1
|
Cui Y, Cui M, Wang L, Wang N, Chen Y, Lv S, Zhang L, Chen C, Yang Y, Wang F, Wang L, Cui H. Huanglian Jiedu decoction alleviates ischemia-induced cerebral injury in rats by mitigating NET formation and activiting GABAergic synapses. J Cell Mol Med 2024; 28:e18528. [PMID: 39099086 PMCID: PMC11298410 DOI: 10.1111/jcmm.18528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 08/06/2024] Open
Abstract
Huanglian Jiedu decoction (HLJD) has been used to treat ischemic stroke in clinic. However, the detailed protective mechanisms of HLJD on ischemic stroke have yet to be elucidated. The aim of this study is to elucidate the underlying pharmacological mechanisms of HLJD based on the inhibition of neuroinflammation and the amelioration of nerve cell damage. A middle cerebral artery occlusion reperfusion (MCAO/R) model was established in rats and received HLJD treatment. Effects of HLJD on neurological function was assessed based on Bederson's score, postural reflex test and asymmetry score. 2, 3, 5-Triphenyltetrazolium chloride (TTC) staining, Hematein and eosin (HE) and Nissl staining were used to observe the pathological changes in brain. Then, transcriptomics was used to screen the differential genes in brain tissue in MCAO/R model rats following HLJD intervention. Subsequently, the effects of HLJD on neutrophil extracellular trap (NET) formation-related neuroinflammation, gamma-aminobutyric acid (GABA)ergic synapse activation, nerve cell damage and proliferation were validated using immunofluorescence, western blot and enzyme-linked immunosorbent assay (ELISA). Our results showed that HLJD intervention reduced the Bederson's score, postural reflex test score and asymmetry score in MCAO/R model rats. Pathological staining indicated that HLJD treatment decreased the cerebral infarction area, mitigated neuronal damage and increased the numbers of Nissl bodies. Transcriptomics suggested that HLJD affected 435 genes in MCAO/R rats. Among them, several genes involving in NET formation and GABAergic synapses pathways were dysregulated. Subsequent experimental validation showed that HLJD reduced the MPO+CitH3+ positive expression area, reduced the protein expression of PAD4, p-P38/P38, p-ERK/ERK and decreased the levels of IL-1β, IL-6 and TNF-α, reversed the increase of Iba1+TLR4+, Iba1+p65+ and Iba1+NLRP3+ positive expression area in brain. Moreover, HLJD increased GABA levels, elevated the protein expression of GABRG1 and GAT3, decreased the TUNEL positive expression area and increased the Ki67 positive expression area in brain. HLJD intervention exerts a multifaceted positive impact on ischemia-induced cerebral injury in MCAO/R rats. This intervention effectively inhibits neuroinflammation by mitigating NET formation, and concurrently improves nerve cell damage and fosters nerve cell proliferation through activating GABAergic synapses.
Collapse
Affiliation(s)
- Youxiang Cui
- Key Laboratory of Neurological RehabilitationCangzhou Hospital of Integrated Traditional Chinese Medicine and Western MedicineCangzhouChina
| | - Mingyue Cui
- Key Laboratory of Neurological RehabilitationCangzhou Hospital of Integrated Traditional Chinese Medicine and Western MedicineCangzhouChina
| | - Leilei Wang
- Key Laboratory of Neurological RehabilitationCangzhou Hospital of Integrated Traditional Chinese Medicine and Western MedicineCangzhouChina
| | - Ning Wang
- First School of Clinical MedicineYunnan University of Chinese MedicineKunmingChina
| | - Yao Chen
- First School of Clinical MedicineYunnan University of Chinese MedicineKunmingChina
| | - Shuquan Lv
- Key Laboratory of Neurological RehabilitationCangzhou Hospital of Integrated Traditional Chinese Medicine and Western MedicineCangzhouChina
| | - Limin Zhang
- Key Laboratory of Neurological RehabilitationCangzhou Hospital of Integrated Traditional Chinese Medicine and Western MedicineCangzhouChina
| | - Congai Chen
- Beijing University of Chinese MedicineBeijingChina
| | - Yanwen Yang
- Key Laboratory of Neurological RehabilitationCangzhou Hospital of Integrated Traditional Chinese Medicine and Western MedicineCangzhouChina
| | - Feng Wang
- Key Laboratory of Neurological RehabilitationCangzhou Hospital of Integrated Traditional Chinese Medicine and Western MedicineCangzhouChina
| | - Lichun Wang
- Key Laboratory of Neurological RehabilitationCangzhou Hospital of Integrated Traditional Chinese Medicine and Western MedicineCangzhouChina
| | - Huantian Cui
- First School of Clinical MedicineYunnan University of Chinese MedicineKunmingChina
| |
Collapse
|
2
|
Yue YZ, Li MX, Wang XH, Qin YY, Wang YH, Tan JH, Su LL, Yan S. UPLC-Q-TOF/MS-Based Serum Metabolomics Reveals Potential Anti-tumor Mechanism of Banxia Xiexin Decoction in Colorectal Cancer Mice. Chin J Integr Med 2024; 30:623-632. [PMID: 37222828 DOI: 10.1007/s11655-023-3552-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 05/25/2023]
Abstract
OBJECTIVE To clarify the potential mechanism of Banxia Xiexin Decoction (BXD) on colorectal cancer (CRC) from the perspective of metabolomics. METHODS Forty male C57BL/6 mice were randomly divided into normal control (NC), azoxymethane/dextran sulfate sodium (AOM/DSS) model, low-dose BXD (L-BXD), high-dose BXD (H-BXD) and mesalamine (MS) groups according to a random number table, 8 mice in each group. Colorectal cancer model was induced by AOM/DSS. BXD was administered daily at doses of 3.915 (L-BXD) and 15.66 g/kg (H-BXD) by gavage for consecutive 21 days, and 100 mg/kg MS was used as positive control. Following the entire modeling cycle, colon length of mice was measured and quantity of colorectal tumors were counted. The spleen and thymus index were determined by calculating the spleen/thymus weight to body weight. Inflammatory cytokine and changes of serum metabolites were analyzed by enzyme-linked immunosorbent assay kits and ultra performance liquid chromatography-quadrupole/time-of-flight mass spectrometry (UPLC-Q/TOF-MS), respectively. RESULTS Notably, BXD supplementation protected against weight loss, mitigated tumor formation, and diminished histologic damage in mice treated with AOM/DSS (P<0.05 or P<0.01). Moreover, BXD suppressed expression of serum inflammatory enzymes, and improved the spleen and thymus index (P<0.05). Compared with the normal group, 102 kinds of differential metabolites were screened in the AOM/DSS group, including 48 potential biomarkers, involving 18 main metabolic pathways. Totally 18 potential biomarkers related to CRC were identified, and the anti-CRC mechanism of BXD was closely related to D-glutamine and D-glutamate metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, arginine biosynthesis, nitrogen metabolism and so on. CONCLUSION BXD exerts partial protective effects on AOM/DSS-induced CRC by reducing inflammation, protecting organism immunity ability, and regulating amino acid metabolism.
Collapse
Affiliation(s)
- Yin-Zi Yue
- Department of General Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, China
| | - Ming-Xuan Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiao-Hui Wang
- Department of General Surgery, Bayinguoleng Mongolian Autonomous Prefecture People's Hospital, Xinjiang Uygur Autonomous Region, Korla, 841000, China
| | - Yuan-Yuan Qin
- Department of Pharmacy, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, China
| | - Ya-Hui Wang
- Department of Anorectal Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, China
| | - Jin-Hua Tan
- Department of General Surgery, Bayinguoleng Mongolian Autonomous Prefecture People's Hospital, Xinjiang Uygur Autonomous Region, Korla, 841000, China
| | - Lian-Lin Su
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shuai Yan
- Department of Anorectal Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, China.
| |
Collapse
|
3
|
Li W, Shao C, Li C, Zhou H, Yu L, Yang J, Wan H, He Y. Metabolomics: A useful tool for ischemic stroke research. J Pharm Anal 2023; 13:968-983. [PMID: 37842657 PMCID: PMC10568109 DOI: 10.1016/j.jpha.2023.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/14/2023] [Accepted: 05/29/2023] [Indexed: 10/17/2023] Open
Abstract
Ischemic stroke (IS) is a multifactorial and heterogeneous disease. Despite years of studies, effective strategies for the diagnosis, management and treatment of stroke are still lacking in clinical practice. Metabolomics is a growing field in systems biology. It is starting to show promise in the identification of biomarkers and in the use of pharmacometabolomics to help patients with certain disorders choose their course of treatment. The development of metabolomics has enabled further and more biological applications. Particularly, metabolomics is increasingly being used to diagnose diseases, discover new drug targets, elucidate mechanisms, and monitor therapeutic outcomes and its potential effect on precision medicine. In this review, we reviewed some recent advances in the study of metabolomics as well as how metabolomics might be used to identify novel biomarkers and understand the mechanisms of IS. Then, the use of metabolomics approaches to investigate the molecular processes and active ingredients of Chinese herbal formulations with anti-IS capabilities is summarized. We finally summarized recent developments in single cell metabolomics for exploring the metabolic profiles of single cells. Although the field is relatively young, the development of single cell metabolomics promises to provide a powerful tool for unraveling the pathogenesis of IS.
