1
|
Wang Z, Liu S, Li S, Wei F, Lu X, Zhao P, Sun C, Yao J. Jingfang Granules alleviates OVA-induced allergic rhinitis through regulating endoplasmic reticulum stress signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119039. [PMID: 39510425 DOI: 10.1016/j.jep.2024.119039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/12/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jingfang Granules (JF) is a modified herbal compound preparation that is empirically used in clinical practice for the treatment of allergic diseases. Nevertheless, the role of JF in allergic rhinitis (AR) has yet to be demonstrated, and its potential mechanisms of action remain to be fully evaluated. AIM OF STUDY The objective of this research is to examine the underlying mechanisms by which JF can be used to treat AR. This will be achieved through the use of an ovalbumin (OVA)/aluminum hydroxide AR model in mice. MATERIALS AND METHODS ICR mice were administered an intraperitoneal (i.p.) injection of OVA/aluminium hydroxide in order to permit the establishment of an AR model. Following the intragastric administration of JF to the mice, testing nose scratching and sneezing behavior in mice to determine modeling status, and stained transverse sections of the mouse nose using the Hematoxylin and Eosin (H&E) method were in vitro evaluated to assess the histological effects of JF on mice with AR. The regulatory network was subjected to proteomic and metabolomic investigation. The expression of serum cytokines as well as histamine (HIS) was detected using ELISA kits. Protein expression in nasal mucosal tissues was identified through the use of a Western blot. RESULTS JF demonstrated a notable reduction in nose-scratching and sneezing in AR mice. Concurrently, JF markedly reduced IgE, IL-4, IL-6, IL-13, TNF-α and HIS levels while elevating IFN-γ levels in the serum of AR mice. This was achieved by inhibiting the endoplasmic reticulum (ER) stress-related protein associated proteins including GADD and ATF4, p-eIF2α, p-IRE1α, XBP1s and p-PERK. Proteomics, metabolomics, Western blotting and Quantitative Real-time polymerase chain reaction (qPCR) results confirmed that JF inhibits the glycolysis/arginine biosynthesis pathway by suppressing the ER stress (ERs) signaling pathway, which in turn inhibits the inflammatory response. CONCLUSION Findings from the present study indicate that JF is an efficacious treatment for OVA/aluminum hydroxide-induced nasal mucosal injury and inflammation in mice. Furthermore, the study demonstrated that JF exhibited anti-AR clinic pharmacological effects by modulating the ERs signaling pathway and inhibiting glycolysis as well as arginine biosynthesis.
Collapse
Affiliation(s)
- Zhikang Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China
| | - Shujun Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Shirong Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Fangjiao Wei
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiaoyan Lu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China
| | - Pan Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Chenghong Sun
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China; College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, 277160, China.
| | - Jingchun Yao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| |
Collapse
|
2
|
Wang XZ, Huang JL, Zhang J, Li QH, Zhang PP, Wu C, Jia YY, Su H, Sun X. Fecal microbiota transplantation as a new way for OVA-induced atopic dermatitis of juvenile mice. Int Immunopharmacol 2024; 142:113183. [PMID: 39298815 DOI: 10.1016/j.intimp.2024.113183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 07/31/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Children all over the world suffer from atopic dermatitis (AD), a prevalent condition that impairs their health. Corticosteroids, which have long-term negative effects, are frequently used to treat AD. There has been a growing body of research on the gut microbiota's function in AD. Nevertheless, the function and underlying mechanisms of fecal microbiota transplantation (FMT) in AD children remain to be established. Therefore, in order to assess the preventive effects of FMT treatment on AD and investigate the mechanisms, we constructed an ovalbumin (OVA)-induced juvenile mouse AD model in this investigation. This study explored the role and mechanism of FMT treatment in AD through 16S RNA sequencing, pathological histological staining, molecular biology, and Flow cytometry. Results demonstrated that the FMT treatment improved the gut microbiota's diversity and composition, bringing it back to a level similar to that of a close donor. Following FMT treatment, OVA-specific antibodies were inhibited, immunoglobulin (Ig) E production was decreased, the quantity of mast cells and eosinophils was decreased, and specific inflammatory markers in the skin and serum were decreased. Further mechanistic studies revealed that FMT treatment induced CD103+ DCs and programmed cell death ligand 1 (PD-L1)/programmed cell death 1 (PD-1) expression in skin-draining lymph nodes and promoted Treg production to induce immune tolerance and suppress skin inflammation. Meanwhile, changes in the gut microbiota were substantially correlated with Th2 cytokines, OVA-specific antibodies, and PD-L1/PD-1. In conclusion, FMT regulates the Th1/Th2 immunological balance and the gut microbiota. It may also inhibit AD-induced allergy responses through the PD-L1/PD-1 pathway, and providing a unique idea and possibly a fresh approach to the treatment of AD.
