1
|
Song H, Yu J, Yang Y, Zhou L, Liu X, Yu J, Huang Q, Wang S, Zhang X, Liu Y, Zhang D, Meng J, Han T, Li W, Niu X. Exploring molecular mechanism of Panlongqi Tablet (PLQT) against RA: Integrated network pharmacology, molecular docking and experiment validation. Int Immunopharmacol 2025; 144:113639. [PMID: 39616851 DOI: 10.1016/j.intimp.2024.113639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND AND PURPOSE Panlongqi Tablet (PLQT), a proprietary Chinese medicine composed of 29 herbs, has been included in the Chinese Medical Insurance List and has shown promising therapeutic effects on patients with rheumatoid arthritis (RA) in clinical practice. However, the molecular mechanisms of PLQT against RA have not been fully elucidated. This study aimed to further decipher the active ingredients and molecular mechanism of PLQT anti-RA. METHODS A Complete Freund's adjuvant (CFA)-induced rat model was established to evaluate the pharmacodynamic effects of PLQT against RA, the assessment included arthritis index, paw thickness, ankle diameter, morphological and histopathological analysis. Network analysis was used to elucidate the active ingredients and underlying mechanisms of PLQT in the treatment of RA, molecular docking was conducted to assess the binding of active ingredients to key targets. In vitro and in vivo experimental verification were employed to reveal the mechanism of PLQT against RA. RESULTS Experimentally, PLQT improved CFA-induced arthritis without evident side effects. Network analysis revealed that the active ingredients in PLQT were mainly flavonoids, biscoumarin derivatives, alklaloid and lignans. Integrated with molecular docking studies, the molecular mechanisms of PLQT against RA were enriched in inflammatory response, immune regulation, angiogenesis, osteoclast differentiation and autophagy. In vitro experiments confirmed that PLQT exerted anti-inflammatory and immune regulatory effects by targeting the inflammatory response of M1 macrophages and the biological functions of T lymphocytes. In addition, In vivo experiments verified that PLQT could further inhibit synovial angiogenesis to prevent RA. CONCLUSION This study integrated network pharmacology analysis, molecular docking and experimental validation to elucidate the active components of PLQT and its mechanisms in intervening the pathological progression of RA, providing a more comprehensive theoretical basis for the clinical application of PLQT in the treatment of RA.
Collapse
Affiliation(s)
- Huixin Song
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Jinjin Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Yajie Yang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Lili Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Xinyao Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Jiabao Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Qiuxia Huang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Siqi Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Xinya Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Yang Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Dezhu Zhang
- Shaanxi Panlong Pharmaceutical Group Limited by Share LTD, Xi'an, PR China
| | - Jianguo Meng
- Shaanxi Panlong Pharmaceutical Group Limited by Share LTD, Xi'an, PR China
| | - Tengfei Han
- Shaanxi Panlong Pharmaceutical Group Limited by Share LTD, Xi'an, PR China
| | - Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China.
| | - Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
2
|
Lyu J, Jin N, Ma X, Yin X, Jin L, Wang S, Xiao X, Yu J. A Comprehensive Evaluation of Nutritional Quality and Antioxidant Capacity of Different Chinese Eggplant Varieties Based on Multivariate Statistical Analysis. Antioxidants (Basel) 2024; 14:10. [PMID: 39857344 PMCID: PMC11761265 DOI: 10.3390/antiox14010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Free amino acids, polyphenols, and anthocyanins were quantified in 30 Chinese eggplant varieties. Moreover, antioxidant capacity characterizations including 2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric-reducing antioxidant power (FRAP), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) were performed. The total amino acid content of the 30 eggplant varieties ranged from 15,267.19 to 26,827.4 mg kg-1 DW. The most abundant amino acids were glutamic acid, arginine, and aspartic acid. The coefficients of variation (CV) for the 20 amino acids ranged from 5.85 to 106.14%, of which 18 free amino acids had CVs > 20%. Total polyphenol and anthocyanin contents ranged from 17,097.41 to 39,474.98 µg g-1 DW and 5.28 to 978.32 µg g-1 DW, respectively. The variability of both polyphenol and anthocyanin components was >20%, with a range of 21.25-102.89%. Chlorogenic acid was the most abundant polyphenol. The total anthocyanin content of purple eggplant varieties was significantly higher than green varieties. Of the purple eggplant varieties, V28 ('E150725'), V30 ('1952'), and V16 ('Weichangqie101') had significantly higher total anthocyanins than the other eggplant varieties. DPPH, ABTS, and FRAP assays showed peaks at V3 ('Zhengqie924'). Pearson's correlation analysis revealed that polyphenols and anthocyanins were the main contributors to the antioxidant capacity of eggplants. A classification model with principal component analysis classified 30 Chinese eggplant varieties into two categories: high and low antioxidant capacities. The top five Chinese eggplant varieties ranked for amino acids, antioxidants, and antioxidant capacity were V29 ('Zhengqie903'), V24 ('Zhengqie78'), V1 ('1871'), V3 ('Zhengqie924'), and V28 ('E150725'). These findings provide theoretical basis for high-quality breeding and producer/consumer selection of eggplants.
Collapse
Affiliation(s)
- Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (N.J.); (X.M.); (X.X.)
- State Key Laboratory of Arid land Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (L.J.); (S.W.)
| | - Ning Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (N.J.); (X.M.); (X.X.)
| | - Xianglan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (N.J.); (X.M.); (X.X.)
| | - Xueyun Yin
- Jiuquan City Suzhou District Vegetable Technology Service Center, Jiuquan 735000, China;
| | - Li Jin
- State Key Laboratory of Arid land Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (L.J.); (S.W.)
| | - Shuya Wang
- State Key Laboratory of Arid land Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (L.J.); (S.W.)
| | - Xuemei Xiao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (N.J.); (X.M.); (X.X.)
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (N.J.); (X.M.); (X.X.)
- State Key Laboratory of Arid land Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (L.J.); (S.W.)
| |
Collapse
|
3
|
Xiang Y, Liu Z, Liu Y, Dong B, Yang C, Li H. Ultrasound-assisted extraction, optimization, and purification of total flavonoids from Daphnegenkwa and analysis of their antioxidant, anti-inflammatory, and analgesic activities. ULTRASONICS SONOCHEMISTRY 2024; 111:107079. [PMID: 39342895 PMCID: PMC11459584 DOI: 10.1016/j.ultsonch.2024.107079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Daphne genkwa (D. genkwa) is the dried flower buds of a Chinese medicinal plant with multiple biological activities. Response surface methodology (RSM) combined with artificial neural network (ANN) techniques were utilized to optimize ultrasound-assisted extraction conditions for D. genkwa. Antioxidant activity and anti-inflammatory and analgesic properties of total flavonoids from D. genkwa (TFDG) were assessed. Optimal conditions involving ultrasonic power of 225 W, 30 min extraction time, 30 mL/g liquid-solid ratio, 60 °C extraction temperature, and 70% ethanol concentration yielded a maximum total flavonoids content (TFC) of 5.41 mg/g. After microporous resin purification, four specific flavonoids in D. genkwa were identified and quantified using high-performance liquid chromatography (HPLC). The TFDG demonstrated potent antioxidant activity, with a 94% rate of scavenging the 2, 2-diphenyl-1-picrylhydrazyl (DPPH). Furthermore, TFDG exhibited pain-alleviating properties in hot plate and acetic acid-induced writhing tests and noteworthy inhibitory effects on xylene-induced ear swelling in mice. The total flavonoids extracted by ultrasound had excellent biological activity. This establishes a foundation for further investigation into the potential medical value of D. genkwa.
Collapse
Affiliation(s)
- Yi Xiang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 21198, Jiangsu Province, PR China.
| | - Zheng Liu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 21198, Jiangsu Province, PR China.
| | - Yanzhi Liu
- Department of Pharmacy, Foshan Women and Children Hospital, Foshan 528000, Guangdong Province, PR China.
| | - Bin Dong
- School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 21198, Jiangsu Province, PR China.
| | - Changqing Yang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 21198, Jiangsu Province, PR China.
| | - Hanhan Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 21198, Jiangsu Province, PR China.
| |
Collapse
|
4
|
Wu TY, Chen CC, Lin JY. Anti-inflammatory in vitro activities of eleven selected caffeic acid derivatives based on a combination of pro-/anti-inflammatory cytokine secretions and principal component analysis - A comprehensive evaluation. Food Chem 2024; 458:140201. [PMID: 38943957 DOI: 10.1016/j.foodchem.2024.140201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
Eleven compounds including caffeic acid (CA), 4 kinds of caffeoylquinic acid (CQA) and 6 kinds of dicaffeoylquinic acid (DCQA), were selected to evaluate the anti-inflammatory effectiveness using mouse primary peritoneal macrophages in the absence or presence of lipopolysaccharide (LPS). The optimal non-cytotoxic doses of each individual compound were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Pro-inflammatory (TNF-α, IL-1β, IL-6) and anti-inflammatory (IL-10) cytokines secreted by treated macrophages were analyzed using the enzyme-linked immunosorbent assay. Cytokine secretion profiles of each individual test sample at optimal non-cytotoxic doses were further analyzed using Principal Component Analysis (PCA). The results showed that CA and all selected CQAs exhibited lower cytotoxicity (IC50: >50 μmol/l). Both CA and 5-CQA were found to have the most significant contributions for inhibiting pro-inflammatory cytokines, but increasing anti-inflammatory cytokine secretions, evidencing that CA at 10 μmol/l and 5-CQA at 25 μmol/l can be qualified as potent anti-inflammatory agents for treating inflammation-related diseases.
