1
|
Attiq A, Afzal S, Wahab HA, Ahmad W, Kandeel M, Almofti YA, Alameen AO, Wu YS. Cytokine Storm-Induced Thyroid Dysfunction in COVID-19: Insights into Pathogenesis and Therapeutic Approaches. Drug Des Devel Ther 2024; 18:4215-4240. [PMID: 39319193 PMCID: PMC11421457 DOI: 10.2147/dddt.s475005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Angiotensin-converting enzyme 2 receptors (ACE2R) are requisite to enter the host cells for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). ACE2R is constitutive and functions as a type I transmembrane metallo-carboxypeptidase in the renin-angiotensin system (RAS). On thyroid follicular cells, ACE2R allows SARS-CoV-2 to invade the thyroid gland, impose cytopathic effects and produce endocrine abnormalities, including stiff back, neck pain, muscle ache, lethargy, and enlarged, inflamed thyroid gland in COVID-19 patients. Further damage is perpetuated by the sudden bursts of pro-inflammatory cytokines, which is suggestive of a life-threatening syndrome known as a "cytokine storm". IL-1β, IL-6, IFN-γ, and TNF-α are identified as the key orchestrators of the cytokine storm. These inflammatory mediators upregulate transcriptional turnover of nuclear factor-kappa B (NF-κB), Janus kinase/signal transducer and activator of transcription (JAK/STAT), and mitogen-activated protein kinase (MAPK), paving the pathway for cytokine storm-induced thyroid dysfunctions including euthyroid sick syndrome, autoimmune thyroid diseases, and thyrotoxicosis in COVID-19 patients. Targeted therapies with corticosteroids (dexamethasone), JAK inhibitor (baricitinib), nucleotide analogue (remdesivir) and N-acetyl-cysteine have demonstrated effectiveness in terms of attenuating the severity and frequency of cytokine storm-induced thyroid dysfunctions, morbidity and mortality in severe COVID-19 patients. Here, we review the pathogenesis of cytokine storms and the mechanisms and pathways that establish the connection between thyroid disorder and COVID-19. Moreover, cross-talk interactions of signalling pathways and therapeutic strategies to address COVID-19-associated thyroid diseases are also discussed herein.
Collapse
Affiliation(s)
- Ali Attiq
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang, 11800, Malaysia
| | - Sheryar Afzal
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al Ahsa, 31982, Saudi Arabia
| | - Habibah A Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang, 11800, Malaysia
| | - Waqas Ahmad
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang, 11800, Malaysia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al Ahsa, 31982, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrel Sheikh, 6860404, Egypt
| | - Yassir A Almofti
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al Ahsa, 31982, Saudi Arabia
- Department of Biochemistry, Molecular Biology and Bioinformatics, College of Veterinary Medicine, University of Bahri, Khartoum, 12217, Sudan
| | - Ahmed O Alameen
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al Ahsa, 31982, Saudi Arabia
- Department of Physiology, Faculty of Veterinary Medicine, University of Khartoum, Shambat, 13314, Sudan
| | - Yuan Seng Wu
- Sunway Microbiome Centre, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, 47500, Malaysia
| |
Collapse
|
2
|
Wu C, Ma H, Lu S, Shi X, Liu J, Yang C, Zhang R. Effects of bamboo leaf flavonoids on growth performance, antioxidants, immune function, intestinal morphology, and cecal microbiota in broilers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7656-7667. [PMID: 38770921 DOI: 10.1002/jsfa.13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Bamboo leaf flavonoids (BLF) are the main bioactive ingredients in bamboo leaves. They have antioxidant, anti-inflammatory, antibacterial, and other effects. In this study, the effects of dietary BLF on growth performance, immune response, antioxidant capacity, and intestinal microbiota of broilers were investigated. A total of 288 broilers were divided into three groups with eight replicates and 12 birds in each replicate. Broilers were fed a basic diet or the basic diet supplemented with 1000 or 2000 mg kg-1 BLF for 56 days. RESULTS The results showed that supplementation of BLF increased body weight (BW) and average daily weight gain (ADG), and reduced average daily feed intake (ADFI) (P < 0.05). The serum immunoglobulin A (IgA), immunoglobulin M (IgM), and interleukin 10 (IL-10) content of broilers in the BLF1000 group was increased and the interleukin 1β (IL-1β) and tumor necrosis factor-α (TNF-α) content was decreased (P < 0.05). The levels of IgM and IL-10 in jejunum mucosa were found to be enhanced by BLF (P < 0.05). The BLF1000 group exhibited a significant reduction in the concentration of TNF-α (P < 0.05). Serum and jejunum mucosa total antioxidant capacity (T-AOC) levels in the BLF1000 group were increased (P < 0.05). The serum catalase (CAT) and glutathione peroxidase (GSH-Px) effects of the BLF1000 group and serum CAT effects of BLF2000 group were increased (P < 0.05). The CON group demonstrated a lower relative abundance of Christensenellaceae_R-7_group and Oscillibacter than the BLF group (P < 0.05). CONCLUSION Dietary BLF inclusion enhanced the growth performance, immune, and antioxidant functions, improved the intestinal morphology, and ameliorated the intestinal microflora structure in broiler. Adding 1000 mg kg-1 BLF to the broiler diet can be considered as an effective growth promoter. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chao Wu
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang Agricultural and Forestry University, Zhejiang, China
| | - Hui Ma
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang Agricultural and Forestry University, Zhejiang, China
| | - Shuwan Lu
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang Agricultural and Forestry University, Zhejiang, China
| | - Xueyan Shi
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang Agricultural and Forestry University, Zhejiang, China
| | - Jinsong Liu
- Vegamax Green Animal Health products Key agricultural Enterprise Research Institute of Zhejiang Province, Zhejiang Vegamax Biotechnology Co., Ltd, Zhejiang, China
| | - Caimei Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang Agricultural and Forestry University, Zhejiang, China
| | - Ruiqiang Zhang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang Agricultural and Forestry University, Zhejiang, China
| |
Collapse
|
3
|
Elattar MM, Hammoda HM, Ghareeb DA, Abdulmalek SA, Abdelrahim FA, Seif IAK, Dawood HM, Darwish RS. Insights into bioactive constituents of onion (Allium cepa L.) waste: a comparative metabolomics study enhanced by chemometric tools. BMC Complement Med Ther 2024; 24:271. [PMID: 39010091 PMCID: PMC11250982 DOI: 10.1186/s12906-024-04559-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Onion waste was reported to be a valuable source of bioactive constituents with potential health-promoting benefits. This sparked a surge of interest among scientists for its valorization. This study aims to investigate the chemical profiles of peel and root extracts of four onion cultivars (red, copper-yellow, golden yellow and white onions) and evaluate their erectogenic and anti-inflammatory potentials. METHODS UPLC-QqQ-MS/MS analysis and chemometric tools were utilized to determine the chemical profiles of onion peel and root extracts. The erectogenic potential of the extracts was evaluated using the PDE-5 inhibitory assay, while their anti-inflammatory activity was determined by identifying their downregulating effect on the gene expression of IL-6, IL-1β, IFN-γ, and TNF-α in LPS-stimulated WBCs. RESULTS A total of 103 metabolites of diverse chemical classes were identified, with the most abundant being flavonoids. The organ's influence on the chemical profiles of the samples outweighed the influence of the cultivar, as evidenced by the close clustering of samples from the same organ compared to the distinct separation of root and peel samples from the same cultivar. Furthermore, the tested extracts demonstrated promising PDE-5 and anti-inflammatory potentials and effectively suppressed the upregulation of pro-inflammatory markers in LPS-stimulated WBCs. The anti-inflammatory activities exerted by peel samples surpassed those of root samples, highlighting the importance of selecting the appropriate organ to maximize activity. The main metabolites correlated with PDE-5 inhibition were cyanidin 3-O-(malonyl-acetyl)-glucoside and quercetin dimer hexoside, while those correlated with IL-1β inhibition were γ-glutamyl-methionine sulfoxide, γ-glutamyl glutamine, sativanone, and stearic acid. Taxifolin, 3'-hydroxymelanettin, and oleic acid were highly correlated with IL-6 downregulation, while quercetin 4'-O-glucoside, isorhamnetin 4'-O-glucoside, and p-coumaroyl glycolic acid showed the highest correlation to IFN-γ and TNF-α inhibition. CONCLUSION This study provides a fresh perspective on onion waste as a valuable source of bioactive constituents that could serve as the cornerstone for developing new, effective anti-PDE-5 and anti-inflammatory drug candidates.
