. Therefore, the effectiveness and security of conventional therapy with traditional Chinese medicine injections in the therapy of diabetes mellitus-coronary heart disease were compared by systematical review and network meta-analysis. Methods: According to the preset inclusion criteria and exclusion criteria, we searched seven electronic literature databases from their inception to JAN 5,2022, to obtain the relevant RCT literature on the therapy of diabetes mellitus-coronary heart disease with traditional Chinese medicine injections. Two researchers independently reviewed the papers, two other researchers worked in extracting data and quality assessment of the included literature. The primary outcomes were total effective rate. The secondary outcomes included electrocardiogram (EGG)effective rate, the effective rate of angina pectoris, fasting blood glucose (FBG), 2-h postprandial blood glucose (PBG), hemoglobinA1c (HbA1c), total cholesterol (TC) and triglycerides (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), frequency of angina pectoris, and duration of angina pectoris. We adopted stata16.0 software for the systematic review and network meta-analysis. Results: A total of 53 trials involved 4,619 patients and one of the following 16 traditional Chinese medicine injections: Danhong, Danshen, Gualoupi, Gegen, Chuanxiongqin, Danshenchuanxiongqin, Shenmai, Shenqi, Xixin, Xuesaitong, Shuxuetong, Guanxinning, Kudiezi, Ciwujia, Xingding, Shuxuening. The meta-analysis revealed that Chuanxiongqin injection was superior to all other therapies in improving the total effective rate, [vs. conventional therapy odds ratio (OR): 14.52, 95% confidence interval (CI): 4.13-51.02], vs. Xuesaitong injection (odds ratio: 7.61, confidence interval: 1.25-46.40), and vs. Danshenchuanxiongqin injection (odds ratio: 3.98, confidence interval: 1.03-15.28)]. Xixin injection + conventional therapy was superior to conventional therapy only for electrocardiogram effective rate (odds ratio: 5.44, confidence interval: 1.55-19.18). Shenmai injection + conventional therapy was superior to conventional therapy in effective rate of angina (odds ratio: 11.05, confidence interval: 2.76-44.28). There was not different significantly in the comparisons of frequency of angina pectoris and duration of angina pectoris, we considered that this may be due to the lack of sufficient data. As most of the included RCTs did not monitor Adverse Events, the safety of those traditional Chinese medicine injections remains to be further explored. Conclusion: Basing on our study, traditional Chinese medicine injections combined with conventional therapy takes important role in the treatment of diabetes mellitus-coronary heart disease, and its curative effect is better than conventional therapy. Nevertheless, properly designed RCTs are required to validate our conclusions in the future. Systematic Review Registration: [https://inplasy.com/inplasy-2021-12-0125/], identifier [INPLASY2021120125].
Collapse
Affiliation(s)
- Hailiang Shen
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ping Zhou
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Luyao Shen
- The Third School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Chenhao Ju
- Department of Acupuncture and Massage, Hangzhou Binjiang Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Haixia Du
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianguo Qu
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
18
|
Chen J, Yuan S, Zhou J, Huang X, Wu W, Cao Y, Liu H, Hu Q, Li X, Guan X, Yin S, Jiang J, Zhou Y, Zhou J. Danshen injection induces autophagy in podocytes to alleviate nephrotic syndrome via the PI3K/AKT/mTOR pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154477. [PMID: 36215790 DOI: 10.1016/j.phymed.2022.154477] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/12/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Danshen injection (DSI) is an agent extracted from the Salvia miltiorrhiza Bunge, a natural drug commonly used to alleviate kidney diseases. However, the material basis and therapeutic effects of DSI on nephrotic syndrome (NS) remain unclear. PURPOSE To investigate the material basis of DSI and the therapeutic effects and underlying mechanisms of NS. METHODS NS models were established using adriamycin-induced BALB/c mice and lipopolysaccharide-induced mouse podocytes (MPC-5). Following DSI and prednisone administration, kidney coefficients, 24 h urine protein, blood urea nitrogen, and serum creatinine levels were tested. Histomorphology was observed by periodic acid-Schiff staining and hematoxylin and eosin staining of the kidney sections. The glomerular basement membrane and autophagosomes of the kidneys were observed using transmission electron microscopy. Nephrin and desmin levels in the glomeruli were tested using immunohistochemistry. The viability of MPC-5 cells was tested using cell counting kit-8 after chloroquine and rapamycin administration in combination with DSI. The in vivo and in vitro protein levels of phosphatidylinositol 3-kinase (PI3K), AKT, phosphorylated AKT (Ser473), mammalian target of rapamycin (mTOR), microtubule-associated protein light chain 3 (LC3), beclin1, cleaved caspase-3, and caspase-3 were detected using western blotting. RESULTS Our results showed that DSI contained nine main components: caffeic acid, danshensu, lithospermic acid, rosmarinic acid, salvianolic acid A, salvianolic acid B, salvianolic acid C, salvianolic acid D, and 3, 4-Dihydroxybenzaldehyde. In in vivo studies, the NS mice showed renal function and pathological impairment. Podocytes were damaged, with decreased levels of autophagy and apoptosis, accompanied by inhibition of the PI3K/AKT/mTOR signaling. DSI administration resulted in improved renal function and pathology in NS mice, with the activation of autophagy and PI3K/AKT/mTOR signaling in the kidneys. Additionally, podocytes were less damaged and intracellular autophagosomes were markedly increased. In vitro studies have shown that DSI activated MPC-5 autophagy and reduced apoptosis via the PI3K/AKT/mTOR pathway. CONCLUSION Collectively, this study demonstrated that DSI activated podocyte autophagy and reduced apoptosis via the PI3K/AKT/mTOR signaling, ultimately attenuating NS. Our study clarified the main components of DSI and elucidated its therapeutic effects and potential mechanisms for NS, providing new targets and agents for the clinical treatment of NS.