Collapse
Affiliation(s)
- Wentao Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chongyu Shao
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chang Li
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Huifen Zhou
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Li Yu
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiehong Yang
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Haitong Wan
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
4
|
Zhao X, Ge P, Lei S, Guo S, Zhou P, Zhao L, Qi Y, Wei X, Wu W, Wang N, Guo R, Yang N, Xiao Q, Zhang Q, Zhu H. An Exosome-Based Therapeutic Strategy Targeting Neuroinflammation in Alzheimer's Disease with Berberine and Palmatine. Drug Des Devel Ther 2023; 17:2401-2420. [PMID: 37609432 PMCID: PMC10441573 DOI: 10.2147/dddt.s417465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/12/2023] [Indexed: 08/24/2023] Open
Abstract
Introduction Neuroinflammation is one of the major pathogeneses in Alzheimer's disease (AD) and mainly involves abnormal inflammatory activation of microglia by multiple pathological stimuli. The treatment of AD remains a major challenge due to the multifactorial characterization of AD and the inefficient ability of therapeutic drugs to permeate through the blood‒brain barrier (BBB). Accordingly, drug combination treatment and drug carrier delivery have become important therapeutic tools for the treatment of multifactorial diseases, especially AD. Methods Inflammatory cytokine levels in microglia, including NO, TNF-α, IL-1β, IL-4, and IL-10, were detected. The Morris water maze and object location task were used to investigate the learning and memory functions of APP/PS1 mice in different treatment groups. The number of neurons and plasticity of synapses were evaluated by immunofluorescence double labelling. Additionally, the ratio of β-amyloid plaques and the number of activated microglia were evaluated by immunofluorescence staining. The concentrations of β-amyloid plaques and inflammatory factors in the hippocampus were determined by ELISA. Microglia-derived exosomes (Exos) were extracted and purified by size exclusion chromatography. The distribution of exosomes and drugs was investigated in vitro and in vivo. Results Compared to single drug interventions, the combination of Ber and Pal (Ber/Pal) modulated microglial inflammatory cytokine levels. Ber/Pal promoted the recovery of learning and memory impairment in APP/PS1 mice. Immunofluorescence staining indicated that Ber/Pal restored neurons, inhibited Aβ plaque formation and microglial activation, and regulated the secretion of inflammatory factors. Exos promoted the accumulation of drugs in cells and tissues and improved the targeting of drugs across the BBB. Conclusion Ber/Pal could offer a synergistic and more comprehensive therapeutic effect in AD. Additionally, the microglia-derived Exos-Ber/Pal delivery system promoted the targeting and permeation of drugs into the brain, suggesting a creative strategy for targeting AD therapy by regulating neuroinflammation in microglial cells.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Pingyuan Ge
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Shaohua Lei
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Siqi Guo
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Peng Zhou
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Li Zhao
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Yiyu Qi
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Xiaotong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Weizhen Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Ningjing Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Rui Guo
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Nianyun Yang
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Qingqing Xiao
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Qichun Zhang
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Huaxu Zhu
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
5
|
Zhang Y, Zhu D, Li T, Wang X, Zhao L, Yang X, Dang M, Li Y, Wu Y, Lu Z, Lu J, Jian Y, Wang H, Zhang L, Lu X, Shen Z, Fan H, Cai W, Zhang G. Detection of acute ischemic stroke and backtracking stroke onset time via machine learning analysis of metabolomics. Biomed Pharmacother 2022; 155:113641. [PMID: 36088854 DOI: 10.1016/j.biopha.2022.113641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
The time window from stroke onset is critical for the treatment decision. However, in unknown onset stroke, it is often difficult to determine the exact onset time because of the lack of assessment methods, which can result in controversial and random treatment decisions. Previous studies have shown that serum biomarkers, in addition to imaging assessment, are useful for determining the stroke onset time. However, as yet there are no specific biomarkers or corresponding methodologies that are accurate and effective for determining the onset time of unknown onset stroke. Herein, we describe our novel advanced metabolites-based machine learning method (termed extreme gradient boost [XGBoost]) combined with recursive feature elimination, which accurately screened five metabolites from 1124 metabolites detected in serum. These metabolites were capable of both detecting acute ischemic stroke and backtracking the acute ischemic stroke onset time. To further investigate the pathological mechanisms of acute ischemic stroke, we also examined characteristic metabolites in different brain regions, and found two metabolites that could distinguish the core infarct area from the ischemic penumbra. Although this study is based on animal experiments, our machine learning framework and selected metabolites may provide a basis for clinical stroke evaluation and treatment.
Collapse
Affiliation(s)
- Yiheng Zhang
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Dayu Zhu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0250, United States
| | - Tao Li
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Xiaoya Wang
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Lili Zhao
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Xiaofei Yang
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Meijuan Dang
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Ye Li
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Yulun Wu
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Ziwei Lu
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Jialiang Lu
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Yating Jian
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Heying Wang
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Lei Zhang
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Xiaoyun Lu
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Ziyu Shen
- Guangzhou Kingmed Diagnostics Group Co., Ltd., Guangzhou 510030, Guangdong, China
| | - Hong Fan
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Wenshan Cai
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0250, United States; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0295, United States.
| | - Guilian Zhang
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China.
| |
Collapse
|
6
|
Gao X, Wang J, Chen X, Wang S, Huang C, Zhang Q, Cao L, Wang Z, Xiao W. Reduning injection prevents carrageenan-induced inflammation in rats by serum and urine metabolomics analysis. CHINESE HERBAL MEDICINES 2022; 14:583-591. [DOI: 10.1016/j.chmed.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/15/2021] [Accepted: 01/21/2022] [Indexed: 10/14/2022] Open
|
7
|
Ni SJ, Yao ZY, Wei X, Heng X, Qu SY, Zhao X, Qi YY, Ge PY, Xu CP, Yang NY, Cao Y, Zhu HX, Guo R, Zhang QC. Vagus nerve stimulated by microbiota-derived hydrogen sulfide mediates the regulation of berberine on microglia in transient middle cerebral artery occlusion rats. Phytother Res 2022; 36:2964-2981. [PMID: 35583808 DOI: 10.1002/ptr.7490] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/08/2022] [Accepted: 04/19/2022] [Indexed: 11/05/2022]
Abstract
Amelioration of neuroinflammation via modulating microglia is a promising approach for cerebral ischemia therapy. The aim of the present study was to explore gut-brain axis signals in berberine-modulating microglia polarization following cerebral ischemia. The potential pathway was determined through analyzing the activation of the vagus nerve, hydrogen sulfide (H2 S) metabolism, and cysteine persulfides of transient receptor potential vanilloid 1 (TRPV1) receptor. The cerebral microenvironment feature was explored with a metabolomics assay. The data indicated that berberine ameliorated behavioral deficiency in transient middle cerebral artery occlusion rats through modulating microglia polarization and neuroinflammation depending on microbiota. Enhanced vagus nerve activity following berberine treatment was blocked by antibiotic cocktails, capsazepine, or sodium molybdate, respectively. Berberine-induced H2 S production was responsible for vagus nerve stimulation achieved through assimilatory and dissimilatory sulfate reduction with increased synthetic enzymes. Sulfation of the TRPV1 receptor resulted in vagus nerve activation and promoted the c-fos and ChAT in the nucleus tractus solitaries with berberine. Sphingolipid metabolism is the primary metabolic characteristic with berberine in the cerebral cortex, hippocampus, and cerebral spinal fluid disrupted by antibiotics. Berberine, in conclusion, modulates microglia polarization in a microbiota-dependent manner. H2 S stimulates the vagus nerve through TRPV1 is responsible for the berberine-induced gut-brain axis signal transmission. Sphingolipid metabolism might mediate the neuroinflammation amelioration following vagus afferent fiber activation.
Collapse
Affiliation(s)
- Sai-Jia Ni
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zeng-Ying Yao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaotong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xia Heng
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shu-Yue Qu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Zhao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi-Yu Qi
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ping-Yuan Ge
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cai-Ping Xu
- Nanjing Sinolife Bio-tech Co., Ltd, Nanjing, China
| | - Nian-Yun Yang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Cao
- Institute of Literature in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hua-Xu Zhu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui Guo
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi-Chun Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
8
|
Huang P, Wan H, Shao C, Li C, Zhang L, He Y. Recent Advances in Chinese Herbal Medicine for Cerebral Ischemic Reperfusion Injury. Front Pharmacol 2022; 12:688596. [PMID: 35111041 PMCID: PMC8801784 DOI: 10.3389/fphar.2021.688596] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Cerebral ischemic reperfusion injury (CI/RI) is a critical factor that leads to a poor prognosis in patients with ischemic stroke. It is an extremely complicated pathological process that is clinically characterized by high rates of disability and mortality. Current available treatments for CI/RI, including mechanical and drug therapies, are often accompanied by significant side effects. Therefore, it is necessary to discovery new strategies for treating CI/RI. Many studies confirm that Chinese herbal medicine (CHM) was used as a potential drug for treatment of CI/RI with the advantages of abundant resources, good efficacy, and few side effects. In this paper, we investigate the latest drug discoveries and advancements on CI/RI, make an overview of relevant CHM, and systematically summarize the pathophysiology of CI/RI. In addition, the protective effect and mechanism of related CHM, which includes extraction of single CHM and CHM formulation and preparation, are discussed. Moreover, an outline of the limitations of CHM and the challenges we faced are also presented. This review will be helpful for researchers further propelling the advancement of drugs and supplying more knowledge to support the application of previous discoveries in clinical drug applications against CI/RI.