Collapse
Affiliation(s)
- Ting-Yi Wu
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, 40227, Taiwan, ROC
| | - Chou-Chen Chen
- Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sect. 4, Taichung 407219, Taiwan, ROC..
| | - Jin-Yuarn Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, 40227, Taiwan, ROC..
| |
Collapse
|
5
|
Hu Y, Pan R, Wang Y, Ma M, Peng Y, Fan W, Zhang R, Nian H, Zhu J. Daphne genkwa: Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. Fitoterapia 2024; 177:106089. [PMID: 38906384 DOI: 10.1016/j.fitote.2024.106089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Daphne genkwa, as a traditional medicine, is widely distributed in China, Korea and Vietnam. In China, the dried flower buds of this plant are named "Yuanhua". It has the ability to effectively promote urination, eliminate phlegm and alleviate cough, eliminate parasites and cure of scabies, with a broad spectrum of pharmacological effects and considerable clinical efficacy. This paper provides a summary and classification of the main chemical constituents of D. genkwa based on a review of relevant domestic and foreign literature. It also outlines the current research status of traditional clinical usage, pharmacological effects, and toxicity of D. genkwa. The aim is to provide a theoretical basis for further study of D. genkwa and its potential new clinical applications.
Collapse
Affiliation(s)
- Yue Hu
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Rongrong Pan
- Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yi Wang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Minghua Ma
- Department of Pharmacy, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Ying Peng
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Weiqing Fan
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Ruoxi Zhang
- Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Hua Nian
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| | - Jianyong Zhu
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, China; Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| |
Collapse
|
6
|
Osama A, Wu J, Nie Q, Song ZL, Zhang L, Gao J, Zhang B. Hydroxygenkwanin exerts a neuroprotective effect by activating the Nrf2/ARE signaling pathway. Food Chem Toxicol 2024; 190:114842. [PMID: 38942164 DOI: 10.1016/j.fct.2024.114842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
High levels of reactive oxygen species (ROS) have been associated with the progression of neurodegenerative diseases such as Alzheimer's disease. The activation of the NFE2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway may restore the neuron's redox balance and provide a therapeutic impact. Hydroxygenkwanin (HGK), a dominant flavone from Genkwa Flos, has received expanding attention due to its medicinal activities. Our investigation results demonstrated the ability of HGK to protect the PC12 cells from oxidative damage caused by an excessive hydrogen peroxide load. HGK also showed the ability to upregulate a panel of endogenous antioxidant proteins. Further investigations have demonstrated that the neuroprotection mechanism of HGK is dependent on the activation of the Nrf2/ARE signaling pathway. Activating the Nrf2/ARE pathway by HGK reveals a novel mechanism for understanding the pharmacological functions of HGK. These findings suggest that HGK could be considered for further development as an oxidative stress-related neurological pathologies potential therapeutic drug.
Collapse
Affiliation(s)
- Alsiddig Osama
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jun Wu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Qiuying Nie
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zi-Long Song
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Linjie Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jia Gao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
7
|
Du C, Han R, Wu J, Zhao N, Pei X, Qin X, Yan Y. Study on the antidepressive effects and mechanism of raw and fried Ziziphi Spinosae Semen via metabolomics and gut microbiota analysis. Biomed Chromatogr 2024; 38:e5873. [PMID: 38587039 DOI: 10.1002/bmc.5873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024]
Abstract
Ziziphi Spinosae Semen (ZSS) and fried ZSS (FZSS) have been used for treating insomnia and depression in China. However, the potential influence of chemical variations on their efficacy remains unclear. This study demonstrated that compared with ZSS, FZSS exhibited an increase in the content of seven compounds, while the fatty oil content decreased. Both ZSS and FZSS exhibited antidepressive effects in a chronic unpredictable mild stress rat model, indicating a synergistic regulation of deficiencies in 5-hydroxytryptamine in the brain and the hyperactivation of severe peripheral inflammation. ZSS demonstrated a superior modulatory effect compared with FZSS, as indicated by integrated pharmacodynamic index, metabolic profile, and relative distance value. The potential mechanism underlying their antidepressive effects involved the modulation of gut microbiota structure to alleviate excessive inflammatory responses and imbalanced tryptophan metabolism. Correlation analysis indicated that the higher fatty oil contents should be comprehensively considered as the main reason for ZSS's superior antidepressive effects, achieved through the regulation of pyroglutamic acid levels.
Collapse
Affiliation(s)
- Chenhui Du
- School of Traditional Chinese Materia Medica, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Rui Han
- School of Traditional Chinese Materia Medica, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Jiang Wu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Ni Zhao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Xiangping Pei
- School of Traditional Chinese Materia Medica, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Yan Yan
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| |
Collapse
|
8
|
Chang Y, Zhang X, Wang C, Ma N, Xie J, Zhang J. Fruit Quality Analysis and Flavor Comprehensive Evaluation of Cherry Tomatoes of Different Colors. Foods 2024; 13:1898. [PMID: 38928838 PMCID: PMC11202461 DOI: 10.3390/foods13121898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Cherry tomatoes are popular vegetables worldwide owing to their variety of colors and nutrients. However, an integrated evaluation of color and flavor has rarely been reported. This study examined the differences among red, brown, yellow, and green cherry tomatoes grown in the Jiuquan area. A comprehensive analysis of the flavor quality of these tomatoes, including sensory evaluation, electronic nose analysis, nutritional and flavor quality measurements, targeted metabolomics, and chemometrics, was conducted. Red tomatoes had the highest lycopene content, and green tomatoes had the highest soluble protein and vitamin C content. In cherry tomatoes, K is the most abundant macro element and Fe and Zn are the most abundant trace elements. Brown cherry tomatoes had significantly higher K, P, Mg, Cu and Fe contents than other colored tomatoes, and red tomatoes had significantly higher Zn content than other cherry tomatoes (218.8-724.3%). Yellow cherry tomatoes had the highest soluble sugar content, followed by red, brown and green tomatoes. A total of 20 amino acids of tomatoes were simultaneously determined by LC-MS. Yellow cherry tomatoes have the highest content of essential amino acids, aromatic amino acids and sweetness amino acids. Red tomatoes have the highest levels of non-essential and sourness amino acid contents. An analysis of 30 flavor indicators revealed that yellow tomatoes had the best flavor, followed by red, brown, and green tomatoes. Our work lays the foundation for future research on color and flavor formation in cherry tomatoes.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (Y.C.); (X.Z.); (C.W.); (N.M.); (J.X.)
| |
Collapse
|
9
|
Li SF, Li GL, Chen DL, Zhang LW. A green and simple method for enrichment of major diterpenoids from the buds of Wikstroemia chamaedaphne with macroporous resins and their activation of latent human immunodeficiency virus activity. Int J Biol Macromol 2024; 272:132932. [PMID: 38862319 DOI: 10.1016/j.ijbiomac.2024.132932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
In this study, a green and efficient enrichment method for the four majors active diterpenoid components: pimelotide C, pimelotide A, simplexin, and 6α,7α-epoxy-5β-hydroxy-12-deoxyphorbol-13-decanoate in the buds of Wikstroemia chamaedaphne was established using macroporous resin chromatography. The adsorption and desorption rates of seven macroporous resins were compared using static tests. The D101 macroporous resin exhibited the best performance. Static and dynamic adsorption tests were performed to determine the enrichment and purification of important bioactive diterpenoids in the buds of W. chamaedaphne. Diterpenoid extracts were obtained by using D101 macroporous resin from the crude extracts of W. chamaedaphne. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis demonstrated that most of the diterpenoids were enriched in diterpenoid extracts. These results confirmed that diterpenoids in the buds of W. chamaedaphne could be enriched using macroporous resin technology, and the enriched diterpenoid extracts showed more efficient activation of the latent human immunodeficiency virus. This study provides a novel strategy for discovering efficient and low-toxicity latency-reversing agents and a potential basis for the comprehensive development and clinical application of the buds of W. chamaedaphne.
Collapse
Affiliation(s)
- Shi-Fei Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, PR China.
| | - Gong-Lu Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, PR China; Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, PR China
| | - De-Ling Chen
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, PR China; Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, PR China
| | - Li-Wei Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
10
|
Tian Y, Shi Y, Zhu Y, Li H, Shen J, Gao X, Cai B, Li W, Qin K. The modern scientific mystery of traditional Chinese medicine processing--take some common traditional Chinese medicine as examples. Heliyon 2024; 10:e25091. [PMID: 38312540 PMCID: PMC10835376 DOI: 10.1016/j.heliyon.2024.e25091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024] Open
Abstract
The processing of traditional Chinese medicine (TCM) is a unique traditional pharmaceutical technology in China, which is the most important feature that distinguishes Chinese medicine from natural medicine and plant medicine. Since the record in Huangdi Neijing (Inner Canon of the Yellow Emperor), till now, the processing of TCM has experienced more than 2000 years of inheritance, innovation, and development, which is a combination of TCM theory and clinical practice, and plays an extremely important position in the field of TCM. In recent years, as a clinical prescription of TCM, Chinese herbal pieces have played a significant role in the prevention and control of the COVID-19 and exhibited their unique value, and therefore they have become the highlight of China's clinical treatment protocol and provided Chinese experience and wisdom for the international community in the prevention and control of the COVID-19 epidemic. This paper outlines the research progress in the processing of representative TCM in recent years, reviews the mechanism of the related effects of TCM materials after processing, such as changing the drug efficacy and reducing the toxicity, puts forward the integration and application of a variety of new technologies and methods, so as to reveal the modern scientific mystery of the processing technology of TCM.
