1
|
Zhang Z, Li Y, Wu J, Zhang J, Chen N, Zhang N. Therapeutic effect of Periploca forrestii on collagen-induced arthritis in rats through JAK2/Nf-κB pathway. Front Pharmacol 2024; 15:1415392. [PMID: 38841364 PMCID: PMC11150650 DOI: 10.3389/fphar.2024.1415392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic autoimmune disease that affects the body. Periploca forrestii was a miao ethnic drug in China that was used to treat arthritis for hundreds of years. But, the therapeutic mechanism is so far unknown. Therefore, the chemical component and effect of Periploca forrestii on arthritis in rats were studied using HPLC-QTOF MS, micro-CT, and other experiments in this paper. Method Male Sprague-Dawley rats were used to assess the in vivo activity. HPLC QTOF-MS was used to analyze the chemical profile of the P. forrestii (PF). Bovine type II collagen and Complete Freund's Adjuvant were used to stimulate and construct the collagen-induced arthritis (CIA) model. Three dosages of PF (100 mg/kg, 200 mg/kg, 400 mg/kg) were used to evaluate in vivo activity. Methotrexate was used as the positive drug. H/E staining and micro-CT methods were used to monitor the pathological changes of CIA rats. ELISA method was used to assess the serum level of immune- and inflammation-related cytokines. Immunohistochemical experiments were used to test the gene expression in JAK and Nf-κB pathways. Results 42 compounds were identified from PF. PF administration lowered the increased spleen index compared with that of control and MTX groups, and partially restored body weight, reduced paw swelling, and arthritis score compared with the model group. Macroscopic assessment indicated inflamed paw with significant swelling in the model group, while the extent of inflammation and swelling was attenuated by both MTX and PF. H/E staining experiments demonstrated that pathological changes of synovial cells and infiltration of inflammatory cells were observed in the model group. In contrast, the MTX and PF treatment partially reversed these pathological changes. Micro-CT examination showed severe injuries and scars caused by inflammation for the model group, and in the high-dosage group (400 mg/kg) the inflammation-caused injuries and scars were dramatically ameliorated. Mechanism study showed that PF restored Nf-κB phosphorylation and JAK2 expression compared with the model group. Conclusion P. forrestii possesses a potent effect on CIA rats. Nf-κB and JAK2 pathways are involved in its protective effect on CIA.
Collapse
Affiliation(s)
- Zhenyi Zhang
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yingchun Li
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jian Wu
- College of Pharmacology, Harbin University of Commerce, Harbin, China
| | - Jihong Zhang
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ning Chen
- College of Pharmacology, Harbin University of Commerce, Harbin, China
| | - Ning Zhang
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Mu KL, Li L, Chen Y, Zhang MJ, He TL, Li KM, Liu YC, Liu G. Analysis of Chemical Constituents of Miao Ethnomedicine Heiguteng Zhuifeng Huoluo Capsule (HZFC) and the Discovery of Active Substances in the Treatment of Rheumatoid Arthritis. ACS OMEGA 2024; 9:10860-10874. [PMID: 38463300 PMCID: PMC10918809 DOI: 10.1021/acsomega.3c09788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 03/12/2024]
Abstract
In this study, the chemical substances of Heiguteng Zhuifeng Huoluo Capsule (HZFC) and its potential active ingredients for the treatment of rheumatoid arthritis (RA) were characterized and analyzed by medicinal chemistry combined with bioinformatics methods. Also, the potential active ingredients of HZFC against RA were verified by lipopolysaccharide (LPS)-induced macrophage activation model. The results showed that 79 chemical constituents were successfully identified, mainly including phenylpropanoids, flavonoids, and alkaloids. Among them, 13 active components were closely related to the nine core targets (FASN, ALOX5, EGFR, MMP1, CYP2D6, CNR1, AR, MAOA, and FKBP5) of HZFC in the treatment of RA. Molecular docking further proved that 13 active components had strong docking activity with 9 core targets. In the verification experiment of the LPS-induced RAW 264.7 macrophage model, the verified components (magnoflorine, N-feruloyltyramine, canadine, rutin, quercetin-3-O-glucoside, and pseudocolumbamine) all showed a clear inhibitory effect on the secretion of inflammatory factors in model cells. The above research results suggest that 13 components such as stepharanine, rutin, quercetin-3-O-glucoside, corydine methyl ether, canadine, 8-oxoepiberberine, disinomenine, deosinomenine glucoside, tuduranine, magnoflorine, isosinomenine, pseudocolumbamine, and N-feruloyltyramine may be the main active substances of HZFC in the treatment of RA.