Collapse
Affiliation(s)
- Junqi Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Shengliang Yuan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Jie Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Xiuye Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Wenjia Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Yiwen Cao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Hong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Qinghong Hu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Xiaojie Li
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Xueping Guan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Simin Yin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Jiaying Jiang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Yuan Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China.
| | - Jiuyao Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China.
| |
Collapse
|
19
|
Yang Z, Qi J, Ping D, Sun X, Tao Y, Liu C, Peng Y. Salvia miltiorrhiza in thorax and abdomainal organ fibrosis: A review of its pharmacology. Front Pharmacol 2022; 13:999604. [PMID: 36204239 PMCID: PMC9530895 DOI: 10.3389/fphar.2022.999604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
Organ fibrosis is a common pathological change that finally results in organ failure, which involves the destruction of parenchyma cells, the activation of mesenchymal cells and the imbalance of immunological cells. In recent years, although some breakthroughs have been made in understanding the pathogenesis and therapeutics of organ fibrosis, no registered drugs could directly target the fibrotic process, which constitutes a major biomedical challenge. Salvia miltiorrhiza (SM) is a well-known medicinal plant in China, which has been widely applied because of its pharmacological effects on anti-oxidative, anti-myocardial infarction, anti-fibrotic, anti-inflammatory, and anti-neoplastic properties. Accumulated evidence suggested that SM played critical roles against organ fibrosis in vivo and in vitro experiments by its multiple biological compounds. In this review, we discussed the recent advances on the phytochemistry and pharmacological mechanisms of SM and its active ingredients in liver, lung, kidney, and heart fibrosis, which might help to promote the treatment of fibrotic diseases in thorax and abdomainal viscera in clinic.
Collapse
Affiliation(s)
- Zhao Yang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingshu Qi
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dabing Ping
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Sun
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Yanyan Tao
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenghai Liu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai, China
- *Correspondence: Chenghai Liu, ; Yuan Peng,
| | - Yuan Peng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Chenghai Liu, ; Yuan Peng,
| |
Collapse
|
20
|
Lin S, Mo C, Yan L, Zhang F, Liu X, Ma H, Chen C, Fan W, Liu K, Zhu Q, He Q. Protective effects of salavianolic acid A on clozapine-induced cardiotoxicity in zebrafish. J Appl Toxicol 2022; 42:1978-1985. [PMID: 35857334 DOI: 10.1002/jat.4368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/24/2022] [Accepted: 07/03/2022] [Indexed: 11/09/2022]
Abstract
The clinical use of clozapine (CLZ), an atypical antipsychotic drug, was affected by side effects, such as cardiotoxicity. We selected normally-developing zebrafish embryos to explore the antagonism of salvianolic acid A (SAA) against clozapine-induced cardiotoxicity. Embryos were treated with CLZ and SAA, and zebrafish phenotypes were observed at 24 h, 48 h, 72 h, and 96 h after treatment. The observed phenotypes included heart shape, heart rate, and venous sinus-arterial bulb (SV-BA) interval. Real-time quantitative PCR was used to detect changes in the expression of genes involved in heart inflammation, oxidative stress and apoptosis. The results showed that SAA relieved pericardial edema, increased heart rate, and reduced the SV-BA interval. The PCR results also showed that when the zebrafish embryos were incubated with SAA and CLZ for 96 h, the expression of il-1b and nfkb2 were significantly down-regulated, the expression of sod1 and cat were significantly up-regulated, the expressions of mcl1a and mcl1b were significantly down-regulated. In summary, SAA can antagonized clozapine-induced cardiotoxicity.
Collapse
Affiliation(s)
- Shenghua Lin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Cailian Mo
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Luyi Yan
- Qilu Hospital of Shandong University, Jinan, China
| | - Feng Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xin Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Honglin Ma
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Chuanlin Chen
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wei Fan
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Qing Zhu
- Qilu Hospital of Shandong University, Jinan, China
| | - Qiuxia He
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Science and technology service platform, Qilu University of Technology (Shandong Academy of Sciences)
| |
Collapse
|
21
|
Network Pharmacology Analysis and Experimental Verification Strategies Reveal the Action Mechanism of Danshen Decoction in Treating Ischemic Cardiomyopathy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7578055. [PMID: 35722148 PMCID: PMC9205745 DOI: 10.1155/2022/7578055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/13/2022] [Indexed: 11/19/2022]
Abstract
Background Danshen Decoction comprises Salvia miltiorrhiza, Santalum album, and Amomum villosum. It can promote blood circulation and remove blood stasis, and is commonly used in the treatment of gastric and duodenal ulcers, coronary heart disease, angina pectoris, etc. This research is based on network pharmacology and is experimentally verified to explore the potential mechanism of Danshen Decoction in the treatment of ischemic cardiomyopathy (ICM). Methods The effective components and targets of Danshen Decoction were firstly extracted from Traditional Chinese Medicine Systems Pharmacology (TCMSP) Database and Analysis Platform, the drug-component-target-disease network was then constructed, the protein-protein interaction (PPI) network was constructed, the Gene Ontology (GO) enrichment analysis was carried out, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway was analyzed in order to find the potential active components and therapeutic mechanisms. Finally, the in vitro hypoxia/reoxygenation model in H9c2 cells was established to verify the predicted active components and therapeutic mechanisms. Results The results showed that Danshen Decoction has 67 potential active components and 109 therapeutic targets in treating ICM. These targets were rich in a variety of gene functions and different signaling pathways; the main gene targets include TP53, c-Jun, and Akt1. Go enrichment analysis showed that response to drug, membrane raft, and G protein-coupled amine receiver activity rank first in each process, and the main signaling pathways include PI3K-Akt signaling pathway. Through molecular docking and experimental verification of the major active components and core therapeutic targets, the active components of Danshen Decoction demonstrated an ability to reduce the cell damage caused by hypoxia/reoxygenation in H9c2 cells by regulating the core therapeutic target including Akt1, c-Jun, and TP53. Conclusion Danshen Decoction has the effect of treating ICM in multiple ways, which is consistent with the results of network pharmacology. This laid a foundation for further study in exploring the active principles and pharmacological mechanism of Danshen Decoction.