Collapse
Affiliation(s)
- Yiwen Tian
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yun Shi
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yujie Zhu
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Huan Li
- School of Applied Science, Temasek Polytechnic, Singapore, 529757, Singapore
| | - Jinyang Shen
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xun Gao
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Baochang Cai
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weidong Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Kunming Qin
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| |
Collapse
|
11
|
Huang P, Wang Y, Liu C, Zhang Q, Ma Y, Liu H, Wang X, Wang Y, Wei M, Ma L. Exploring the Mechanism of Zhishi-Xiebai-Guizhi Decoction for the Treatment of Hypoxic Pulmonary Hypertension based on Network Pharmacology and Experimental Analyses. Curr Pharm Des 2024; 30:2059-2074. [PMID: 38867532 DOI: 10.2174/0113816128293601240523063527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/26/2024] [Accepted: 04/25/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Hypoxic Pulmonary Hypertension (HPH), a prevalent disease in highland areas, is a crucial factor in various complex highland diseases with high mortality rates. Zhishi-Xiebai-Guizhi decoction (ZXGD), traditional Chinese medicine with a long history of use in treating heart and lung diseases, lacks a clear understanding of its pharmacological mechanism. OBJECTIVE This study aimed to investigate the pharmacological effects and mechanisms of ZXGD on HPH. METHODS We conducted a network pharmacological prediction analysis and molecular docking to predict the effects, which were verified through in vivo experiments. RESULTS Network pharmacological analysis revealed 51 active compounds of ZXGD and 701 corresponding target genes. Additionally, there are 2,116 targets for HPH, 311 drug-disease co-targets, and 17 core-targets. GO functional annotation analysis revealed that the core targets primarily participate in biological processes such as apoptosis and cellular response to hypoxia. Furthermore, KEGG pathway enrichment analysis demonstrated that the core targets are involved in several pathways, including the phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt) signaling pathway and Hypoxia Inducible Factor 1 (HIF1) signaling pathway. In vivo experiments, the continuous administration of ZXGD demonstrated a significant improvement in pulmonary artery pressure, right heart function, pulmonary vascular remodeling, and pulmonary vascular fibrosis in HPH rats. Furthermore, ZXGD was found to inhibit the expression of PI3K, Akt, and HIF1α proteins in rat lung tissue. CONCLUSION In summary, this study confirmed the beneficial effects and mechanism of ZXGD on HPH through a combination of network pharmacology and in vivo experiments. These findings provided a new insight for further research on HPH in the field of traditional Chinese medicine.
Collapse
Affiliation(s)
- Pan Huang
- Qinghai University Medical College, Xining 810016, China
| | - Yuxiang Wang
- Qinghai University Medical College, Xining 810016, China
| | - Chuanchuan Liu
- Hydatidosis Laboratory, Affiliated Hospital of Qinghai University, Xining 810012, China
| | - Qingqing Zhang
- Qinghai University Medical College, Xining 810016, China
| | - Yougang Ma
- Qinghai University Medical College, Xining 810016, China
| | - Hong Liu
- Qinghai University Medical College, Xining 810016, China
| | - Xiaobo Wang
- Qinghai University Medical College, Xining 810016, China
| | - Yating Wang
- Qinghai University Medical College, Xining 810016, China
| | - Minmin Wei
- Qinghai University Medical College, Xining 810016, China
- Qinghai Provincial Hospital of Traditional Chinese Medicine, Xining 810099, China
| | - Lan Ma
- Qinghai University Medical College, Xining 810016, China
| |
Collapse
|
12
|
El Menyiy N, Aboulaghras S, Bakrim S, Moubachir R, Taha D, Khalid A, Abdalla AN, Algarni AS, Hermansyah A, Ming LC, Rusu ME, Bouyahya A. Genkwanin: An emerging natural compound with multifaceted pharmacological effects. Biomed Pharmacother 2023; 165:115159. [PMID: 37481929 DOI: 10.1016/j.biopha.2023.115159] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023] Open
Abstract
Plant bioactive molecules could play key preventive and therapeutic roles in chronological aging and the pathogenesis of many chronic diseases, often accompanied by increased oxidative stress and low-grade inflammation. Dietary antioxidants, including genkwanin, could decrease oxidative stress and the expression of pro-inflammatory cytokines or pathways. The present study is the first comprehensive review of genkwanin, a methoxyflavone found in several plant species. Indeed, natural sources, and pharmacokinetics of genkwanin, the biological properties were discussed and highlighted in detail. This review analyzed and considered all original studies related to identification, isolation, quantification, investigation of the biological and pharmacological properties of genkwanin. We consulted all published papers in peer-reviewed journals in the English language from the inception of each database to 12 May 2023. Different phytochemical demonstrated that genkwanin is a non-glycosylated flavone found and isolated from several medicinal plants such as Genkwa Flos, Rosmarinus officinalis, Salvia officinalis, and Leonurus sibiricus. In vitro and in vivo biological and pharmacological investigations showed that Genkwanin exhibits remarkable antioxidant and anti-inflammatory activities, genkwanin, via activation of glucokinase, has shown antihyperglycemic activity with a potential role against metabolic syndrome and diabetes. Additionally, it revealed cardioprotective and neuroprotective properties, thus reducing the risk of cardiovascular diseases and assisting against neurodegenerative diseases. Furthermore, genkwanin showed other biological properties like antitumor capability, antibacterial, antiviral, and dermato-protective effects. The involved mechanisms include sub-cellular, cellular and molecular actions at different levels such as inducing apoptosis and inhibiting the growth and proliferation of cancer cells. Despite the findings from preclinical studies that have demonstrated the effects of genkwanin and its diverse mechanisms of action, additional research is required to comprehensively explore its therapeutic potential. Primarily, extensive studies should be carried out to enhance our understanding of the molecule's pharmacodynamic actions and pharmacokinetic pathways. Moreover, toxicological and clinical investigations should be undertaken to assess the safety and clinical efficacy of genkwanin. These forthcoming studies are of utmost importance in fully unlocking the potential of this molecule in the realm of therapeutic applications.
Collapse
Affiliation(s)
- Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco.
| | - Sara Aboulaghras
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco.
| | - Rania Moubachir
- Bioactives and Environmental Health Laboratory, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco.
| | - Doaue Taha
- Molecular Modeling, Materials, Nanomaterials, Water and Environment Laboratory, CERNE2D, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Alanood S Algarni
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Andi Hermansyah
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia.
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia; School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia; PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam.
| | - Marius Emil Rusu
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| |
Collapse
|
13
|
Zhang XK, Cao GH, Bi Y, Liu XH, Yin HM, Zuo JF, Xu W, Li HD, He S, Zhou XH. Comprehensive Analysis of 34 Edible Flowers by the Determination of Nutritional Composition and Antioxidant Capacity Planted in Yunnan Province China. Molecules 2023; 28:5260. [PMID: 37446920 DOI: 10.3390/molecules28135260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/25/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The main purpose of this study was to reveal the nutritional value and antioxidant activity of 34 edible flowers that grew in Yunnan Province, China, through a comprehensive assessment of their nutritional composition and antioxidant indices. The results showed that sample A3 of Asteraceae flowers had the highest total flavonoid content, with a value of 8.53%, and the maximum contents of vitamin C and reducing sugars were from Rosaceae sample R1 and Gentianaceae sample G3, with values of 143.80 mg/100 g and 7.82%, respectively. Samples R2 and R3 of Rosaceae were the top two flowers in terms of comprehensive nutritional quality. In addition, the antioxidant capacity of Rosaceae samples was evidently better than that of three others, in which Sample R1 had the maximum values in hydroxyl radical (·OH) scavenging and superoxide anion radical (·O2-) scavenging rates, and samples R2 and R3 showed a high total antioxidant capacity and 2,2-diphenyl-1-pyridylhydrazine (DPPH) scavenging rate, respectively. Taken together, there were significant differences in the nutrient contents and antioxidant properties of these 34 flowers, and the comprehensive quality of Rosaceae samples was generally better than the other three families. This study provides references for 34 edible flowers to be used as dietary supplements and important sources of natural antioxidants.
