1
|
Lis-Cieplak A, Trześniowska K, Stolarczyk K, Stolarczyk EU. Pyrrolizidine Alkaloids as Hazardous Toxins in Natural Products: Current Analytical Methods and Latest Legal Regulations. Molecules 2024; 29:3269. [PMID: 39064851 PMCID: PMC11279032 DOI: 10.3390/molecules29143269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Pyrrolizidine alkaloids (PAs) are toxic compounds that occur naturally in certain plants, however, there are many secondary pathways causing PA contamination of other plants, including medicinal herbs and plant-based food products, which pose a risk of human intoxication. It is proven that chronic exposure to PAs causes serious adverse health consequences resulting from their cytotoxicity and genotoxicity. This review briefly presents PA occurrence, structures, chemistry, and toxicity, as well as a set of analytical methods. Recently developed sensitive electrochemical and chromatographic methods for the determination of PAs in honey, teas, herbs, and spices were summarized. The main strategies for improving the analytical efficiency of PA determination are related to the use of mass spectrometric (MS) detection; therefore, this review focuses on advances in MS-based methods. Raising awareness of the potential health risks associated with the presence of PAs in food and herbal medicines requires ongoing research in this area, including the development of sensitive methods for PA determination and rigorous legal regulations of PA intake from herbal products. The maximum levels of PAs in certain products are regulated by the European Commission; however, the precise knowledge about which products contain trace but significant amounts of these alkaloids is still insufficient.
Collapse
Affiliation(s)
- Agnieszka Lis-Cieplak
- Spectrometric Methods Department, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (A.L.-C.); (K.T.)
| | - Katarzyna Trześniowska
- Spectrometric Methods Department, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (A.L.-C.); (K.T.)
| | | | - Elżbieta U. Stolarczyk
- Spectrometric Methods Department, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (A.L.-C.); (K.T.)
| |
Collapse
|
2
|
Schrenk D, Allemang A, Fahrer J, Harms H, Li X, Lin G, Mahony C, Mulder P, Peijnenburg A, Pfuhler S, Punt A, Sievers H, Troutman J, Widjaja F. Toxins in Botanical Drugs and Plant-derived Food and Feed - from Science to Regulation: A Workshop Review. PLANTA MEDICA 2024; 90:219-242. [PMID: 38198805 DOI: 10.1055/a-2218-5667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
In September 2022, the 3rd International Workshop on pyrrolizidine alkaloids (PAs) and related phytotoxins was held on-line, entitled 'Toxins in botanical drugs and plant-derived food and feed - from science to regulation'. The workshop focused on new findings about the occurrence, exposure, toxicity, and risk assessment of PAs. In addition, new scientific results related to the risk assessment of alkenylbenzenes, a distinct class of herbal constituents, were presented. The presence of PAs and alkenylbenzenes in plant-derived food, feed, and herbal medicines has raised health concerns with respect to their acute and chronic toxicity but mainly related to the genotoxic and carcinogenic properties of several congeners. The compounds are natural constituents of a variety of plant families and species widely used in medicinal, food, and feed products. Their individual occurrence, levels, and toxic properties, together with the broad range of congeners present in nature, represent a striking challenge to modern toxicology. This review tries to provide an overview of the current knowledge on these compounds and indicates needs and perspectives for future research.
Collapse
Affiliation(s)
- Dieter Schrenk
- Food Chemistry and Toxicology, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Ashley Allemang
- Central Product Safety, The Procter & Gamble Company, Mason, USA
| | - Jörg Fahrer
- Food Chemistry and Toxicology, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Henrik Harms
- Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U. S. Food and Drug Administration, Jefferson, USA
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Catherine Mahony
- Central Product Safety, Procter & Gamble Technical Centre, Reading, United Kingdom
| | - Patrick Mulder
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Ad Peijnenburg
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Stefan Pfuhler
- Central Product Safety, The Procter & Gamble Company, Mason, USA
| | - Ans Punt
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, the Netherlands
| | | | - John Troutman
- Central Product Safety, The Procter & Gamble Company, Mason, USA
| | - Frances Widjaja
- Division of Toxicology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
3
|
To YC, Pan Y, Yan X, He Y, Lin G. The toxicokinetic and metabolism of structurally diverse pyrrolizidine alkaloids in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117390. [PMID: 37956911 DOI: 10.1016/j.jep.2023.117390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 11/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pyrrolizidine alkaloids (PAs) are a group of phytotoxins present in about 3% of flowering plants worldwide. Ingestion of PA-containing herbal products may lead to hepatotoxicity. Notably, the toxicokinetic (TK) behaviors, especially pyrrole-protein adducts (PPAs) having the same structure but generated from metabolic activation of different PAs, significantly affect the toxicity of structurally diverse PAs, therefore studying them in their pure form is preferable to extracts to stratify toxic potency of different PAs co-existing in herbal extracts. However, previous studies mainly focus on the establishment of TK profiles of the intact PAs, revealing less or no kinetic information on the main PA metabolites (PA N-oxides) and PPAs which mediate PA-induced hepatotoxicity. In this study, PPA was measured as the biomarker of PA exposure and PA-induced toxicity. AIM OF STUDY This study aims to investigate the TK difference between structurally diverse PAs of retronecine-type PAs: retrorsine (RTS) and monocrotaline (MCT), and otonecine-type PA: clivorine (CLI), and their toxicity-related metabolite PPAs and PA N-oxides, the main metabolite of retronecine-type PAs, for the establishment of a more accurate risk assessment of PAs exposure. MATERIALS AND METHODS The TK studies were conducted using rats through intravenous (i.v.) or oral (p.o.) administration of PAs at 20 mg/kg. The main TK parameters of PAs and PA N-oxides were determined from plasma concentration-time profiles, and the kinetic profiles of PPAs were assessed from both plasma and erythrocyte concentration-time profiles. RESULTS MCT demonstrated the slowest but the highest extent of absorption among the three PAs, while RTS demonstrated a similar absorption rate with a lower extent than CLI. For elimination, MCT demonstrated a similar elimination rate as RTS but the lowest extent of elimination among the three PAs, and CLI exhibited significantly faster elimination than MCT and RTS. Moreover, the formation of PA N-oxide, which only occurs in retronecine-type PAs, was remarkably less in MCT-treated rats compared to RTS-treated ones. Of note, the retronecine-type RTS and MCT induced more PPAs via p.o. than i.v. administration route, whereas the otonecine-type CLI showed the opposite trend. CONCLUSION Dramatic TK differences, including not only PAs but also PA N-oxides and the derived protein adduct PPAs, were found among structurally diverse PAs in rats, laying the basis for varied hepatotoxic potencies induced by different PA-containing herbal products. Notably, our findings for the first time uncovered that oral administration of retronecine-type PAs might cause severer toxicity compared with the intravenous route, which warrants further in-depth exploration.