Collapse
Affiliation(s)
- Mariam M Elattar
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Hala M Hammoda
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Doaa A Ghareeb
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications (SRTA- city), New Borg El Arab, Alexandria, Egypt
- Research Projects Unit, Pharos University, Alexandria, Egypt
| | - Shaymaa A Abdulmalek
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Fatma A Abdelrahim
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Inas A K Seif
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Hend M Dawood
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Reham S Darwish
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| |
Collapse
|
4
|
Attiq A, Afzal S, Ahmad W, Kandeel M. Hegemony of inflammation in atherosclerosis and coronary artery disease. Eur J Pharmacol 2024; 966:176338. [PMID: 38242225 DOI: 10.1016/j.ejphar.2024.176338] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/30/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Inflammation drives coronary artery disease and atherosclerosis implications. Lipoprotein entry, retention, and oxidative modification cause endothelial damage, triggering innate and adaptive immune responses. Recruited immune cells orchestrate the early atherosclerotic lesions by releasing proinflammatory cytokines, expediting the foam cell formation, intraplaque haemorrhage, secretion of matrix-degrading enzymes, and lesion progression, eventually promoting coronary artery syndrome via various inflammatory cascades. In addition, soluble mediators disrupt the dynamic anti- and prothrombotic balance maintained by endothelial cells and pave the way for coronary artery disease such as angina pectoris. Recent studies have established a relationship between elevated levels of inflammatory markers, including C-reactive protein (CRP), interleukins (IL-6, IL-1β), and tumour necrosis factor-alpha (TNF-α) with the severity of CAD and the possibility of future cardiovascular events. High-sensitivity C-reactive protein (hs-CRP) is a marker for assessing systemic inflammation and predicting the risk of developing CAD based on its peak plasma levels. Hence, understanding cross-talk interactions of inflammation, atherogenesis, and CAD is highly warranted to recalculate the risk factors that activate and propagate arterial lesions and devise therapeutic strategies accordingly. Cholesterol-inflammation lowering agents (statins), monoclonal antibodies targeting IL-1 and IL-6 (canakinumab and tocilizumab), disease-modifying antirheumatic drugs (methotrexate), sodium-glucose transport protein-2 (SGLT2) inhibitors, colchicine and xanthene oxidase inhibitor (allopurinol) have shown promising results in reducing inflammation, regressing atherogenic plaque and modifying the course of CAD. Here, we review the complex interplay between inflammatory, endothelial, smooth muscle and foam cells. Moreover, the putative role of inflammation in atherosclerotic CAD, underlying mechanisms and potential therapeutic implications are also discussed herein.
Collapse
Affiliation(s)
- Ali Attiq
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia.
| | - Sheryar Afzal
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, 31982, Al Ahsa, Saudi Arabia.
| | - Waqas Ahmad
- Discipline of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, 31982, Al Ahsa, Saudi Arabia
| |
Collapse
|
5
|
Wu Y, Ni Z, Wang S, Sun Y, Luo X, Wang X, Liu J. The mechanism of Sanzi Yangqin decoction for asthma treatment based on network pharmacology and experimental verification. BMC Complement Med Ther 2023; 23:452. [PMID: 38093206 PMCID: PMC10717567 DOI: 10.1186/s12906-023-04272-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Asthma is a chronic airway inflammatory disease characterized by airway inflammation, mucus hypersecretion, airway hyper-reactivity. Sanzi Yangqin Decoction (SZYQD) is widely prescribed for asthma treatment. Its anti-asthma activities have been reported in animal model, but the exact mechanism and targets of SZYQD in asthma treatment have not been fully elucidated. METHODS A network pharmacological approach was used to predict the active components, targets, and signalling pathways of SZYQD in asthma, including potential target prediction, protein‒protein interaction (PPI) network construction and analysis, and Gene Ont (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The active ingredients were identified from the SZYQD, and were molecular docked according to the results of network pharmacology. A mouse model of asthma induced by ovalbumin (OVA) and lipopolysaccharide (LPS) was constructed to evaluate the therapeutic effect of SZYQD. Furthermore, the effects of SZYQD and its active ingredients were tested in vitro for regulating inflammation and MUC5AC expression (two main pathophysiologic abnormalities of asthma) in macrophages and airway epithelial cells by using Real-time PCR and western blotting. RESULTS A total of 28 active ingredients and 111 HUB genes were screened in the relevant databases, including three key ingredients (luteolin, β-carotene, and Sinapine) and nine core target genes (JUN, CTNNB1, IL10, TP53, AKT1, STAT3, TNF, IL6 and EGFR). KEGG and GO analysis indicated that the potential anti-asthmatic mechanisms of SZYQD were related to PI3K-Akt signalling pathway and response to lipopolysaccharide, etc. In the in vivo asthmatic model, our findings demonstrated that SZYQD exerted a protective effect against asthmatic mice induced by OVA and LPS through the inhibition of inflammation and mucus overproduction. Consistently, cell experiments showed that the SZYQD extract or the key active ingredients luteolin significantly decreased lipopolysaccharide (LPS)-induced IL-6 expression and activation of the NF-κB pathway in macrophages. In addition, SZYQD extract or luteolin inhibited activation of the AKT pathway and expression of MUC5AC induced by EGF in airway epithelial cells. CONCLUSION The anti-asthmatic mechanism of SZYQD might be associated with inhibiting inflammation and airway mucus hypersecretion by regulating the NF-κB and AKT signalling pathways as predicted by network pharmacology, which provides more evidence for the application of SZYQD in asthma treatment.