Collapse
Affiliation(s)
- Xing-Kai Zhang
- Yunnan Key Laboratory of Southern Medicine Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Guan-Hua Cao
- Yunnan Key Laboratory of Southern Medicine Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Yue Bi
- Yunnan Key Laboratory of Southern Medicine Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Xiao-Hai Liu
- Yunnan Key Laboratory of Southern Medicine Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Hong-Mei Yin
- Yunnan Key Laboratory of Southern Medicine Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Jia-Fang Zuo
- Yunnan Key Laboratory of Southern Medicine Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Wen Xu
- Yunnan Key Laboratory of Southern Medicine Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Hong-Dong Li
- Yunnan Key Laboratory of Southern Medicine Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Sen He
- Yunnan Key Laboratory of Southern Medicine Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Xu-Hong Zhou
- Office of Science and Technology, Yunnan University of Chinese Medicine, Kunming 650500, China
| |
Collapse
|
14
|
Ku SS, Woo HA, Shin MJ, Jie EY, Kim H, Kim HS, Cho HS, Jeong WJ, Lee MS, Min SR, Kim SW. Efficient Plant Regeneration System from Leaf Explant Cultures of Daphne genkwa via Somatic Embryogenesis. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112175. [PMID: 37299152 DOI: 10.3390/plants12112175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
This study aimed to establish an efficient plant regeneration system from leaf-derived embryogenic structure cultures of Daphne genkwa. To induce embryogenic structures, fully expanded leaf explants of D. genkwa were cultured on Murashige and Skoog (MS) medium supplemented with 0, 0.1, 0.5, 1, 2, and 5 mg·L-1 2,4-dichlorophenoxyacetic acid (2,4-D), respectively. After 8 weeks of incubation, the highest frequency of embryogenic structure formation reached 100% when the leaf explants were cultivated on MS medium supplemented with 0.1 to 1 mg·L-1 2,4-D. At higher concentrations of 2,4-D (over 2 mg·L-1 2,4-D), the frequency of embryogenic structure formation significantly declined. Similar to 2,4-D, indole butyric acid (IBA) and α-naphthaleneacetic acid (NAA) treatments were also able to form embryogenic structures. However, the frequency of embryogenic structure formation was lower than that of 2,4-D. In particular, the yellow embryonic structure (YES) and white embryonic structure (WES) were simultaneously developed from the leaf explants of D. genkwa on culture medium containing 2,4-D, IBA, and NAA, respectively. Embryogenic calluses (ECs) were formed from the YES after subsequent rounds of subculture on MS medium supplemented with 1 mg·L-1 2,4-D. To regenerate whole plants, the embryogenic callus (EC) and the two embryogenic structures (YES and WES) were transferred onto MS medium supplemented with 0.1 mg·L-1 6-benzyl aminopurine (BA). The YES had the highest plant regeneration potential via somatic embryo and shoot development compared to the EC and WES. To our knowledge, this is the first successful report of a plant regeneration system via the somatic embryogenesis of D. genkwa. Thus, the embryogenic structures and plant regeneration system of D. genkwa could be applied to mass proliferation and genetic modification for pharmaceutical metabolite production in D. genkwa.
Collapse
Affiliation(s)
- Seong Sub Ku
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hyun-A Woo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Min Jun Shin
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Eun Yee Jie
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - HyeRan Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Won-Joong Jeong
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Moon-Soon Lee
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Sung Ran Min
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Suk Weon Kim
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| |
Collapse
|
15
|
Wu X, Ding H, Zhang Z, Zheng M, Ni H, Huang Z, Wu W, Long H, Zhou Y, Li F, Lei M, Hou J, Wu W, Guo D. An improved strategy for identification and annotation of easily in-sourced dissociation diterpene lactones from plant natural products: Taking Andrographis paniculata (Burm. f.) as an example. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9483. [PMID: 36718976 DOI: 10.1002/rcm.9483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
RATIONALE Diterpene lactones (DL) in Andrographis paniculata (AP) are known as "natural antibiotics" for their excellent antibacterial activity. During mass spectrometry (MS) analysis, the hydroxyl groups in the AP DL skeleton are prone to neutral loss of H2 O, producing high in-source fragment peaks and affecting the characterization of these components. METHODS Mass tags were applied during the MS data acquisition step, and special adduct ion form was used to guide the data processing and characterization steps. Besides, the total number of characterized AP DLs significantly increased when combining the number of neutrally lost H2 O from AP DLs, incorporating information on the diagnostic ions, and adopting molecular networks generated with the Global Natural Products Social Molecular Networking database. RESULTS Ninety-nine DLs, comprising 6 monohydroxyl groups, 20 dihydroxyl groups, 27 trihydroxy groups, and 46 DLs with more than 3 hydroxyl groups, were characterized from AP. In addition, based on the characteristic fragments in the product ions (C3 H4 , Δm/z = 40.03 Da), it could be assumed that 90 DLs had the C19-OH structure among the identified DLs. The current study provides a new approach for collecting, processing, and characterizing MS analysis of natural DLs prone to in-source fragmentation. CONCLUSIONS MS characterization of AP DLs was significantly improved, and many potential new compounds were identified in AP. This characterization provides new methods for the purification and identification of AP DLs.
Collapse
Affiliation(s)
- Xingdong Wu
- Department of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, China
| | - Hongwei Ding
- Department of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zijia Zhang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Man Zheng
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Ni
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhiyun Huang
- Guangzhou Baiyunshan Xingqun Pharmaceutical Co., Ltd, Guangzhou, China
| | - Wenyong Wu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Huali Long
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Zhou
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feifei Li
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Lei
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinjun Hou
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wanying Wu
- Department of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dean Guo
- Department of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Mi H, Zhang P, Yao L, Gao H, Wei F, Lu T, Ma S. Identification of Daphne genkwa and Its Vinegar-Processed Products by Ultraperformance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry and Chemometrics. Molecules 2023; 28:molecules28103990. [PMID: 37241730 DOI: 10.3390/molecules28103990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Crude herbs of Daphne genkwa (CHDG) are often used in traditional Chinese medicine to treat scabies baldness, carbuncles, and chilblain owing to their significant purgation and curative effects. The most common technique for processing DG involves the use of vinegar to reduce the toxicity of CHDG and enhance its clinical efficacy. Vinegar-processed DG (VPDG) is used as an internal medicine to treat chest and abdominal water accumulation, phlegm accumulation, asthma, and constipation, among other diseases. In this study, the changes in the chemical composition of CHDG after vinegar processing and the inner components of the changed curative effects were elucidated using optimized ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Untargeted metabolomics, based on multivariate statistical analyses, was also used to profile differences between CHDG and VPDG. Eight marker compounds were identified using orthogonal partial least-squares discrimination analysis, which indicated significant differences between CHDG and VPDG. The concentrations of apigenin-7-O-β-d-methylglucuronate and hydroxygenkwanin were considerably higher in VPDG than those in CHDG, whereas the amounts of caffeic acid, quercetin, tiliroside, naringenin, genkwanines O, and orthobenzoate 2 were significantly lower. The obtained results can indicate the transformation mechanisms of certain changed compounds. To the best of our knowledge, this study is the first to employ mass spectrometry to detect the marker components of CHDG and VPDG.
Collapse
Affiliation(s)
- Hongying Mi
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China
- Research and Inspection Center of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, National Medical Products Administration, No. 31 Huatuo Road, Beijing 102629, China
| | - Ping Zhang
- Research and Inspection Center of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, National Medical Products Administration, No. 31 Huatuo Road, Beijing 102629, China
| | - Lingwen Yao
- Research and Inspection Center of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, National Medical Products Administration, No. 31 Huatuo Road, Beijing 102629, China
| | - Huiyuan Gao
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Feng Wei
- Research and Inspection Center of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, National Medical Products Administration, No. 31 Huatuo Road, Beijing 102629, China
| | - Tulin Lu
- School of Chinese Material Medica, Nanjing University of Chinese Medicine, No. 138 Xianlin Road, Nanjing 210023, China
| | - Shuangcheng Ma
- Research and Inspection Center of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, National Medical Products Administration, No. 31 Huatuo Road, Beijing 102629, China
| |
Collapse
|
17
|
Hu Y, Guan X, He Z, Xie Y, Niu Z, Zhang W, Wang A, Zhang J, Si C, Li F, Hu W. Apigenin-7-O-glucoside alleviates DSS-induced colitis by improving intestinal barrier function and modulating gut microbiota. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023] Open
|
18
|
Leal M, Mercado MI, Moreno MA, Martínez Chamas JJ, Zampini IC, Ponessa GI, Simirgiotis MJ, Isla MI. Gochnatia glutinosa (D.Don) D.Don ex Hook. & Arn.: A plant with medicinal value against inflammatory disorders and infections. Heliyon 2023; 9:e15276. [PMID: 37215790 PMCID: PMC10196343 DOI: 10.1016/j.heliyon.2023.e15276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/11/2023] [Accepted: 03/31/2023] [Indexed: 05/24/2023] Open
Abstract
Gochnatia glutinosa is a shrub that grown in the Argentinean semiarid region (Monte region) used in the ancestral medicine as an antiseptic and anti-inflammatory agent. This study was aimed to examine the morpho-anatomical characteristics of G. glutinosa aerial parts, identify the chemical composition of traditionally used preparations to assess its pharmacobotanical characterization and evaluate its activity as antiseptic and anti-inflammatory to give scientific support to its traditional uses. G. glutinosa morpho-anatomical description was performed following standard histological techniques. Tincture and infusion of its aerial parts were prepared and were subjected to phytochemical analysis. Xanthine oxidase (XOD) and lipoxygenase (LOX) inhibition experiments, as well as ABTS•+, superoxide radical, and hydrogen peroxide scavenging activity, were carried out. The growth inhibition of methicillin-resistant Staphylococcus aureus (MRSA) strains was also determined. The morpho-anatomical traits of G. glutinosa leaves and stems were reported for the first time. The medicinal preparations exhibited a large amount of phenolic chemicals mainly flavonoids such as rhamnetin, arcapillin, rhamnacin, hesperetin, isorhamnetin, centaureidin, europetin 7-O-mehylmyricetin, cirsiliol, sakuranetin, genkwanin and eupatorine and also phenolic acids and diterpenoid derivatives. Both preparations had free radical scavenging activity and were able to reduce both XOD and LOX activity, indicating their anti-inflammatory properties. Besides, tincture was effective against all MRSA strains (MIC values ranging from 60 to 240 g DW/mL). The results obtained in this work scientifically support the medicinal popular use of G. glutinosa as an antiseptic and anti-inflammatory. The identification of bioactive compounds and their morpho-anatomical description contribute to the quality control of this medicinal plant from Argentine Calchaquí Valley.