Collapse
Affiliation(s)
- Kai-lang Mu
- Guizhou University
of Traditional
Chinese Medicine, Guiyang 550025, Guizhou, China
| | - Lei Li
- Guizhou University
of Traditional
Chinese Medicine, Guiyang 550025, Guizhou, China
| | - Yun Chen
- Guizhou University
of Traditional
Chinese Medicine, Guiyang 550025, Guizhou, China
| | - Min-jie Zhang
- Guizhou University
of Traditional
Chinese Medicine, Guiyang 550025, Guizhou, China
| | - Tian-lin He
- Guizhou University
of Traditional
Chinese Medicine, Guiyang 550025, Guizhou, China
| | - Kai-min Li
- Guizhou University
of Traditional
Chinese Medicine, Guiyang 550025, Guizhou, China
| | - Yu-chen Liu
- Guizhou University
of Traditional
Chinese Medicine, Guiyang 550025, Guizhou, China
| | - Gang Liu
- Guizhou University
of Traditional
Chinese Medicine, Guiyang 550025, Guizhou, China
| |
Collapse
|
3
|
Ding Y, Zhao D, Wang T, Xu Z, Fu Y, Tao L. Medicinal patterns of vines used in Chinese herbal medicine: a quantitative study. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117184. [PMID: 37827301 DOI: 10.1016/j.jep.2023.117184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/27/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The botanical characteristics of twinning, climbing vine plants conceptually take shape to interlink the meridians and collaterals system throughout the human body by expelling climatic evils (e.g., wind, dampness). Thus, vines have displayed great medicinal properties in traditional Chinese medicine (TCM). AIM OF THE STUDY Although some popular vine species have been intensively investigated, the comparable features and medicinal specifications among a vast collection of taxonomic groups based on data visualization methods are relatively lacking in attention. Moreover, the translatability of vines from ancient ethnomedical evidence to modern medical system has not been well established. This review tends to quantitatively summarize the strength of vines in healthcare from the perspectives of medicinal part, traditional function, clinical spectrum, phytochemistry divergence, pharmacological attributes, toxicity as well as the progress of proprietary drug development. MATERIALS AND METHODS Medicinal vines were retrieved from databases of drug standards and curated catalogues. Synonyms of plant origin across different datasets were normalized by accepted scientific names in the World Flora Online. The distribution patterns and rank of plant origin, medicinal parts, traditional functions and target conditions, as well as the correlation between phytochemical composition and clinical applications were analyzed and visualized. RESULTS A total of 121 crude drugs from 36 families, 77 genera, 133 species of vines were obtained and analyzed. The Fabaceae, Menispermaceae and Rubiaceae were the highest ranked families of medicinal vines. Not surprisingly, stem was the most dominant medical part. Moreover, "eliminate wind" displayed a hub node in the traditional function co-occurrence network. In addition to joint impediment disorders, these vines particularly displayed a wide range of therapeutic modalities toward conditions from various organ systems. Chemotaxonomic properties-oriented phytochemical analysis was performed and the chemical diversity among medicinal vines complementarily determined a certain group of therapeutic domains. Particularly, the anti-inflammatory effect and antiarthritic effect were highlighted for treating rheumatic diseases. Using integral animal models and cultured cells, modern pharmacological actions of medicinal vines have been largely observed and validated according to their traditional ethnopharmacology. Furthermore, a small proportion of vine species are well-known toxic plants. Successful drug development pipelines in rheumatic, cardiovascular, liver, malignant and infectious diseases have offered the capacity to generate new treatment options that are being sought out from vine plants. CONCLUSIONS Medicinal vines are rich sources of Chinese Material Medica (CMM) and good fit for a variety of clinical manifestations beyond arthritis and rheumatic diseases. In addition to stem, other parts are also popular for both medicines and dietary supplements. Vine plants provide extensive biologically relevant chemical space for developing value-creating drugs. Thus, our analysis can be useful for further motivating and strengthening the preclinical and clinical research of vine-derived remedies.