Collapse
Affiliation(s)
- Ping Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haitong Wan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chongyu Shao
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chang Li
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ling Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
9
|
Identification and Analysis of Chemical Constituents and Rat Serum Metabolites in Gushuling Using UPLC-Q-TOF/MS Coupled with Novel Informatics UNIFI Platform. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2894306. [PMID: 35003296 PMCID: PMC8741369 DOI: 10.1155/2021/2894306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022]
Abstract
Gushuling (GSL), a well-known hospital preparation composed of traditional Chinese medicine (TCM), has been widely used in the clinical treatment of osteoporosis (OP) for decades due to its remarkable therapeutic effect. However, the chemical constituents of GSL are still unclear so far, which limits the in-depth study of its pharmacodynamic material basis and further restricts its clinical application. In this study, we developed a strategy for qualitative analysis of the chemical constituents of GSL in vitro and in vivo. Based on the results of ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS) and the UNIFI informatics platform, the chemical constituents of GSL can be determined quickly and effectively. By comparing the retention time, accurate mass, and fragmentation spectrum of the compounds in GSL, a total of 93 compounds were identified or preliminarily identified, including flavonoids, terpenoids, phenylpropanoids, steroids, etc. Among them, nine compounds have been confirmed by standard substances, namely epimedin A, epimedin B, epimedin C, icariin, ecdysterone, calycosin, calycosin-7-glucoside, ononin, and ginsenoside Ro. Fragment patterns and characteristic ions of representative compounds with different chemical structure types were analyzed. At the same time, 20 prototype compounds and 42 metabolites were detected in rat serum. Oxidation, hydration, reduction, dehydration, glutathione S-conjugation, and acetylcysteine conjugation were the main transformation reactions of GSL in rat serum. In this research, the rapid method to characterize the in vitro and in vivo chemical constituents of GSL can not only be used for the standardization and quality control of GSL but also be helpful for further research on its pharmacodynamic material basis.
Collapse
|
10
|
Long C, Yang Y, Wang Y, Zhang X, Zhang L, Huang S, Yang D, Qiao X, Yang Y, Guo Y. Role of Glutamine-Glutamate/GABA cycle and potential target GLUD2 in alleviation of rheumatoid arthritis by Tripterygium hypoglaucum (levl.) Hutch based on metabolomics and molecular pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114561. [PMID: 34454056 DOI: 10.1016/j.jep.2021.114561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/21/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tripterygium hypoglaucum (levl.) Hutch (Celastraceae) (THH), as a traditional Chinese medicine, was clinically exploited to treat rheumatoid arthritis (RA), yet the underlying mechanism for this effect remains largely unclear. AIM OF THE STUDY This study aimed to examine the beneficial effects of THH extract (THHE) against rheumatoid arthritis and its regulating role in differential metabolic pathways and potential targets. MATERIALS AND METHODS In the present study, the Lewis rat model with rheumatoid arthritis induced by adjuvant was established and administrated THHE for 14 days. Untargeted/targeted metabolomics analysis were used for determining the changes of differential metabolites, and molecular docking method was further developed to verify predicted targets and investigate the therapeutic mechanism of THH extract on RA. RESULTS The results showed that THH extract could obviously improve body weight, significantly decrease the joint index and swelling degree of the RA model rats to reduce damage in the joint. Meanwhile, THHE could significantly suppress the releases of IL-1α, IL-1β and MMP3, but also the expression levels of IL-4 and IL-10 and percentage of Treg cells were significantly improved, a result consistent with inhibitory effects on multiplication of macrophages, inflammatory cell infiltration and fibro genesis in the synovial tissues. Furthermore, 516 differential metabolites were identified by serum metabolic profiles analysis, including vitamin, organic acids and derivatives, lipids and lipid-like molecule, hormone, amino acids and derivatives, and other compounds, which targeted 47 metabolic pathways highly correlated with immunosuppression, such as citrate cycle (TCA cycle), sphingolipid metabolism, urea cycle, arachidonic acid metabolism and amino acid metabolism (such as Glutamine-Glutamate metabolism). Targeted metabolomics was used to verify that L-Glutamate and Glutamine changed significantly after THHE administration for 14 days, and many active ingredients of THHE could be successfully docked with glutamate dehydrogenase 2 (GLUD2). CONCLUSION This study indicated that the Glutamine-Glutamate/GABA cycle played essential regulation roles in protective effect of THHE on rat RA following adjuvant-induced damage, and GLUD2 as an attractive target also provides great potential for development of therapy agents for rheumatoid arthritis and autoimmune diseases with less unfavorable tolerability profile.
Collapse
Affiliation(s)
- Chengyan Long
- Chongqing Academy of Chinese Materia Medica, No.34 Nanshan Road, Nan'an District, Chongqing, 400065, China.
| | - Yang Yang
- Chongqing Academy of Chinese Materia Medica, No.34 Nanshan Road, Nan'an District, Chongqing, 400065, China.
| | - Yunhong Wang
- Chongqing Academy of Chinese Materia Medica, No.34 Nanshan Road, Nan'an District, Chongqing, 400065, China.
| | - Xiaomei Zhang
- Chongqing Academy of Chinese Materia Medica, No.34 Nanshan Road, Nan'an District, Chongqing, 400065, China.
| | - Li Zhang
- Chongqing Academy of Chinese Materia Medica, No.34 Nanshan Road, Nan'an District, Chongqing, 400065, China.
| | - Sixing Huang
- Chongqing Academy of Chinese Materia Medica, No.34 Nanshan Road, Nan'an District, Chongqing, 400065, China.
| | - Dajian Yang
- Chongqing Academy of Chinese Materia Medica, No.34 Nanshan Road, Nan'an District, Chongqing, 400065, China.
| | - Xingfang Qiao
- Chongqing Academy of Chinese Materia Medica, No.34 Nanshan Road, Nan'an District, Chongqing, 400065, China.
| | - Yong Yang
- Chongqing Academy of Chinese Materia Medica, No.34 Nanshan Road, Nan'an District, Chongqing, 400065, China.
| | - Yanlei Guo
- Chongqing Academy of Chinese Materia Medica, No.34 Nanshan Road, Nan'an District, Chongqing, 400065, China.
| |
Collapse
|
11
|
Jia J, Zhang H, Liang X, Dai Y, Liu L, Tan K, Ma R, Luo J, Ding Y, Ke C. Application of Metabolomics to the Discovery of Biomarkers for Ischemic Stroke in the Murine Model: a Comparison with the Clinical Results. Mol Neurobiol 2021; 58:6415-6426. [PMID: 34532786 DOI: 10.1007/s12035-021-02535-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022]
Abstract
Ischemic stroke (IS) is a major cause of mortality and disability worldwide. However, the pathogenesis of IS remains unknown, and methods for early prediction and diagnosis of IS are lacking. Metabolomics can be applied to biomarker discovery and mechanism exploration of IS by exploring metabolic alterations. In this review, 62 IS metabolomics studies in the murine model published from January 2006 to December 2020 in the PubMed and Web of Science databases were systematically reviewed. Twenty metabolites (e.g., lysine, phenylalanine, methionine, tryptophan, leucine, lactate, serine, N-acetyl-aspartic acid, and glutathione) were reported consistently in more than two-third murine studies. The disturbance of metabolic pathways, such as arginine biosynthesis; alanine, aspartate and glutamate metabolism; aminoacyl-tRNA biosynthesis; and citrate cycle, may be implicated in the development of IS by influencing the biological processes such as energy failure, oxidative stress, apoptosis, and glutamate toxicity. The transient middle cerebral artery occlusion model and permanent middle cerebral artery occlusion model exhibit both common and distinct metabolic patterns. Furthermore, five metabolites (proline, serine, LysoPC (16:0), uric acid, glutamate) in the blood sample and 7 metabolic pathways (e.g., alanine, aspartate, and glutamate metabolism) are shared in animal and clinical studies. The potential biomarkers and related pathways of IS in the murine model may facilitate the biomarker discovery for early diagnosis of IS and the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Jinjing Jia
- Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Hangyao Zhang
- Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Xiaoyi Liang
- Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Yuning Dai
- Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Lihe Liu
- Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Kaiwen Tan
- Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Ruohan Ma
- Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Jiahuan Luo
- Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Yi Ding
- Department of Preventive Medicine, College of Clinical Medicine, Suzhou Vocational Health College, Suzhou, 215009, People's Republic of China
| | - Chaofu Ke
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
12
|
Liu SB, Lu SW, Sun H, Zhang AH, Wang H, Wei WF, Han JR, Guo YJ, Wang XJ. Deciphering the Q-markers of nourishing kidney-yin of Cortex Phellodendri amurense from ZhibaiDihuang pill based on Chinmedomics strategy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153690. [PMID: 34438229 DOI: 10.1016/j.phymed.2021.153690] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/17/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Cortex Phellodendri amurensis (CPA) has high medicinal value in the treatment of kidney-yin deficiency diseases. However, due to the lack of research on the therapeutic material basis of CPA, the current quality control standard for CPA is defective, and the effect of the nourishing kidney-yin of CPA was limited. PURPOSE Based on the principle of correspondence between the syndrome and prescriptions, we studied the CPA in ZhibaiDihuang pill (ZBDH) to identify quality markers (Q-markers) of CPA in ZBDH for treating kidney-yin deficiency and seek the potential Q-markers of CPA under nourishing kidney-yin effect combined with the analysis of single CPA. METHODS Taking Chinmedomics as the core strategy, metabonomics analysis and effective component identification were performed by UPLC-MS. RESULTS A total of 121 chemical components of ZBDH were identified, among which the contents of berberine, palmatine, jatrorrhizine and magnoflorine changed the most obviously with the addition of CPA. Forty-five components were identified in the blood in the markedly effective state, including berberine, palmatine, jatrorrhizine and magnoflorine. The therapeutic material basis of ZBDH in the treatment of kidney-yin deficiency was found, and 6 components were found to derive from CPA, including magnoflorine and jatrorrhizine. In addition, seventeen components were identified in the blood in the single CPA treatment, including berberine, palmatine, jatrorrhizine and magnoflorine. CONCLUSIONS Magnoflorine and jatrorrhizine were the Q-markers of CPA for treating kidney-yin deficiency in the formula of ZBDH and they were also potential Q-markers of the nourishing kidney-yin of CPA.