Collapse
Affiliation(s)
- Xing-Zhi Wang
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China
| | - Jin-Li Huang
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China
| | - Juan Zhang
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China
| | - Qiu-Hong Li
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China
| | - Pan-Pan Zhang
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China
| | - Cheng Wu
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China
| | - Yuan-Yuan Jia
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China
| | - Hui Su
- Department of Geriatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China.
| | - Xin Sun
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
3
|
Moussa AY, Luo J, Xu B. Insights into Chemical Diversity and Potential Health-Promoting Effects of Ferns. PLANTS (BASEL, SWITZERLAND) 2024; 13:2668. [PMID: 39339643 PMCID: PMC11434777 DOI: 10.3390/plants13182668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
The scientific community is focusing on how to enhance human health and immunity through functional foods, and dietary supplements are proven to have a positive as well as a protective effect against infectious and chronic diseases. Ferns act as a taxonomical linkage between higher and lower plants and are endowed with a wide chemical diversity not subjected to sufficient scrutinization before. Even though a wealth of traditional medicinal fern uses were recorded in Chinese medicine, robust phytochemical and biological investigations of these plants are lacking. Herein, an extensive search was conducted using the keywords ferns and compounds, ferns and NMR, ferns and toxicity, and the terms ferns and chemistry, lignans, Polypodiaceae, NMR, isolation, bioactive compounds, terpenes, phenolics, phloroglucinols, monoterpenes, alkaloids, phenolics, and fatty acids were utilized with the Boolean operators AND, OR, and NOT. Databases such as PubMed, Web of Science, Science Direct, Scopus, Google Scholar, and Reaxys were utilized to reveal a wealth of information regarding fern chemistry and their health-promoting effects. Terpenes followed by phenolics represented the largest number of isolated active compounds. Regarding the neuroprotective effects, Psilotium, Polypodium, and Dryopteris species possessed as their major phenolics component unique chemical moieties including catechins, procyanidins, and bioflavonoids. In this updated chemical review, the pharmacological and chemical aspects of ferns are compiled manifesting their chemical diversity in the last seven years (2017-2024) together with a special focus on their nutritive and potential health-promoting effects.
Collapse
Affiliation(s)
- Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Jinhai Luo
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, 2000 Jintong Road, Tangjiawan, Zhuhai 519087, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, 2000 Jintong Road, Tangjiawan, Zhuhai 519087, China
| |
Collapse
|
4
|
Bai QX, Zhang ZJ, Tang HP, Yang BY, Kuang HX, Wang M. Dryopteris crassirhizoma Nakai.: A review of its botany, traditional use, phytochemistry, pharmacological activity, toxicology and pharmacokinetics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118109. [PMID: 38570147 DOI: 10.1016/j.jep.2024.118109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/04/2024] [Accepted: 03/24/2024] [Indexed: 04/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Dryopteris crassirhizoma Nakai., a commonly used herb, is known as "Guan Zhong" in China, "Oshida" in Japan and "Gwanjung" in Korea. It has long been used for parasitic infestation, hemorrhages and epidemic influenza. AIM OF THE REVIEW The present paper aims to provide an up-to-date review at the advancements of the investigations on the traditional use, phytochemistry, pharmacological activity, toxicology and pharmacokinetics of D. crassirhizoma. Besides, possible trends, therapeutic potentials, and perspectives for future research of this plant are also briefly discussed. MATERIALS AND METHODS Relevant information on traditional use, phytochemistry, pharmacological activity, toxicology and pharmacokinetics of D. crassirhizoma was collected through published materials and electronic databases, including the Chinese Pharmacopoeia, Flora of China, Web of Science, PubMed, Baidu Scholar, Google Scholar, and China National Knowledge Infrastructure. 109 papers included in the article and we determined that no major information was missing after many checks. All authors participated in the review process for this article and all research paper are from authoritative published materials and electronic databases. RESULTS 130 chemical components, among which phloroglucinols are the predominant groups, have been isolated and identified from D. crassirhizoma. D. crassirhizoma with its bioactive compounds is possessed of extensive biological activities, including anti-parasite, anti-microbial, anti-viral, anti-cancer, anti-inflammatory, anti-oxidant, anti-diabetic, bone protective, immunomodulatory, anti-platelet and anti-hyperuricemia activity. Besides, D. crassirhizoma has special toxicology and pharmacokinetics characterization. CONCLUSIONS D. crassirhizoma is a traditional Chinese medicine having a long history of application. This review mainly summarized the different chemical components extract from D. crassirhizoma and various reported pharmacological effects. Besides, the toxicology and pharmacokinetics of D. crassirhizoma also be analysed in this review. However, the chemical components of D. crassirhizoma are understudied and require further research to expand its medicinal potential, and it is urgent to design a new extraction scheme, so that the active ingredients can be obtained at a lower cost.