Collapse
Affiliation(s)
- Yuen Ching To
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Yueyang Pan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Xiaoyu Yan
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Yisheng He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong-Shenzhen, Shenzhen, China.
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
4
|
Tan Y, Yao B, Kang Y, Shi S, Shi Z, Su J. Emerging role of the crosstalk between gut microbiota and liver metabolome of subterranean herbivores in response to toxic plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115902. [PMID: 38171231 DOI: 10.1016/j.ecoenv.2023.115902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Plant secondary metabolites (PSMs) are a defense mechanism against herbivores, which in turn use detoxification metabolism to process ingested and absorbed PSMs. The feeding environment can cause changes in liver metabolism patterns and the gut microbiota. Here, we compared gut microbiota and liver metabolome to investigate the response mechanism of plateau zokors (Eospalax baileyi) to toxic plant Stellera chamaejasme (SC) in non-SC and SC grassland (-SCG and +SCG). Our results indicated that exposure to SC in the -SCG population increased liver inflammatory markers including prostaglandin (PG) in the Arachidonic acid pathway, while exposure to SC in the +SCG population exhibited a significant downregulation of PGs. Secondary bile acids were significantly downregulated in +SCG plateau zokors after SC treatment. Of note, the microbial taxa Veillonella in the -SCG group was significantly correlated with liver inflammation markers, while Clostridium innocum in the +SCG group had a significant positive correlation with secondary bile acids. The increase in bile acids and PGs can lead to liver inflammatory reactions, suggesting that +SCG plateau zokors may mitigate the toxicity of SC plants by reducing liver inflammatory markers including PGs and secondary bile acids, thereby avoiding liver damage. This provides new insight into mechanisms of toxicity by PSMs and counter-mechanisms for toxin tolerance by herbivores.
Collapse
Affiliation(s)
- Yuchen Tan
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Baohui Yao
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Yukun Kang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Shangli Shi
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Zunji Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Junhu Su
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
5
|
Sousa AC, Ribeiro C, Gonçalves VMF, Pádua I, Leal S. Chromatographic Methods for Detection and Quantification of Pyrrolizidine Alkaloids in Flora, Herbal Medicines, and Food: An Overview. Crit Rev Anal Chem 2023:1-25. [PMID: 37300809 DOI: 10.1080/10408347.2023.2218476] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are natural toxins produced by some plants that gained special interest due to their potential hazardous effects in humans and animals. These substances have been found in wild flora, herbal medicines and food products raising health concerns. Recently, maximum concentration levels of PAs were established for some food products; however, maximum daily intake frequently surpasses the upper limit set by the competent authorities posing a health risk. Given the scarcity or absence of occurrence data on PAs in many products, there is an urgent need to measure their levels and establish safety intake levels. Analytical methods have been reported to detect and quantify PAs in different matrices. The commonly used chromatographic methodologies provides accurate and reliable results. Analytical methods include diverse steps as extraction and sample preparation procedures that are critical for sensitivity and selectivity of the analytical method. Great efforts have been directed toward optimization of extraction procedures, clean up and chromatographic conditions to improve recovery, reduce matrix effects, and achieve low limits of detection and quantification. Therefore, this paper aims to give a general overview about the occurrence of PAs in flora, herbal medicines, and foodstuff; and discuss the different chromatographic methodologies used for PAs analysis, namely extraction and sample preparation procedures and chromatographic conditions.