Collapse
Affiliation(s)
- Shao-Bo Liu
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Sheng-Wen Lu
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Hui Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Wen-Feng Wei
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Jin-Run Han
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ya-Jing Guo
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xi-Jun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau; National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning Guangxi 530023, China.
| |
Collapse
|
13
|
Wang R, Liu S, Liu T, Wu J, Zhang H, Sun Z, Liu Z. Mass spectrometry-based serum lipidomics strategy to explore the mechanism of Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. leaves in the treatment of ischemic stroke. Food Funct 2021; 12:4519-4534. [PMID: 33890948 DOI: 10.1039/d0fo02845b] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. leaves (ESL) were reported to have neuroprotective function and are also used to treat cranial and cerebral traumas as a traditional Chinese medicine and food herbage plant. However, there has been no previous study on ESL treatment for stroke at the level of lipid disorders. To clarify the mechanism of ESL in treating ischemic stroke, this study was carried out from 3 aspects, namely, the regulation of lipid disorders, protection of the nervous system, as well as anti-inflammatory and antioxidant actions. This study established a lipidomics research strategy that was developed by UPLC-Q-TOF/MS analysis. The quantification of neurotransmitters in the serum and brain tissue of rats was performed using UPLC-TQ/MS. Also, we quantified the oxidative stress and inflammatory reaction by measuring the contents of SOD, MDA, TNF-α, IL-6, and IL-10 via the ELISA kits for serum and brain tissue. According to UPLC-Q-TOF/MS-based lipidomics analysis, 27 lipidomics biomarkers were identified in this study, including PC, PE, SM, and TG, which were distributed in various lipid metabolic pathways, including glycerophospholipid, linoleic acid, alpha-linolenic acid, glycerolipid, sphingolipid, and arachidonic acid metabolism pathways. By reversing the changes in the lipid content caused by the disease, ESL has a therapeutic effect on ischemic stroke. Furthermore, quantitative results of neurotransmitters indicated that they can be regulated by ESL. Finally, the results of ELISA showed that ESL can treat ischemic stroke to a certain extent by reducing the oxidative and inflammatory damage. Therefore, ESL may play a therapeutic role in the treatment of ischemic stroke in different ways. This research preliminarily revealed the mechanism of ESL in the treatment of ischemic stroke and provided support for the further application of ESL.
Collapse
Affiliation(s)
- Rongjin Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Chen L, Jiang E, Guan Y, Xu P, Shen Q, Liu Z, Zhu W, Chen L, Liu H, Dong H. Safety of high-dose Puerariae Lobatae Radix in adolescent rats based on metabolomics. Food Sci Nutr 2021; 9:794-810. [PMID: 33598164 PMCID: PMC7866568 DOI: 10.1002/fsn3.2044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 12/18/2022] Open
Abstract
Puerariae Lobatae Radix (PLR) is the dried root of the leguminous plant Pueraria lobata and is a common component of health products and medicines. Although it is considered safe, some studies have reported that PLR has hepatotoxicity and estrogen-like effects. In this study, the safety of high doses of PLR water extract administered to adolescent SD rats for 30 days was evaluated by biochemical, histopathological, and metabolomic analyses. Overall, there were no significant differences between the low-dose and blank control groups in parameter values, including organ wet weight, organ coefficient, routine blood indicators, serum biochemical indexes of liver and renal function, levels of estradiol and testosterone, histopathological parameters, and primary differential metabolite profiles. Compared with the blank control group, the high-dose group may have a certain effect on the liver. These effects might be mediated by abnormal phenylalanine, tyrosine, and tryptophan biosynthesis or phenylalanine metabolism. However, histopathological analyses did not show differences in the liver, kidney, breast, uterus, ovary, testis, and epididymis between the control group and the group treated with a high dose of PLR water extract. PLR water extract did not significantly promote the precocity of male and female sexual organs. Overall, PLR water extract is relatively safe for adolescent SD rats.
Collapse
Affiliation(s)
- Limei Chen
- Jiangxi University of Traditional Chinese MedicineNanchangChina
| | - E. Jiang
- Jiangxi University of Traditional Chinese MedicineNanchangChina
| | - Yongmei Guan
- Jiangxi University of Traditional Chinese MedicineNanchangChina
| | - Pan Xu
- Jiangxi University of Traditional Chinese MedicineNanchangChina
| | - Qian Shen
- Jiangxi University of Traditional Chinese MedicineNanchangChina
| | - Zhiyong Liu
- Jiangxi University of Traditional Chinese MedicineNanchangChina
| | - Weifeng Zhu
- Jiangxi University of Traditional Chinese MedicineNanchangChina
| | - Lihua Chen
- Jiangxi University of Traditional Chinese MedicineNanchangChina
| | - Hongning Liu
- Jiangxi University of Traditional Chinese MedicineNanchangChina
| | - Huanhuan Dong
- Jiangxi University of Traditional Chinese MedicineNanchangChina
| |
Collapse
|
15
|
Chen M, Wang P, Li T, Li L, Li J, Bai H, Lei H, Ma Q. Comprehensive analysis of Huanglian Jiedu decoction: Revealing the presence of a self-assembled phytochemical complex in its naturally-occurring precipitate. J Pharm Biomed Anal 2020; 195:113820. [PMID: 33303266 DOI: 10.1016/j.jpba.2020.113820] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 12/27/2022]
Abstract
The current study presents a comprehensive analysis to explore the compositions of both the supernatant and naturally-occurring precipitate of Huanglian Jiedu decoction employing ultra-high-performance liquid chromatography hyphenated with quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS). Totally 109 constituents (32 alkaloids, 39 flavonoids, 12 iridoids, 9 phenolic acids, and 17 other compounds) were identified from accurate-mass measurements in full-scan MS/data-dependent MS/MS mode of acquisition. Furthermore, a quantitative method was developed for determination of 14 marker compounds in Huanglian Jiedu decoction. Experimental results revealed that all of these marker compounds were present in both the supernatant and naturally-occurring precipitate. Most notably, the contents of baicalin and berberine were significantly higher in the naturally-occurring precipitate than supernatant, presumably due to self-assembly complexation. The formation of the baicalin/berberine complex was comprehensively investigated by electrospray ionization (ESI)-MS, nuclear magnetic resonance (NMR), ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR), and fluorescence spectroscopy, etc. The morphology and size distribution of the baicalin/berberine self-assembled nanoparticles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). This study provides fundamental scientific evidence of the presence of a self-assembled phytochemical complex in the naturally-occurring precipitate, enabling better understanding of Huanglian Jiedu decoction.
Collapse
Affiliation(s)
- Meng Chen
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Penglong Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Tong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Linsen Li
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China; School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Junfang Li
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Hua Bai
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Haimin Lei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| |
Collapse
|
16
|
Comparatively Evaluating the Role of Herb Pairs Containing Angelicae Sinensis Radix in Xin-Sheng-Hua Granule by Withdrawal Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9456350. [PMID: 33029181 PMCID: PMC7528019 DOI: 10.1155/2020/9456350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/06/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022]
Abstract
The present study aims to investigate the roles of herb pairs containing Angelicae Sinensis Radix (Danggui) in Xin-Sheng-Hua Granule (XSHG) on hemolytic and aplastic anemia (HAA) mice. HAA model mice were induced by acetyl phenylhydrazine and cyclophosphamide; then the samples of XSHG and its decomposed recipes (DY, DC, DT, DH, DJ, and DZ) were orally administrated to these mice. Indicators of peripheral blood routine, organ index, and ATPase activities were tested. Moreover, the main effective components in these samples were also analyzed by UHPLC-TQ-MS/MS. Clear separation between the control and model groups from score plot of principal component analysis (PCA) was easily seen, indicating that HAA model was successfully conducted. Afterwards, relative distance calculation method between dose groups and control group from PCA score plot was adopted to evaluate the integrated effects of hematinic function of different samples. And the orders of hematinic effects were as follows: XHSG > DJ > DT > DZ > DH > DC > DY. Further analysis of these samples by UHPLC-TQ-MS/MS revealed that XSHG underwent complicated changes when herb pairs containing Danggui were excluded from XSHG, respectively. Compared with XSHG, the vast majority of active compounds in sample DY (formula minus herb pair Danggui-Yimucao) decreased significantly, which could partly explain why herb pair Danggui-Yimucao made great contribution to XSHG. These findings showed that withdrawal analysis method is a valuable tool to analyze the impacts of herb pairs containing Danggui on XSHG, which could lay foundation to reveal the compatibility rules of this formula.