Collapse
Affiliation(s)
- Yue Wu
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Zhenhua Ni
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Central lab, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Shiqiang Wang
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Yipeng Sun
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Xuming Luo
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Xiongbiao Wang
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| | - Jinjin Liu
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| |
Collapse
|
6
|
Li J, Zhao R, Miao P, Xu F, Chen J, Jiang X, Hui Z, Wang L, Bai R. Discovery of anti-inflammatory natural flavonoids: Diverse scaffolds and promising leads for drug discovery. Eur J Med Chem 2023; 260:115791. [PMID: 37683361 DOI: 10.1016/j.ejmech.2023.115791] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Natural products have been utilized for medicinal purposes for millennia, endowing them with a rich source of chemical scaffolds and pharmacological leads for drug discovery. Among the vast array of natural products, flavonoids represent a prominent class, renowned for their diverse biological activities and promising therapeutic advantages. Notably, their anti-inflammatory properties have positioned them as promising lead compounds for developing novel drugs combating various inflammatory diseases. This review presents a comprehensive overview of flavonoids, highlighting their manifold anti-inflammatory activities and elucidating the underlying pathways in mediating inflammation. Furthermore, this review encompasses systematical classification of flavonoids, related anti-inflammatory targets, involved in vitro and in vivo test models, and detailed statistical analysis. We hope this review will provide researchers engaged in active natural products and anti-inflammatory drug discovery with practical information and potential leads.
Collapse
Affiliation(s)
- Junjie Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Rui Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Peiran Miao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Fengfeng Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Jiahao Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Zi Hui
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Liwei Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
7
|
Yu H, Huang X, Xie C, Song J, Zhou Y, Shi H, Chen M, Wu Y, Ruan Z, Deng L, Deng X, Lv Y, Luo Q, Dong J. Transcriptomics reveals apigenin alleviates airway inflammation and epithelial cell apoptosis in allergic asthma via MAPK pathway. Phytother Res 2023; 37:4002-4017. [PMID: 37128812 DOI: 10.1002/ptr.7859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 04/08/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Persistent chronic inflammation of the lungs and airway remodeling are important pathological features that cannot be ignored in patients with chronic asthma. Apigenin (API) is a natural small molecule compound with good anti-inflammatory and antioxidant activity that has been widely reported in recent years, but its role in chronic asthma is not well defined. Our study began with oral gavage intervention using API (10, 20 mg/kg) or dexamethasone (DEX, 2 mg/kg) in a BALB/c mouse model of ovalbumin (OVA) sensitization. Different doses of API intervention effectively reduced airway resistance in the administered group. Additionally, inflammation was downregulated, mucus secretion was reduced, and airway remodeling was inhibited in the API intervention group compared with the model group. Asthma-related inflammatory cytokines, such as IgE, IL-4, IL-5, IL-13, and IL-17, were downregulated in alveolar lavage fluid. Moreover, the apoptosis level of the administered group was found to be lower than that of the model group in the Tunel staining experiment. By analyzing transcriptome sequencing results, we found that API may exert anti-inflammatory and anti-apoptotic effects by inhibiting the MAPK pathway. Our subsequent results supported this conclusion, showing that the phosphorylation levels of ERKs, JNKs, and p38 MAPKs were inhibited in the administered group relative to the model group. Downstream expression of the apoptosis-related protein B-cell lymphoma-2 (Bcl-2) was upregulated, and the expression of Bcl-2-associated × protein (Bax) and cleaved caspase-3 was downregulated. To further investigate the specific mechanism by which API acted, we established an in vitro model with house dust mite (HDM) stimulation, using API (10, 20 μM) for administration intervention. The results showed that API was able to improve cell viability, inhibit ROS production, and reverse HDM-induced decreases in mitochondrial membrane potential (MMP) and apoptosis in airway epithelial cells via the MAPK pathway.
Collapse
Affiliation(s)
- Hang Yu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Xi Huang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Cong Xie
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingrong Song
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Yaolong Zhou
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Hanlin Shi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Mengmeng Chen
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Yueren Wu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhenhui Ruan
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Lingling Deng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Xiaohong Deng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Yubao Lv
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Qingli Luo
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Attiq A, Afzal S. Trinity of inflammation, innate immune cells and cross-talk of signalling pathways in tumour microenvironment. Front Pharmacol 2023; 14:1255727. [PMID: 37680708 PMCID: PMC10482416 DOI: 10.3389/fphar.2023.1255727] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023] Open
Abstract
Unresolved inflammation is a pathological consequence of persistent inflammatory stimulus and perturbation in regulatory mechanisms. It increases the risk of tumour development and orchestrates all stages of tumorigenesis in selected organs. In certain cancers, inflammatory processes create the appropriate conditions for neoplastic transformation. While in other types, oncogenic changes pave the way for an inflammatory microenvironment that leads to tumour development. Of interest, hallmarks of tumour-promoting and cancer-associated inflammation are striking similar, sharing a complex network of stromal (fibroblasts and vascular cells) and inflammatory immune cells that collectively form the tumour microenvironment (TME). The cross-talks of signalling pathways initially developed to support homeostasis, change their role, and promote atypical proliferation, survival, angiogenesis, and subversion of adaptive immunity in TME. These transcriptional and regulatory pathways invariably contribute to cancer-promoting inflammation in chronic inflammatory disorders and foster "smouldering" inflammation in the microenvironment of various tumour types. Besides identifying common target sites of numerous cancer types, signalling programs and their cross-talks governing immune cells' plasticity and functional diversity can be used to develop new fate-mapping and lineage-tracing mechanisms. Here, we review the vital molecular mechanisms and pathways that establish the connection between inflammation and tumour development, progression, and metastasis. We also discussed the cross-talks between signalling pathways and devised strategies focusing on these interaction mechanisms to harness synthetic lethal drug combinations for targeted cancer therapy.