Collapse
Affiliation(s)
- Yanlin Ding
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Dingping Zhao
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Tingye Wang
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Zhenyu Xu
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yuxuan Fu
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Li Tao
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
4
|
An S, Yan X, Chen H, Zhou X. Investigation of the Mechanism of Action of Periploca forrestii Schltr. Extract on Adjuvant Collagen Rats Based on UPLC-Q-Orbitrap-HRMS Non-Targeted Lipidomics. Molecules 2023; 28:6751. [PMID: 37836594 PMCID: PMC10574421 DOI: 10.3390/molecules28196751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Periploca forrestii Schltr. (P. forrestii) is a classical medicinal plant and is commonly used in traditional medicine for the treatment of rheumatoid arthritis, soft tissue injuries, and traumatic injuries. The aim of this study was to evaluate the anti-arthritic effects of three fractions of P. forrestii alcoholic extracts (PAE), P. forrestii water extracts (PWE), and total flavonoids from P. forrestii (PTF) on Freund's complete adjuvant (FCA)-induced arthritis in rats, and to use a non-targeted lipidomic method to investigate the mechanism of action of the three fractions of P. forrestii in the treatment of rheumatoid arthritis. To assess the effectiveness of anti-rheumatoid arthritis, various indicators were measured, including joint swelling, histopathological changes in the joints, serum cytokines (tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6)), and the joint inflammatory substance prostaglandin E2 (PGE2). Finally, ultra-performance liquid chromatography-quadrupole-orbitrap-high-resolution mass spectrometry (UPLC-Q-Orbitrap-HRMS) was used to determine the non-targeted lipid histology of the collected rat serum and urine samples to investigate the possible mechanism of action. PWE, PAE, and PTF were all effective in treating FCA-induced rheumatoid arthritis. The administered groups all reduced joint swelling and lowered serum inflammatory factor levels in rats. In the screening of lipid metabolite differences between serum and urine of the rat model group and the normal group, a total of 52 different metabolites were screened, and the levels of lipid metabolites in PWE, PAE, and PTF were significantly higher than those in the normal group after administration. In addition, PWE, PAE, and PTF may have significant therapeutic effects on FCA-induced arthritis by modulating nicotinic acid, nicotinamide, and histidine metabolic pathways.
Collapse
Affiliation(s)
- Silan An
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (S.A.); (X.Y.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Xiaoting Yan
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (S.A.); (X.Y.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Huaguo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (S.A.); (X.Y.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Xin Zhou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (S.A.); (X.Y.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| |
Collapse
|
5
|
Multi-component immune knockout: A strategy for studying the effective components of traditional Chinese medicine. J Chromatogr A 2023; 1692:463853. [PMID: 36780848 DOI: 10.1016/j.chroma.2023.463853] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/09/2023]
Abstract
Periploca forrestii Schltr., a traditional Chinese medicine (TCM), is commonly used to treat autoimmune diseases such as rheumatoid arthritis (RA). However, its mechanism, involving a variety of cardiac glycosides, remains largely unknown. The immune knockout strategy can highly selectively deplete target components by immunoaffinity chromatography (IAC). We aimed to identify the common structural features of cardiac glycosides in P. forrestii and design IAC to specifically recognize these features to achieve the multi-component knockout of potential active substances from the extracts of P. forrestii. A content detection experiment confirmed that the content of a compound with periplogenin structure (CPS) in the extract of P. forrestii was reduced by 45% by IAC of periplogenin. The immunosuppressive ability of the extract on H9 human T lymphocytic cells was weakened after CPS knockout from P. forrestii extract. Molecular biology experiments showed that mRNA expression of interferon-γ (IFN-γ), interleukin-2 (IL-2), and interleukin-6 (IL-6) in H9 cells was up-regulated after CPS knockout, while no significant changes in the expression of interleukin-4 (IL-4) were found. CPS knockout from P. forrestii extract did not cause significant changes in the proliferation of lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells incubated with this extract. These results indicate that CPS exhibited immunosuppressive effects via inhibiting the T helper 1 (Th1) cell immune response and not via the anti-inflammatory components in P. forrestii. This is the first use of IAC to achieve multi-component knockout in TCM extracts for identifying effective compounds. This method is effective and reliable and warrants further exploration.
