1
|
Guo T, Yang Y, Liang L, Huang Q, Hu Q, Xie Q, Yuan H, Chen G, Wang W, Jian Y. Qingqianliutianosides A-E: five new sweet dammarane triterpenoid glycosides derived from the leaves of Cyclocarya paliurus - identification, characterization and interactions with T1R2/T1R3 sweet taste receptors. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1216-1227. [PMID: 39299925 DOI: 10.1002/jsfa.13912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Cyclocarya paliurus, as a new food resource, is utilized extensively in human and animal diets due to its bioactive compounds, health benefits, and its highly prized sweet flavor. This study aimed to investigate the sweet-taste ingredient of C. paliurus leaves. RESULTS Five new dammarane triterpenoid glycosides were isolated and identified as qingqianliutianosides A-E (1-5) by comprehensive spectroscopic data analysis and a single crystal X-ray diffraction experiment. Qingqianliutianoside A (1) and qingqianliutianoside C (3), present in relatively high quantities in the plant, were shown to exhibit sweetness by sensory evaluation and electronic tongue analysis. Further monitoring was conducted on the content changes in 3 in leaves at different growth stages, indicating that 3 reached its peak content in April and then showed a decreasing trend. Molecular docking studies revealed that T1R2/T1R3 receptors Ser212, Ser105, Thr239, Asn380, Thr305, and Val381 may play critical roles, demonstrating that hydrogen bonding and hydrophobic interactions were the dominant interaction forces between all of the identified compounds and the active sites in the Venus flytrap module of the T1R2/T1R3 receptors. CONCLUSION Qingqianliutianosides A-E are promising natural source sugar substitutes for use in functional foods and beverages. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tingsi Guo
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Yong Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Ling Liang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Qin Huang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Qiqi Hu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Qingling Xie
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Hanwen Yuan
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Guangyu Chen
- Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha, People's Republic of China
- Key Laboratory of TCM Heart and Lung Syndrome Differentiation & Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine Changsha, Changsha, People's Republic of China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Yuqing Jian
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| |
Collapse
|
2
|
Wang M, Jiang S, Deng Y, Tian T, Zafar S, Xie Q, Yuan H, Jian Y, Wang W. Nine new nor-3,4-seco-dammarane triterpenoids from the leaves of Cyclocarya paliurus and their hypoglycemic activity. Bioorg Chem 2024; 152:107763. [PMID: 39216195 DOI: 10.1016/j.bioorg.2024.107763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
This manuscript describes the isolation of nine new nor-3,4-seco-dammarane triterpenoids, norqingqianliusus A-I (1-9) and one known nortriterpenoid (10) from Cyclocarya paliurus leaves. Norqingqianliusus A and B (1 and 2) possess a unique 3,4-seco-dammarane-type C26 tetranortriterpenoid skeleton. The compounds were structurally characterized through modern spectroscopic techniques. Moreover, the potential mechanism of hypoglycemic activity was further explored by studying the effects on glucosamine-induced insulin resistant HepG2 cells. In vitro hypoglycemic effects of all of the isolates were investigated using insulin resistant HepG2 cells. The glucose consumption was significantly promoted by compound 10, in a dose-dependent manner, thus alleviating damage in IR-HepG2 cells. Besides, it reduced the PEPCK and GSK3β gene expression, involved in glucose metabolism. The anti-diabetic effects of the plant, utilized traditionally, can hence be attributed to the presence of nor-3,4-seco-dammarane triterpenoids in the leaves.
Collapse
Affiliation(s)
- Mengyun Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Sai Jiang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Institute of Innovative Traditional Chinese Medications, Hunan Academy of Chinese Medicine, Changsha 410013, China
| | - Ying Deng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Tingting Tian
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, China
| | - Salman Zafar
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Qingling Xie
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hanwen Yuan
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yuqing Jian
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
3
|
Xi H, Yuan M, Xie J, Wang Y. Cyclocarysaponins A-J, dammarane-type triterpenoid glycosides from the leaves of Cyclocarya paliurus. Chin J Nat Med 2024; 22:955-964. [PMID: 39428187 DOI: 10.1016/s1875-5364(24)60646-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Indexed: 10/22/2024]
Abstract
Ten previously undescribed dammarane-type triterpenoid glycosides, cyclocarysaponins A-J (1-10), were isolated from the leaves of Cyclocarya paliurus (Batal.) Iljinskaja. The structures of these compounds were characterized through detailed spectroscopic analysis, including 1D and 2D nuclear magnetic resonance (NMR) and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). The cytotoxic activities of all isolates were assessed against five human cancer cell lines (Bel-7402, Caski, BGC-823, A2780, and HCT-116). Of the tested compounds, compounds 1, 7, and 9 exhibited selective cytotoxicity against one or more human cancer cell lines.