Collapse
Affiliation(s)
- Mariana Leal
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo 1469. San Miguel de Tucumán, Tucumán, Argentina
| | - María Inés Mercado
- Instituto de Morfología Vegetal. Área Botánica. Fundación Miguel Lillo, Miguel Lillo 251, San Miguel de Tucumán, Tucumán, Argentina
| | - María Alejandra Moreno
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo 1469. San Miguel de Tucumán, Tucumán, Argentina
| | - José Javier Martínez Chamas
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo 1469. San Miguel de Tucumán, Tucumán, Argentina
| | - Iris Catiana Zampini
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo 1469. San Miguel de Tucumán, Tucumán, Argentina
| | - Graciela Inés Ponessa
- Instituto de Morfología Vegetal. Área Botánica. Fundación Miguel Lillo, Miguel Lillo 251, San Miguel de Tucumán, Tucumán, Argentina
| | - Mario J. Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja,Valdivia 5090000, Chile
| | - María Inés Isla
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo 1469. San Miguel de Tucumán, Tucumán, Argentina
| |
Collapse
|
19
|
Guzmán-Gutiérrez SL, Reyes-Chilpa R, González-Diego LR, Silva-Miranda M, López-Caamal A, García-Cruz KP, Jiménez-Mendoza MS, Arciniegas A, Espitia C. Five centuries of Cirsium ehrenbergii Sch. Bip. (Asteraceae) in Mexico, from Huitzquilitl to Cardo Santo: History, ethnomedicine, pharmacology and chemistry. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115778. [PMID: 36202165 DOI: 10.1016/j.jep.2022.115778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Several medicinal plants, including the endemic herb Cirsum ehrenbergii (Asteraceae), have been documented in manuscripts, medical and botanical books written in Mexico since the XVI century until the present. This unique circumstance is a real window in the time that allows to investigate historical and contemporary ethnopharmacological knowledge. AIM OF THE STUDY To examine the persistence, disappearance, and transformation of ethnomedicinal knowledge of C. ehrenbergii along time. Also, to investigate the chemistry and pharmacology of this species in relation to its historical and present day main ethnomedical applications related to Central Nervous System and inflammation. MATERIALS AND METHODS A thorough review was performed of written sources of medicinal plants from XVI and onwards. For the pharmacological studies, the organic extracts were tested in mice models to assess its antidepressant and anti-inflammatory properties. The active extracts were studied chemically. The isolated compounds were identified by 1H, 13C NMR, or characterized by GC-MS. RESULTS Cirsum ehrenbergii was illustrated for the first time (1552) in the Libellus de Medicinalibus Indorum Herbis (Booklet of Medicinal Plants of the Indians) and named in the Nahuatl native language as huitzquilitl (edible thistle). It was there recommended as nigris sanguinis remedium (remedy for black blood), and for the treatment of illnesses with an inflammatory component. Nigris sanguinis was well known in the European medicine of that time and currently it has been interpreted as "depression". At the present time, peasants and native population in Mexico mainly name C. ehrenbergii in Spanish as cardo Santo (holy thistle). Its original Nahuatl name has been almost forgotten. However, these communities use this species, among other maladies, to heal "nervios" (anxiety and/or depression) and for anti-inflammatory purposes. These ailments and treatments resemble those recorded in the Libellus and in several medicinal plant books along centuries. The ethanol extract of C. ehrenbergii roots showed antidepressant-like activity in mice administered at 300 mg/kg, as indicated by the forced swim test (FST). The glycosylated flavonoid linarin was identified as antidepressant principle and was active at the doses of 30 and 60 mg/kg in the FST. Regarding to anti-inflammatory activity, the most active was the methylene chloride extract of the aerial parts, which contains taraxasterol, pseudotaraxasterol, β-sitosterol and stigmasterol. CONCLUSIONS Cirsium ehrenbergii extracts possess antidepressant-like (roots, EtOH) and anti-inflammatory (aerial parts, CH2Cl2) properties, containing active compounds. Our results sustain historical and present day ethnomedical applications of this species documented along five centuries.
Collapse
Affiliation(s)
- Silvia Laura Guzmán-Gutiérrez
- CONACyT - Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Escolar S/N, Delegación Coyoacán, C.P 04510, Ciudad Universitaria, Ciudad de México, Mexico
| | - Ricardo Reyes-Chilpa
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Circuito Exterior S/N, Delegación Coyoacán, C.P 04510, Ciudad Universitaria, Ciudad de México, Mexico.
| | - Laura Rigel González-Diego
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Circuito Exterior S/N, Delegación Coyoacán, C.P 04510, Ciudad Universitaria, Ciudad de México, Mexico
| | - Mayra Silva-Miranda
- CONACyT - Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Escolar S/N, Delegación Coyoacán, C.P 04510, Ciudad Universitaria, Ciudad de México, Mexico
| | - Alfredo López-Caamal
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Circuito Exterior S/N, Delegación Coyoacán, C.P 04510, Ciudad Universitaria, Ciudad de México, Mexico
| | - Karla Paola García-Cruz
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Circuito Exterior S/N, Delegación Coyoacán, C.P 04510, Ciudad Universitaria, Ciudad de México, Mexico
| | - María Sofía Jiménez-Mendoza
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Circuito Exterior S/N, Delegación Coyoacán, C.P 04510, Ciudad Universitaria, Ciudad de México, Mexico
| | - Amira Arciniegas
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Circuito Exterior S/N, Delegación Coyoacán, C.P 04510, Ciudad Universitaria, Ciudad de México, Mexico
| | - Clara Espitia
- Instituto de Investigaciones Biomédicas. Departamento de Inmunología. Universidad Nacional Autónoma de México. Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| |
Collapse
|
20
|
Gupta DP, Park SH, Lee YS, Lee S, Lim S, Byun J, Cho IH, Song GJ. Daphne genkwa flower extract promotes the neuroprotective effects of microglia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154486. [PMID: 36240609 DOI: 10.1016/j.phymed.2022.154486] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Microglia are innate immune cells in the central nervous system that play a crucial role in neuroprotection by releasing neurotrophic factors, removing pathogens through phagocytosis, and regulating brain homeostasis. The constituents extracted from the roots and stems of the Daphne genkwa plant have shown neuroprotective effects in an animal model of Parkinson's disease. However, the effect of Daphne genkwa plant extract on microglia has yet to be demonstrated. PURPOSE To study the anti-inflammatory and neuroprotective effects of Daphne genkwa flower extract (GFE) in microglia and explore the underlying mechanisms. METHODS In-vitro mRNA expression levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase, Arginase1, and brain derived neurotropic factor (BDNF) were analyzed by reverse transcription polymerase chain reaction in microglia cells. Nitric oxide (NO) and TNF-α protein were respectively analyzed by Griess reagent and Enzyme Linked Immunosorbent Assay. Immunoreactivity of Iba-1, Neu-N, and BDNF in mouse brain were analyzed by immunofluorescence staining. Phagocytosis capacity of microglia was examined using fluorescent zymosan-red particles. RESULTS GFE significantly inhibited lipopolysaccharide (LPS)-induced neuroinflammation and promoted neuroprotection both in vitro and in vivo. First, GFE inhibited the LPS-induced inflammatory factors NO, iNOS, and TNF-α in microglial cell lines and primary glial cells, thus demonstrating anti-inflammatory effects. Arginase1 and BDNF mRNA levels were increased in primary glial cells treated with GFE. Phagocytosis was also increased in microglia treated with GFE, suggesting a neuroprotective effect of GFE. In vivo, neuroprotective and anti-neuroinflammatory effects of GFE were also found in the mouse brain, as oral administration of GFE significantly inhibited LPS-induced neuronal loss and inflammatory activation of microglia. CONCLUSION GFE has anti-inflammatory effects and promotes microglial neuroprotective effects. GFE inhibited the pro-inflammatory mediators and enhanced neuroprotective microglia activity by increasing BDNF expression and phagocytosis. These novel findings of the GFE effect on microglia show an innovative approach that can potentially promote neuroprotection for the prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Deepak Prasad Gupta
- Department of Medical Science, Catholic Kwandong University College of Medicine, Gangneung, Gangwon-do, Korea
| | - Sung Hee Park
- Department of Medical Science, Catholic Kwandong University College of Medicine, Gangneung, Gangwon-do, Korea
| | - Young-Sun Lee
- Department of Medical Science, Catholic Kwandong University College of Medicine, Gangneung, Gangwon-do, Korea; The Convergence Institute of Healthcare and Medical Science, Catholic Kwandong University, International St. Mary's Hospital, Incheon, Korea
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Korea
| | - Sujin Lim
- Department of Life Science, The Catholic University of Korea, Bucheon, Korea
| | - Jiin Byun
- Department of Life Science, The Catholic University of Korea, Bucheon, Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Korea.
| | - Gyun Jee Song
- Department of Medical Science, Catholic Kwandong University College of Medicine, Gangneung, Gangwon-do, Korea; The Convergence Institute of Healthcare and Medical Science, Catholic Kwandong University, International St. Mary's Hospital, Incheon, Korea.
| |
Collapse
|
21
|
Zhang LB, Yan Y, He J, Wang PP, Chen X, Lan TY, Guo YX, Wang JP, Luo J, Yan ZR, Xu Y, Tao QW. Epimedii Herba: An ancient Chinese herbal medicine in the prevention and treatment of rheumatoid arthritis. Front Chem 2022; 10:1023779. [PMID: 36465876 PMCID: PMC9712800 DOI: 10.3389/fchem.2022.1023779] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/02/2022] [Indexed: 08/29/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, progressive inflammatory and systemic autoimmune disease resulting in severe joint destruction, lifelong suffering and considerable disability. Diverse prescriptions of traditional Chinese medicine (TCM) containing Epimedii Herba (EH) achieve greatly curative effects against RA. The present review aims to systemically summarize the therapeutic effect, pharmacological mechanism, bioavailability and safety assessment of EH to provide a novel insight for subsequent studies. The search terms included were "Epimedii Herba", "yinyanghuo", "arthritis, rheumatoid" and "Rheumatoid Arthritis", and relevant literatures were collected on the database such as Google Scholar, Pubmed, Web of Science and CNKI. In this review, 15 compounds from EH for the treatment of RA were summarized from the aspects of anti-inflammatory, immunoregulatory, cartilage and bone protective, antiangiogenic and antioxidant activities. Although EH has been frequently used to treat RA in clinical practice, studies on mechanisms of these activities are still scarce. Various compounds of EH have the multifunctional traits in the treatment of RA, so EH may be a great complementary medicine option and it is necessary to pay more attention to further research and development.