Collapse
Affiliation(s)
- Qian-Xiang Bai
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Zhao-Jiong Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Hai-Peng Tang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| |
Collapse
|
5
|
Hong D, Hu Z, Weng J, Yang L, Xiong Y, Liu Y. Effect of mesenchymal stem cell therapy in animal models of allergic rhinitis: A systematic review and meta-analysis. Int Immunopharmacol 2023; 124:111003. [PMID: 37806104 DOI: 10.1016/j.intimp.2023.111003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Allergic rhinitis (AR) is a worldwide problem that affects people of all ages, impairing patients' physical and mental health and causing great social expenditure. Animal studies have suggested the potential efficacy of mesenchymal stem cell (MSC) therapy in treating AR. Our meta-analysis was performed to evaluate the effect of MSC therapy in animal models of AR by pooling animal studies. METHODS The search was executed in PubMed, Embase, Web of Science, OVID, and the Cochrane Library for relevant studies up to February 2023. The applicable data were extracted from the eligible studies, and the risk of bias was assessed for each study. The meta-analysis was conducted using Review Manager (version 5.4.1) and Stata (version 15.1). RESULTS A total of 12 studies were included in the final analysis. Compared to the model control group, the MSC therapy group presented lower frequency of sneezing [(Standardized mean difference (SMD) -1.87, 95% CI -2.30 to -1.43)], nasal scratching (SMD -1.41, 95% CI -1.83 to -0.99), and overall nasal symptoms (SMD -1.88, 95% CI -3.22 to -0.54). There were also remarkable reductions after transplantation with MSCs in the levels of total immunoglobulin E (IgE) (SMD -1.25, 95% CI -1.72 to -0.79), allergen-specific IgE (SMD -1.79, 95% CI -2.25 to -1.32), and allergen-specific immunoglobulin G1 (SMD -1.29, 95% CI -2.03) in serum, as well as the count of eosinophils (EOS) in nasal mucosa (SMD -3.48, 95% CI -4.48 to -2.49). In terms of cytokines, MSC therapy significantly decreased both protein and mRNA levels of T helper cell 2 (Th2)-related cytokines, including interleukin (IL)-4, IL-5, IL-10, and IL-13. CONCLUSION MSC therapy has the potential to be an effective clinical treatment for AR patients by attenuating Th2 immune responses, reducing secretion of IgE and nasal infiltration of EOS, and consequently alleviating nasal symptoms.
Collapse
Affiliation(s)
- Dongdong Hong
- Department of Otorhinolaryngology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Zhen Hu
- Department of Otorhinolaryngology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Juanling Weng
- Department of Otorhinolaryngology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Long Yang
- Department of Otorhinolaryngology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Yalan Xiong
- Department of Otorhinolaryngology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Yuanxian Liu
- Department of Otorhinolaryngology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China.