Collapse
|
22
|
Sun C, Han B, Zhai Y, Zhao H, Li X, Qian J, Hao X, Liu Q, Shen J, Kai G. Dihydrotanshinone I inhibits ovarian tumor growth by activating oxidative stress through Keap1-mediated Nrf2 ubiquitination degradation. Free Radic Biol Med 2022; 180:220-235. [PMID: 35074488 DOI: 10.1016/j.freeradbiomed.2022.01.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 12/20/2022]
Abstract
Dihydrotanshinone I (DHT), a bioactive compound in Salvia miltiorrhiza, was reported to exhibit cytotoxicity against various malignancies. However, the underlying mechanism on ovarian cancer remains unclear. Here, DHT inhibited cell viability of ovarian cancer HO8910PM, SKOV3, A2780 and ES2 cells. It showed moderate inhibitory effect on ovarian epithelial IOSE80 cells and lower toxicity than chemotherapy drugs. DHT induced apoptosis and G2 cell cycle arrest accompanied by reduced expression of Bcl-2, Caspase-3, and increased Bax. Meanwhile, DHT increased ROS accumulation, decreased mitochondrial membrane potential and activated oxidative stress in HO8910PM and ES2 cells. Mechanistically, DHT inhibited Nrf2 and p62 expression, Nrf2 target genes and enzymes, and Nrf2 nuclear translocation, while increased the expression of Nrf2 inhibitor Keap1. NAC, a ROS scavenger, rescued DHT-induced proliferation inhibition, ROS generation and Nrf2 inhibition. DHT alleviated tBHQ-induced Nrf2 expression and increased its mRNA level. However, the proteasome inhibitor MG132 blocked DHT-induced Nrf2 inhibition, suggesting a post-translational regulation manner. DHT enhanced Nrf2 binding with Keap1, leading to potentiated Nrf2 ubiquitination degradation. Furthermore, Nrf2 and p62 overexpression blocked DHT-induced Nrf2 and p62 inhibition. Consistent with the in vitro results, DHT significantly delayed tumor growth in HO8910PM and ES2 xenograft nude mice, decreased tumor marker HE4 and CA125 levels, reversed the abnormally expressed proteins including Ki67, Nrf2, p62, Keap1, Bcl-2, CyclinB1, Cdc-2, and antioxidant enzymes SOD, CAT in vivo. Serum from DHT-treated mice also inhibited cell growth in vitro. Taken together, DHT exhibits anti-ovarian tumor effect by activating oxidative stress through ubiquitination-mediated Nrf2 degradation. Our findings implicate a potential application of DHT for ovarian cancer therapy.
Collapse
Affiliation(s)
- Chengtao Sun
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Bing Han
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yufei Zhai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Huan Zhao
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xuan Li
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jun Qian
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaolong Hao
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qun Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Jiayan Shen
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
23
|
Zhu YC, Liang B, Gu N. Cellular and Molecular Mechanism of Traditional Chinese Medicine on Ventricular Remodeling. Front Cardiovasc Med 2021; 8:753095. [PMID: 34926607 PMCID: PMC8671630 DOI: 10.3389/fcvm.2021.753095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
Ventricular remodeling is related to the renin-angiotensin-aldosterone system, immune system, and various cytokines involved in inflammation, apoptosis, and cell signal regulation. Accumulated studies have shown that traditional Chinese medicine can significantly inhibit the process of ventricular remodeling, which may be related to the mechanism mentioned above. Here, we conducted a system overview to critically review the cellular and molecular mechanism of traditional Chinese medicine on ventricular remodeling. We mainly searched PubMed for basic research about the anti-ventricular remodeling of traditional Chinese medicine in 5 recent years, and then objectively summarized these researches. We included more than 25 kinds of Chinese herbal medicines including Qi-Li-Qian-Xin, Qi-Shen-Yi-Qi Pill, Xin-Ji-Er-Kang Formula, and Yi-Qi-Wen-Yang Decoction, and found that they can inhibit ventricular remodeling effectively through multi-components and multi-action targets, which are promoting the clinical application of traditional Chinese medicine.
Collapse
Affiliation(s)
- Yong-Chun Zhu
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Bo Liang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Ning Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
24
|
Li XX, Wu Y, Fan ZJ, Cui J, Li D, Lin Q, Zhuang R, Yan RK, Lin Q, Li Y. Qishen Taohong Granule () as Adjuvant Therapy for Improving Cardiac Function and Quality of Life in Patients with Chronic Heart Failure: A Randomized Controlled Trial. Chin J Integr Med 2021; 28:12-19. [PMID: 34387827 DOI: 10.1007/s11655-021-2866-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2020] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To confirm the improvement of cardiac function and quality of life (QOL) in patients with chronic heart failure (CHF) via Chinese medicine (CM) Qishen Taohong Granule (, QTG). METHODS This study was a single-center, prospective, randomized, controlled clinical trial. Seventy-six patients from 27 to 84 years old diagnosed with CHF New York Heart Association (NYHA) class II or III in stage C were enrolled and randomly assigned at a 1:1 ratio to receive QTG or trimetazidine (TMZ), in addition to their standard medications for the treatment of CHF. The study period was 4 weeks. The primary outcomes included cardiac function evaluated by NYHA classification and left ventricular ejection fraction (LVEF), as well as QOL evaluated by CHF Integrated Chinese and Western Medicine Survival Scale (CHFQLS). The secondary outcomes included 6-min walking test (6MWT), CM syndrome score, symptom and sign scores and N-terminal pro-B-type natriuretic peptide (NT-proBNP). All indices were measured at baseline and the end of the trial. RESULTS At the 4-week follow-up period, the effective rate according to NYHA classification in the QTG group was better than that in the TMZ group (74.29% vs. 54.29%, P<0.05). But there was no significant difference in post-treatment level of LVEF between the two groups (P>0.05). The CHFQLS scores improved by 13.82±6.04 vs. 7.49±2.28 in the QTG and TMZ groups, respectively (P<0.05). Subgroup analysis of the CHFQLS results showed that physiological function, role limitation and vitality were significantly higher in the QTG group than in the TMZ group (15.76±7.85 vs. 7.40±3.36, P<0.05; 16.00±8.35 vs. 10.53±4.64, P<0.05; 15.31±8.09 vs. 7.89±4.60, P<0.05). Compared with TMZ group, treatment with QTG also demonstrated superior performance with respect to 6MWT, CM syndrome, shortness of breath, fatigue, gasping, general edema and NT-proBNP level. No significant adverse reactions or adverse cardiac events occurred during treatment in either group. CONCLUSION In addition to conventional treatments, the use of QTG as an adjuvant therapy significantly improved cardiac function and QOL in patients with CHF class II or III in stage C. [Registration No. ChiCTR1900022036 (retrospectively registered)].