Collapse
Affiliation(s)
- Ana Catarina Sousa
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Cláudia Ribeiro
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Virgínia M F Gonçalves
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
- UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, Gandra, Portugal
| | - Inês Pádua
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
- Epidemiology Unit - Institute of Public Health of University of Porto (ISPUP), Porto, Portugal
| | - Sandra Leal
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
- CINTESIS-RISE, MEDCIDS, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
6
|
Eckert E, Lepper H, Hintzsche H. Risk assessment of short-term intake of pyrrolizidine alkaloids in food: derivation of an acute reference dose. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:588-596. [PMID: 36794362 DOI: 10.1080/19440049.2023.2178828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Pyrrolizidine alkaloids (PA) are phytochemicals that are known to act as human hepatotoxins and are also considered to be genotoxic carcinogens. Several plant-derived foods are frequently contaminated with PA, like teas and herbal infusions, spices and herbs or certain food supplements. With respect to the chronic toxicity of PA, the carcinogenic potential of PA is generally regarded as the critical toxicological effect. The risk assessment of the short-term toxicity of PA, however, is internationally less consistent. The characteristic pathological syndrome of acute PA toxicity is hepatic veno-occlusive disease. High PA exposure levels may lead to liver failure and even death as documented by several case reports. In the present report, we suggest a risk assessment approach for the derivation of an acute reference dose (ARfD) for PA of 1 µg/kg body weight per day based on a sub-acute animal toxicity study in rats after oral PA administration. The derived ARfD value is further supported by several case reports describing acute human poisoning following accidental PA intake. The here derived ARfD value may be used for PA risk assessment in cases where the short-term toxicity of PA is of interest in addition to the assessment of the long-term risks.
Collapse
Affiliation(s)
- Elisabeth Eckert
- Department of Risk Assessment, Bavarian Health and Food Safety Authority, Erlangen, Germany.,Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Hans Lepper
- Department of Risk Assessment, Bavarian Health and Food Safety Authority, Erlangen, Germany
| | - Henning Hintzsche
- Department of Risk Assessment, Bavarian Health and Food Safety Authority, Erlangen, Germany.,Department of Food Safety, Institute of Food and Nutritional Sciences, University of Bonn, Bonn, Germany
| |
Collapse
|
7
|
Widjaja F, Alhejji Y, Yangchen J, Wesseling S, Rietjens IMCM. Physiologically-Based Kinetic Modeling Predicts Similar In Vivo Relative Potency of Senecionine N-Oxide for Rat and Human at Realistic Low Exposure Levels. Mol Nutr Food Res 2023; 67:e2200293. [PMID: 36478522 DOI: 10.1002/mnfr.202200293] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/30/2022] [Indexed: 12/12/2022]
Abstract
SCOPE This study aims to determine if previously developed physiologically-based kinetic (PBK) model in rat can be modified for senecionine (SEN) and its N-oxide (SENO), and be used to investigate potential species differences between rat and human in relative potency (REP) of the N-oxide relative to the parent pyrrolizidine alkaloid (PA). METHODS AND RESULTS In vitro derived kinetic parameters including the apparent maximum velocities (Vmax ) and Michaelis-Menten constants (Km ) for SENO reduction and SEN clearance are used to define the PBK models. The rat model is validated with published animal data, and the toxicokinetic profiles of SEN from either orally-administered SENO or SEN are simulated. REP values of SENO relative to SEN amount to 0.84 and 0.89 in rat and human, respectively. CONCLUSION The REP value can be dose- and species-dependent, with the values for rat and human being comparable at low realistic exposure scenarios. In summary, PBK modeling serves as a valuable New Approach Methodology (NAM) tool for predicting REP values of PA-N-oxides and may actually result in more accurate REP values for human risk assessment than what would be defined using in vivo animal experiments.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University, PO Box 8000, Wageningen, 6700 EA, The Netherlands
| | - Yasser Alhejji
- Division of Toxicology, Wageningen University, PO Box 8000, Wageningen, 6700 EA, The Netherlands.,Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Jamyang Yangchen
- Division of Toxicology, Wageningen University, PO Box 8000, Wageningen, 6700 EA, The Netherlands.,Bhutan Agriculture and Food Regulatory Authority, Ministry of Agriculture and Forests, Thimphu, 11002, Bhutan
| | - Sebastiaan Wesseling
- Division of Toxicology, Wageningen University, PO Box 8000, Wageningen, 6700 EA, The Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, PO Box 8000, Wageningen, 6700 EA, The Netherlands
| |
Collapse
|
8
|
Han H, Jiang C, Wang C, Lu Y, Wang Z, Chai Y, Zhang X, Liu X, Lu C, Chen H. Dissipation pattern and conversion of pyrrolizidine alkaloids (PAs) and pyrrolizidine alkaloid N-oxides (PANOs) during tea manufacturing and brewing. Food Chem 2022; 390:133183. [PMID: 35597088 DOI: 10.1016/j.foodchem.2022.133183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 01/23/2023]
Abstract
Pyrrolizidine alkaloids (PAs) and pyrrolizidine alkaloid N-oxides (PANOs) are toxic secondary metabolites in plants, and one kind of main exogenous pollutants of tea. Herein, the dissipation pattern and conversion behavior of PAs/PANOs were investigated during tea manufacturing and brewing using ultra high-performance liquid chromatography tandem mass spectrometry. Compared with PAs (processing factor (PF) = 0.73-1.15), PANOs had higher degradation rates (PF = 0.21-0.56) during tea manufacturing, and drying played the most important role in PANOs degradation. Moreover, PANOs were firstly discovered to be converted to corresponding PAs especially in the time-consuming (spreading of green tea manufacturing and withering of black tea manufacturing) and high-temperature tea processing (drying). Moreover, higher transfer rates of PANOs (≥75.84%) than that of PAs (≤56.53%) were observed during tea brewing. Due to higher toxicity of PAs than PANOs, these results are conducive to risk assessment and pollution control of PAs/PANOs in tea.
Collapse
Affiliation(s)
- Haolei Han
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changling Jiang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chen Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China
| | - Yuting Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ziqi Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biochemistry and Biotechnology, Ministry of Agriculture and Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Yunfeng Chai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China
| | - Xin Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China
| | - Chengyin Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China.