| |
Collapse
|
6
|
Chen X, Zhou L, Ma H, Wu J, Liu S, Wu Y, Yan D. Mitochondrial dynamics modulate the allergic inflammation in a murine model of allergic rhinitis. Immun Inflamm Dis 2023; 11:e1002. [PMID: 37773697 PMCID: PMC10515506 DOI: 10.1002/iid3.1002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 10/01/2023] Open
Abstract
OBJECTIVE Allergic rhinitis (AR) is a common allergic disorder, afflicting thousands of human beings. Aberrant mitochondrial dynamics are important pathological elements for various immune cell dysfunctions and allergic diseases. However, the connection between mitochondrial dynamics and AR remains poorly understood. This study aimed to determine whether mitochondrial dynamics influence the inflammatory response in AR. METHODS In the present study, we established a murine model of AR by sensitization with ovalbumin (OVA). Then, we investigated the mitochondrial morphology in mice with AR by transmission electron microscopy and confocal fluorescence microscopy, and evaluated the role of Mdivi-1 (an inhibitor of mitochondrial fission) on allergic symptoms, inflammatory responses, allergic-related signals, and reactive oxygen species formation. RESULTS There was a notable enhancement in mitochondrial fragmentation in the nasal mucosa of mice following OVA stimulation, whereas Mdivi-1 prevented aberrant mitochondrial morphology. Indeed, Mdivi-1 alleviated the rubbing and sneezing responses in OVA-sensitized mice. Compared with vehicle-treated ones, mice treated with Mdivi-1 exhibited a reduction in interleukin (IL)-4, IL-5, and specific IgE levels in both serum and nasal lavage fluid, and shown an amelioration in inflammatory response of nasal mucosa. Meanwhile, Mdivi-1 treatment was associated with a suppression in JAK2 and STAT6 activation and reactive oxygen species generation, which act as important signaling for allergic response. CONCLUSION Our findings reveal mitochondrial dynamics modulate the allergic responses in AR. Mitochondrial dynamics may represent a promising target for the treatment of AR.
Collapse
Affiliation(s)
- Xu‐qing Chen
- Department of Otolaryngology, Jiangsu Province Hospital of Chinese MedicineAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Long‐yun Zhou
- Department of Rehabilitation Medicine, Jiangsu Province HospitalThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Hua‐an Ma
- Department of Otolaryngology, Jiangsu Province Hospital of Chinese MedicineAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Ji‐yong Wu
- Department of Otolaryngology, Jiangsu Province Hospital of Chinese MedicineAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Shu‐fen Liu
- Spine Disease Institute, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yong‐jun Wu
- Department of Otolaryngology, Jiangsu Province Hospital of Chinese MedicineAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
- The First Clinical Medical CollegeNanjing University of Chinese MedicineNanjingChina
| | - Dao‐nan Yan
- Department of Otolaryngology, Jiangsu Province Hospital of Chinese MedicineAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
- The First Clinical Medical CollegeNanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
7
|
Li H, Wang Y, Han X. ESP-B4 promotes nasal epithelial cell-derived extracellular vesicles containing miR-146a-5p to modulate Smad3/GATA-3 thus relieving allergic rhinitis: ESP-B4/miR-146a-5p in AR. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154516. [PMID: 36370637 DOI: 10.1016/j.phymed.2022.154516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
BACKGROUND Though generally a mild affliction, allergic rhinitis (AR) is very common and causes considerable discomfort. Ephedra sinica polysaccharide is a candidate cost-effective therapy to relieve AR symptoms. PURPOSE We explore the molecular mechanism of pure polysaccharide ESP-B4 action in AR. METHODS RPMI2650 cells were treated with lipopolysaccharide to induce an in vitro sensitization model, and extracellular vesicles (EVs) were isolated. A rat model of AR was established using ovalbumin as the allergen and was treated with Ephedra sinica polysaccharide to observe changes in rhinitis symptoms, nasal mucosa histopathology and molecular pathology. ESP-B4-treated sensitized cells were adopted in vitro to verify effect of Ephedra sinica polysaccharide on miR-146a-5p expression in RPMI2650 cell-derived EVs and helper T cell differentiation. RESULTS miR-146a-5p inhibited Smad3, impeded the Smad3/GATA-3 interaction, upregulated IFN-γ expression, and promoted CD4+T cell Th1 differentiation. Treatment with ESP-B4 relieved AR in rats, and elevated miR-146a-5p in the EVs from the nasal epithelial cells, apparently in relation to effects on helper T cell Th1/Th2 equilibrium. CONCLUSION Overall, ESP-B4 can promote miR-146a-5p secretion, affect the Th1/Th2 balance of helper T cells, and relieve AR symptoms through Smad3/GATA-3 interaction, thus presenting a potential strategy for AR treatment.