Collapse
Affiliation(s)
- Liu-Bo Zhang
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical Medical College & School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Yan
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Jun He
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Pei-Pei Wang
- China-Japan Friendship Clinical Medical College & School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Chen
- School of Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
| | - Tian-Yi Lan
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical Medical College & School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yu-Xuan Guo
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical Medical College & School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jin-Ping Wang
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Jing Luo
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Ze-Ran Yan
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Yuan Xu
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Qing-Wen Tao
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
22
|
Wang J, Yuan H, Wu Y, Yu J, Ali B, Zhang J, Tang Z, Xie J, Lyu J, Liao W. Application of 5-aminolevulinic acid promotes ripening and accumulation of primary and secondary metabolites in postharvest tomato fruit. Front Nutr 2022; 9:1036843. [PMID: 36438749 PMCID: PMC9686309 DOI: 10.3389/fnut.2022.1036843] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/19/2022] [Indexed: 08/27/2023] Open
Abstract
5-Aminolevulinic acid (ALA) plays a vital role in promoting plant growth, enhancing stress resistance, and improving fruit yield and quality. In the present study, tomato fruits were harvested at mature green stage and sprayed with 200 mg L-1 ALA on fruit surface. During ripening, the estimation of primary and secondary metabolites, carotenoids, and chlorophyll contents, and the expression levels of key genes involved in their metabolism were carried out. The results showed that ALA significantly promoted carotenoids accumulation by upregulating the gene expression levels of geranylgeranyl diphosphate synthase (GGPPS, encoding geranylgeranyl diphosphate synthase), phytoene synthase 1 (PSY1, encoding phytoene synthase), phytoene desaturase (PDS, encoding phytoene desaturase), and lycopeneβ-cyclase (LCYB, encoding lycopene β-cyclase), whereas chlorophyll content decreased by downregulating the expression levels of Mg-chelatase (CHLH, encoding Mg-chelatase) and protochlorophyllide oxidoreductase (POR, encoding protochlorophyllide oxidoreductase). Besides, the contents of soluble solids, vitamin C, soluble protein, free amino acids, total soluble sugar, organic acid, total phenol, and flavonoid were increased in ALA-treated tomato fruit, but the fruit firmness was decreased. These results indicated that the exogenous ALA could not only promote postharvest tomato fruit ripening but also improve the internal nutritional and flavor quality of tomato fruit.
Collapse
Affiliation(s)
- Junwen Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Hong Yuan
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yue Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
23
|
Li YQ, Murakami M, Huang YH, Hung TH, Wang SP, Wu YS, Ambudkar SV, Wu CP. Hydroxygenkwanin Improves the Efficacy of Cytotoxic Drugs in ABCG2-Overexpressing Multidrug-Resistant Cancer Cells. Int J Mol Sci 2022; 23:ijms232112763. [PMID: 36361555 PMCID: PMC9658017 DOI: 10.3390/ijms232112763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022] Open
Abstract
Hydroxygenkwanin, a flavonoid isolated from the leaves of the Daphne genkwa plant, is known to have pharmacological properties; however, its modulatory effect on multidrug resistance, which is (MDR) mediated by ATP-binding cassette (ABC) drug transporters, has not been investigated. In this study, we examine the interaction between hydroxygenkwanin, ABCB1, and ABCG2, which are two of the most well-characterized ABC transporters known to contribute to clinical MDR in cancer patients. Hydroxygenkwanin is not an efflux substrate of either ABCB1 or ABCG2. We discovered that, in a concentration-dependent manner, hydroxygenkwanin significantly reverses ABCG2-mediated resistance to multiple cytotoxic anticancer drugs in ABCG2-overexpressing multidrug-resistant cancer cells. Although it inhibited the drug transport function of ABCG2, it had no significant effect on the protein expression of this transporter in cancer cells. Experimental data showing that hydroxygenkwanin stimulates the ATPase activity of ABCG2, and in silico docking analysis of hydroxygenkwanin binding to the inward-open conformation of human ABCG2, further indicate that hydroxygenkwanin sensitizes ABCG2-overexpressing cancer cells by binding to the substrate-binding pocket of ABCG2 and attenuating the transport function of ABCG2. This study demonstrates the potential use of hydroxygenkwanin as an effective inhibitor of ABCG2 in drug combination therapy trials for patients with tumors expressing higher levels of ABCG2.
Collapse
Affiliation(s)
- Yan-Qing Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yang-Hui Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Shun-Ping Wang
- Department of Orthopedics, Taichung Veterans General Hospital, Taichung 40704, Taiwan
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- Correspondence: (S.V.A.); (C.-P.W.); Tel.: +1-240-760-7192 (S.V.A.); +886-3-2118800 (C.-P.W.)
| | - Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
- Correspondence: (S.V.A.); (C.-P.W.); Tel.: +1-240-760-7192 (S.V.A.); +886-3-2118800 (C.-P.W.)
| |
Collapse
|
24
|
A Comprehensive Evaluation of Effects on Water-Level Deficits on Tomato Polyphenol Composition, Nutritional Quality and Antioxidant Capacity. Antioxidants (Basel) 2022; 11:antiox11081585. [PMID: 36009305 PMCID: PMC9405155 DOI: 10.3390/antiox11081585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/14/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
Tomatoes have high nutritional value and abundant bioactive compounds. Moderate water deficit irrigation alters metabolic levels of fruits, improving composition and quality. We investigated the effects of water deficit (T1, T2, T3, and T4) treatments and adequate irrigation (CK) on tomato polyphenol composition, antioxidant capacity, and nutritional quality. Compared with CK, the total flavonoid content increased by 33.66% and 44.73% in T1 and T2, and total phenols increased by 57.64%, 72.22%, and 55.78% in T1, T2, and T3, respectively. The T2 treatment significantly enhanced antioxidant’ capacities (ABTS, HSRA, FRAP, and DPPH). There were multiple groups of significant or extremely significant positive correlations between polyphenol components and antioxidant activity. For polyphenols and antioxidant capacity, the classification models divided the treatments: CK and T4 and T1−T3. The contents of soluble solids, soluble protein, vitamin C, and soluble sugar of the treatment groups were higher than those of CK. The soluble sugar positively correlated with sugar−acid ratios. In the PCA-based model, T3 in the first quadrant indicated the best treatment in terms of nutritional quality. Overall, comprehensive rankings using principal component analysis (PCA) revealed T2 > T1 > T3 > T4 > CK. Therefore, the T2 treatment is a suitable for improving quality and antioxidant capacity. This study provides novel insights into improving water-use efficiency and quality in the context of water scarcity worldwide.
Collapse
|
25
|
Chen Y, Li GX, Peng AQ, Tang Y, Wang L. Rapid Construction of Enantioenriched Benzofurochromanes by SaBOX/Copper(II) Catalyzed Enantioselective [3 + 2] Annulation of γ-Chromenes with Quinones. Org Lett 2022; 24:5525-5529. [DOI: 10.1021/acs.orglett.2c01933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yang Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Geng-Xie Li
- School of Physical Science and Technology, ShanghaiTech University, Middle Huaxia Road, Shanghai 201210, China
| | - Ai-Qing Peng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Yong Tang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Lijia Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
26
|
Yang H, Yang T, Gong D, Li X, Sun G, Guo P. A trinity fingerprint evaluation system of traditional Chinese medicine. J Chromatogr A 2022; 1673:463118. [PMID: 35550981 DOI: 10.1016/j.chroma.2022.463118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022]
Abstract
This study focused on developing a set of quality evaluation methods that can reflect the multi-levels and multi-characteristics of traditional Chinese medicine (TCM). Taking licorice (Glycyrrhiza glabra L.) as the method development sample, the feasibility of multi-markers assay by monolinear method (MAML) was explored through the standard curve relationship among active components for the first time. Using glycyrrhizic acid as measurement marker, MAML can simultaneously quantify five components of licorice, including isoliquiritigenin, isoliquiritin apioside, liquiritigenin, liquiritin and liquiritin apioside. Comparing MAML and quantitative analysis of multi-components by single-marker (QAMS) to the external standard method (ESM) respectively, it was found that there was no significant difference in the content of components that were calculated by MAML and ESM (the relative error (RE) was generally less than 2.00%). However, the RE of the component content calculated by QAMS fluctuated greatly, indicating that the MAML was more accurate than QAMS. In addition, UV and THz quantum fingerprints were initiated by the interval erasure method. Taking the systematically quantified fingerprint method as the core, a "Trinity" fingerprint quality evaluation system based on HPLC, UV and THz was developed. The system successfully distinguished the quality differences of licorice samples from 13 producing areas and two ecological models by the comprehensive evaluation results. Simultaneously, the quality information of licorice at different technical levels was revealed. Finally, bivariate correlation analysis was used to examine the linkage between UV/HPLC and antioxidant spectrum efficacy, and the two-dimensional activity spectrum of licorice was provided. It may furnish a more thorough and objective analytical technique for licorice and even other TCMs in chemical fingerprint features, chemical bond vibration characteristics and biological activity information.