Collapse
Affiliation(s)
- Ali Attiq
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Sheryar Afzal
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, King Faisal University, Al Ahsa, Saudi Arabia
| |
Collapse
|
9
|
Feng L, A. L, Bao T, Mu X, Ta N, Duan Q, Ta L, Chen Y, Bai L, Fu M. An integrated network analysis, RNA-seq and in vivo validation approaches to explore the protective mechanism of Mongolian medicine formulae Ruda-6 against indomethacin-induced gastric ulcer in rats. Front Pharmacol 2023; 14:1181133. [PMID: 37637418 PMCID: PMC10449537 DOI: 10.3389/fphar.2023.1181133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Gastric ulcer (GU) is one of the most prevalent digestive diseases that seriously affects people's health. Previous studies have demonstrated the anti-GU effect of Ruda-6 (RD-6), a classic formulae of traditional Mongolian medicine. However, the underlying mechanism of RD-6 against GU remains elusive. Thus, we conducted an integrative approach of network analysis, RNA-seq, and in vivo validation experiment to elucidate the therapeutic mechanisms of RD-6 in preventing GU. A network analysis was performed to predict the potential targets of RD-6. Rats were pretreated with RD-6 at different doses for 21 days, followed by GU induction with indomethacin injection. The ulcer index and inhibition rates were calculated, and the levels of inflammatory related factors were determined by ELISA. The gastroprotective mechanism of RD-6 against ulceration was verified by RNA-seq and the key pathway was detected by in vivo validation. As the network analysis predicted, RD-6 exerts anti-GU effects by regulating 75 targets and 160 signaling pathways. Animal experiment results suggested that pretreatment with RD-6 significantly ameliorated the gastric mucosal injury and inflammatory response, as evidenced by a reduced ulcer index, decreased interleukin (IL)-1β, IL-6, and IL-17 levels, and increased prostaglandin E2 (PGE2) levels in the GU model rats induced by indomethacin. RNA-seq data identified four potential hub genes that were primarily involved in the IL-17 signaling pathway. Furthermore, in vivo validation experiment showed that RD-6 inhibited the IL-17 signaling pathway by down-regulating the expression of IL17RA, proto-oncogene C-Fos (FOS), IL1B and prostaglandin-endoperoxide synthase 2 (PTGS2). Taken together, the present study provides evidence that RD-6 could effectively protect against indomethacin-induced GU, which might be attributed to suppressed inflammation. The IL-17 signaling pathway may be one of the crucial mechanisms that mediates the effect of RD-6.
Collapse
Affiliation(s)
- Lan Feng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, China
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, China
| | - Lisha A.
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Terigele Bao
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, China
| | - Xiyele Mu
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, China
| | - Na Ta
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, China
| | - Qiang Duan
- Key Laboratory of Castor Breeding of the State Ethnic Affairs Commission, Inner Mongolia Minzu University, Tongliao, China
| | - La Ta
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Yongsheng Chen
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Castor Breeding of the State Ethnic Affairs Commission, Inner Mongolia Minzu University, Tongliao, China
| | - Laxinamujila Bai
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, China
| | - Minghai Fu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, China
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, China
| |
Collapse
|
10
|
Sowa I, Mołdoch J, Dresler S, Kubrak T, Soluch A, Szczepanek D, Strzemski M, Paduch R, Wójciak M. Phytochemical Profiling, Antioxidant Activity, and Protective Effect against H 2O 2-Induced Oxidative Stress of Carlina vulgaris Extract. Molecules 2023; 28:5422. [PMID: 37513294 PMCID: PMC10385139 DOI: 10.3390/molecules28145422] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Carlina vulgaris is a little-understood plant with unexplored biological potential, and the papers regarding its chemical composition are scarce. In our study, for the first time, the phytochemical profile of the plant, focusing on polar metabolites, was established using modern chromatographic techniques including LC-HRMS-QTOF-CAD, UHPLC-PDA-MS. Phytochemical analysis revealed that the species is a rich source of polyphenolic components, with the most abundant being chlorogenic acid and C-glycosides of luteolin, including carlinoside, orientin, isoorientin, and C-glycosides of apigenin, schaftoside, isoschaftoside, and vitexin. Furthermore, we assessed the impact of the polyphenolic-rich fraction of C. vulgaris extracts on human skin fibroblasts using the MTT and NR assays. It was found that the extract was non-toxic and exhibited potent antioxidant activity in the cells subjected to induced oxidative stress. Additionally, it effectively protected the cells against H2O2-induced cytotoxicity. Our study contributes to the general trend of searching for new phytotherapeutics with potential applications in pharmacy and medicine. The results indicate that further exploration of C. vulgaris species is worthwhile, as they can serve as valuable plant material for cosmetic use.
Collapse
Affiliation(s)
- Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Jarosław Mołdoch
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland
| | - Sławomir Dresler
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Tomasz Kubrak
- Department of Biochemistry and General Chemistry, Institute of Medical Studies, Medical College, Rzeszów University, 35-310 Rzeszów, Poland
| | - Agata Soluch
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland
| | - Dariusz Szczepanek
- Chair and Department of Neurosurgery and Paediatric Neurosurgery, Medical University of Lublin, 20-090 Lublin, Poland
| | - Maciej Strzemski
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Roman Paduch
- Department of Virology and Immunology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
11
|
El-Fadaly AA, Younis IY, Abdelhameed MF, Ahmed YH, Ragab TIM, El Gendy AENG, Farag MA, Elshamy AI, Elgamal AM. Protective Action Mechanisms of Launaea mucronata Extract and Its Nano-Formulation against Nephrotoxicity in Rats as Revealed via Biochemical, Histopathological, and UPLC-QTOF-MS/MS Analyses. Metabolites 2023; 13:786. [PMID: 37512493 PMCID: PMC10384424 DOI: 10.3390/metabo13070786] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Plants belonging to the Launaea genus have been extensively utilized ethnopharmacologically to treat a variety of diseases, including kidney disorders. Chromium is a common industrial pollutant that has been linked to kidney disease. The present work was designed for the investigation of the UPLC-QTOF-MS/MS metabolite profile of the L. mucronate ethanolic extract (LME), along with assessing the mechanistic protective actions of LME and its nano-silver formulation (LMNS) against K2Cr2O7-induced nephrotoxicity in rats. LMNE was successfully biosynthesized and confirmed using UV-Visible (UV-Vis) spectroscopy and transmission electron microscopy (TEM). The nephroprotective effects of LME and LMNE was assessed in rats exposed to potassium dichromate (K2Cr2O7, 15 mg/kg BW) to cause nephrotoxicity. LME and LMNS, separately, were administered twice daily for 14 days at doses of 200 and 400 mg/kg BW, respectively. The kidney function, catalase, UGT, Nrf2, PGE2, Cox-2, ERK, and MAPK levels in renal tissue were all assessed, along with histopathological examinations for exploring their ameliorative effects. Forty-five bioactive metabolites were annotated belonging to flavonoids, phenolic and organic acids, coumarins, and fatty acids. Metabolite profiling revealed that chlorogenic acid, apigenin, and luteolin glycosides were the main phenolics, with chlorogenic acid-O-hexoside reported for the first time in LME. The findings revealed that the serum kidney function indicators (urea and creatinine) were markedly elevated in K2Cr2O7-intoxicated rats. Furthermore, inflammatory indicators (COX-2 and PGE2), MAPK, and ERK were all markedly elevated in kidney tissue, whereas catalase, UGT, and Nrf2 levels were downregulated. Histological and immunohistochemical assays confirmed the toxic effects of K2Cr2O7 in the kidneys. In contrast, the administration of LME and LMNS prior to K2Cr2O7 considerably improved the architecture of the renal tissue, while also restoring levels of most biochemical markers. Functioning via the inhibition of the MAPK/ERK pathway, activating Nrf2, and modifying the antioxidant and metabolic enzymes, LME and LMNS exerted their nephroprotective effects against K2Cr2O7-induced toxicity.