Collapse
Affiliation(s)
- He Li
- Department of Otolaryngology, the Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji'nan 250001, PR China
| | - Yuming Wang
- Department of Otolaryngology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji'nan 250014, PR China.
| | - Xiuli Han
- Department of Otolaryngology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji'nan 250014, PR China
| |
Collapse
|
8
|
Chen H, Cheng Y, Du H, Zhang C, Zhou Y, Zhao Z, Li Y, Friedemann T, Mei J, Schröder S, Chen M. Shufeng Jiedu capsule ameliorates olfactory dysfunction via the AMPK/mTOR autophagy pathway in a mouse model of allergic rhinitis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154426. [PMID: 36116201 DOI: 10.1016/j.phymed.2022.154426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/17/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Shufeng Jiedu capsule (SFJDC) has been widely used as a conventional Chinese pharmaceutical agent for various upper respiratory infections, including acute lung injury, acute respiratory distress syndrome and allergic rhinitis (AR). However, its mechanism in AR remains unclear. PURPOSE The present study aimed to decipher the antiallergic inflammatory effect of SFJDC in an AR model with olfactory dysfunction. Specifically, we wanted to explore whether SFJDC can improve the olfactory abnormality in AR mice and reduce the levels of inflammatory factors in the olfactory epithelium (OE) and olfactory bulb (OB). METHODS To address the above issues, we constructed an AR model using C57BL/6 mice, which were sensitised and challenged with ovalbumin (OVA) by intraperitoneal injection. SFJDC (0.045 or 0.18 g/kg) was delivered by gavage administration 1 h prior to the intraperitoneal injection of OVA. The control mice received saline alone. Then, the animals were assessed according to the presence of nasal symptoms and nasal inflammation, and a buried food test was used to evaluate olfactory function. The levels of proteins involved in the AMPK/mTOR autophagy pathway in the OE and OB were investigated by western blotting and fluorescence staining. RESULTS After OVA induction of AR and drug administration, we found that SFJDC significantly ameliorated the nasal symptoms and allergic inflammatory reaction of the nasal mucosa superior to cetirizine. A behavioural test indicated that the mice with AR had olfactory dysfunction, and SFJDC can ameliorate this behavior deficiency. Meanwhile, SFJDC clearly reduced the neuroinflammation level in OE tissue. In addition, SFJDC increased p-mTOR and decreased p-AMPK, beclin1, LC3 and cleaved caspase-3 levels in the OE. CONCLUSIONS In addition to antibacterial and antiviral activities, SFJDC has marked anti-inflammatory effects in AR mice. Its mechanism of action in the nasal cavity involves inhibition of upregulated anti-inflammatory cytokines, modulation of autophagy and apoptosis levels and regulation of autophagy through the AMPK/mTOR pathway in the OE tissue of AR mice. Hence, SFJDC is a promising drug for AR, and clinical trials should further validate the therapeutic impact of SFJDC on AR with olfactory dysfunction.
Collapse
Affiliation(s)
- Hongjun Chen
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Yujie Cheng
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Hongmei Du
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Cui Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Yuan Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Zhentao Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Yong Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Thomas Friedemann
- HanseMerkur Center for Traditional Chinese Medicine at the University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Jinyu Mei
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Sven Schröder
- HanseMerkur Center for Traditional Chinese Medicine at the University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Ming Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China.