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China.
| |
Collapse
|
9
|
Zhu L, Xue J, He Y, Xia Q, Fu PP, Lin G. Correlation Investigation between Pyrrole-DNA and Pyrrole-Protein Adducts in Male ICR Mice Exposed to Retrorsine, a Hepatotoxic Pyrrolizidine Alkaloid. Toxins (Basel) 2022; 14:toxins14060377. [PMID: 35737038 PMCID: PMC9231038 DOI: 10.3390/toxins14060377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Pyrrolizidine alkaloids (PAs) have been found in over 6000 plants worldwide and represent the most common hepatotoxic phytotoxins. Catalyzed by hepatic cytochrome P450 enzymes, PAs are metabolized into reactive pyrrolic metabolites, which can alkylate cellular proteins and DNA to form pyrrole-protein adducts and pyrrole-DNA adducts, leading to cytotoxicity, genotoxicity, and tumorigenicity. To date, the correlation between these PA-derived pyrrole-protein and pyrrole-DNA adducts has not been well investigated. Retrorsine is a representative hepatotoxic and carcinogenic PA. In the present study, the correlations among the PA-derived liver DNA adducts, liver protein adducts, and serum protein adducts in retrorsine-treated mice under different dosage regimens were studied. The results showed positive correlations among these adducts, in which serum pyrrole-protein adducts were more accessible and present in higher abundance, and thus could be used as a suitable surrogate biomarker for pyrrole-DNA adducts to indicate the genetic or carcinogenic risk posed by retrorsine.
Collapse
Affiliation(s)
- Lin Zhu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.Z.); (J.X.); (Y.H.)
| | - Junyi Xue
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.Z.); (J.X.); (Y.H.)
| | - Yisheng He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.Z.); (J.X.); (Y.H.)
| | - Qingsu Xia
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA;
| | - Peter P. Fu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA;
- Correspondence: (P.P.F.); (G.L.)
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.Z.); (J.X.); (Y.H.)
- Correspondence: (P.P.F.); (G.L.)
| |
Collapse
|
10
|
Widjaja F, Alhejji Y, Rietjens IMCM. The Role of Kinetics as Key Determinant in Toxicity of Pyrrolizidine Alkaloids and Their N-Oxides. PLANTA MEDICA 2022; 88:130-143. [PMID: 34741297 PMCID: PMC8807025 DOI: 10.1055/a-1582-9794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are a large group of plant constituents of which especially the 1,2- unsaturated PAs raise a concern because of their liver toxicity and potential genotoxic carcinogenicity. This toxicity of PAs depends on their kinetics. Differences in absorption, distribution, metabolism, and excretion (ADME) characteristics of PAs may substantially alter the relative toxicity of PAs. As a result, kinetics will also affect relative potency (REP) values. The present review summarizes the current state-of-the art on PA kinetics and resulting consequences for toxicity and illustrates how physiologically-based kinetic (PBK) modelling can be applied to take kinetics into account when defining the relative differences in toxicity between PAs in the in vivo situation. We conclude that toxicokinetics play an important role in the overall toxicity of pyrrolizidine alkaloids. and that kinetics should therefore be considered when defining REP values for combined risk assessment. New approach methodologies (NAMs) can be of use to quantify these kinetic differences between PAs and their N-oxides, thus contributing to the 3Rs (Replacement, Reduction and Refinement) in animal studies.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University and Research, The Netherlands
| | - Yasser Alhejji
- Division of Toxicology, Wageningen University and Research, The Netherlands
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | | |
Collapse
|
11
|
Schrenk D, Fahrer J, Allemang A, Fu P, Lin G, Mahony C, Mulder PPJ, Peijnenburg A, Pfuhler S, Rietjens IMCM, Sachse B, Steinhoff B, These A, Troutman J, Wiesner J. Novel Insights into Pyrrolizidine Alkaloid Toxicity and Implications for Risk Assessment: Occurrence, Genotoxicity, Toxicokinetics, Risk Assessment-A Workshop Report. PLANTA MEDICA 2022; 88:98-117. [PMID: 34715696 DOI: 10.1055/a-1646-3618] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This paper reports on the major contributions and results of the 2nd International Workshop of Pyrrolizidine Alkaloids held in September 2020 in Kaiserslautern, Germany. Pyrrolizidine alkaloids are among the most relevant plant toxins contaminating food, feed, and medicinal products of plant origin. Hundreds of PA congeners with widespread occurrence are known, and thousands of plants are assumed to contain PAs. Due to certain PAs' pronounced liver toxicity and carcinogenicity, their occurrence in food, feed, and phytomedicines has raised serious human health concerns. This is particularly true for herbal teas, certain food supplements, honey, and certain phytomedicinal drugs. Due to the limited availability of animal data, broader use of in vitro data appears warranted to improve the risk assessment of a large number of relevant, 1,2-unsaturated PAs. This is true, for example, for the derivation of both toxicokinetic and toxicodynamic data. These efforts aim to understand better the modes of action, uptake, metabolism, elimination, toxicity, and genotoxicity of PAs to enable a detailed dose-response analysis and ultimately quantify differing toxic potencies between relevant PAs. Accordingly, risk-limiting measures comprising production, marketing, and regulation of food, feed, and medicinal products are discussed.