Collapse
Affiliation(s)
- Xing-Xing Li
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yang Wu
- Department of Cardiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Zong-Jing Fan
- Department of Cardiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Jie Cui
- Department of Cardiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Dong Li
- Department of Cardiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Quan Lin
- Department of Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Rui Zhuang
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rong-Kun Yan
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qian Lin
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yan Li
- Department of Cardiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China.
| |
Collapse
|
25
|
Ye T, Li Y, Xiong D, Gong S, Zhang L, Li B, Pan J, Wang Y, Qian J, Qu H. Combination of Danshen and ligustrazine has dual anti-inflammatory effect on macrophages and endothelial cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113425. [PMID: 33010405 DOI: 10.1016/j.jep.2020.113425] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/26/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia Miltiorrhiza Radix et Rhizoma (Danshen) and Chuanxiong Rhizoma (Chuanxiong) are both traditional Chinese medicines with vascular protective effects, and their combination is widely used in China to treat occlusive or ischemic diseases of the cerebrovascular or cardiovascular system. Although it is widely accepted that these diseases have high relevance to inflammation, little is known about the anti-inflammatory effect of Danshen, Chuanxiong, and their combination. AIM OF STUDY We aimed to investigate the complex mode of action of Danshen, Chuanxiong, and their combination and the molecular mechanisms underlying their anti-inflammatory activity. Specifically, toll-like receptor (TLR1/2, 3, and 4)-triggered macrophages and endothelial cells, the two major cell players in atherosclerosis as well as in related cardiovascular and cerebrovascular injuries, were emphasized. METHODS TLR1/2-, TLR3-, and TLR4-induced bone marrow macrophages (BMMs) and human umbilical vein endothelial cells (HUVECs) were treated with Danshen extract (S. miltiorrhiza extract, SME), ligustrazine (2, 3, 5, 6-tetramethylpyrazine, TMP), and their combination (S. miltiorrhiza and TMP injection, SLI), respectively. The proinflammatory cytokines interleukin 6 (IL-6), IL-12, and tumor necrosis factor alpha (TNF-α) were detected as the preliminary indicators of inflammation. In addition, RNA sequencing (RNA-seq)-based transcriptional profiling analyses were conducted for TLR2-activated BMMs to determine the molecular mode of action of SLI as well as the contribution of SME to SLI activity. RESULTS SLI mitigated inflammation in both BMMs and HUVECs. Refer to the combination, SME had pronounced anti-inflammatory effect on BMMs but had only a slight effect on HUVECs. In contrast, TMP had considerable anti-inflammatory effect on HUVECs but not on BMMs. Bioinformatic analysis identified a broad spectrum of regulatory genes, in addition to IL-6 gene, and C-X-C motif chemokine ligand 10 (CXCL10) appeared to be another key molecule involved in the mechanism underlying SLI and SME effects. At the molecular level, SME was a major contributor of the anti-inflammatory activity of SLI. CONCLUSIONS In TLR-activated inflammation, SLI exhibits a "multiple ingredient-multiple target" effect, with SME primarily affecting macrophages and TMP affecting HUVECs. Our study provides evidence for the clinical application of SLI in treating complex diseases involving inflammation-induced injury of both macrophages and epithelial cells. Further bioinformatics studies are required to reveal the entire molecular network involved in TMP, SME, and SLI activity.
Collapse
Affiliation(s)
- Tingting Ye
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yufei Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | | | - Shuqing Gong
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Luquan Zhang
- Guizhou Baite Pharmaceutical Co., Ltd., Guizhou, China
| | - Bailing Li
- Guizhou Baite Pharmaceutical Co., Ltd., Guizhou, China
| | - Jianyang Pan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jing Qian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Haibin Qu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Mao W, Yang N, Zhang L, Li C, Wu Y, Ouyang W, Xu P, Zou C, Pei C, Shi W, Zhan J, Yang H, Chen H, Wang X, Tian Y, Yuan F, Sun W, Xiong G, Chen M, Guan J, Tang S, Zhang C, Liu Y, Deng Y, Lin Q, Lu F, Hong W, Yang A, Fang J, Rao J, Wang L, Bao K, Lin F, Xu Y, Lu Z, Su G, Zhang L, Johnson DW, Zhao D, Hou H, Fu L, Guo X, Yang L, Qin X, Wen Z, Liu X. Bupi Yishen Formula Versus Losartan for Non-Diabetic Stage 4 Chronic Kidney Disease: A Randomized Controlled Trial. Front Pharmacol 2021; 11:627185. [PMID: 33708125 PMCID: PMC7941267 DOI: 10.3389/fphar.2020.627185] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/29/2020] [Indexed: 01/30/2023] Open
Abstract
Chinese herbal medicine (CHM) might have benefits in patients with non-diabetic chronic kidney disease (CKD), but there is a lack of high-quality evidence, especially in CKD4. This study aimed to assess the efficacy and safety of Bupi Yishen Formula (BYF) vs. losartan in patients with non-diabetic CKD4. This trial was a multicenter, double-blind, double-dummy, randomized controlled trial that was carried out from 11-08-2011 to 07-20-2015. Patients were assigned (1:1) to receive either BYF or losartan for 48 weeks. The primary outcome was the change in the slope of the estimated glomerular filtration rate (eGFR) over 48 weeks. The secondary outcomes were the composite of end-stage kidney disease, death, doubling of serum creatinine, stroke, and cardiovascular events. A total of 567 patients were randomized to BYF (n = 283) or losartan (n = 284); of these, 549 (97%) patients were included in the final analysis. The BYF group had a slower renal function decline particularly prior to 12 weeks over the 48-week duration (between-group mean difference of eGFR slopes: −2.25 ml/min/1.73 m2/year, 95% confidence interval [CI]: −4.03,−0.47), and a lower risk of composite outcome of death from any cause, doubling of serum creatinine level, end-stage kidney disease (ESKD), stroke, or cardiovascular events (adjusted hazard ratio = 0.61, 95%CI: 0.44,0.85). No significant between-group differences were observed in the incidence of adverse events. We conclude that BYF might have renoprotective effects among non-diabetic patients with CKD4 in the first 12 weeks and over 48 weeks, but longer follow-up is required to evaluate the long-term effects. Clinical Trial Registration:http://www.chictr.org.cn, identifier ChiCTR-TRC-10001518.