Collapse
Affiliation(s)
- Amany A El-Fadaly
- Pharmacology Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| | - Inas Y Younis
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt
| | - Mohamed F Abdelhameed
- Pharmacology Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| | - Yasmine H Ahmed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Tamer I M Ragab
- Chemistry of Natural and Microbial Products Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Abd El-Nasser G El Gendy
- Medicinal and Aromatic Plants Research Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt
| | - Abdelsamed I Elshamy
- Chemistry of Natural Compounds Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| | - Abdelbaset M Elgamal
- Chemistry of Natural and Microbial Products Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
12
|
Cheng Y, Wan S, Yao L, Lin D, Wu T, Chen Y, Zhang A, Lu C. Bamboo leaf: A review of traditional medicinal property, phytochemistry, pharmacology, and purification technology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116166. [PMID: 36649850 DOI: 10.1016/j.jep.2023.116166] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bamboos are perennial evergreen plants that belong to the subfamily Bambusoideae of the true grass family Poaceae, with more than thousands of species distributed around the world. They are used as a traditional medicine with demonstrated effects of anti-oxidation, free radical scavenging, anti-inflammatory, liver protection and ameliorating cognitive deficits. Bamboo leaf is mainly used for the treatment of atherosclerotic, diabetic and nervous system diseases. AIM OF THE STUDY This review aims to provide up-to-date information on the traditional medicinal properties, phytochemistry, pharmacology, and purification technologies of bamboo leaf. MATERIALS AND METHODS Relevant information on bamboo leaf was obtained by an online search of worldwide accepted scientific databases (Web of Science, ScienceDirect, Elsevier, SpringerLink, ACS Publications, Wiley Online Library and CNKI). RESULTS More than 100 chemical compounds, including flavonoids and flavonoid glycosides, volatile components, phenolic acids, polysaccharide, coenzyme Q10, phenylpropanoid and amino acids have been reported to be present. These compounds were usually extracted by column chromatography and membrane separation technologies. Preparative high performance liquid chromatography (PHPLC), high-speed counter-current chromatography (HSCCC), simulated moving bed chromatography (SMB) and dynamic axial compression chromatography (DAC) were the advanced separation technologies have been used to isolate C-glycosides from bamboo leaf flavonoid, the main bioactive ingredient of bamboo leaf. Currently, bamboo leaf is mainly used for the treatment of atherosclerotic, diabetic, hepatic diseases and nervous system related symptoms, which are attributed to the presence of bioactive components of bamboo leaf. CONCLUSIONS Phytochemical and pharmacological analyses of bamboo leaf have been revealed in recent studies. However, most of the pharmacological studies on bamboo leaf have focused on bamboo leaf flavonoids. Further studies need to pay more attention to other phytochemical components of bamboo leaf. In addition, there is lack of sufficient clinical data and toxicity studies on bamboo leaf. Therefore, more clinical and toxicity researches on this plant and constituents are recommended.
Collapse
Affiliation(s)
- Yaqian Cheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China
| | - Siqi Wan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China
| | - Linna Yao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China
| | - Ding Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China
| | - Tong Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China
| | - Yongjian Chen
- Zhejiang Limited Company of Science and Technology of SHENGSHI BIOLOGY, Huzhou, 313000, China
| | - Ailian Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China.
| | - Chenfei Lu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China.
| |
Collapse
|
13
|
Wen SY, Wei BY, Ma JQ, Wang L, Chen YY. Phytochemicals, Biological Activities, Molecular Mechanisms, and Future Prospects of Plantago asiatica L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:143-173. [PMID: 36545763 DOI: 10.1021/acs.jafc.2c07735] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plantago asiatica L. has been used as a vegetable and nutritious food in Asia for thousands of years. According to recent phytochemical and pharmacological research, the active compositions of the plant contribute to various health benefits, such as antioxidant, anti-inflammatory, antibacterial, antiviral, and anticancer. This article reviews the 87 components of the plant and their structures, as well as their biological activities and molecular research progress, in detail. This review provides valuable reference material for further study, production, and application of P. asiatica, as well as its components in functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Shi-Yuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Bing-Yan Wei
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Jie-Qiong Ma
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Li Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Yan-Yan Chen
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
14
|
Lee H, Yeong Yang J, Eun Ra J, Ahn HJ, Ja Lee M, Young Kim H, Song SY, Hyun Kim D, Hwan Lee J, Duck Seo W. Elucidation of phenolic metabolites in wheat seedlings ( Triticum aestivum L.) by NMR and HPLC-Q-Orbitrap-MS/MS: Changes in isolated phenolics and antioxidant effects through diverse growth times. Food Chem X 2022; 17:100557. [PMID: 36845481 PMCID: PMC9943761 DOI: 10.1016/j.fochx.2022.100557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
The current research was characterized on phenolic metabolite profile including six chemical structures (phenolic acid, luteolin, orientin, apigenin, isoscoparin, and tricin) in wheat seedlings using HPLC-Q-Orbitrap-MS/MS and NMR techniques. Our study was also was the first to demonstrate fluctuations of isolated nine phenolic contents and antioxidant properties in various cultivars of this species with different growth times. The antioxidant abilities differed significantly in the 80 % methanol extracts (600 μg/mL) according to cultivar and growth time, with the highest average activities (DPPH: 82 %; ABTS: 87 %) observed after 7 days. The isolated nine compositions exhibited considerable differences in cultivars and growth times, specifically, isoorientin (6) and isochaftoside (8) were observed the most abundant average contents (99.3; 64.3 mg/100 g), representing approximately 28.3 and 18.3 % (total content: 350.8 mg/100 g). Their total phenolics showed the highest rates (420.8 mg/100 g) at 7 days, followed by 9 → 5 → 12 → 14 days with 374.6 → 366.7 → 350.7 → 241.1 mg/100 g, as the rank orders of antioxidant effects. These findings suggest that wheat seedlings may be a potent source of functional agents.