Collapse
Affiliation(s)
- Dieter Schrenk
- Food Chemistry and Toxicology, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Jörg Fahrer
- Food Chemistry and Toxicology, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | | | - Peter Fu
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Catherine Mahony
- Procter & Gamble, Technical Centres Limited, Weybridge, Surrey, United Kingdom
| | - Patrick P J Mulder
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Ad Peijnenburg
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, the Netherlands
| | | | | | - Benjamin Sachse
- German Federal Institute of Risk Assessment (BfR), Berlin, Germany
| | | | - Anja These
- German Federal Institute of Risk Assessment (BfR), Berlin, Germany
| | | | | |
Collapse
|
12
|
He Y, Ma J, Fan X, Ding L, Ding X, Zhang QY, Lin G. The key role of gut-liver axis in pyrrolizidine alkaloid-induced hepatotoxicity and enterotoxicity. Acta Pharm Sin B 2021; 11:3820-3835. [PMID: 35024309 PMCID: PMC8727778 DOI: 10.1016/j.apsb.2021.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) are the most common phytotoxins with documented human hepatotoxicity. PAs require metabolic activation by cytochromes P450 to generate toxic intermediates which bind to proteins and form protein adducts, thereby causing cytotoxicity. This study investigated the role of the gut-liver axis in PA intoxication and the underlying mechanisms. We exposed mice to retrorsine (RTS), a representative PA, and for the first time found RTS-induced intestinal epithelium damage and disruption to intestinal barrier function. Using mice with tissue-selective ablation of P450 activity, we found that hepatic P450s, but not intestinal P450s, were essential for PA bioactivation. Besides, in RTS-exposed, bile duct-cannulated rats, we found the liver-derived reactive PA metabolites were transported by bile into the intestine to exert enterotoxicity. The impact of gut-derived pathogenic factors in RTS-induced hepatotoxicity was further studied in mice with dextran sulfate sodium (DSS)-induced chronic colitis. DSS treatment increased the hepatic endotoxin level and depleted hepatic reduced glutathione, thereby suppressing the PA detoxification pathway. Compared to RTS-exposed normal mice, the colitic mice displayed more severe RTS-induced hepatic vasculature damage, fibrosis, and steatosis. Overall, our findings provide the first mode-of-action evidence of PA-induced enterotoxicity and highlight the importance of gut barrier function in PA-induced liver injury.
Collapse
|
13
|
Hepatotoxicity of Pyrrolizidine Alkaloid Compound Intermedine: Comparison with Other Pyrrolizidine Alkaloids and Its Toxicological Mechanism. Toxins (Basel) 2021; 13:toxins13120849. [PMID: 34941687 PMCID: PMC8709407 DOI: 10.3390/toxins13120849] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) are common secondary plant compounds with hepatotoxicity. The consumption of herbal medicines and herbal teas containing PAs is one of the main causes of hepatic sinusoidal obstruction syndrome (HSOS), a potentially life-threatening condition. The present study aimed to reveal the mechanism underlying the cytotoxicity of intermedine (Im), the main PA in Comfrey. We evaluated the toxicity of the retronecine-type PAs with different structures to cell lines derived from mammalian tissues, including primary mouse hepatocytes, human hepatocytes (HepD), mouse hepatoma-22 (H22) and human hepatocellular carcinoma (HepG2) cells. The cytotoxicity of Im to hepatocyte was evaluated by using cell counting kit-8 assay, colony formation experiment, wound healing assay and dead/live fluorescence imaging. In vitro characterization showed that these PAs were cytotoxic and induced cell apoptosis in a dose-dependent manner. We also demonstrated that Im induced cell apoptosis by generating excessive reactive oxygen species (ROS), changing the mitochondrial membrane potential and releasing cytochrome c (Cyt c) before activating the caspase-3 pathway. Importantly, we directly observed the destruction of the cell mitochondrial structure after Im treatment through transmission electron microscopy (TEM). This study provided the first direct evidence of Im inducing hepatotoxicity through mitochondria-mediated apoptosis. These results supplemented the basic toxicity data of PAs and facilitated the comprehensive and systematic evaluation of the toxicity caused by PA compounds.
Collapse
|
14
|
Physiologically based kinetic modelling predicts the in vivo relative potency of riddelliine N-oxide compared to riddelliine in rat to be dose dependent. Arch Toxicol 2021; 96:135-151. [PMID: 34669010 PMCID: PMC8748370 DOI: 10.1007/s00204-021-03179-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022]
Abstract
Pyrrolizidine alkaloids (PAs) are toxic plant constituents occurring often in their N-oxide form. This raises the question on the relative potency (REP) values of PA-N-oxides compared to the corresponding parent PAs. The present study aims to quantify the in vivo REP value of riddelliine N-oxide compared to riddelliine using physiologically based kinetic (PBK) modelling, taking into account that the toxicity of riddelliine N-oxide depends on its conversion to riddelliine by intestinal microbiota and in the liver. The models predicted a lower Cmax and higher Tmax for the blood concentration of riddelliine upon oral administration of riddelliine N-oxide compared to the Cmax and Tmax predicted for an equimolar oral dose of riddelliine. Comparison of the area under the riddelliine concentration–time curve (AUCRID) obtained upon dosing either the N-oxide or riddelliine itself revealed a ratio of 0.67, which reflects the in vivo REP for riddelliine N-oxide compared to riddelliine, and appeared to closely match the REP value derived from available in vivo data. The models also predicted that the REP value will decrease with increasing dose level, because of saturation of riddelliine N-oxide reduction by the intestinal microbiota and of riddelliine clearance by the liver. It is concluded that PBK modeling provides a way to define in vivo REP values of PA-N-oxides as compared to their parent PAs, without a need for animal experiments.