Collapse
Affiliation(s)
- Wei Mao
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Nizhi Yang
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Zhang
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuang Li
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifan Wu
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenwei Ouyang
- Department of Global Public Health, Karolinska Institute, Stockholm, Sweden.,Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Xu
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuan Zou
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunpeng Pei
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Ha'erbin, China
| | - Wei Shi
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Jihong Zhan
- The First Affiliated Hospital of Guiyang University of Traditional Chinese Medicine, Guiyang, China
| | - Hongtao Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongyu Chen
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Xiaoqin Wang
- Hubei Province Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
| | - Yun Tian
- Shanxi Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Fang Yuan
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Wei Sun
- Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Guoliang Xiong
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Ming Chen
- The Teaching Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianguo Guan
- Liu Zhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Shuifu Tang
- The First Affiliated Hospital of Guangdong University of Chinese Medicine, Guangzhou, China
| | - Chunyan Zhang
- Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, China.,Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuning Liu
- Dongzhimen Hospital to Beijing University of Chinese Medicine, Beijing, China
| | - Yueyi Deng
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese, Shanghai, China
| | - Qizhan Lin
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fuhua Lu
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weihong Hong
- Zhu Hai Hospital of Guangdong Provincial Hospital of Chinese Medicine, Zhuhai, China
| | - Aicheng Yang
- The Affiliated Jiang men Traditional Chinese Medicine Hospital, Jinan University, Jiangmen, China
| | - Jingai Fang
- The First Affiliated Hospital to Shanxi Medical University, Taiyuan, China
| | - Jiazhen Rao
- Guangzhou Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Lixin Wang
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kun Bao
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Feng Lin
- Xinhui Hospital of Traditional Chinese Medicine, Jiangmen, China
| | - Yuan Xu
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhaoyu Lu
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guobin Su
- Department of Global Public Health, Karolinska Institute, Stockholm, Sweden
| | - La Zhang
- Royal Melbourne Institute of Technology, Melbourne, VIC, Australia
| | - David W Johnson
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia, University of Queensland, Brisbane, Australia, Translational Research Institute, Brisbane, Australia
| | - Daixin Zhao
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haijing Hou
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lizhe Fu
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinfeng Guo
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lihong Yang
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xindong Qin
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zehuai Wen
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xusheng Liu
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
27
|
Deng Z, Wang M, Fan Y, Liu M. Salviae miltiorrhizae and ligustrazine hydrochloride injection combined with mecobalamin for treating diabetic peripheral neuropathy: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e24103. [PMID: 33546016 PMCID: PMC7837888 DOI: 10.1097/md.0000000000024103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/18/2020] [Accepted: 12/08/2020] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Currently, it is unclear whether the salviae miltiorrhizae (Danshen Salvia) and ligustrazine hydrochloride (Chuanxiong Chuanxiong) (SMLH) injection combined with mecobalamin can improve diabetic peripheral neuropathy (DPN). We conducted a systematic analysis to evaluate the clinical effects of SMLH injection combined with mecobalamin for treating DPN. METHODS Seven databases, including PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), Wan Fang Database (Wang Fang), Chinese Biomedical Literature Database (CBM), and VIP Database for Chinese Technical Periodicals (VIP) were searched for systematic literature retrieval. Each database was searched up to 2020 to identify randomized controlled trials on DPN treated with SMLH injection combined with mecobalamin. We used the RevMan 5.3 and Stata 14.0 software to assess the risk of bias in the included trials. RESULTS A total of 15 publications, including 1349 samples, were reviewed. The total effective rate of SMLH injection combined with mecobalamin was 31% higher than that of mecobalamin alone (95% confidence interval [CI] = 1.23-1.38; P < .00001). The experimental group showed a significant increase in the motor conduction velocity (MCV) of the peroneal nerve (weighted mean difference [WMD] = 4.81, 95% CI 3.53-6.09; P < .00001). In addition, SMLH injection combined with mecobalamin showed a statistical significant effect on the sensory conduction velocity (SCV) of the peroneal nerve (WMD = 5.03, 95% CI = 4.16-5.90; P < .00001), and MCV of the median nerve (WMD = 5.38, 95% CI = 4.05-6.72; P < .00001). The WMD for the change in SCV in the median nerve was 4.89 m/s (95% CI = 3.88-5.89; P < .00001). The P-values of the Egger and Begg tests were 0.967 and 0.961, respectively, indicating no publication bias. Subgroup and sensitivity analyses indicated that the results for MCV and SCV of the peroneal nerve and the median nerve were stable. CONCLUSION SMLH injection combined with mecobalamin can improve DPN, compared with mecobalamin alone.
Collapse
Affiliation(s)
- Zhiyuan Deng
- Gaozhou Hospital of Traditional Chinese Medicine (Gaozhou Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou
| | - Manjia Wang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou
| | - Yaohua Fan
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine
- Shenzhen Bao’an Traditional Chinese Medicine Hospital (Group), Guangzhou University of Chinese Medicine, Shenzhen
| | - Min Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
28
|
Ho TJ, Wu HC, Bharath Kumar V, Kuo WW, Weng YS, Yeh YL, Mahalakshmi B, Day CH, Li CC, Huang CY. Danshen (Salvia miltiorhiza) inhibits Leu27 IGF-II-induced hypertrophy in H9c2 cells. ENVIRONMENTAL TOXICOLOGY 2020; 35:1043-1049. [PMID: 32415908 DOI: 10.1002/tox.22940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/11/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
In this study, we used ICI 182 780 (ICI), an estrogen receptor (ER) antagonist, to investigate the estrogenic activity of Danshen, and to further explored whether Danshen extract can block Leu27IGF-II-induced hypertrophy in H9c2 cardiomyoblast cells. We first used an IGF-II analog Leu27IGF-II, which specifically activates IGF2R signaling cascades and induces H9c2 cardiomyoblast cell hypertrophy. However, Danshen extract completely inhibited Leu27IGF-II-induced cell size increase, ANP and BNP hypertrophic marker expression, and IGF2R induction. We also observed that Danshen extract inhibited calcineurin protein expression and NFAT3 nuclear translocation, leading to suppression of Leu27IGF-II-induced cardiac hypertrophy. Moreover, the anti-Leu27IGF-II-IGF2R signaling effect of Danshen was totally reversed by ICI, which suggest the cardio protective effect of Danshen is mediated through estrogen receptors. Our study suggests that, Danshen exerts estrogenic activity, and thus, it could be used as a selective ER modulator in IGFIIR induced hypertrophy model.