Collapse
|
17
|
He WJ, Cao DM, Chen YB, Shi JJ, Hu T, Zhang ZT, Lan T, Tang D, Wang SM. Explore of the beneficial effects of Huang-Lian-Jie-Du Decoction on diabetic encephalopathy in db/db mice by UPLC-Q-Orbitrap HRMS/MS based untargeted metabolomics analysis. J Pharm Biomed Anal 2020; 192:113652. [PMID: 33039912 DOI: 10.1016/j.jpba.2020.113652] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/10/2020] [Accepted: 09/19/2020] [Indexed: 12/16/2022]
Abstract
Diabetic encephalopathy (DE) is a severe diabetic complication with cognitive dysfunction. Huang-Lian-Jie-Du Decoction (HLJDD), a famous traditional Chinese formula, is effective for the treatment of diabetes mellitus and Alzheimer's disease in clinical practices, however, the therapeutic effects and the underlying mechanisms of HLJDD on DE is unclear yet. With this purpose, behavior test, brain histological and biochemical analysis were estimated to assess the beneficial effects of HLJDD on DE. Plasma samples were collected for metabolomics analysis based on UPLC-Q-Orbitrap HRMS/MS and chemometric analysis. As a result, morris water maze test revealed that HLJDD could effectively improve the learning and memory abilities in db/db mice. Brain histological and biochemical analysis indicated that HLJDD could protect against neurodegeneration and oxidative stress in db/db mice. Meanwhile, a total of 21 potential biomarkers with significant differences were identified between Model group and Control group using untargeted metabolomics strategy. Among them, 11 metabolites showed a trend towards the normal levels after HLJDD intervention. These metabolites principally involved in glycerophospholipid metabolism, fatty acid β-oxidation, linoleic acid metabolism, glucose metabolism and glutathione metabolism based on the metabolic pathway analysis, which were regulated in DE model mice after HLJDD intervention. Generally, the results demonstrated that HLJDD had beneficial effects on DE, which could be mediated via ameliorating the metabolic disorders.
Collapse
Affiliation(s)
- Wen-Jiao He
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Dong-Min Cao
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yun-Bo Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Jing-Jing Shi
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Tian Hu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Zhi-Tong Zhang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Tian Lan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Dan Tang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Shu-Mei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| |
Collapse
|
18
|
Li Y, Yu R, Zhang D, Yang W, Hou Q, Li Y, Jiang H. Deciphering the Mechanism of the Anti-Hypertensive Effect of Isorhynchophylline by Targeting Neurotransmitters Metabolism of Hypothalamus in Spontaneously Hypertensive Rats. ACS Chem Neurosci 2020; 11:1563-1572. [PMID: 32356970 DOI: 10.1021/acschemneuro.9b00699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Essential hypertension is a major risk factor for cardiovascular disease that can lead eventually to structural and functional alterations in the brain. Accumulating evidence has suggested that the increased activities in renin-angiotensin system and sympathetic nerve participated in the pathogenesis of hypertension that is related to the imbalance between neurotransmitters. The potential role in essential hypertension arising from alterations of neurotransmitters in the central nervous system remains understudied. Isorhynchophylline is a major oxindole alkaloid extracted from Uncaria rhynchophylla, which has been widely used for treating hypertension and neurodegenerative diseases. Whether isorhynchophylline acts on neurotransmitters to lower blood pressure has been hypothesized but rarely demonstrated unequivocally. Here, we studied the metabolic neurotransmitter profiles in the hypothalamus using a targeted metabolomic approach in spontaneously hypertensive rats after isorhynchophylline intervention. Our study demonstrated that isorhynchophylline exhibited a strong anti-hypertensive effect in spontaneously hypertensive rats by improving the neurotransmitter imbalance in the hypothalamus and inhibiting the overactivation of the renin-angiotensin system and sympathetic nerve system. Overall, this study played an essential role in enhancing our understanding of the mechanism of isorhynchophylline in essential hypertension and in providing theoretical evidence for future research and clinical application.
Collapse
Affiliation(s)
- Yuan Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Ruixue Yu
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong China
| | - Dan Zhang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Wenqing Yang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Qingqing Hou
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong China
| | - Yunlun Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
- Traditional Chinese Medicine Clinical Research Base for Hypertension, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong, China
| | - Haiqiang Jiang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| |
Collapse
|
19
|
Zou J, Shen Y, Chen M, Zhang Z, Xiao S, Liu C, Wan Y, Yang L, Jiang S, Shang E, Qian D, Duan J. Lizhong decoction ameliorates ulcerative colitis in mice via modulating gut microbiota and its metabolites. Appl Microbiol Biotechnol 2020; 104:5999-6012. [PMID: 32418127 DOI: 10.1007/s00253-020-10665-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/23/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022]
Abstract
Ulcerative colitis (UC), a kind of inflammatory bowel disease, is generally characterized by chronic, persistent, relapsing, and nonspecific ulceration of the bowel, which is widespread in the world. Although the pathogenesis of UC is multifactorial, growing evidence has demonstrated that gut microbiota and its metabolites are closely related to the development of UC. Lizhong decoction (LZD), a well-known classical Chinese herbal prescription, has been used to clinically treat UC for long time, but its mechanism is not clear. In this study, 16S rRNA gene sequencing combining with untargeted metabolomics profiling was used to investigate how LZD worked. Results indicated that LZD could shape the gut microbiota structure and modify metabolic profiles. The abundance of opportunistic pathogens such as Clostridium sensu stricto 1, Enterobacter, and Escherichia-Shigella correlated with intestinal inflammation markedly decreased, while the levels of beneficial bacteria including Blautia, Muribaculaceae_norank, Prevotellaceae UCG-001, and Ruminiclostridium 9 elevated in various degrees. Additionally, fecal metabolite profiles reflecting microbial activities showed that adenosine, lysoPC(18:0), glycocholic acid, and deoxycholic acid notably decreased, while cholic acid, α-linolenic acid, stearidonic acid, and L-tryptophan significantly increased after LZD treatment. Hence, based on the systematic analysis of 16S rRNA gene sequencing and metabolomics of gut flora, the results provided a novel insight that microbiota and its metabolites might be potential targets for revealing the mechanism of LZD on amelioration of UC.Key Points • The potential mechanism of LZD on the amelioration of UC was firstly investigated.• LZD could significantly shape the structure of gut microbiota.• LZD could notably modulate the fecal metabolic profiling of UC mice. Graphical abstract.
Collapse
Affiliation(s)
- Junfeng Zou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Yumeng Shen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Mengjun Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Zhimiao Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Suwei Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Chen Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Yue Wan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Lei Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China.
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
20
|
Chen H, He Y, Chen S, Qi S, Shen J. Therapeutic targets of oxidative/nitrosative stress and neuroinflammation in ischemic stroke: Applications for natural product efficacy with omics and systemic biology. Pharmacol Res 2020; 158:104877. [PMID: 32407958 DOI: 10.1016/j.phrs.2020.104877] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022]
Abstract
Oxidative/nitrosative stress and neuroinflammation are critical pathological processes in cerebral ischemia-reperfusion injury, and their intimate interactions mediate neuronal damage, blood-brain barrier (BBB) damage and hemorrhagic transformation (HT) during ischemic stroke. We review current progress towards understanding the interactions of oxidative/nitrosative stress and inflammatory responses in ischemic brain injury. The interactions between reactive oxygen species (ROS)/reactive nitrogen species (RNS) and innate immune receptors such as TLR2/4, NOD-like receptor, RAGE, and scavenger receptors are crucial pathological mechanisms that amplify brain damage during cerebral ischemic injury. Furthermore, we review the current progress of omics and systematic biology approaches for studying complex network regulations related to oxidative/nitrosative stress and inflammation in the pathology of ischemic stroke. Targeting oxidative/nitrosative stress and neuroinflammation could be a promising therapeutic strategy for ischemic stroke treatment. We then review recent advances in discovering compounds from medicinal herbs with the bioactivities of simultaneously regulating oxidative/nitrosative stress and pro-inflammatory molecules for minimizing ischemic brain injury. These compounds include sesamin, baicalin, salvianolic acid A, 6-paradol, silymarin, apocynin, 3H-1,2-Dithiole-3-thione, (-)-epicatechin, rutin, Dl-3-N-butylphthalide, and naringin. We finally summarize recent developments of the omics and systematic biology approaches for exploring the molecular mechanisms and active compounds of Traditional Chinese Medicine (TCM) formulae with the properties of antioxidant and anti-inflammation for neuroprotection. The comprehensive omics and systematic biology approaches provide powerful tools for exploring therapeutic principles of TCM formulae and developing precision medicine for stroke treatment.
Collapse
Affiliation(s)
- Hansen Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China
| | - Yacong He
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Shuang Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Suhua Qi
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, China
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China; School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
21
|
Li Y, Sun J, Wu R, Bai J, Hou Y, Zeng Y, Zhang Y, Wang X, Wang Z, Meng X. Mitochondrial MPTP: A Novel Target of Ethnomedicine for Stroke Treatment by Apoptosis Inhibition. Front Pharmacol 2020; 11:352. [PMID: 32269527 PMCID: PMC7109312 DOI: 10.3389/fphar.2020.00352] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/09/2020] [Indexed: 12/31/2022] Open
Abstract
Mammalian mitochondrial permeability transition pore (MPTP), across the inner and outer membranes of mitochondria, is a nonspecific channel for signal transduction or material transfer between mitochondrial matrix and cytoplasm such as maintenance of Ca2+ homeostasis, regulation of oxidative stress signals, and protein translocation evoked by some of stimuli. Continuous MPTP opening has been proved to stimulate neuronal apoptosis in ischemic stroke. Meanwhile, inhibition of MPTP overopening-induced apoptosis has shown excellent efficacy in the treatment of ischemic stroke. Among of which, the potential molecular mechanisms of drug therapy for stroke has also been gradually revealed by researchers. The characteristics of multi-components or multi-targets for ethnic drugs also provide the possibility to treat stroke from the perspective of mitochondrial MPTP. The advantages mentioned above make it necessary for us to explore and clarify the new perspective of ethnic medicine in treating stroke and to determine the specific molecular mechanisms through advanced technologies as much as possible. In this review, we attempt to uncover the relationship between abnormal MPTP opening and neuronal apoptosis in ischemic stroke. We further summarized currently authorized drugs, ethnic medicine prescriptions, herbs, and identified monomer compounds for inhibition of MPTP overopening-induced ischemic neuron apoptosis. Finally, we strive to provide a new perspective and enlightenment for ethnic medicine in the prevention and treatment of stroke by inhibition of MPTP overopening-induced neuronal apoptosis.