Collapse
Affiliation(s)
- Huiting Xi
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Mingming Yuan
- Jiangxi Institute for Drug Control, NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Patent Medicine, Jiangxi Provincial Engineering Research Center of Drug and Medical Device Quality, Nanchang 330029, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Yuanxing Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
4
|
Chen L, Lu D, Wan Y, Zou Y, Zhang R, Zhou T, Long B, Zhu K, Wang W, Tian X. Metabolite Profiling and Identification of Sweet/Bitter Taste Compounds in the Growth of Cyclocarya Paliurus Leaves Using Multiplatform Metabolomics. Foods 2024; 13:3089. [PMID: 39410123 PMCID: PMC11475313 DOI: 10.3390/foods13193089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Cyclocarya paliurus tea, also known as "sweet tea", an herbal tea with Cyclocarya paliurus leaves as raw material, is famous for its unique nutritional benefits and flavor. However, due to the unique "bittersweet" of Cyclocarya paliurus tea, it is still unable to fully satisfy consumers' high-quality taste experience and satisfaction. Therefore, this study aimed to explore metabolites in Cyclocarya paliurus leaves during their growth period, particularly composition and variation of sweet and bitter taste compounds, by combining multi-platform metabolomics analysis with an electronic tongue system and molecular docking simulation technology. The results indicated that there were significant differences in the contents of total phenols, flavonoids, polysaccharides, and saponins in C. paliurus leaves in different growing months. A total of 575 secondary metabolites were identified as potential active metabolites related to sweet/bitter taste using nontargeted metabolomics based on UHPLC-MS/MS analysis. Moreover, molecular docking technology was utilized to study interactions between the candidate metabolites and the sweet receptors T1R2/T1R3 and the bitter receptors T2R4/T2R14. Six key compounds with high sweetness and low bitterness were successfully identified by using computational simulation analysis, including cis-anethole, gluconic acid, beta-D-Sedoheptulose, asparagine, proline, and citrulline, which may serve as candidates for taste modification in Cyclocarya paliurus leaves. These findings provide a new perspective for understanding the sweet and bitter taste characteristics that contribute to the distinctive sensory quality of Cyclocarya paliurus leaves.
Collapse
Affiliation(s)
- Liang Chen
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.C.); (D.L.); (Y.W.); (Y.Z.); (R.Z.); (T.Z.); (B.L.); (W.W.)
- Department of Food and Drug Engineering, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Dai Lu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.C.); (D.L.); (Y.W.); (Y.Z.); (R.Z.); (T.Z.); (B.L.); (W.W.)
| | - Yuxi Wan
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.C.); (D.L.); (Y.W.); (Y.Z.); (R.Z.); (T.Z.); (B.L.); (W.W.)
| | - Yaqian Zou
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.C.); (D.L.); (Y.W.); (Y.Z.); (R.Z.); (T.Z.); (B.L.); (W.W.)
- Department of Food and Drug Engineering, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ruiyi Zhang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.C.); (D.L.); (Y.W.); (Y.Z.); (R.Z.); (T.Z.); (B.L.); (W.W.)
- Department of Food and Drug Engineering, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Tao Zhou
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.C.); (D.L.); (Y.W.); (Y.Z.); (R.Z.); (T.Z.); (B.L.); (W.W.)
| | - Bin Long
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.C.); (D.L.); (Y.W.); (Y.Z.); (R.Z.); (T.Z.); (B.L.); (W.W.)
| | - Kangming Zhu
- School of Informatics, Hunan University of Chinese Medicine, Changsha 410208, China;
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.C.); (D.L.); (Y.W.); (Y.Z.); (R.Z.); (T.Z.); (B.L.); (W.W.)
| | - Xing Tian
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.C.); (D.L.); (Y.W.); (Y.Z.); (R.Z.); (T.Z.); (B.L.); (W.W.)