Collapse
Affiliation(s)
- Tsung-Jung Ho
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan
- School of Post-Baccalaure-ate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Hsi Chin Wu
- Department of Urology, China Medical University Beigang Hospital, Yunlin, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - V Bharath Kumar
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Yueh-Shan Weng
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Yu-Lan Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - B Mahalakshmi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | | | - Chi-Cheng Li
- Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chih-Yang Huang
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Holistic Education Center, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Cardiovascular and Mitochondria Related Diseases Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| |
Collapse
|
29
|
Overview of Salvia miltiorrhiza as a Potential Therapeutic Agent for Various Diseases: An Update on Efficacy and Mechanisms of Action. Antioxidants (Basel) 2020; 9:antiox9090857. [PMID: 32933217 PMCID: PMC7555792 DOI: 10.3390/antiox9090857] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
Salvia miltiorrhiza Bunge (S. miltiorrhiza) is a medicinal herb that has been used for the treatment for various diseases such as cardiovascular and cerebrovascular diseases in East Asia including Korea. Considering its extensive usage as a therapeutic agent for multiple diseases, there is a need to review previous research regarding its therapeutic benefits and their mechanisms. Therefore, we searched PubMed and PubMed Central for articles reporting its therapeutic effects on certain disease groups including cancers, cardiovascular, liver, and nervous system diseases. This review provides an overview of therapeutic benefits and targets of S. miltiorrhiza, including inflammation, fibrosis, oxidative stress, and apoptosis. The findings on multi-functional properties of S. miltiorrhiza discussed in this article support the efficacy of S. miltiorrhiza extract on various diseases, but also call for further research on the multiple mechanisms that mediate its therapeutic effects.
Collapse
|
30
|
Wang X, Guo D, Li W, Zhang Q, Jiang Y, Wang Q, Li C, Qiu Q, Wang Y. Danshen (Salvia miltiorrhiza) restricts MD2/TLR4-MyD88 complex formation and signalling in acute myocardial infarction-induced heart failure. J Cell Mol Med 2020; 24:10677-10692. [PMID: 32757377 PMCID: PMC7521313 DOI: 10.1111/jcmm.15688] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/17/2020] [Accepted: 07/09/2020] [Indexed: 12/24/2022] Open
Abstract
Heart failure (HF) represents a major public health burden. Inflammation has been shown to be a critical factor in the progression of HF, regardless of the aetiology. Disappointingly, the majority of clinical trials targeting aspects of inflammation in patients with HF have been largely negative. Many clinical researches demonstrate that danshen has a good efficacy on HF, and however, whether danshen exerts anti‐inflammatory effects against HF remains unclear. In our study, the employment of a water extracted and alcohol precipitated of danshen extract attenuated cardiac dysfunction and inflammation response in acute myocardial infarction‐induced HF rats. Transcriptome technique and validation results revealed that TLR4 signalling pathway was involved in the anti‐inflammation effects of danshen. In vitro, danshen reduced the release of inflammatory mediators in LPS‐stimulated RAW264.7 macrophage cells. Besides, the LPS‐stimulated macrophage conditioned media was applied to induce cardiac H9C2 cells injury, which could be attenuated by danshen. Furtherly, knock‐down and overexpression of TLR4 were utilized to confirm that danshen ameliorated inflammatory injury via MyD88‐dependent TLR4‐TRAF6‐NF‐κB signalling pathway in cardiomyocytes. Furthermore, by utilizing co‐immunoprecipitation, danshen was proved to suppress MD2/TLR4 complex formation and MyD88 recruitment. In conclusion, our results demonstrated that danshen ameliorates inflammatory injury by controlling MD2/TLR4‐MyD88 complex formation and TLR4‐TRAF6‐NF‐κB signalling pathway in acute myocardial infarction‐induced HF.