Collapse
|
15
|
Zhu L, Zhang C, Zhang W, Xia Q, Ma J, He X, He Y, Fu PP, Jia W, Zhuge Y, Lin G. Developing urinary pyrrole-amino acid adducts as non-invasive biomarkers for identifying pyrrolizidine alkaloids-induced liver injury in human. Arch Toxicol 2021; 95:3191-3204. [PMID: 34390356 PMCID: PMC8364305 DOI: 10.1007/s00204-021-03129-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/29/2021] [Indexed: 01/24/2023]
Abstract
Pyrrolizidine alkaloids (PAs) have been found in over 6000 plants worldwide and represent the most common hepatotoxic phytotoxins. Currently, a definitive diagnostic method for PA-induced liver injury (PA-ILI) is lacking. In the present study, using a newly developed analytical method, we identified four pyrrole-amino acid adducts (PAAAs), namely pyrrole-7-cysteine, pyrrole-9-cysteine, pyrrole-9-histidine, and pyrrole-7-acetylcysteine, which are generated from reactive pyrrolic metabolites of PAs, in the urine of PA-treated male Sprague Dawley rats and PA-ILI patients. The elimination profiles, abundance, and persistence of PAAAs were systematically investigated first in PA-treated rat models via oral administration of retrorsine at a single dose of 40 mg/kg and multiple doses of 5 mg/kg/day for 14 consecutive days, confirming that these urinary excreted PAAAs were derived specifically from PA exposure. Moreover, we determined that these PAAAs were detected in ~ 82% (129/158) of urine samples collected from ~ 91% (58/64) of PA-ILI patients with pyrrole-7-cysteine and pyrrole-9-histidine detectable in urine samples collected at 3 months or longer times after hospital admission, indicating adequate persistence time for use as a clinical test. As direct evidence of PA exposure, we propose that PAAAs can be used as a biomarker of PA exposure and the measurement of urinary PAAAs could be used as a non-invasive test assisting the definitive diagnosis of PA-ILI in patients.
Collapse
Affiliation(s)
- Lin Zhu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chunyuan Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wei Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qingsu Xia
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Jiang Ma
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xin He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yisheng He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Peter P Fu
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Wei Jia
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuzheng Zhuge
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
16
|
Tu-San-Qi (Gynura japonica): the culprit behind pyrrolizidine alkaloid-induced liver injury in China. Acta Pharmacol Sin 2021; 42:1212-1222. [PMID: 33154553 PMCID: PMC8285480 DOI: 10.1038/s41401-020-00553-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023] Open
Abstract
Herbs and dietary supplement-induced liver injury (HILI) is the leading cause of drug-induced liver injury in China. Among different hepatotoxic herbs, the pyrrolizidine alkaloid (PA)-producing herb Gynura japonica contributes significantly to HILI by inducing hepatic sinusoidal obstruction syndrome (HSOS), a liver disorder characterized by hepatomegaly, hyperbilirubinemia, and ascites. In China, G. japonica has been used as one of the plant species for Tu-San-Qi and is often misused with non-PA-producing Tu-San-Qi (Sedum aizoon) or even San-Qi (Panax notoginseng) for self-medication. It has been reported that over 50% of HSOS cases are caused by the intake of PA-producing G. japonica. In this review, we provide comprehensive information to distinguish these Tu-San-Qi-related herbal plant species in terms of plant/medicinal part morphologies, medicinal indications, and chemical profiles. Approximately 2156 Tu-San-Qi-associated HSOS cases reported in China from 1980 to 2019 are systematically reviewed in terms of their clinical manifestation, diagnostic workups, therapeutic interventions, and outcomes. In addition, based on the application of our developed mechanism-based biomarker of PA exposure, our clinical findings on the definitive diagnosis of 58 PA-producing Tu-San-Qi-induced HSOS patients are also elaborated. Therefore, this review article provides the first comprehensive report on 2214 PA-producing Tu-San-Qi (G. japonica)-induced HSOS cases in China, and the information presented will improve public awareness of the significant incidence of PA-producing Tu-San-Qi (G. japonica)-induced HSOS and facilitate future prevention and better clinical management of this severe HILI.
Collapse
|
17
|
Lin F, Ma Y, Pan A, Ye Y, Liu J. Quantification of Usaramine and Its N-oxide Metabolite in Rat Plasma Using Liquid Chromatography-Tandem Mass Spectrometry. J Anal Toxicol 2021; 46:512-518. [PMID: 34086913 PMCID: PMC9122504 DOI: 10.1093/jat/bkab060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/29/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
A sensitive, fast and robust liquid chromatography--tandem mass spectrometry (LC–MS-MS) method was developed and validated for the determination of usaramine (URM) and usaramine N-oxide (UNO) in rat plasma. The separation was conducted on an ACQUITY UPLC BEH C18 Column (50 × 2.1 mm, 1.7 μm) and gradient eluted with mobile phase A (0.1% formic acid with 5 mM ammonium acetate in water) and B (0.1% formic acid in acetonitrile/methanol, 9/1, v/v). The method was linear over the range of 1–2,000 ng/mL for both analytes. The validated method was applied to investigate the pharmacokinetic behaviors and sex differences of URM and its N-oxide metabolite in rats. After intravenous administration of URM at 1 mg/kg, the AUC0-t values for URM and UNO were 363 ± 65 and 172 ± 32 ng/mL*h in male rats, while 744 ± 122 and 30.7 ± 7.4 ng/mL*h in females, respectively. The clearance of URM was significantly higher in male rats than in females (2.77 ± 0.50 vs 1.35 ± 0.19 L/h/kg, P < 0.05). After oral administration of URM at 10 mg/kg, the AUC0-t values of URM and UNO were 1,960 ± 208 and 1,637 ± 246 ng/mL*h in male rats, while 6,073 ± 488 and 300 ± 62 ng/mL*h in females, respectively. The oral bioavailability of URM in female rats (81.7%) was much higher than in males (54.0%). In conclusion, sex-based differences were observed in the pharmacokinetics, N-oxide metabolism and oral bioavailability of URM.