| |
Collapse
|
9
|
Bai X, Liu P, Shen H, Zhang Q, Zhang T, Jin X. Water-extracted Lonicera japonica polysaccharide attenuates allergic rhinitis by regulating NLRP3-IL-17 signaling axis. Carbohydr Polym 2022; 297:120053. [DOI: 10.1016/j.carbpol.2022.120053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/12/2022] [Accepted: 08/26/2022] [Indexed: 12/24/2022]
|
10
|
DUAN FP, LI YS, HU TY, PAN XQ, MA F, FENG Y, QIU SQ, ZHENG YQ. Dendrobium nobile protects against ovalbumin-induced allergic rhinitis by regulating intestinal flora and suppressing lung inflammation. Chin J Nat Med 2022; 20:443-457. [DOI: 10.1016/s1875-5364(22)60168-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Indexed: 11/25/2022]
|
11
|
Li J, Raghav P, Hu C. Ajwain oil attenuates allergic response of ovalbumin-induced allergic rhinitis via alteration of inflammatory, oxidative stress, and Th1/Th2 responses. J Food Biochem 2021; 45:e13963. [PMID: 34708419 DOI: 10.1111/jfbc.13963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Allergic rhinitis (AR) is an immune inflammatory-related disorder that affects the nasal mucosa. Free radicals play a crucial role in the expansion of allergic reaction and the researcher used the antioxidant therapy to treat the disease. Trachyspermum ammi L. (Ajwain oil) is popular traditional medicine. It has been proved their potential effect on various diseases. Ajwain oil showed anti-tumor, antioxidant, antidiabetic, anti-inflammatory, and anti-bacterial properties. Yet, the anti-allergic effect of Ajwain oil is still not explored. In this experimental study, an ovalbumin (OVX)-induced AR model was used to scrutinize the anti-allergic, antioxidant and anti-inflammatory effects of Ajwain oil. MATERIALS AND METHODS OVX was used to establish the AR model (sensitization days 1, 8, and 15) and given the oral treatment of Ajwain oil and Montelukast for 13 days. The spleen, lungs, and body weight were estimated. Sneezing, nasal discharge and rubbing are also estimated. Immunoglobin-E (IgE), histamine, malondialdehyde (MDA), superoxide dismutase (SOD), heme oxygenase-1 (HO-1), nuclear factor erythroid 2-related factor 2 (Nrf2), and inflammatory cytokines were scrutinized. RESULTS Ajwain oil significantly (p < .001) suppressed sneezing, nasal discharge and nasal rubbing along with increasing the spleen, lung and body weight. Ajwain oil significantly (p < .001) decreased the level of IgE, histamine, MDA, Nrf2, HO-1, and increased the level of SOD. Ajwain oil significantly (p < .001) suppressed the number of eosinophils, neutrophils, macrophages, and epithelial cells. Ajwain oil significantly prevented the activation of the NF-κBp65 and STAT3 signaling pathways that led to enhancing the synthesis of anti-inflammatory cytokines and reducing the inflammatory, allergen-specific type 2T helper cells (Th2), Th17 cytokines. CONCLUSION The obtained data suggests that Ajwain oil has a promising anti-allergic against allergic rhinitis in mice via anti-allergic, antioxidant, and anti-inflammatory effects. PRACTICAL APPLICATIONS Allergic rhinitis is a serious life-threatening disease. Inflammatory reaction plays an important role in the expansion of AR diseases. Ajwain oil considerably increased the spleen weight and reduced lung weight. Ajwain oil suppressed the nasal rubbing, sneezing, and nasal discharge. Ajwain oil considerably suppressed the immunoglobin and inflammatory cytokines. The result suggests that Ajwain oil having the potential effect against the allergic rhinitis.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Otolaryngology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xibei Hospital, Xi'an, China
| | - Prashant Raghav
- Department of Pharmacy, Dharamveer Singh Rajput Memorial College of Pharmacy, Moradabad, India
| | - Chunyan Hu
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
12
|
Lim S, Jeong I, Cho J, Shin C, Kim KI, Shim BS, Ko SG, Kim B. The Natural Products Targeting on Allergic Rhinitis: From Traditional Medicine to Modern Drug Discovery. Antioxidants (Basel) 2021; 10:1524. [PMID: 34679659 PMCID: PMC8532887 DOI: 10.3390/antiox10101524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022] Open
Abstract
More than 500 million people suffer from allergic rhinitis (AR) in the world. Current treatments include oral antihistamines and intranasal corticosteroids; however, they often cause side effects and are unsuitable for long-term exposure. Natural products could work as a feasible alternative, and this study aimed to review the efficacies and mechanisms of natural substances in AR therapies by examining previous literature. Fifty-seven studies were collected and classified into plants, fungi, and minerals decoction; clinical trials were organized separately. The majority of the natural products showed their efficacies by two mechanisms: anti-inflammation regulating diverse mediators and anti-oxidation controlling the activity of nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) pathway stimulated by reactive oxygen species (ROS). The main AR factors modified by natural products included interleukin (IL)-4, IL-5, IL-13, interferon-gamma (IFN-γ), tumor necrosis factor-α (TNF-α), cyclooxygenase 2 (COX-2), and phospho-ERK1/2 (p-ERK1/2). Although further studies are required to verify their efficacies and safeties, natural products can significantly contribute to the treatment of AR.