Collapse
Affiliation(s)
- HanGyeol Lee
- Division of Crop Foundation, National Institute of Crop Science, Rural Development Administration, Jellabuk-do 55365, Republic of Korea
| | - Ji Yeong Yang
- Division of Crop Foundation, National Institute of Crop Science, Rural Development Administration, Jellabuk-do 55365, Republic of Korea
| | - Ji Eun Ra
- Division of Crop Foundation, National Institute of Crop Science, Rural Development Administration, Jellabuk-do 55365, Republic of Korea
| | - Hyung-Jae Ahn
- Division of Crop Foundation, National Institute of Crop Science, Rural Development Administration, Jellabuk-do 55365, Republic of Korea
| | - Mi Ja Lee
- Division of Crop Foundation, National Institute of Crop Science, Rural Development Administration, Jellabuk-do 55365, Republic of Korea
| | - Hyun Young Kim
- Division of Crop Foundation, National Institute of Crop Science, Rural Development Administration, Jellabuk-do 55365, Republic of Korea
| | - Seung-Yeob Song
- Division of Crop Foundation, National Institute of Crop Science, Rural Development Administration, Jellabuk-do 55365, Republic of Korea
| | - Du Hyun Kim
- Department of Life Resources Industry, Dong-A University, Busan 49315, Republic of Korea
| | - Jin Hwan Lee
- Department of Life Resources Industry, Dong-A University, Busan 49315, Republic of Korea,Corresponding authors.
| | - Woo Duck Seo
- Division of Crop Foundation, National Institute of Crop Science, Rural Development Administration, Jellabuk-do 55365, Republic of Korea,Corresponding authors.
| |
Collapse
|
15
|
Adewole AH, Famuyide IM, McGaw LJ, Selepe MA, October N. Antifungal Compounds from the Leaves of Rhynchosia minima. Chem Biodivers 2022; 19:e202200837. [PMID: 36305375 DOI: 10.1002/cbdv.202200837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/26/2022] [Indexed: 12/27/2022]
Abstract
Rhynchosia minima, commonly known as jumby bean, is used as a remedy for respiratory ailments in various parts of the world. It is also used by South African traditional healers to treat heart or chest pain. This study aimed to investigate the bioactive constituents of the leaf extracts of R. minima against selected fungal isolates that have been identified as risk factors in respiratory illness. Rhynchosia minima leaves were extracted sequentially using hexane, dichloromethane, ethyl acetate and methanol in increasing order of polarity. The extracts were subjected to repeated chromatographic techniques, for phytochemical isolation. The extracts and isolated compounds were screened against Candida albicans and Cryptococcus neoformans by determining the minimum concentration that inhibited fungal growth. Six flavonoids, one norisoprenoid and one cyclitol were isolated and characterized by 1D and 2D NMR and HR-ESI-MS. The extracts obtained in the study had moderate to weak antifungal activities, with MICs ranging from 312.5 to 1250.0 μg/mL against both fungi. Four isolated compounds were also screened, with two of them exhibiting activity against C. albicans (MIC=6.25 μg/mL) that was comparable to amphotericin B, the positive control. These two compounds also had better antifungal potential against C. neoformans with an MIC=6.25 μg/mL, compared to the MIC of 12.5 μg/mL of amphotericin B. Seven of the eight isolated compounds were obtained from the extracts of Rhynchosia minima for the first time. Two of the isolated compounds demonstrated activity comparable or superior to amphotericin B activity. The notable potency displayed by these compounds warrants further investigation on their development as antifungal agents.
Collapse
Affiliation(s)
- Adetola H Adewole
- Department of Chemistry, University of Pretoria, Hatfield, Pretoria, 0002, South Africa
| | - Ibukun M Famuyide
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - Lyndy J McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - Mamoalosi A Selepe
- Department of Chemistry, University of Pretoria, Hatfield, Pretoria, 0002, South Africa
| | - Natasha October
- Department of Chemistry, University of Pretoria, Hatfield, Pretoria, 0002, South Africa
| |
Collapse
|
16
|
Majma Sanaye P, Mojaveri MR, Ahmadian R, Sabet Jahromi M, Bahramsoltani R. Apigenin and its dermatological applications: A comprehensive review. PHYTOCHEMISTRY 2022; 203:113390. [PMID: 35998830 DOI: 10.1016/j.phytochem.2022.113390] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Apigenin is one of the abundant flavonoids in fruits and vegetables of human diet with several demonstrated health benefits. The aim of the present study is to provide an overview of the current evidence regarding the effect of apigenin on different dermatological complications. Electronic databases including PubMed, Scopus, and Web of Science were searched to retrieve all papers assessing the dermatological effects of apigenin. Preclinical studies support beneficial effects of apigenin on UV-induced skin damage, vitiligo, dermatitis, wounds, skin aging, and some types of skin cancer. The compound mostly acts via inhibition of inflammation through suppression of pro-inflammatory cytokines and intracellular inflammatory mediators, as well as antioxidant properties such as improvement of endogenous antioxidant defense mechanisms. There are also some studies for the design and development of novel drug delivery systems for apigenin to improve its oral and topical bioavailability. Nevertheless, no clinical study has evaluated apigenin as a natural supplement for skin conditions. Considering the benefits of apigenin in preclinical models of dermatological disorders, as well as the acceptable safety of this compound, apigenin may be a future candidate to be used in dermatological disorders. Future clinical studies are needed to further confirm the safety and efficacy of apigenin in skin care products.
Collapse
Affiliation(s)
| | - Mohammad Reza Mojaveri
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran; USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Roohollah Ahmadian
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Sabet Jahromi
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
17
|
Li S, Liu G, Gu M, Li Y, Li Y, Ji Z, Li K, Wang Y, Zhai H, Wang Y. A novel therapeutic approach for IPF: Based on the "Autophagy - Apoptosis" balance regulation of Zukamu Granules in alveolar macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115568. [PMID: 35868548 DOI: 10.1016/j.jep.2022.115568] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zukamu Granules (ZKMG) is one of the representative Uygur patent drugs widely used in China, which is included in the National Essential Drugs List (2018 edition). As the first choice for common cold treatment in Uygur medicine theory, it has unique anti-inflammatory and antitussive efficacy. AIM OF THE STUDY According to the recent inflammatory hypothesis, the abnormal proliferation, autophagy and apoptosis process of lung cells especially alveolar macrophages (AMs) may play an important role in the progress of idiopathic pulmonary fibrosis (IPF). Therefore, we came up with a novel treatment approach for IPF by regulating the balance of AMs "autophagy - apoptosis", and took ZKMG as the sample drug for our research. MATERIALS AND METHODS Network pharmacology approach was conducted to predict the active components and intersected targets between ZKMG and inflammation. PPI network, GO and KEGG enrichment analysis were screened and analyzed to predict the anti-inflammatory mechanism of ZKMG. Biological experiment adopted from 128 rats, and hematoxylin-eosin staining, flow cytometry and RT-PCR were performed to examine the pathological morphology, HYP contents in lung tissue, AMs counting, AMs apoptosis, AMs phagocytosis rate, mRNA relative quantity determination of 3 key factors associated with AMs "autophagy - apoptosis" and mRNA relative quantity determination of AMs surface receptor signaling pathway. RESULTS The predicted results showed that the mechanism of ZKMG in anti-inflammatory was related to the response and elimination of inflammatory stimuli, the intervention of apoptosis and surface receptor signaling pathways of cells. The verification experiments showed that excessive apoptosis and insufficient autophagy of AMs always existed in the progression of IPF. ZKMG could inhibit AMs proliferation, significantly reduce AMs apoptosis rate, intervene the binding of the Bcl-2 to Beclin 1, inhibit the Caspase 3 activation, stimulate the enhancement of AMs phagocytosis, and inhibit the high expression of TLR4/MyD88/NF-κB surface receptor signaling pathway, which may partly retard the fibrosis process. CONCLUSION By inhibiting proliferation, enhancing phagocytosis, inhibiting the formation of Bcl-2 complex, and inhibiting the high expression of MYD88-dependent TLR4 signaling pathway, ZKMG can regulate the balance of AMs "autophagy - apoptosis" in the alveolitis stage to retard the fibrosis process partly. With a comprehensive strategy of "target prediction - experimental verification", we have demonstrated that inhibiting the apoptosis and promoting autophagy activity of AMs may suggest a new perspective for IPF treatment, which would provide reference for the subsequent development.