- Department of Food and Drug Engineering, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Hunan Engineering and Technology Research Center for Health Products and Life Science, Changsha 410208, China
| |
Collapse
|
5
|
Yang Y, Guo T, Huang F, Zheng H, Li W, Yuan H, Xie Q, Hussain N, Wang W, Jian Y. α-Glucosidase inhibitory flavonol glycosides from Cyclocarya paliurus (Batalin) Iljinskaja and their kinetics characteristics. PHYTOCHEMISTRY 2024; 225:114195. [PMID: 38925355 DOI: 10.1016/j.phytochem.2024.114195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Seven previously undescribed flavonol glycosides including four rare flavonol glycoside cyclodimers, dicyclopaliosides A-C (1-3) with truxinate type and dicyclopalioside D (4) with truxillate type, as well as three kaempferol glycoside derivatives cyclopaliosides A-C (5-7), were obtained from the leaves of Cyclocarya paliurus. Their structures were elucidated by extensive spectroscopic methods and chemical analyses. All compounds were evaluated for their inhibitory α-glucosidase activities. Among them, compounds 1-4 display strong inhibitory activities with IC50 values of 82.76 ± 1.41, 62.70 ± 4.00, 443.35 ± 16.48, and 6.31 ± 0.88 nM, respectively, while compounds 5-7 showed moderate activities with IC50 values of 4.91 ± 0.75, 3.64 ± 0.68, and 5.32 ± 0.53 μΜ, respectively. The structure-activity relationship analysis assumed that the cyclobutane cores likely contribute to the enhancement of α-glucosidase inhibitory activities of dimers. Also, the interaction mechanism between flavonol glycoside dimers and α-glucosidase were explored by the enzyme kinetic assay, indicating that compounds 1-3 exhibited mixed-type inhibition, while 4 showed uncompetitive inhibition. Additionally, the active compounds have also undergone molecular docking evaluation.
Collapse
Affiliation(s)
- Yong Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Tingsi Guo
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Feibing Huang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Hao Zheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Wenchu Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Hanwen Yuan
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Qingling Xie
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Nusrat Hussain
- Department of Chemistry, University of Baltistan Skardu, Skardu, 16100, Pakistan
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China.
| | - Yuqing Jian
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China.
| |
Collapse
|
6
|
Xi H, Xu W, He F, Liu Z, Wang Y, Xie J. Spatial metabolome of biosynthesis and metabolism in Cyclocarya paliurus leaves. Food Chem 2024; 443:138519. [PMID: 38301549 DOI: 10.1016/j.foodchem.2024.138519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/15/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
A large number of plant metabolites were discovered, but their biosynthetic and metabolic pathways are still largely unknown. However, the spatial distribution of metabolites and their changes in metabolic pathways can be supplemented by mass spectrometry imaging (MSI) techniques. For this purpose, the combination of desorption electrospray ionization (DESI)-MSI and non-targeted metabolomics was used to obtain the spatial distribution information of metabolites in the leaves of Cyclocarya paliurus (Batal.) Iljinskaja (C. paliurus). The sample pretreatment method was optimized to have higher detection sensitivity in DESI. The changes of metabolites in C. paliurus were analyzed in depth with the integration of the spatial distribution information of metabolites. The main pathways for biosynthesis of flavonoid precursor and the effect of changes in compound structure on the spatial distribution were found. Spatial metabolomics can provide more metabolite information and a platform for the in-depth understanding of the biosynthesis and metabolism in plants.
Collapse
Affiliation(s)
- Huiting Xi
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Weixiang Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Fengxia He
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Zhongwei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yuanxing Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
7
|
Ping WX, Hu S, Su JQ, Ouyang SY. Metabolic disorders in prediabetes: From mechanisms to therapeutic management. World J Diabetes 2024; 15:361-377. [PMID: 38591088 PMCID: PMC10999048 DOI: 10.4239/wjd.v15.i3.361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 02/07/2024] [Indexed: 03/15/2024] Open
Abstract
Diabetes, one of the world's top ten diseases, is known for its high mortality and complication rates and low cure rate. Prediabetes precedes the onset of diabetes, during which effective treatment can reduce diabetes risk. Prediabetes risk factors include high-calorie and high-fat diets, sedentary lifestyles, and stress. Consequences may include considerable damage to vital organs, including the retina, liver, and kidneys. Interventions for treating prediabetes include a healthy lifestyle diet and pharmacological treatments. However, while these options are effective in the short term, they may fail due to the difficulty of long-term implementation. Medications may also be used to treat prediabetes. This review examines prediabetic treatments, particularly metformin, glucagon-like peptide-1 receptor agonists, sodium glucose cotransporter 2 inhibitors, vitamin D, and herbal medicines. Given the remarkable impact of prediabetes on the progression of diabetes mellitus, it is crucial to intervene promptly and effectively to regulate prediabetes. However, the current body of research on prediabetes is limited, and there is considerable confusion surrounding clinically relevant medications. This paper aims to provide a comprehensive summary of the pathogenesis of pre-diabetes mellitus and its associated therapeutic drugs. The ultimate goal is to facilitate the clinical utilization of medications and achieve efficient and timely control of diabetes mellitus.