Collapse
Affiliation(s)
- Huizhi Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110032, China
| | - Ting Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110032, China
| | - Dandan Gong
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110032, China
| | - Xiaohui Li
- China Communication Technology (Jiangmen) Co., Ltd., Jiangmen, Guangdong, 529000, China
| | - Guoxiang Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110032, China.
| | - Ping Guo
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110032, China.
| |
Collapse
|
27
|
Cao F, Xi Y, Zheng C, Bai T, Sun Q. How Efficient are Basic Public Health Services Between Urban and Rural in Shandong Province, China? A Data Envelopment Analysis and Panel Tobit Regression Approach. Healthc Policy 2022; 15:727-738. [PMID: 35469180 PMCID: PMC9034868 DOI: 10.2147/rmhp.s354758] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/28/2022] [Indexed: 11/26/2022] Open
Abstract
Background Improving basic public health services efficiency becomes priority to guarantee its sustainability for Chinese government. This study aimed to explore basic public health services efficiency and its influencing factors between urban and rural in Shandong Province, China, providing policy implications to improve efficiency. Methods This research assessed basic public health services efficiency of 54 districts (representing urban) and 83 counties (representing rural) in Shandong, China, from 2014 to 2019. The data were obtained from Medical Management Service Center of Shandong Health Commission and Statistical Yearbooks. Input variables were subsidy funds, public health staffs and material expenditures. Output variables were assessment indicators covered all service contents from national standard. The data envelopment analysis and panel tobit regression were used to measure efficiency scores and efficiency influencing factors. Results Basic public health services efficiency scores of urban were higher than those of rural during 2014 to 2019. Scale efficiency change and technological change promoted basic public health services total factor productivity change of urban and rural respectively. Panel tobit regression indicated that proportion of health expenditures in general public budget expenditures (P<0.01), subsidy funds (P<0.01), public health personnel expenditures (P<0.01) and the frequency of professional health institutions’ guidance (P<0.01) were positively associated with efficiency in both urban and rural. The number of primary medical and health institutions and public health personnel were positively associated with urban (P<0.01), but those did not affect rural (P>0.10). Conclusion To improve basic public health services efficiency, urban should focus on health resource structure, especially increasing primary medical and health institutions and public health personnel. Rural should expand the input scale, paying more attention to subsidy funds and public health personnel expenditures. The government should also care strengthening the guidance to primary medical and health institutions from professional health institutions.
Collapse
Affiliation(s)
- Fankun Cao
- Center for Health Management and Policy Research of Public Health School, Shandong University, Jinan, Shandong Province, People’s Republic of China
- NHC Key Lab of Health Economics and Policy Research (Shandong University), Shandong University, Jinan, Shandong Province, People’s Republic of China
| | - Yan Xi
- Health Commission of Shandong Province, Jinan, Shandong Province, People’s Republic of China
| | - Chao Zheng
- Center for Health Management and Policy Research of Public Health School, Shandong University, Jinan, Shandong Province, People’s Republic of China
- NHC Key Lab of Health Economics and Policy Research (Shandong University), Shandong University, Jinan, Shandong Province, People’s Republic of China
| | - Tongyu Bai
- Primary Health Department, Health Commission of Shandong Province, Jinan, Shandong Province, People’s Republic of China
| | - Qiang Sun
- Center for Health Management and Policy Research of Public Health School, Shandong University, Jinan, Shandong Province, People’s Republic of China
- NHC Key Lab of Health Economics and Policy Research (Shandong University), Shandong University, Jinan, Shandong Province, People’s Republic of China
- Correspondence: Qiang Sun, Email
| |
Collapse
|
28
|
Kim MK, Park G, Ji Y, Lee YG, Choi M, Go SH, Son M, Jang YP. Design of Experiments-Based Optimization of Flavonoids Extraction from Daphne genkwa Flower Buds and Flavonoids Contents at Different Blooming Stages. PLANTS 2022; 11:plants11070925. [PMID: 35406905 PMCID: PMC9002897 DOI: 10.3390/plants11070925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022]
Abstract
The flower buds of Daphne genkwa have been reported as a potent resource associated with anti-angiogenic, anti-tumor, anti-rheumatoid arthritis activities, as well as immunoregulation. This paper aimed to establish an optimal extraction method for flavonoids, as active phytochemicals, and to conduct a comparative analysis by profiling the different blooming stages. Optimized shaking extraction conditions from the design of experiments (DoE), such as minutely mixture design, 23 full factorial design, and polynomial regression analysis, involved an agitation speed of 150 rpm and temperature of 65 °C for 12 h in 56% (v/v) acetone solvent. After, a comparative analysis was performed on three blooming stages, juvenile bud, mature purple bud, and complete flowering, by ultra-high-performance liquid chromatography-photodiode array-mass spectrometry (UHPLC-PDA-MS). Most flavonoids increased during bud growth and then decreased when the bud opened for blooming. In particular, apigenin 7-O-glucuronide, genkwanin 5-O-primeveroside, and genkwanin strikingly showcased this pattern. Furthermore, the raw spectrometric dataset was subjected to orthogonal projection to latent structures discriminant analysis (OPLS-DA) to find significant differences in the flavonoids from the juvenile bud, mature purple bud, and complete flowering. In conclusion, the present study facilitates an understanding of flavonoid change at different blooming stages and provides a momentous reference in the research of D. genkwa.
Collapse
Affiliation(s)
- Min-Kyoung Kim
- Division of Pharmacognosy, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea;
| | - Geonha Park
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; (G.P.); (Y.J.)
| | - Yura Ji
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; (G.P.); (Y.J.)
| | - Yun-Gyo Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; (Y.-G.L.); (M.C.); (S.-H.G.)
| | - Minsik Choi
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; (Y.-G.L.); (M.C.); (S.-H.G.)
| | - Seung-Hyeon Go
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; (Y.-G.L.); (M.C.); (S.-H.G.)
| | - Miwon Son
- Central Research Center, Mtherapharma Co., Seoul 07793, Korea;
| | - Young-Pyo Jang
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; (G.P.); (Y.J.)
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; (Y.-G.L.); (M.C.); (S.-H.G.)
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-961-9421
| |
Collapse
|
29
|
Bailly C. Yuanhuacin and Related Anti-Inflammatory and Anticancer Daphnane Diterpenes from Genkwa Flos-An Overview. Biomolecules 2022; 12:192. [PMID: 35204693 PMCID: PMC8961543 DOI: 10.3390/biom12020192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
The dried flower buds of the plant Daphne genkwa Sieb. et Zucc. have been largely used in traditional Chinese medicine for the treatment of inflammatory diseases. Numerous diterpenoids have been isolated from the Genkwa Flos (yuanhua in Chinese), including a series of daphnane-type diterpene designated as yuanhuacin (YC, often improperly designated as yuanhuacine) and analogues with a patronymic name. The series includes ten daphnane-type diterpenes: yuanhuacin, yuanhuadin (YD), yuanhuafin (YF), yuanhuagin (YG), yuanhuahin (YH), yuanhuajin (YJ), yuanhualin (YL), yuanhuamin (YM), yuanhuapin (YP), and yuanhuatin (YT). They are distinct from the rare flavonoid yuanhuanin. The series comprises several anticancer agents, such as the lead compound YC, which has revealed potent activity in vitro and in vivo against models of lung and breast cancers. The main signaling pathways implicated in the antitumor effects have been delineated. Protein kinase C is a key factor of activity for YC, but in general the molecular targets at the origin of the activity of these compounds remain little defined. Promising anticancer effects have been reported with analogues YD and YT, whereas compounds YF and YP are considered more toxic. The pharmacological activity of each compound is presented, as well as the properties of Genkwa Flos extracts. The potential toxic effects associated with the use of these compounds are also underlined.