Collapse
Affiliation(s)
- Suhyun Lim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (S.L.); (I.J.); (J.C.); (C.S.); (B.-S.S.); (S.-G.K.)
| | - Iwah Jeong
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (S.L.); (I.J.); (J.C.); (C.S.); (B.-S.S.); (S.-G.K.)
| | - Jonghyeok Cho
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (S.L.); (I.J.); (J.C.); (C.S.); (B.-S.S.); (S.-G.K.)
| | - Chaewon Shin
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (S.L.); (I.J.); (J.C.); (C.S.); (B.-S.S.); (S.-G.K.)
| | - Kwan-Il Kim
- Division of Allergy, Immune and Respiratory System, Department of Internal Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Bum-Sang Shim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (S.L.); (I.J.); (J.C.); (C.S.); (B.-S.S.); (S.-G.K.)
| | - Seong-Gyu Ko
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (S.L.); (I.J.); (J.C.); (C.S.); (B.-S.S.); (S.-G.K.)
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (S.L.); (I.J.); (J.C.); (C.S.); (B.-S.S.); (S.-G.K.)
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
13
|
Liao C, Han Y, Chen Z, Baigude H. The extract of black cumin, licorice, anise, and black tea alleviates OVA-induced allergic rhinitis in mouse via balancing activity of helper T cells in lung. Allergy Asthma Clin Immunol 2021; 17:87. [PMID: 34493326 PMCID: PMC8424864 DOI: 10.1186/s13223-021-00587-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Background A formulation of black cumin (Nigella sativa L.), licorice (Glycyrrhiza glabra L.), anise (Pimpinella anisum L.) and tea (Camellia sinensis (L.) Kuntze) (denoted BLAB tea) is traditionally used to relief allergy reaction including allergic rhinitis. However, little is known about its underlining mechanism of anti-allergic effects. Methods To investigate the anti-allergenic mechanism of BLAB tea, we treated ovalbumin (OVA)-induced allergic rhinitis (AR) model of mice with BLAB tea, and elucidated its possible mechanism of action. Mice in the control group were treated with phosphate-buffered saline only. Subsequently, the infiltration of different inflammatory cells was measured. In addition, histopathological changes in the nasal mucosa, and the levels of allergen-specific cytokines and OVA-specific immunoglobulins were measured. Results The aqueous extract of BLAB significantly alleviated the nasal symptoms and reduced the accumulation of inflammatory cells in the nasal mucosa and nasal lavage fluid of AR model of mice. Conclusion The aqueous extract of BLAB induced the production of Th1 and Treg cytokines and inhibited the release of Th2 cytokines and histamine in nasal mucosa and serum of mice while decreasing the serum levels of OVA-specific IgE, IgG1, and IgG2a. These results suggest the potential of the aqueous extract of BLAB as a treatment option for allergic diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s13223-021-00587-6.
Collapse
Affiliation(s)
- Chengsong Liao
- Xilingol Institute of Bioengineering, Xilingol Vocational College, 11 Mingantu Road, Xilinhot, 026000, Inner Mongolia, People's Republic of China.
| | - Yangyang Han
- Xilingol Institute of Bioengineering, Xilingol Vocational College, 11 Mingantu Road, Xilinhot, 026000, Inner Mongolia, People's Republic of China
| | - Zhijing Chen
- Xilingol Institute of Bioengineering, Xilingol Vocational College, 11 Mingantu Road, Xilinhot, 026000, Inner Mongolia, People's Republic of China
| | - Huricha Baigude
- School of Chemistry & Chemical Engineering, Inner Mongolia University, 235 Daxue West Road, Hohhot, 010021, Inner Mongolia, People's Republic of China.