Collapse
Affiliation(s)
- Feifei Lin
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China.,Chinese Academy of Sciences, Shanghai Institute of Materia Medica, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yan Ma
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 536 Changle Road, Shanghai 200126, China
| | - Anni Pan
- Chinese Academy of Sciences, Shanghai Institute of Materia Medica, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yang Ye
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China.,Chinese Academy of Sciences, Shanghai Institute of Materia Medica, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jia Liu
- Chinese Academy of Sciences, Shanghai Institute of Materia Medica, 555 Zuchongzhi Road, Shanghai 201203, China
| |
Collapse
|
18
|
He Y, Zhu L, Ma J, Lin G. Metabolism-mediated cytotoxicity and genotoxicity of pyrrolizidine alkaloids. Arch Toxicol 2021; 95:1917-1942. [PMID: 34003343 DOI: 10.1007/s00204-021-03060-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
Pyrrolizidine alkaloids (PAs) and PA N-oxides are common phytotoxins produced by over 6000 plant species. Humans are frequently exposed to PAs via ingestion of PA-containing herbal products or PA-contaminated foods. PAs require metabolic activation to form pyrrole-protein adducts and pyrrole-DNA adducts which lead to cytotoxicity and genotoxicity. Individual PAs differ in their metabolic activation patterns, which may cause significant difference in toxic potency of different PAs. This review discusses the current knowledge and recent advances of metabolic pathways of different PAs, especially the metabolic activation and metabolism-mediated cytotoxicity and genotoxicity, and the risk evaluation methods of PA exposure. In addition, this review provides perspectives of precision toxicity assessment strategies and biomarker development for the risk control and translational investigations of human intoxication by PAs.
Collapse
Affiliation(s)
- Yisheng He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Lin Zhu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Jiang Ma
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
19
|
Active Transport of Hepatotoxic Pyrrolizidine Alkaloids in HepaRG Cells. Int J Mol Sci 2021; 22:ijms22083821. [PMID: 33917053 PMCID: PMC8067754 DOI: 10.3390/ijms22083821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 12/26/2022] Open
Abstract
1,2-unsaturated pyrrolizidine alkaloids (PAs) are secondary plant metabolites occurring as food contaminants that can cause severe liver damage upon metabolic activation in hepatocytes. However, it is yet unknown how these contaminants enter the cells. The role of hepatic transporters is only at the beginning of being recognized as a key determinant of PA toxicity. Therefore, this study concentrated on assessing the general mode of action of PA transport in the human hepatoma cell line HepaRG using seven structurally different PAs. Furthermore, several hepatic uptake and efflux transporters were targeted with pharmacological inhibitors to identify their role in the uptake of the PAs retrorsine and senecionine and in the disposition of their N-oxides (PANO). For this purpose, PA and PANO content was measured in the supernatant using LC-MS/MS. Also, PA-mediated cytotoxicity was analyzed after transport inhibition. It was found that PAs are taken up into HepaRG cells in a predominantly active and structure-dependent manner. This pattern correlates with other experimental endpoints such as cytotoxicity. Pharmacological inhibition of the influx transporters Na+/taurocholate co-transporting polypeptide (SLC10A1) and organic cation transporter 1 (SLC22A1) led to a reduced uptake of retrorsine and senecionine into HepaRG cells, emphasizing the relevance of these transporters for PA toxicokinetics.
Collapse
|
20
|
Zhang Y, Yang FF, Chen H, Qi YD, Si JY, Wu Q, Liao YH. Analysis of pyrrolizidine alkaloids in Eupatorium fortunei Turcz. and their in vitro neurotoxicity. Food Chem Toxicol 2021; 151:112151. [PMID: 33774095 DOI: 10.1016/j.fct.2021.112151] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022]
Abstract
This study was to analyze the pyrrolizidine alkaloids (PAs) in Eupatorium fortunei herbs and its derived finished products with a view to evaluating their effects on the proliferation and oligodendrogenesis of neural progenitor cells (NPCs). Using a LC-MS/MS method with 32 PAs reference standards, 8 PAs including intermedine, intermedine N-oxide, lycopsamine, lycopsamine N-oxide, retronecine, seneciphylline and senkirkine and 7-acetylintermedine N-oxide were identified with intermedine N-oxide and lycopsamine N-oxide being most abundant. The total PA amounts were found to vary from 0.18 to 61.81 μg/g in 30 batches of herbs and from 0.86 to 36.96 μg/g in 4 commercial finished products, respectively. Risk assessments indicated that the short-term intake seemed unlikely lead to acute toxic effects but the chronic use warranted cautions. Using NPCs derived from mouse induced pluripotent stem cells as an in vitro testing model, intermedine, intermedine N-oxide and lycopsamine N-oxide appeared to decrease cell viability at 30 μM whereas intermedine N-oxide inhibited oligodendrogenesis of NPCs at 10 μM. The present results suggested that the PAs in the majority of E. fortunei herbs and the derived products not only resulted in their exposure far exceeding the acceptable intake limit (i. e. 1.0 μg PA per day for adults) in herbal medicinal products recommended by the European Medicines Agency but also induced neurotoxicity to NPCs in vitro.