Collapse
Affiliation(s)
- Yangxin Li
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiayi Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruixia Wu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinrong Bai
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya Hou
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Zeng
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaobo Wang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang Wang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
22
|
Gao X, Huang C, Geng T, Chen X, Wang J, Liu J, Duan K, Cao L, Wang Z, Xiao W. Serum and urine metabolomics based on UPLC-Q-TOF/MS reveals the antipyretic mechanism of Reduning injection in a rat model. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112429. [PMID: 31812644 DOI: 10.1016/j.jep.2019.112429] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Reduning injection (RDN), a patented traditional Chinese medicine, has the obvious antipyretic effect and has been widely used in China. Although some previous studies proved its antipyretic effect by animal efficacy experiment or clinical observation, its holistic mechanism in vivo was still unclear. AIM OF THE STUDY To comprehensively elucidate the antipyretic mechanism of RDN, the investigation of fever-related potential biomarkers and metabolic pathways in the rat fever model is described in this paper. MATERIALS AND METHODS Rat fever model was established by dry yeast. A large number of endogenous metabolites in serum and urine were detected by UPLC-Q-TOF/MS, and fever-related potential biomarkers were screened and identified by multivariate analysis and metabolite databases. The reliability and biological significance of the largely disturbed biomarkers was verified by the metabolic network and the correlation with pharmacodynamic indicators, which contained IL-1β, IL-6, TNF-α, PGE2 and cAMP. RESULTS The established UPLC-Q-TOF/MS analytical method afforded satisfactory results in terms of precision, repeatability and stability, which met the requirements of biological sample determination. A total of 32 potential biomarkers associated with fever were screened and identified, among which 22 species could be adjusted by RDN. The metabolism pathway analysis revealed that valine, leucine and isoleucine biosynthesis, and sphingolipid metabolism were greatly disturbed. Their biomarkers involved L-leucine, L-valine, sphinganine and phytosphingosine, all of which showed a callback trend after RDN was given. These 4 biomarkers had a certain correlation with some known fever-related small molecules and pharmacodynamic indicators, which indicated that the selected fever-related biomarkers had certain reliability and biological significance. CONCLUSIONS RDN has a good regulation of the metabolic disorder of endogenous components in dry yeast-induced fever rats. Its antipyretic mechanism is mainly related to the regulation of amino acid, lipid and energy metabolism. The study is useful to better understand and analyze the pharmacodynamic mechanism of complex systems, such as traditional Chinese medicine.
Collapse
Affiliation(s)
- Xia Gao
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China
| | - Chaojie Huang
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China; China Pharmaceutical University, Nanjing, 210009, China
| | - Ting Geng
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China
| | - Xialin Chen
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China
| | - Jiajia Wang
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China
| | - Jingying Liu
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China; China Pharmaceutical University, Nanjing, 210009, China
| | - Kun Duan
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liang Cao
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China
| | - Zhenzhong Wang
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China
| | - Wei Xiao
- Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 210017, China; State Key Laboratory of Pharmaceutical New-Tech for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; National Enterprise Technology Center, National Post-doctoral Research Workstation, Jiangsu Enterprise Academician Workstation, Lianyungang, 222001, China.
| |
Collapse
|
23
|
Toxicity and Its Mechanism Study of Arecae semen Aqueous Extract in Wistar Rats by UPLC-HDMS-Based Serum Metabolomics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2716325. [PMID: 32071608 PMCID: PMC7011391 DOI: 10.1155/2020/2716325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
Background Arecae semen (AS) is officially recorded in Chinese Pharmacopoeia and it is known for its multiple functions, including antidepressive, antioxidant, anti-inflammatory, and cholesterol-lowering effects, which have been confirmed by modern pharmacological study. Previous study in our laboratory showed that long-term oral administration of Arecae semen (AS) is officially recorded in Chinese Pharmacopoeia and it is known for its multiple functions, including antidepressive, antioxidant, anti-inflammatory, and cholesterol-lowering effects, which have been confirmed by modern pharmacological study. Previous study in our laboratory showed that long-term oral administration of Hypothesis. The aim of this work was to characterize the metabolome, evaluate the metabolic changes, and study the mechanisms of the toxicity induced by different treatment doses of ASAE via metabolomics. Methods Wistar rats were administered orally two different doses of ASAE (1500 and 4500 mg/kg/d) for 30 days. The investigation was carried out to evaluate the safety of ASAE. And, the UPLC-HDMS-based serum metabolomics in conjunction with multivariate statistical techniques was applied to investigate the serum metabolite profile and potential markers of toxicity induced by different doses of ASAE. Results Coupled with blood biochemistry and histopathology results, the significant difference in metabolic profiling was observed between 1500 and 4500 mg/kg/d dosages of ASAE-treated rats and normal rats by using pattern recognition analysis, indicating that changes in serum metabolites must have occurred. Some significant changed metabolites such as arachidonic acid, linoleic acid, stearic acid, and LPC (18 : 1) have been found and identified. These biochemical changes in serum metabolites are related to the perturbation of linoleic acid metabolism, arachidonic acid metabolism, glycerophospholipid metabolism, and purine metabolism, which may be helpful to further understand the cardiotoxicity and neurotoxicity of ASAE. Conclusion The study shows that the metabolomic method may be a valuable tool for studying the essence of toxicity induced by traditional Chinese medicine.
Collapse
|
24
|
Gao J, Bai P, Li Y, Li J, Jia C, Wang T, Zhao H, Si Y, Chen J. Metabolomic Profiling of the Synergistic Effects of Ginsenoside Rg1 in Combination with Neural Stem Cell Transplantation in Ischemic Stroke Rats. J Proteome Res 2020; 19:2676-2688. [PMID: 31968172 DOI: 10.1021/acs.jproteome.9b00639] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jian Gao
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Peng Bai
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuanyuan Li
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jingzhong Li
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Caixia Jia
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tieshan Wang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Haibin Zhao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Yinchu Si
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jianxin Chen
- Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
25
|
Li HK, Zhang WD, Gu Y, Wu GS. Strategy of systems biology for visualizing the “Black box” of traditional Chinese medicine. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2020. [DOI: 10.4103/wjtcm.wjtcm_31_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
26
|
Metabolic profiling of chronic obstructive pulmonary disease model rats and the interventional effects of HuaTanJiangQi decoction using UHPLC-Q-TOF/MS E. J Pharm Biomed Anal 2019; 180:113078. [PMID: 31911286 DOI: 10.1016/j.jpba.2019.113078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 11/20/2022]
Abstract
The occurrence of chronic obstructive pulmonary disease (COPD) will lead to physiological and pathological variations and endogenous metabolic disorders. A traditional Chinese medicine formula, HuaTanJiangQi decoction (HTJQ), exhibits an unambiguous therapeutic effect on COPD in China. Nevertheless, the mechanism of its therapeutic effect on COPD is not clear. With this purpose, pulmonary function, histopathological and the inflammatory factors in bronchoalveolar lavage fluid (BALF) in rats model of COPD were investigated. Then, ultra high-performance liquid chromatography quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) analysis and multivariate statistical analysis were used to further reveal the mechanism of HTJQ therapeutic effect on COPD via metabolomics study. The results showed that the characteristics of lung tissues were significantly reversed, the concentration of LTB4 and LTC4 were gradually decreased, and the lung function began to recover after HTJQ treatment. These typical indicators of COPD in HTJQ intervention group were reversed similar to the control group, suggested that HTJQ has a therapeutic effect on COPD. Moreover, 32 dysregulated metabolites, including Thromboxane a2, Sphingosine 1-phosphate, PC(18:2(9Z,12Z)/18:1(11Z)), Leukotriene B4, Glutathione, Arachidonic acid, Sphingosylphosphocholine acid, N-Acetyl-leukotriene e4, Lysopc(18:1(11Z)), L-Cysteine, and Guanosine diphosphate. All the altered metabolites were associated with the onset and development of COPD, and involved in glycerophospholipid metabolism, sphingolipid metabolism, glutathione metabolism, and arachidonic acid metabolism, which were significantly changed in rats model with COPD. Generally, these findings provide a systematic view of metabolic changes linked to the onset and development of COPD, also indicated that HTJQ could provide satisfactory therapeutic effects on COPD and metabolomics study can be utilized to further understand the molecular mechanisms.