Collapse
|
30
|
Luo W, Wu B, Tang L, Li G, Chen H, Yin X. Recent research progress of Cirsium medicinal plants in China. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114475. [PMID: 34363929 DOI: 10.1016/j.jep.2021.114475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/16/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The species of the genus Cirsium have been used as traditional Chinese medicine for hundreds of years. It is believed that Cirsium has the efficacies of cooling blood and stopping bleeding, dispelling blood stasis, detoxifying and eliminating carbuncle. At present, they are mainly used in treatment of the hemoptysis, hematemesis, hemoptysis, hematuria, traumatic bleeding and Henoch-Schonlein purpura. They are widely used in traditional Chinese medicine. AIM This paper systematically collated the classification, traditional use, pharmacological action, phytochemistry and clinical application of Cirsium plants in the past ten years, intending to provide a critical appraisal of current knowledge for future in-depth study and rational development and utilization of Cirsium plants. MATERIAL AND METHODS This paper searched various databases (SciFinder, Science Direct, CNKI, Wiley online library, Spring Link, Web of Science, PubMed, Wanfang Data, Weipu Data), Chinese Pharmacopoeia 2020 Edition, Chinese Flora, Chinese Materia Medica and some local books on ethnopharmacology. RESULTS More than ten species of Cirsium have been used as folk medicine, and modern pharmacological studies have shown that Cirsium has the effects of protecting liver, antioxidation, anti-tumor, anti-inflammation, antibacterial, etc. More than 200 chemical constituents such as flavonoids, triterpenes, sterols, phenylpropanoids have been isolated from Cirsium. Some ingredients show a wide variety of bioactivities including hepatoprotective, anti-inflammatory, antioxidant, anti-tumor and other activities. At present, Cirsium medicinal plants, as traditional Chinese medicine, were mainly used to treat nephritis, Henoch-Schonlein purpura and hemorrhage, although some species used in folk lack of quality control systems. CONCLUSION Cirsium plants are a safe and effective medicine for cooling blood and hemostasis. Recent studies on pharmacology and phytochemistry also provide solid scientific evidences for the traditional application of this genus. It also shows significant hepatoprotective activity and may be a potential clinical candidate for the treatment of liver disease. However, the qualitative and quantitative analysis, pharmacokinetics-pharmacodynamics and mechanism of action also need in-depth study.
Collapse
Affiliation(s)
- Wei Luo
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bei Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Liangjie Tang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Guoyou Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Hulan Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xuemei Yin
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
31
|
Zheng G, Gan L, Jia LY, Zhou DC, Bi S, Meng ZQ, Guan GJ, Huang MM, He X, Zhang CF, Wang CZ, Yuan CS. Screen of anti-migraine active compounds from Duijinsan by spectrum-effect relationship analysis and molecular docking. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114352. [PMID: 34161797 DOI: 10.1016/j.jep.2021.114352] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Duijinsan (DJS) is a famous Chinese medicine prescription composed of Radix scutellariae (RS) and Rhei Radix (RRR), which has been mainly used for treating migraine. AIM OF THE STUDY This study aimed to uncover the anti-migraine active compounds from DJS and preliminary predicted the pharmacological mechanism by evaluating the spectrum-effect relationship between high-performance liquid chromatography (HPLC) fingerprints and anti-migraine effects of Duijinsan (DJS) extract combined with molecular docking. MATERIALS AND METHODS HPLC and LC-MS were applied for chemical analyses of DJS extracts in different proportions. Inhibition of DJS extracts on trigeminal nerve cell releasing calcitonin gene related peptide (CGRP) experiment was performed. The active compounds were screened by spectrum-effect relationship analysis and confirmed by molecular docking and the activities of major predicted compounds were validated in vitro. RESULTS Twenty-six common peaks were assigned and identified from the fingerprints of different proportions DJS extracts. In vitro experimental results showed that DJS extracts inhibited inflammation and release of CGRP from trigeminal nerve cells. Five predicted active compounds, Chrysin 6-C-arabinoside 8-C-glucoside, Chrysin 6-C-glucoside 8-C-arabinoside, baicalin, Chrysin-7-O-Beta-D-glucoronide and Oroxylin A 7-O-glucuronide were sorted out according to spectrum-effect relationship analysis and molecular docking comprehensively. In vitro validation experiments showed that all the predicted compounds inhibited the CGRP releasing and the activation of TRPV1 channel. Baicalin, chrysin-7-O-β-D-glucuronide and Oroxylin A-7-glucoronide significantly inhibited the activation of TRPV1 channel. CONCLUSION Chrysin 6-C-arabinoside 8-C-glucoside, Chrysin 6-C-glucoside 8-C-arabinoside, baicalin, Chrysin-7-O-Beta-D-glucoronide and Oroxylin A 7-O-glucuronide which can inhibit the CGRP releasing and the activation of TRPV1 channel were screened as the anti-migraine active compounds by spectrum-effect relationship analysis and molecular docking.
Collapse
Affiliation(s)
- Guo Zheng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Lu Gan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Li-Ying Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - De-Cui Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Sheng Bi
- Shandong Hongjitang Pharmaceutical Group Co., Ltd, Jinan, 250103, PR China.
| | - Zhao-Qing Meng
- Shandong Hongjitang Pharmaceutical Group Co., Ltd, Jinan, 250103, PR China.
| | - Gui-Ju Guan
- Shandong Hongjitang Pharmaceutical Group Co., Ltd, Jinan, 250103, PR China.
| | - Meng-Meng Huang
- Shandong Hongjitang Pharmaceutical Group Co., Ltd, Jinan, 250103, PR China.
| | - Xin He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Chun-Feng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Chong-Zhi Wang
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA.
| | - Chun-Su Yuan
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
32
|
Shen HY, Li XQ, Fan WQ, Wang YW, Huang F, Wu JQ, Zhang W, Feng XS, Chao X. A systematic approach to decode the mechanism of Cornus in the treatment of hepatocellular carcinoma (HCC). Eur J Pharmacol 2021; 909:174405. [PMID: 34384755 DOI: 10.1016/j.ejphar.2021.174405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/11/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023]
Abstract
Cornus Officinalis (Cornus), the dried pulp of mature Cornus, is used to treat liver diseases. However, the pharmacological mechanism of Cornus in the treatment of hepatocellular carcinoma (HCC) has not been systematically studied. The chemical compounds and the bioactive chemical compounds of Cornus were screened through Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Gene Cards database was used to explore the targets in liver cancer pathogenesis. The disease-drug Venn diagram was constructed using the VENN 2.1 and the STRING database was used to analyze protein-protein Interaction Network (PPI). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed using the R package. Molecular docking was performed using Discovery Studio were assessed using Pymol and Discovery Studio 2016. Cell survival of BEL-7404 cells treated by Hydroxygenkwanin (HGK) were valued through CCK-8 assay. Expressions of caspase-3 and cleaved PARP was detected through Western blot. Pharmacological network diagrams of the Cornus compound-target network and HCC-related target network were successfully constructed. A total of 20 active compounds, 1841 predicted biological targets of Cornus, and 7100 HCC-related targets were identified. 37 target genes between Cornus and HCC were screened trough the network pharmacology. Molecular docking studies suggested that HGK has the highest affinity with caspase-3. HGK could induce apoptosis of HCC cells and significantly activate the caspase-3 protease activity in BEL-7404. This study systematically elaborated the mechanism of Cornus in the treatment of HCC and provided a new perspective to exploit Antineoplastic from Cornus.
Collapse
Affiliation(s)
- Hai-Yu Shen
- The Second Affiliated Hospital, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, 712000, China; College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, 712046, China
| | - Xiao-Qiang Li
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Wen-Qiang Fan
- Xinxiang Central Hospital, Xinxiang, Henan, 453000, China
| | - Yu-Wei Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, 712046, China
| | - Feng Huang
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, 712046, China
| | - Jie-Qiong Wu
- The Second Affiliated Hospital, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, 712000, China
| | - Wei Zhang
- The Second Affiliated Hospital, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, 712000, China
| | - Xue-Song Feng
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, 712046, China
| | - Xu Chao
- The Second Affiliated Hospital, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, 712000, China; College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, 712046, China.
| |
Collapse
|
33
|
Analytical quality by design methodology for botanical raw material analysis: a case study of flavonoids in Genkwa Flos. Sci Rep 2021; 11:11936. [PMID: 34099770 PMCID: PMC8185112 DOI: 10.1038/s41598-021-91341-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/18/2021] [Indexed: 11/08/2022] Open
Abstract
The present study introduces a systematic approach using analytical quality by design (AQbD) methodology for the development of a qualified liquid chromatographic analytical method, which is a challenge in herbal medicinal products due to the intrinsic complex components of botanical sources. The ultra-high-performance liquid chromatography-photodiode array-mass spectrometry (UHPLC-PDA-MS) technique for 11 flavonoids in Genkwa Flos was utilized through the entire analytical processes, from the risk assessment study to the factor screening test, and finally in method optimization employing central composite design (CCD). In this approach, column temperature and mobile solvent slope were found to be critical method parameters (CMPs) and each of the eleven flavonoid peaks’ resolution values were used as critical method attributes (CMAs) through data mining conversion formulas. An optimum chromatographic method in the design space was calculated by mathematical and response surface methodology (RSM). The established chromatographic condition is as follows: acetonitrile and 0.1% formic acid gradient elution (0–13 min, 10–45%; 13–13.5 min, 45–100%; 13.5–14 min, 100–10%; 14–15 min, 10% acetonitrile), column temperature 28℃, detection wavelength 335 nm, and flow rate 0.35 mL/min using C18 (50 × 2.1 mm, 1.7 μm) column. A validation study was also performed successfully for apigenin 7-O-glucuronide, apigenin, and genkwanin. A few important validation results were as follows: linearity over 0.999 coefficient of correlation, detection limit of 2.87–22.41, quantitation limit of 8.70–67.92, relative standard deviation of precision less than 0.22%, and accuracy between 100.13 and 102.49% for apigenin, genkwanin, and apigenin 7-O-glucuronide. In conclusion, the present design-based approach provide a systematic platform that can be effectively applied to ensure pharmaceutically qualified analytical data from complex natural products based botanical drug.
Collapse
|
34
|
|