Collapse
Affiliation(s)
- Yan Zhang
- Beijing University of Chinese Medicine, Yangguang South Street, Fangshan District, Beijing, 102488, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, PR China
| | - Fei-Fei Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, PR China
| | - Huan Chen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, PR China
| | - Yao-Dong Qi
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, PR China
| | - Jian-Yong Si
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, PR China
| | - Qing Wu
- Beijing University of Chinese Medicine, Yangguang South Street, Fangshan District, Beijing, 102488, PR China.
| | - Yong-Hong Liao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, PR China.
| |
Collapse
|
21
|
Toxic Prediction of Pyrrolizidine Alkaloids and Structure-Dependent Induction of Apoptosis in HepaRG Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8822304. [PMID: 33488944 PMCID: PMC7801077 DOI: 10.1155/2021/8822304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 01/05/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are common phytotoxins and could cause liver genotoxicity/carcinogenicity following metabolic activation. However, the toxicity of different structures remains unclear due to the wide variety of PAs. In this study, the absorption, distribution, metabolism, excretion, and toxicity (ADMET) of 40 PAs were analyzed, and their toxicity was predicted by Komputer Assisted Technology (TOPKAT) using Discovery Studio software. The in silico results showed that all PAs except retronecine had good intestinal absorption, and all PAs were predicted to have different toxicity ranges. To verify the predictive results, 4 PAs were selected to investigate cell injury and possible mechanisms of the differentiation in HepaRG cells, including retronecine type of twelve-membered cyclic diester (retrorsine), eleven-membered cyclic diester (monocrotaline), noncyclic diester (retronecine), and platynecine type (platyphylline). After 24 h exposure, retronecine-type PAs exhibited concentration-dependent cytotoxicity. The high-content screening assay showed that cell oxidative stress, mitochondrial damage, endoplasmic reticulum stress, and the concentration of calcium ions increased, and neutral lipid metabolism was changed notably in HepaRG cells. Induced apoptosis by PAs was indicated by cell cycle arrest in the G2/M phase, disrupting the mitochondrial membrane potential. Overall, our study revealed structure-dependent cytotoxicity and apoptosis after PA exposure, suggesting that the prediction results of in silico have certain reference values for compound toxicity. A 1,2-membered cyclic diester seems to be a more potent apoptosis inducer than other PAs.
Collapse
|
22
|
He Y, Lian W, Ding L, Fan X, Ma J, Zhang QY, Ding X, Lin G. Lung injury induced by pyrrolizidine alkaloids depends on metabolism by hepatic cytochrome P450s and blood transport of reactive metabolites. Arch Toxicol 2021; 95:103-116. [PMID: 33033841 PMCID: PMC8765307 DOI: 10.1007/s00204-020-02921-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/17/2020] [Indexed: 01/20/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are common phytotoxins with both hepatotoxicity and pneumotoxicity. Hepatic cytochrome P450 enzymes are known to bioactivate PAs into reactive metabolites, which can interact with proteins to form pyrrole-protein adducts and cause intrahepatic cytotoxicity. However, the metabolic and initiation biochemical mechanisms underlying PA-induced pneumotoxicity remain unclear. To investigate the in vivo metabolism basis for PA-induced lung injury, this study used mice with conditional deletion of the cytochrome P450 reductase (Cpr) gene and resultant tissue-selective ablation of microsomal P450 enzyme activities. After oral exposure to monocrotaline (MCT), a pneumotoxic PA widely used to establish animal lung injury models, liver-specific Cpr-null (LCN) mice, but not extrahepatic Cpr-low (xh-CL) mice, had significantly lower level of pyrrole-protein adducts in the serum, liver and lungs compared with wild-type (WT) mice. While MCT-exposed LCN mice had significantly higher blood concentration of intact MCT, compared to MCT-exposed WT or xh-CL mice. Consistent with the MCT in vivo bioactivation data, MCT-induced lung injury, represented by vasculature damage, in WT and xh-CL mice but not LCN mice. Furthermore, reactive metabolites of MCT were confirmed to exist in the blood efflux from the hepatic veins of MCT-exposed rats. Our results provide the first mode-of-action evidence that hepatic P450s are essential for the bioactivation of MCT, and blood circulating reactive metabolites of MCT to the lung causes pneumotoxicity. Collectively, this study presents the scientific basis for the application of MCT in animal lung injury models, and more importantly, warrants public awareness and further investigations of lung diseases associated with exposure to not only MCT but also different PAs.
Collapse
Affiliation(s)
- Yisheng He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, People's Republic of China
| | - Wei Lian
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, People's Republic of China
| | - Liang Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Xiaoyu Fan
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Jiang Ma
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, People's Republic of China
| | - Qing-Yu Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA.
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
23
|
Safety of medicinal comfrey cream preparations (Symphytum officinale s.l.): The pyrrolizidine alkaloid lycopsamine is poorly absorbed through human skin. Regul Toxicol Pharmacol 2020; 118:104784. [DOI: 10.1016/j.yrtph.2020.104784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/07/2020] [Accepted: 09/12/2020] [Indexed: 11/22/2022]
|