Collapse
|
6
|
Wu T, Deng G, Yin Q, Chen S, Zhang Y, Wang B, Xiang L, Liu X. Characterization and molecular evolution analysis of Periploca forrestii inferred from its complete chloroplast genome sequence. Genome 2023; 66:34-50. [PMID: 36516428 DOI: 10.1139/gen-2022-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Periploca forrestii, a medicinal plant of the family Apocynaceae, is known as an effective and widely used clinical prescription for the treatment of rheumatoid diseases. In this study, we de novo sequenced and assembled the completement chloroplast (cp) genome of P. forrestii based on combined Oxford Nanopore PromethION and Illumina data. The cp genome was 153 724 bp in length and had four subregions. Moreover, an 84 433 bp large single-copy and a 17 731 bp small single-copy were separated by 25 780 bp inverted repeats (IRs). The cp genome included 132 genes with 18 duplicates in the IRs. A total of 45 repeat structures and 183 simple sequence repeats were detected. Codon usage showed a bias toward A/T-ending codons. A comparative study of Apocynaceae revealed that an IR expansion occurred on P. forrestii. The Ka/Ks values of eight species of Apocynaceae suggested that positive selection was exerted on the psaI and ycf2 genes, which might reflect specific adaptions to the P. forrestii particular growth environment. Phylogenetic analysis indicated that Periplocoideae was a sister to Asclepiadoideae, forming a monophyletic group in the family Apocynaceae. This study provided an important P. forrestii genomic resource for future evolutionary studies and the phylogenetic reconstruction of the family Apocynaceae.
Collapse
Affiliation(s)
- Tianze Wu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Chinese Academy of Medical Sciences, Beijing 100700, China.,School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Gang Deng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Chinese Academy of Medical Sciences, Beijing 100700, China.,School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Qinggang Yin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Chinese Academy of Medical Sciences, Beijing 100700, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Chinese Academy of Medical Sciences, Beijing 100700, China.,School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Yongping Zhang
- National Engineering Technology Research Center for Miao Medicine, College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
| | - Bo Wang
- National Engineering Technology Research Center for Miao Medicine, College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
| | - Li Xiang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Chinese Academy of Medical Sciences, Beijing 100700, China
| | - Xia Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
7
|
Investigation of the Mechanism of Periploca forrestii against Rheumatoid Arthritis with Network Pharmacology-Based Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2993374. [PMID: 35836835 PMCID: PMC9276489 DOI: 10.1155/2022/2993374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022]
Abstract
Periploca forrestii Schltr (P. forrestii) is an edible medicinal herb with various health benefits such as treating antirheumatoid arthritis (RA), reducing inflammation, and preventing tumor growth. The active ingredients in P. forrestii responsible for its protective effect against RA, however, remain unknown. In this study, the active ingredient of P. forrestii and its potential mechanism of action against RA were investigated by network pharmacology and enrichment analysis. The methods included predicting target genes of P. forrestii, constructing a protein interaction network, and performing gene-ontology (GO) and Kyoto-encyclopedia of genes and genomes (KEGG) enrichment analysis. We discovered targets of RA through retrieval of OMIM and GeneCards public databases. Cardiac glycosides (CGs) are considered the primarily active ingredients of P. forrestii, and the target genes of GCs were discovered to be overlapped with relevant targets of RA using the Venn diagram. After that, prediction of relevant targets of P. forrestii was accomplished with a network pharmacology-based approach. Through the Venn diagram, we discovered 99 genes shared in the target genes of P. forrestii and RA. Gene enrichment analysis showed that the mechanisms of CGs against RA are associated with 55 signaling pathways, including endocrine resistance, Epstein-Barr virus infection, bladder cancer, prostate cancer, and coronavirus disease (COVID-19) signaling pathways. Coexpression analysis indicated ADSL, ATIC, AR, CCND1, MDM2, and HSP90AA1 as the hub genes between putative targets of P. forrestii-derived CGs and known therapeutic targets of RA. In conclusion, we clarified the mechanism of action of P. forrestii against RA, which would provide a basis for further understanding the clinical application of P. forrestii.