Collapse
|
27
|
Qi Y, Zhang Q, Zhu H. Huang-Lian Jie-Du decoction: a review on phytochemical, pharmacological and pharmacokinetic investigations. Chin Med 2019; 14:57. [PMID: 31867052 PMCID: PMC6918586 DOI: 10.1186/s13020-019-0277-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022] Open
Abstract
Huang-Lian Jie-Du decoction (HLJDD), a famous traditional Chinese prescription constituted by Rhizoma Coptidis, Radix Scutellariae, Cortex Phellodendri and Fructus Gradeniae, has notable characteristics of dissipating heat and detoxification, interfering with tumors, hepatic diseases, metabolic disorders, inflammatory or allergic processes, cerebral diseases and microbial infections. Based on the wide clinical applications, accumulating investigations about HLJDD focused on several aspects: (1) chemical analysis to explore the underlying substrates responsible for the therapeutic effects; (2) further determination of pharmacological actions and the possible mechanisms of the whole prescription and of those representative ingredients to provide scientific evidence for traditional clinical applications and to demonstrate the intriguing molecular targets for specific pathological processes; (3) pharmacokinetic feature studies of single or all components of HLJDD to reveal the chemical basis and synergistic actions contributing to the pharmacological and clinically therapeutic effects. In this review, we summarized the main achievements of phytochemical, pharmacological and pharmacokinetic profiles of HLJDD and its herbal or pharmacologically active chemicals, as well as our understanding which further reveals the significance of HLJDD clinically.
Collapse
Affiliation(s)
- Yiyu Qi
- 1Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,2Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China.,3Jiangsu Research Center of Botanical Medicine Refinement Engineering, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qichun Zhang
- 1Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,2Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China.,3Jiangsu Research Center of Botanical Medicine Refinement Engineering, Nanjing University of Chinese Medicine, Nanjing, China.,4Department of Pharmacology, Pharmacy College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huaxu Zhu
- 1Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,2Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China.,3Jiangsu Research Center of Botanical Medicine Refinement Engineering, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
28
|
Wang N, Yang B, Zhang J, Zheng Y, Wang S, Zhang X, Situ H, Lin Y, Wang Z. Metabolite profiling of traditional Chinese medicine XIAOPI formula: An integrated strategy based on UPLC-Q-Orbitrap MS combined with network pharmacology analysis. Biomed Pharmacother 2019; 121:109569. [PMID: 31739163 DOI: 10.1016/j.biopha.2019.109569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/16/2019] [Accepted: 10/20/2019] [Indexed: 02/07/2023] Open
Abstract
XIAOPI formula has been approved for mammary hyperplasia treatment by National Medical Products Administration in China. However, the absorbed substances of XIAOPI formula and their influences on metabolic pathways are largely remained unknown. Liquid chromatography coupled with mass spectrometry was used to identify the substances existing in the serum. Network pharmacology was utilized to explore the underlying metabolic targets and pathways involved in. Western blotting and immunofluorescence assays were carried out for target validation. The exogenous results demonstrated 196 compounds were filtered as absorbed substances, among which 63 constituents or metabolites were tentatively identified in rat serum, and the metabolites of tanshinone II and tanshinone I were found to act as the major metabolic pathways. Subsequently, the endogenous results revealed that XIAOPI formula could significantly regulate serum biochemical indices and the bile acid secretion signaling ranks as top1 among all the involved pathways. The levels of intermediates including cholic acid, glycocholic acid, taurochenodeoxycholic acid and taurocholic acid were significantly upregulated following XIAOPI treatment, accompanied by increased expression of key enzyme CYP7A1, indicating that XIAOPI formula could accelerate the bile acid metabolism pathway. Our study presented a comprehensive metabolic profile of XIAOPI formula in vivo for the first time, and bile acid synthesis pathway might be one of the key mechanisms contributing to the pharmacological function of the formula.
Collapse
Affiliation(s)
- Neng Wang
- Research Center of Integrative Medicine, School of basic medical sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Integrative Research Laboratory of Breast Cancer, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Bowen Yang
- Research Center of Integrative Medicine, School of basic medical sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Integrative Research Laboratory of Breast Cancer, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Juping Zhang
- Research Center of Integrative Medicine, School of basic medical sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Integrative Research Laboratory of Breast Cancer, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Yifeng Zheng
- Research Center of Integrative Medicine, School of basic medical sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Integrative Research Laboratory of Breast Cancer, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Shengqi Wang
- Research Center of Integrative Medicine, School of basic medical sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Integrative Research Laboratory of Breast Cancer, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Xiaotong Zhang
- Research Center of Integrative Medicine, School of basic medical sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Integrative Research Laboratory of Breast Cancer, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Honglin Situ
- Research Center of Integrative Medicine, School of basic medical sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Integrative Research Laboratory of Breast Cancer, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Yi Lin
- Research Center of Integrative Medicine, School of basic medical sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Integrative Research Laboratory of Breast Cancer, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, Guangdong, China.
| | - Zhiyu Wang
- Research Center of Integrative Medicine, School of basic medical sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Integrative Research Laboratory of Breast Cancer, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
29
|
Wang XJ, Ren JL, Zhang AH, Sun H, Yan GL, Han Y, Liu L. Novel applications of mass spectrometry-based metabolomics in herbal medicines and its active ingredients: Current evidence. MASS SPECTROMETRY REVIEWS 2019; 38:380-402. [PMID: 30817039 DOI: 10.1002/mas.21589] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Current evidence shows that herbal medicines could be beneficial for the treatment of various diseases. However, the complexities present in chemical compositions of herbal medicines are currently an obstacle for the progression of herbal medicines, which involve unclear bioactive compounds, mechanisms of action, undetermined targets for therapy, non-specific features for drug metabolism, etc. To overcome those issues, metabolomics can be a great to improve and understand herbal medicines from the small-molecule metabolism level. Metabolomics could solve scientific difficulties with herbal medicines from a metabolic perspective, and promote drug discovery and development. In recent years, mass spectrometry-based metabolomics was widely applied for the analysis of herbal constituents in vivo and in vitro. In this review, we highlight the value of mass spectrometry-based metabolomics and metabolism to address the complexity of herbal medicines in systems pharmacology, and to enhance their biomedical value in biomedicine, to shed light on the aid that mass spectrometry-based metabolomics can offer to the investigation of its active ingredients, especially, to link phytochemical analysis with the assessment of pharmacological effect and therapeutic potential. © 2019 Wiley Periodicals, Inc. Mass Spec Rev.
Collapse
Affiliation(s)
- Xi-Jun Wang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning Guangxi, China
| | - Jun-Ling Ren
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Hui Sun
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Guang-Li Yan
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Han
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| |
Collapse
|
30
|
Zhou J, Yao N, Wang S, An D, Cao K, Wei J, Li N, Zhao D, Wang L, Chen X, Lu Y. Fructus Gardeniae-induced gastrointestinal injury was associated with the inflammatory response mediated by the disturbance of vitamin B6, phenylalanine, arachidonic acid, taurine and hypotaurine metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2019; 235:47-55. [PMID: 30735766 DOI: 10.1016/j.jep.2019.01.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/17/2018] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fructus Gardenia (FG) is a widely used bitter and cold herb for clearing heat and detoxicating. Currently, toxicity of FG and its relative formula has been reported in many clinical and animal studies. However, no systematic research has been carried out on FG-related gastrointestinal (GI) injury which has been emphasized in China since the Ming Dynasty. AIM OF THE STUDY The purpose of this article is to investigate whether FG could damage GI and explore the mechanisms involved. MATERIAL AND METHODS FG was given to male mice by 7-day intragastric administration at average doses of 0.90 g (L group), 1.50 g (M group), and 3.00 g (H group) crude drug/kg FG. Comprehensive understanding of changes in weight, diarrhea degree, stool routine, histomorphology and inflammatory factors of stomach, small intestine, and colon for evaluating the effect of different doses of FG on GI injury. Moreover, metabolomics-based mechanisms exploration of FG on GI injury was carried out via HPLC-Q-TOF/MS analysis on mice urine. RESULTS High dose FG caused GI injury with serious diarrhea, decreased weight, abnormal stool routine, sever alteration in histomorphology of small intestine and colon (mild change in stomach), and significant change in inflammatory factors. The results of metabolomics suggested that 55 endogenous metabolites dispersed in 21 significantly altered metabolic pathways in 3.00 g/kg crude FG treated mice. The hub metabolites of GI injury were mainly related with vitamin B6 metabolism, phenylalanine metabolism, arachidonic acid metabolism, and taurine and hypotaurine metabolism via correlated network analysis. CONCLUSION FG affected the normal functions of GI via the regulating a variety of metabolic pathways to an abnormal state, and our results provided a research paradigm for the GI-injury of the relative bitter and cold traditional Chinese medicines.