Collapse
Affiliation(s)
- Xiaoping Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Dongqing Guo
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Weili Li
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Qian Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yanyan Jiang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Qiyan Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Chun Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Qiu
- Department of Pharmacy, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yong Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
31
|
Efficacy and Safety of Fuzi Formulae on the Treatment of Heart Failure as Complementary Therapy: A Systematic Review and Meta-Analysis of High-Quality Randomized Controlled Trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9728957. [PMID: 31949473 PMCID: PMC6948335 DOI: 10.1155/2019/9728957] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/15/2019] [Accepted: 11/21/2019] [Indexed: 12/24/2022]
Abstract
Objective Heart failure is a major public health problem worldwide nowadays. However, the morbidity, mortality, and awareness of heart failure are not satisfied as well as the status of current treatments. According to the standard treatment for chronic heart failure (CHFST), Fuzi (the seminal root of Aconitum carmichaelii Debx.) formulae are widely used as a complementary treatment for heart failure in clinical practice for a long time. We are aiming to assess the efficacy and safety of Fuzi formulae (FZF) on the treatment of heart failure according to high-quality randomized controlled trials (RCTs). Methods RCTs in PubMed, Cochrane Library, China National Knowledge Infrastructure (CNKI), Chinese Scientific Journals Database (VIP), and Wanfang Database were searched from their inception until June 2019. In addition, the U.S. National Library of Medicine (clinicaltrials.gov) and the Chinese Clinical Trial Registry (http://www.chictr.org.cn) were also searched. We included RCTs that test the efficacy and safety of FZF for the treatment of heart failure, compared with placebo, CHFST, or placebo plus CHFST. The methodological quality of included studies were evaluated by the Cochrane Collaboration's tool for assessing risk of bias. RCTs with Cochrane risk of bias (RoB) score ≥4 were included in the analysis. The meta-analysis was conducted through RevMan 5.2 software. The GRADE approach was used to assess the quality of the evidence. Results Twelve RCTs with 1490 participants were identified. The studies investigated the efficacy and safety of FZF, such as FZF plus the CHFST vs placebo plus CHFST (n = 4), FZF plus CHFST vs CHFST (n = 6), FZF plus digoxin tablets (DT) plus CHFST vs placebo plus DT plus CHFST (n = 1), and FZF plus placebo plus CHFST vs placebo plus DT plus CHFST (n = 1). Meta-analysis indicated that FZF have additional benefits based on the CHFST in reducing plasma NT-proBNP level, MLHFQ scores, Lee's heart failure scores (LHFs), and composite cardiac events (CCEs). Meanwhile, it also improved the efficacy on TCM symptoms (TCMs), NYHA functional classification (NYHAfc), 6MWD, and LVEF. Adverse events were reported in 6 out of 12 studies without significant statistical difference. However, after assessing the strength of evidence, it was found that only the quality of evidence for CCEs was high, and the others were either moderate or low or very low. So we could not draw confirmative conclusions on its additional benefits except CCEs. Further clinical trials should be well designed to avoid the issues that were identified in this study. Conclusion The efficacy and additional benefits of FZF for CCEs were certain according to the high-quality evidence assessed through GRADE. However, the efficacy and additional benefits for the other outcomes were uncertain judging from current studies. In addition, the safety assessment has a great room for improvement. Thus, further research studies are needed to find more convincing proofs.
Collapse
|
32
|
Han JY, Li Q, Pan CS, Sun K, Fan JY. Effects and mechanisms of QiShenYiQi pills and major ingredients on myocardial microcirculatory disturbance, cardiac injury and fibrosis induced by ischemia-reperfusion. Pharmacol Res 2019; 147:104386. [DOI: 10.1016/j.phrs.2019.104386] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023]
|
33
|
Xiao G, Lyu M, Wang Y, He S, Liu X, Ni J, Li L, Fan G, Han J, Gao X, Wang X, Zhu Y. Ginkgo Flavonol Glycosides or Ginkgolides Tend to Differentially Protect Myocardial or Cerebral Ischemia-Reperfusion Injury via Regulation of TWEAK-Fn14 Signaling in Heart and Brain. Front Pharmacol 2019; 10:735. [PMID: 31333457 PMCID: PMC6624656 DOI: 10.3389/fphar.2019.00735] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 06/07/2019] [Indexed: 12/26/2022] Open
Abstract
Shuxuening injection (SXNI), one of the pharmaceutical preparations of Ginkgo biloba extract, has significant effects on both ischemic stroke and heart diseases from bench to bedside. Its major active ingredients are ginkgo flavonol glycosides (GFGs) and ginkgolides (GGs). We have previously reported that SXNI as a whole protected ischemic brain and heart, but the active ingredients and their contribution to the therapeutic effects remain unclear. Therefore, we combined experimental and network analysis approach to further explore the specific effects and underlying mechanisms of GFGs and GGs of SXNI on ischemia–reperfusion injury in mouse brain and heart. In the myocardial ischemia–reperfusion injury (MIRI) model, pretreatment with GFGs at 2.5 ml/kg was superior to the same dose of GGs in improving cardiac function and coronary blood flow and reducing the levels of lactate dehydrogenase and aspartate aminotransferase in serum, with an effect similar to that achieved by SXNI. In contrast, pretreatment with GGs at 2.5 ml/kg reduced cerebral infarction area and cerebral edema similarly to that of SXNI but more significantly compared with GFGs in cerebral ischemia–reperfusion injury (CIRI) model. Network pharmacology analysis of GFGs and GGs revealed that tumor necrosis factor-related weak inducer of apoptosis (TWEAK)–fibroblast growth factor-inducible 14 (Fn14) signaling pathway as an important common mechanism but with differential targets in MIRI and CIRI. In addition, immunohistochemistry and enzyme linked immunosorbent assay (ELISA) assays were performed to evaluate the regulatory roles of GFGs and GGs on the common TWEAK–Fn14 signaling pathway to protect the heart and brain. Experimental results confirmed that TWEAK ligand and Fn14 receptor were downregulated by GFGs to mitigate MIRI in the heart while upregulated by GGs to improve CIRI in the brain. In conclusion, our study showed that GFGs and GGs of SXNI tend to differentially protect brain and heart from ischemia–reperfusion injuries at least in part by regulating a common TWEAK–Fn14 signaling pathway.
Collapse
Affiliation(s)
- Guangxu Xiao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Ming Lyu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medicial Sciences, Beijing, China
| | - Yule Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Shuang He
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Xinyan Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Jingyu Ni
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lan Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jihong Han
- College of Life Sciences, Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China; College of Biomedical Engineering, Hefei University of Technology, Hefei, China
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoying Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| |
Collapse
|
34
|
Yuan T, Chen Y, Zhou X, Lin X, Zhang Q. Effectiveness and safety of Danshen injection on heart failure: Protocol for a systematic review and meta-analysis. Medicine (Baltimore) 2019; 98:e15636. [PMID: 31145280 PMCID: PMC6709174 DOI: 10.1097/md.0000000000015636] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Danshen injection (DSI) is a traditional Chinese medicine preparation extracted from Danshen (Salvia miltiorrhiza), which has the functions of promoting blood circulation and removing blood stasis. Heart failure (HF) is a complex cardiovascular disease, always leading to frequent onset and hospitalization, decreased quality of life, increased mortality, etc. Many clinical studies demonstrate that DSI has a good treatment on HF. We will provide a protocol to evaluate the effectiveness and safety of DSI for HF. METHODS We will systematically search 3 English databases (PubMed, Excerpta Medica database [EMBASE], the Cochrane Central Register of Controlled Trials [Cochrane Library]) and 4 Chinese databases (Chinese National Knowledge Infrastructure [CNKI], Chinese VIP Information, Wanfang Database, and Chinese Biomedical Literature Database [CBM]) for randomised controlled trials (RCT) of DSI for HF. Left ventricular ejection fraction (LVEF), ejection fraction, left ventricular end diastolic dimension (LVEDD), and six-minute walk distance (SWD) will be set as the primary outcome measures. The secondary outcome measures will include NT-pro BNP, quality of life and adverse reaction. All data will be analysed by using Stata 14.0 software and TSA v0.9 software. We will use I test statistics to assess the heterogeneity of included studies, and Begg's funnel plots and Egger's test to assess publication bias. Methodological quality will be assessed through a Cochrane risk of bias tool for randomized controlled trials (RCTs). RESULT This study will provide a high quality evidence for DSI on HF. CONCLUSION This protocol will provide a reliable evidence to evaluate the effectiveness and safety of DSI on HF. REGISTRATION PROS-PERO CRD42019125274.