| |
Collapse
|
14
|
Lv H, Fang T, Kong F, Wang J, Deng X, Yu Q, Sun M, Liang X. Dryocrassin ABBA ameliorates Streptococcus pneumoniae-induced infection in vitro through inhibiting Streptococcus pneumoniae growth and neutralizing pneumolysin activity. Microb Pathog 2020; 150:104683. [PMID: 33309685 DOI: 10.1016/j.micpath.2020.104683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/06/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022]
Abstract
To explore the role of dryocrassin ABBA (ABBA) in the prevention and treatment of Streptococcus pneumoniae (S. pneumoniae) infections in vitro, a minimal inhibitory concentration test, growth curve assay, hemolysis assay, BacLight LIVE/DEAD staining experiments, oligomerization inhibition assay, time-killing test, LDH release detection assay and cytotoxicity test were performed to evaluate the efficacy of ABBA against S. pneumoniae infections in vitro. The results indicated that ABBA treatment exists bactericidal effect on S. pneumoniae at a concentration of less than 8 μg/ml. Furthermore, ABBA was effective at inhibiting the oligomerization of pneumolysin (PLY) from reducing its hemolytic activity. Meanwhile, ABBA could ameliorate cell injury by neutralizing the biological activity of PLY without cytotoxicity. In summary, ABBA was a leading compound against S. pneumoniae infections through bactericidal effect and neutralizing PLY activity.
Collapse
Affiliation(s)
- Hongfa Lv
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Tianqi Fang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Fanrong Kong
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Jianfeng Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Xuming Deng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Qinlei Yu
- Jilin Provincial Animal Disease Control Center, 4510 Xi'an Road, Changchun, 130062, China
| | - Meiyang Sun
- Department of Breast Surgery, Jilin Provincial Cancer Hospital, Changchun, China.
| | - Xiaoying Liang
- Department of Internal Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
15
|
Huang WC, Huang CH, Hu S, Peng HL, Wu SJ. Topical Spilanthol Inhibits MAPK Signaling and Ameliorates Allergic Inflammation in DNCB-Induced Atopic Dermatitis in Mice. Int J Mol Sci 2019; 20:ijms20102490. [PMID: 31137528 PMCID: PMC6566832 DOI: 10.3390/ijms20102490] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/18/2019] [Accepted: 05/18/2019] [Indexed: 02/06/2023] Open
Abstract
Atopic dermatitis (AD) is a recurrent allergic skin disease caused by genetic and environmental factors. Patients with AD may experience immune imbalance, increased levels of mast cells, immunoglobulin (Ig) E and pro-inflammatory factors (Cyclooxygenase, COX-2 and inducible NO synthase, iNOS). While spilanthol (SP) has anti-inflammatory and analgesic activities, its effect on AD remains to be explored. To develop a new means of SP, inflammation-related symptoms of AD were alleviated, and 2,4-dinitrochlorobenzene (DNCB) was used to induce AD-like skin lesions in BALB/c mice. Histopathological analysis was used to examine mast cells and eosinophils infiltration in AD-like skin lesions. The levels of IgE, IgG1 and IgG2a were measured by enzyme-linked immunosorbent assay (ELISA) kits. Western blot was used for analysis of the mitogen-activated protein kinase (MAPK) pathways and COX-2 and iNOS protein expression. Topical SP treatment reduced serum IgE and IgG2a levels and suppressed COX-2 and iNOS expression via blocked mitogen-activated protein kinase (MAPK) pathways in DNCB-induced AD-like lesions. Histopathological examination revealed that SP reduced epidermal thickness and collagen accumulation and inhibited mast cells and eosinophils infiltration into the AD-like lesions skin. These results indicate that SP may protect against AD skin lesions through inhibited MAPK signaling pathways and may diminish the infiltration of inflammatory cells to block allergic inflammation.
Collapse
Affiliation(s)
- Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City 33303, Taiwan.
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan City 33303, Taiwan.
| | - Chun-Hsun Huang
- Department of Cosmetic Science, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Guishan Dist., Taoyuan City 33303, Taiwan.
- Department of Dermatology, Aesthetic Medical Center, Chang Gung Memorial Hospital, Taoyuan City 33303, Taiwan.
| | - Sindy Hu
- Department of Cosmetic Science, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Guishan Dist., Taoyuan City 33303, Taiwan.
- Department of Dermatology, Aesthetic Medical Center, Chang Gung Memorial Hospital, Taoyuan City 33303, Taiwan.
| | - Hui-Ling Peng
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City 33303, Taiwan.
| | - Shu-Ju Wu
- Department of Dermatology, Aesthetic Medical Center, Chang Gung Memorial Hospital, Taoyuan City 33303, Taiwan.
- Department of Nutrition and Health Sciences, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City 33303, Taiwan.
| |
Collapse
|