Collapse
Affiliation(s)
- Jing Zhou
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Longmian Avenue No. 639, 211198 Nanjing, Jiangsu province, China; Nanjing University of Chinese Medicine, Department of Pharmaceutical Analysis and Metabolomics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Hongshan Road Shizi Street No. 100, 210028 Nanjing, Jiangsu province, China
| | - Nan Yao
- Nanjing University of Chinese Medicine, Department of Pharmaceutical Analysis and Metabolomics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Hongshan Road Shizi Street No. 100, 210028 Nanjing, Jiangsu province, China
| | - Shuxia Wang
- Nanjing University of Chinese Medicine, Department of Pharmaceutical Analysis and Metabolomics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Hongshan Road Shizi Street No. 100, 210028 Nanjing, Jiangsu province, China
| | - Dongchen An
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Longmian Avenue No. 639, 211198 Nanjing, Jiangsu province, China
| | - Kangna Cao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Longmian Avenue No. 639, 211198 Nanjing, Jiangsu province, China
| | - Jiali Wei
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Longmian Avenue No. 639, 211198 Nanjing, Jiangsu province, China
| | - Ning Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Longmian Avenue No. 639, 211198 Nanjing, Jiangsu province, China
| | - Di Zhao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Longmian Avenue No. 639, 211198 Nanjing, Jiangsu province, China
| | - Lirui Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Longmian Avenue No. 639, 211198 Nanjing, Jiangsu province, China.
| | - Xijing Chen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Longmian Avenue No. 639, 211198 Nanjing, Jiangsu province, China.
| | - Yang Lu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Longmian Avenue No. 639, 211198 Nanjing, Jiangsu province, China.
| |
Collapse
|
31
|
Fu X, Wang J, Liao S, Lv Y, Xu D, Yang M, Kong L. 1H NMR-Based Metabolomics Reveals Refined-Huang-Lian-Jie-Du-Decoction (BBG) as a Potential Ischemic Stroke Treatment Drug With Efficacy and a Favorable Therapeutic Window. Front Pharmacol 2019; 10:337. [PMID: 31031621 PMCID: PMC6474285 DOI: 10.3389/fphar.2019.00337] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/19/2019] [Indexed: 12/16/2022] Open
Abstract
Huang-Lian-Jie-Du-Decoction (HLJDD) is a traditional Chinese medicine (TCM) used to treat ischemic stroke. However, the complexity of its chemical composition makes quality control difficult. Berberine, baicalin, and geniposide are the three main ingredients in HLJDD. Here, a formula of BBG comprised of berberine, baicalin, and geniposide, known as Refined-Huang-Lian-Jie-Du-Decoction, was investigated for its efficacy, therapeutic window, and mechanisms of action. BBG was assessed on two major types of ischemic stroke, cerebral ischemia-reperfusion (I/R) injury, and continuous ischemia injury, respectively. BBG showed efficacy comparable to HLJDD in the treatment of cerebral I/R injury within 5 h after injury initiation but did poorly in treating continuous ischemia injury. BBG exhibited neuroprotective effects on cerebral I/R injury by regaining the balance in energy metabolism, oxidative stress, amino acid metabolism, inflammation, and nucleic acid metabolism. These results suggested that BBG could be a good alternative to HLJDD, with high efficacy and a long therapeutic window, which shows great potential for drug development to treat stroke.
Collapse
Affiliation(s)
- Xiaowei Fu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Junsong Wang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Shanting Liao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yan Lv
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Dingqiao Xu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Minghua Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
32
|
Sohn E, Kim YJ, Lim HS, Kim BY, Jeong SJ. Hwangryunhaedok-Tang Exerts Neuropreventive Effect on Memory Impairment by Reducing Cholinergic System Dysfunction and Inflammatory Response in a Vascular Dementia Rat Model. Molecules 2019; 24:molecules24020343. [PMID: 30669383 PMCID: PMC6358959 DOI: 10.3390/molecules24020343] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 01/02/2023] Open
Abstract
Hwangryunhaedok-tang (HRT) is a traditional oriental herbal formula used in Asian countries for treating inflammatory diseases and controlling fever. Our present study aimed to determine whether HRT has therapeutic effects for patients with vascular dementia (VaD) using a bilateral common carotid artery occlusion (BCCAO) rat model and assessing spatial memory impairment and activation of neuroinflammation. BCCAO was performed in male Sprague Dawley rats to induce VaD, and oral HRT was administered daily for 30 d. Our data showed that HRT ameliorated BCCAO-induced memory and cognitive impairment in behavioral tests. In addition, HRT reversed cholinergic dysfunction and neuronal damage in the hippocampus of BCCAO rats. Furthermore, HRT attenuated microglial activation and reduced the phosphorylation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase (JNK) induced by BCCAO. Simultaneous high-performance liquid chromatography analysis of HRT using index compounds from the herbal composition revealed that both HRT ethanol extract and commercial HRT granules primarily comprise geniposide, baicalin, and berberine. Our study showed that HRT administration resulted in the prevention of neuronal injury induced by BCCAO through improvement of cholinergic dysfunction and inhibition of neuroinflammatory responses, suggesting that HRT may have potential as a treatment for VaD.
Collapse
Affiliation(s)
- Eunjin Sohn
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Yu Jin Kim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Hye-Sun Lim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Bu-Yeo Kim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Soo-Jin Jeong
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| |
Collapse
|
33
|
Yang Q, Zhang AH, Miao JH, Sun H, Han Y, Yan GL, Wu FF, Wang XJ. Metabolomics biotechnology, applications, and future trends: a systematic review. RSC Adv 2019; 9:37245-37257. [PMID: 35542267 PMCID: PMC9075731 DOI: 10.1039/c9ra06697g] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 11/03/2019] [Indexed: 12/12/2022] Open
Abstract
Given the highly increased incidence of human diseases, a better understanding of the related mechanisms regarding endogenous metabolism is urgently needed. Mass spectrometry-based metabolomics has been used in a variety of disease research areas. However, the deep research of metabolites remains a difficult and lengthy process. Fortunately, mass spectrometry is considered to be a universal tool with high specificity and sensitivity and is widely used around the world. Mass spectrometry technology has been applied to various basic disciplines, providing technical support for the discovery and identification of endogenous substances in living organisms. The combination of metabolomics and mass spectrometry is of great significance for the discovery and identification of metabolite biomarkers. The mass spectrometry tool could further improve and develop the exploratory research of the life sciences. This mini review discusses metabolomics biotechnology with a focus on recent applications of metabolomics as a powerful tool to elucidate metabolic disturbances and the related mechanisms of diseases. Given the highly increased incidence of human diseases, a better understanding of the related mechanisms regarding endogenous metabolism is urgently needed.![]()
Collapse
Affiliation(s)
- Qiang Yang
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Ai-hua Zhang
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Jian-hua Miao
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Hui Sun
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Ying Han
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Guang-li Yan
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Fang-fang Wu
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Xi-jun Wang
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| |
Collapse
|
34
|
Qin Z, Wang W, Liao D, Wu X, Li X. UPLC-Q/TOF-MS-Based Serum Metabolomics Reveals Hypoglycemic Effects of Rehmannia glutinosa, Coptis chinensis and Their Combination on High-Fat-Diet-Induced Diabetes in KK-Ay Mice. Int J Mol Sci 2018; 19:ijms19123984. [PMID: 30544908 PMCID: PMC6320869 DOI: 10.3390/ijms19123984] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 12/25/2022] Open
Abstract
Diabetes is a worldwide severe health issue which causes various complications. This study aimed to evaluate the hypoglycemic effects of Rehmannia glutinosa (RG), Coptis chinensis (CC) alone and their combination on high-fat-diet-induced diabetes in mice via biochemical assays and UPLC-Q/TOF-MS-based serum metabolomic analysis. Diabetic KK-Ay mice were induced by high-fat diet and treated for eight weeks, separately with RG, CC and their combination and the positive control drug metformin. Administration of RG and CC alone, and their combination could decrease the fasting blood glucose level, ameliorate the tolerance of glucose, and recover the levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) in sera of diabetic mice. Orthogonal partial least squares discriminant analysis (OPLS-DA) on serum metabolomes revealed that 79 ESI+ and 76 ESI− metabolites were changed by diabetes mellitus (DM) compared to the normal control. Heatmaps on these diabetes-related metabolites showed that CC and RG/CC were clustered closer with the normal control, indicating that they had the better antidiabetic effects at the metabolite level. Fifteen of the differential metabolites in DM serum were annotated and their related metabolic pathways were lipid metabolism. These data suggested that RG and CC alone and in combination treatment had the antidiabetic activity in lowering glycemia and improving lipid metabolism. UPLC-Q/TOF-MS-based metabolomics shed light on the differential metabolite effects of RG and CC in DM treatment. However, it should be noted that some differential metabolites were possibly generated or not detected due to our groupwise run order, which possibly contributed to or covered the group difference in our experiment. They need to be further discriminated in the future work.
Collapse
Affiliation(s)
- Zhenxian Qin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Wei Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Dengqun Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Xiaoying Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Xian'en Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
35
|
Wei DD, Wang JS, Duan JA, Kong LY. Metabolomic Assessment of Acute Cholestatic Injuries Induced by Thioacetamide and by Bile Duct Ligation, and the Protective Effects of Huang-Lian-Jie-Du-Decoction. Front Pharmacol 2018; 9:458. [PMID: 29867467 PMCID: PMC5952270 DOI: 10.3389/fphar.2018.00458] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/18/2018] [Indexed: 12/22/2022] Open
Abstract
Huang-Lian-Jie-Du-Decoction, a traditional Chinese formula, has been reported to protect liver from various injuries. Two cholestasis models of rats induced by thioacetamide and by bile duct ligation were established and treated with Huang-Lian-Jie-Du-Decoction. Nuclear Magnetic Resonance-based urinary metabolic profiles were analyzed by orthogonal partial least squares discriminant analysis and univariate analysis to excavate differential metabolites associated with the injuries of the two models and the treatment effects of Huang-Lian-Jie-Du-Decoction. The two cholestatic models shared common metabolic features of excessive fatty acid oxidation, insufficient glutathione regeneration and disturbed gut flora, with specific characteristics of inhibited urea cycle and DNA damage in thioacetamide-intoxicated model, and perturbed Kreb's cycle and inhibited branched chain amino acid oxidation in bile duct ligation model. With good treatment effects, Huang-Lian-Jie-Du-Decoction could regain the balance of the disturbed metabolic status common in the two cholestasis injuries, e.g., unbalanced redox system and disturbed gut flora; and perturbed urea cycle in thioacetamide-intoxicated model and energy crisis (disturbed Kreb's cycle and oxidation of branched chain amino acid) in bile duct ligation model, respectively.
Collapse
Affiliation(s)
- Dan-Dan Wei
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Jun-Song Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling-Yi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| |
Collapse
|