Collapse
Affiliation(s)
- Tianhui Yuan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine
| | - Yi Chen
- Guangzhou University of Chinese Medicine, Guangzhou
| | - Xiaoqi Zhou
- Guangzhou University of Chinese Medicine, Guangzhou
| | - Xueying Lin
- Guangzhou University of Chinese Medicine, Guangzhou
| | - Qingsong Zhang
- Shenzhen Baoan Traditional Chinese Medicine Hospital Group, Guangdong Sheng, China
| |
Collapse
|
35
|
Wang L, Li Y, Deng W, Dong Z, Li X, Liu D, Zhao L, Fu W, Cho K, Niu H, Guo D, Cheng J, Jiang B. Cardio-protection of ultrafine granular powder for Salvia miltiorrhiza Bunge against myocardial infarction. JOURNAL OF ETHNOPHARMACOLOGY 2018; 222:99-106. [PMID: 29694847 DOI: 10.1016/j.jep.2018.04.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Myocardial infarction (MI) is considered as the major inducer to the morbidity and mortality related to coronary occlusion. Salvia miltiorrhiza Bunge is widely applied in the clinic for the prevention and treatment of heart diseases. The preparation of traditional herb decoction (THD) is not only time consuming but also difficult to keep uniform for every time. New usage form of Salvia miltiorrhiza Bunge with characteristics of convenience, uniform and efficiency is needed. AIM OF THE STUDY The aims of present study were to investigate the cardio-protection of ultrafine granular powder (UGP) of Salvia miltiorrhiza Bunge; and further compare the characteristics of UGP with THD. MATERIALS AND METHODS MI was induced by ligation of the left anterior descending coronary artery near the main pulmonary artery. Cardio-protection of UGP or THD was evaluated based on two sets of experiments, one was acute myocardial infarction (AMI) through 7 days preventive administration, and the other one was chronic cardiac remodeling through 28 days therapeutic administration. Hemodynamic measurement was conducted to evaluate heart function and histopathological detection was used to evaluate heart structure. RESULTS No significant improvement of heart structure and function was detected for preventive administration of UGP or THD on AMI rats. While, more significant improvements on left ventricular systolic and diastolic function were detected with therapeutic treatment with 0.81 g/kg UGP than same dose of THD on rats against chronic cardiac remodeling. Both UGP and THD showed the protective effects on heart structure, especially against fibrosis with long-term therapeutic treatment. CONCLUSIONS As a new usage form of Salvia miltiorrhiza Bunge, UGP showed significant cardio-protection against myocardial remodeling with therapeutic treatment. Comparing with THD, UGP also holds the advantages of uniform, convenience and efficiency.
Collapse
Affiliation(s)
- Linlin Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yuanmin Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wen Deng
- Key Laboratory of Technologies and Applications of Ultrafine Granular Powder of Chinese Materia Medica, State Administration of Traditional Chinese Medicine, China
| | - Zhihui Dong
- Departments of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xue Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dan Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lijie Zhao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Weiguo Fu
- Departments of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kenka Cho
- Takarazuka University of Medical and Health Care, Hanayashiki-Midorigaoka, Takarazuka City, Japan
| | | | - Dean Guo
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jinle Cheng
- Key Laboratory of Technologies and Applications of Ultrafine Granular Powder of Chinese Materia Medica, State Administration of Traditional Chinese Medicine, China.
| | - Baohong Jiang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
36
|
Xiang X, Sha X, Su S, Zhu Z, Guo S, Yan H, Qian D, Duan JA. Simultaneous determination of polysaccharides and 21 nucleosides and amino acids in different tissues of Salvia miltiorrhiza
from different areas by UV-visible spectrophotometry and UHPLC with triple quadrupole MS/MS. J Sep Sci 2018; 41:996-1008. [DOI: 10.1002/jssc.201700802] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/15/2017] [Accepted: 11/21/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Xiang Xiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine; Jiangsu Key Laboratory for High Technology Research of TCM Formulae; and State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization; Nanjing University of Chinese Medicine; Nanjing China
| | - Xiuxiu Sha
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine; Jiangsu Key Laboratory for High Technology Research of TCM Formulae; and State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization; Nanjing University of Chinese Medicine; Nanjing China
| | - Shulan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine; Jiangsu Key Laboratory for High Technology Research of TCM Formulae; and State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization; Nanjing University of Chinese Medicine; Nanjing China
| | - Zhenhua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine; Jiangsu Key Laboratory for High Technology Research of TCM Formulae; and State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization; Nanjing University of Chinese Medicine; Nanjing China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine; Jiangsu Key Laboratory for High Technology Research of TCM Formulae; and State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization; Nanjing University of Chinese Medicine; Nanjing China
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine; Jiangsu Key Laboratory for High Technology Research of TCM Formulae; and State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization; Nanjing University of Chinese Medicine; Nanjing China
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine; Jiangsu Key Laboratory for High Technology Research of TCM Formulae; and State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization; Nanjing University of Chinese Medicine; Nanjing China
| | - Jin-ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine; Jiangsu Key Laboratory for High Technology Research of TCM Formulae; and State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization; Nanjing University of Chinese Medicine; Nanjing China
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy; Nanjing University of Chinese Medicine; Nanjing China
| |
Collapse
|