Collapse
Affiliation(s)
- Siyu Li
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Guoxiu Liu
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Min Gu
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yixuan Li
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yanan Li
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhihong Ji
- New Cicon Pharmaceutical Co LTD., Urumqi, 830011, China
| | - Keao Li
- New Cicon Pharmaceutical Co LTD., Urumqi, 830011, China
| | - Yanping Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Huaqiang Zhai
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Institute of Traditional Uygur Medicine, Xinjiang Medical University, Urumqi, 830011, China.
| | - Yongyan Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
18
|
Zhang Z, Wu J, Teng C, Wang J, Yu J, Jin C, Wang L, Wu L, Lin Z, Yu Z, Lin Z. Orientin downregulating oxidative stress-mediated endoplasmic reticulum stress and mitochondrial dysfunction through AMPK/SIRT1 pathway in rat nucleus pulposus cells in vitro and attenuated intervertebral disc degeneration in vivo. Apoptosis 2022; 27:1031-1048. [PMID: 36125665 DOI: 10.1007/s10495-022-01770-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 11/26/2022]
Abstract
Although considered as a major contributor to low back pain (LBP), intervertebral disc degeneration (IVDD) has poor medical and surgical treatments. Various studies have revealed that endoplasmic reticulum (ER) stress and extracellular matrix (ECM) degeneration play a vital role in initiating and developing the progression of IVDD. Moreover, restoration of SIRT1/AMPK was confirmed to prevent IVDD and damage via maintaining ER and extracellular homeostasis. In addition, orientin (Ori) has been shown to upregulate SIRT1. However, the effect of Ori in nucleus pulposus cells (NPCs) is not determined. Hence, in this study we aim to explore the function of Ori in IVDD pathological model. The results demonstrate that Ori treatment in vitro increased SIRT1/AMPK in NPCs, maintained ECM and ER balance and decreased oxidative stress (OS) response. Ori rescued the disordered homeostasis stimulated by tert-butyl hydroperoxide (TBHP), and its function can be inhibited by thapsigargin (TG). Compound C and EX-527, inhibitors of AMPK and SIRT1 counteracted the Ori-mediated ER stress elimination. These results confirm that Ori exerts its effects by upregulating AMPK and SIRT1. Puncture-stimulated IVDD rats were used to show that Ori attenuates the pathological development in vivo. In all, we partly unveil the underlying mechanisms of Ori in IVDD.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jingtao Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Cheng Teng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jinquan Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiapei Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chen Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Libo Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Long Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhen Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ziping Yu
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Zhongke Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
19
|
Ong WY, Herr DR, Sun GY, Lin TN. Anti-Inflammatory Effects of Phytochemical Components of Clinacanthus nutans. Molecules 2022; 27:molecules27113607. [PMID: 35684542 PMCID: PMC9182488 DOI: 10.3390/molecules27113607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
Recent studies on the ethnomedicinal use of Clinacanthus nutans suggest promising anti-inflammatory, anti-tumorigenic, and antiviral properties for this plant. Extraction of the leaves with polar and nonpolar solvents has yielded many C-glycosyl flavones, including schaftoside, isoorientin, orientin, isovitexin, and vitexin. Aside from studies with different extracts, there is increasing interest to understand the properties of these components, especially regarding their ability to exert anti-inflammatory effects on cells and tissues. A major focus for this review is to obtain information on the effects of C. nutans extracts and its phytochemical components on inflammatory signaling pathways in the peripheral and central nervous system. Particular emphasis is placed on their role to target the Toll-like receptor 4 (TLR4)-NF-kB pathway and pro-inflammatory cytokines, the antioxidant defense pathway involving nuclear factor erythroid-2-related factor 2 (NRF2) and heme oxygenase 1 (HO-1); and the phospholipase A2 (PLA2) pathway linking to cyclooxygenase-2 (COX-2) and production of eicosanoids. The ability to provide a better understanding of the molecular targets and mechanism of action of C. nutans extracts and their phytochemical components should encourage future studies to develop new therapeutic strategies for better use of this herb to combat inflammatory diseases.
Collapse
Affiliation(s)
- Wei-Yi Ong
- Department of Anatomy and Neurobiology Research Programme, National University of Singapore, Singapore 119260, Singapore
- Correspondence:
| | - Deron R. Herr
- Department of Pharmacology, National University of Singapore, Singapore 119260, Singapore;
| | - Grace Y. Sun
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA;
| | - Teng-Nan Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan;
| |
Collapse
|
20
|
Wang F, Zhang J, Niu G, Weng J, Zhang Q, Xie M, Li C, Sun K. Apigenin inhibits isoproterenol‐induced myocardial fibrosis and Smad pathway in mice by regulating oxidative stress and miR‐122‐5p/155‐5p expressions. Drug Dev Res 2022; 83:1003-1015. [PMID: 35277868 DOI: 10.1002/ddr.21928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 12/21/2022]
Abstract
Apigenin, a flavonoid isolated from Apium graveolens, is an effective natural active ingredient that inhibits transforming growth factor-β1 (TGF-β1)-induced cardiac fibroblasts (CFs) differentiation and collagen synthesis. However, its effects on isoproterenol-induced myocardial fibrosis in mice remain unknown. This study aimed to examine the effect of apigenin in the prevention of myocardial fibrosis. A mouse model of myocardial fibrosis induced by isoproterenol was established, and the mice were given apigenin 75-300 mg/kg orally for 40 days. The results showed that the heart weight coefficient, myocardial hydroxyproline, collagen accumulation, and malondialdehyde levels in the apigenin-treated groups were significantly reduced. In contrast, the activity of myocardial superoxide dismutase and glutathione peroxidase were significantly enhanced. The results of real-time quantitative polymerase chain reaction and western blot assays showed that apigenin could significantly upregulate the expressions of myocardial microRNA-122-5p (miR-122-5p), c-Ski, and Smad7 and downregulate the expressions of myocardial miR-155-5p, α-smooth muscle actin, collagen I/III, NF-κB, TGF-β1, hypoxia-inducible factor-1α (HIF-1α), Smad2/3, and p-Smad2/3. In vitro, the differentiation and extracellular matrix production, as well as TGF-β1/Smads axis, were further reduced after treatment of miR-122-5p mimic or miR-155-5p inhibitor-transfected and TGF-β1-stimulated CFs with apigenin. These results suggested that apigenin increased the expression of miR-122-5p and decreased the expression of miR-155-5p, which subsequently downregulated and upregulated the target genes HIF-1α and c-Ski, respectively. Furthermore, apigenin administration downregulated TGF-β1-induced Smad2/3 and upregulated Smad7. In addition, it reduced the NF-κB/TGF-β1 signaling pathway axis by increasing antioxidant ability to exert the antifibrotic effects.