Collapse
|
8
|
Wu N, Yuan T, Yin Z, Yuan X, Sun J, Wu Z, Zhang Q, Redshaw C, Yang S, Dai X. Network Pharmacology and Molecular Docking Study of the Chinese Miao Medicine Sidaxue in the Treatment of Rheumatoid Arthritis. Drug Des Devel Ther 2022; 16:435-466. [PMID: 35221674 PMCID: PMC8865873 DOI: 10.2147/dddt.s330947] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/24/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose This study aimed to investigate the molecular mechanisms of Compound Sidaxue (SX), a prescription of Chinese Miao medicine, in treating rheumatoid arthritis (RA) using network pharmacology and in vivo experimental approaches. Methods Network pharmacology was adopted to detect the active components of four Traditional Chinese herbal medicine (TCM) of SX, and the key targets and signaling pathways in the treatment of RA were predicted, and the key components and targets were screened for molecular docking. The predicted targets and pathways were validated in bovine type II collagen and incomplete Freund’s adjuvant emulsifier-induced rat RA model. Results In this study, we identified 33 active components from SX, predicted to act on 44 RA-associated targets by network pharmacology. PPI network demonstrated that TNF-α, VEGF-A, IL-2, IL-6, AKT, PI3K, STAT1 may serve as the key targets of SX for the treatment of RA. The main functional pathways involving these key targets include PI3K-AKT signaling pathway, TNF signaling pathway, NF-κB signaling pathway. Molecular docking analysis found that the active components β-amyrin, cajanin, eleutheroside A have high affinity for TNF-α, VEGFA, IL-2, AKT, and PI3K, etc. SX can improve joint swelling in Collagen-induced arthritis (CIA) rats, reduce inflammatory cell infiltration and angiogenesis in joint synovial tissue, and down-regulate IL-2, IL-6, TNF-α, VEGF, PI3K, AKT, p-AKT, NF-κBp65, the expression of p-NF-κBp65, STAT1, and PTGS2 are used to control the exacerbation of inflammation and alleviate the proliferation of synovial pannus, and at the same time play the role of cartilage protection to achieve the effect of treating RA. Conclusion Through a network pharmacology approach and animal study, we predicted and validated the active compounds of SX and their potential targets for RA treatment. The results suggest that SX can markedly alleviate CIA rat by modulating the VEGF/PI3K/AKT signaling pathway, TNF-α signaling pathway, IL/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ning Wu
- Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Taohua Yuan
- Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - ZhiXin Yin
- Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Xiaotian Yuan
- Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Jianfei Sun
- Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Zunqiu Wu
- Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Qilong Zhang
- Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Carl Redshaw
- Department of Chemistry, University of Hull, Hull, Yorkshire, HU6 7RX, UK
| | - Shenggang Yang
- Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
- Correspondence: Shenggang Yang, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China, Tel/Fax +86 13158000576, Email
| | - Xiaotian Dai
- Department of Mathematics and Statistics, University of Calgary, Calgary, AB, Canada
- Xiaotian Dai, Department of Mathematics and Statistics, University of Calgary, Calgary, AB, T2N 1N4, Canada, Tel/Fax +1 435 754 4980, Email
| |
Collapse
|