Collapse
Affiliation(s)
- Feng Wang
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jun Zhang
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guanghao Niu
- Department of Pharmacy, The Affiliated Infectious Diseases Hospital of Soochow University, The Fifth People's Hospital of Suzhou, Suzhou, Jiangsu, China
| | - Jiayi Weng
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Qian Zhang
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Meilin Xie
- Department of Pharmacology, Soochow University, Suzhou, Jiangsu, China
| | - Chunjian Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kangyun Sun
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
21
|
Wang X, Hu X, Li S, Shi W, Li S, Zhang Y. Preparation of antibacterial nanofibers by electrospinning polyvinyl alcohol containing a luteolin hydroxypropyl-β-cyclodextrin inclusion complex. NEW J CHEM 2022. [DOI: 10.1039/d1nj04922d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanofibers have exhibited excellent water solubility, significant antibacterial effects and effective concentration in vitro release.
Collapse
Affiliation(s)
- Xiaoyan Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, P. R. China
| | - Xiaona Hu
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, P. R. China
| | - Shiqing Li
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, P. R. China
| | - Wenhui Shi
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, P. R. China
| | - Shujing Li
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, P. R. China
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, P. R. China
| | - Yuxi Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing, 100190, P. R. China
| |
Collapse
|
22
|
Attiq A, Yao LJ, Afzal S, Khan MA. The triumvirate of NF-κB, inflammation and cytokine storm in COVID-19. Int Immunopharmacol 2021; 101:108255. [PMID: 34688149 PMCID: PMC8516728 DOI: 10.1016/j.intimp.2021.108255] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/30/2021] [Accepted: 10/09/2021] [Indexed: 01/08/2023]
Abstract
The coronavirus disease (COVID-19) has once again reminded us of the significance of host immune response and consequential havocs of the immune dysregulation. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) inflicts severe complications to the infected host, including cough, dyspnoea, fever, septic shock, acute respiratory distress syndrome (ARDs), and multiple organ failure. These manifestations are the consequence of the dysregulated immune system, which gives rise to excessive and unattended production of pro-inflammatory mediators. Elevated circulatory cytokine and chemokine levels are accompanied by spontaneous haemorrhage, thrombocytopenia and systemic inflammation, which are the cardinal features of life-threatening cytokine storm syndrome in advanced COVID-19 diseases. Coronavirus hijacked NF-kappa B (NF-κB) is responsible for upregulating the expressions of inflammatory cytokine, chemokine, alarmins and inducible enzymes, which paves the pathway for cytokine storm. Given the scenario, the systemic approach of simultaneous inhibition of NF-κB offers an attractive therapeutic intervention. Targeted therapies with proteasome inhibitor (VL-01, bortezomib, carfilzomib and ixazomib), bruton tyrosine kinase inhibitor (acalabrutinib), nucleotide analogue (remdesivir), TNF-α monoclonal antibodies (infliximab and adalimumab), N-acetylcysteine and corticosteroids (dexamethasone), focusing the NF-κB inhibition have demonstrated effectiveness in terms of the significant decrease in morbidity and mortality in severe COVID-19 patients. Hence, this review highlights the activation, signal transduction and cross-talk of NF-κB with regard to cytokine storm in COVID-19. Moreover, the development of therapeutic strategies based on NF-κB inhibition are also discussed herein.
Collapse
Affiliation(s)
- Ali Attiq
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, MAHSA University, Bandar Saujana Putra, 42610 Jenjarom, Selangor, Malaysia.
| | - Lui Jin Yao
- Kuala Balah Health Clinic (Klinik Kesihatan Kuala Balah), Kuala Balah, 17600 Jeli, Kelantan, Malaysia
| | - Sheryar Afzal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, MAHSA University, Bandar Saujana Putra, 42610 Jenjarom, Selangor, Malaysia
| | - Mansoor Ali Khan
- COVID-19 Vaccination Centres, University College London Hospitals, National Health Service, N10QH London, England
| |
Collapse
|
23
|
Pu Y, Yang Z, Mo X. Protective Effect of Luteolin on D-Galactosamine (D-Gal)/Lipopolysaccharide (LPS) Induced Hepatic Injury by in Mice. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2252705. [PMID: 34368345 PMCID: PMC8342164 DOI: 10.1155/2021/2252705] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/19/2021] [Indexed: 01/13/2023]
Abstract
To observe the effects of luteolin on galactosamine (D-Gal)/lipopolysaccharide (LPS) induced liver injury in mice. Male C57BL/6 mice were randomly divided into 4 groups: normal control group, D-GaI/LPS group, D-GaI/LPS + luteolin (Lu, 20 mg/kg), and D-GaI/LPS + luteolin (Lu, 40 mg/kg). Mice in the normal control group and D-GaI/LPS group were given distilled water while other groups were given drugs in 7 days by gavage. 4 hours after the continuous administration, Gal (700 mg/kg) and LPS (10 mg/kg) were injected intraperitoneally. Mice in the normal control group were given the same volume of vegetable oil solution. 24 h after the establishment of the mice model, blood and liver samples were collected. Hematoxylin (HE) staining was used to observe the changes of hepatic histopathology. Alanine aminotransferase (ALT) and glutamic oxalacetic transaminase (AST) in serum, interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor (TNF-α) were measured by related kits. Western blotting was used to demonstrate the expression levels of related inflammation proteins. Lu significantly reduced levels of proinflammatory cytokines including interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) in serum and liver. Lu restored the pathological changes after galactosamine (D-Gal)/lipopolysaccharide (LPS) treatment. In addition, Lu regulated proteins levels of the NLRP3/NF-κB pathway in liver. Lu exhibited therapeutical effects on D-GaI/LPS induced liver injury in mice which might be related to the regulation of the NLRP3/NF-κB pathway.
Collapse
Affiliation(s)
- Yiwei Pu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhaocong Yang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xuming Mo
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|