Collapse
Affiliation(s)
- Wen-Xin Ping
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China
| | - Shan Hu
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China
| | - Jing-Qian Su
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China
| | - Song-Ying Ouyang
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China
| |
Collapse
|
8
|
Yao Y, Wang X, Li D, Chen S, Li C, Guan H, Wang D, Nie X. Cyclocarya paliurus leaves alleviate high-sucrose diet-induced obesity by improving intestinal metabolic disorders. Aging (Albany NY) 2024; 16:5452-5470. [PMID: 38484370 PMCID: PMC11006468 DOI: 10.18632/aging.205657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/22/2024] [Indexed: 04/06/2024]
Abstract
High-sucrose diets are common in daily life but harmful to human health. Cyclocarya paliurus leaves (CPL) are a kind of tea used to alleviate metabolic diseases and are widely used in China. However, the effects of CPL on high-sucrose-induced obesity are unknown. This study aimed to describe the changes in gut metabolism induced by a high-sucrose diet and to reveal the potential mechanisms through which CPL alleviate high-sucrose diet-induced obesity. A high-sucrose-induced obesity model was generated in C57BL/6J and KM mice. The effects of CPL on obese mice were evaluated, and changes in the gut microbiota and intestinal metabolites induced by CPL treatment were observed. Furthermore, the fecal microbiota transplantation (FMT) method was used to prove that the effects of CPL on high-sucrose induced obesity depend on the changes of gut microbiota. The results of the C57BL/6J mouse experiment revealed that high-sucrose intake induced fat deposition and altered the gut microbiota. CPL treatment decreased fat deposition and alleviated disorders of the gut microbiota. Furthermore, CPL treatment increased the utilization of amnio acids, long fatty acids and saccharides and produced more bile acids, indole derivatives and less trimethylamine (TMA). A confirmatory experiment in KM mice also revealed that CPL can alleviate obesity, ameliorate intestinal metabolic disorders, and upregulate the expression of tight junction proteins in the intestinal mucosa. These results demonstrated that CPL could prevent high sucrose-induced obesity and generate more beneficial intestinal microbial metabolites but less harmful intestinal microbial metabolites.
Collapse
Affiliation(s)
- Ye Yao
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Xiaojuan Wang
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Dongyu Li
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Shujuan Chen
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Chengjie Li
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Haiyu Guan
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Dongsheng Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaoli Nie
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| |
Collapse
|
9
|
Wang Y, Ma J, Tong Y, Li N, Li J, Qi Z. Antidiabetic effects and mechanisms of Cyclocarya paliurus leaf flavonoids via PIK3CA. J Funct Foods 2024; 113:106031. [DOI: 10.1016/j.jff.2024.106031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
10
|
Zhang SY, Peng YQ, Xiang GS, Song WL, Feng L, Jiang XY, Li XJ, He SM, Yang SC, Zhao Y, Zhang GH. Functional characterization of genes related to triterpene and flavonoid biosynthesis in Cyclocarya paliurus. PLANTA 2024; 259:50. [PMID: 38285114 DOI: 10.1007/s00425-023-04282-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/04/2023] [Indexed: 01/30/2024]
Abstract
MAIN CONCLUSION The oxidosqualene cyclases (OSCs) generating triterpenoid skeletons in Cyclocarya paliurus were identified for the first time, and two uridine diphosphate (UDP)-glycosyltransferases (UGTs) catalyzing the glycosylation of flavonoids were characterized. Cyclocarya paliurus, a native rare dicotyledonous plant in China, contains an abundance of triterpenoid saponins and flavonoid glycosides that exhibit valuable pharmaceutical effects in preventing hypertension, hyperlipidemia, and diabetes. However, the molecular mechanism explaining the biosynthesis of triterpenoid saponin and flavonoid glycoside in C. paliurus remains unclear. In this study, the triterpene content in different tissues and the expression pattern of genes encoding the key enzymes associated with triterpenoid saponin and flavonoid glycoside biosynthesis were studied using transcriptome and metabolome analysis. The eight upstream oxidosqualene cyclases (OSCs) involved in triterpenoid saponin biosynthesis were functionally characterized, among them CpalOSC6 catalyzed 2,3;22,23-dioxidosqualene to form 3-epicabraleadiol; CpalOSC8 cyclized 2,3-oxidosqualene to generate dammarenediol-II; CpalOSC2 and CpalOSC3 produced β-amyrin and CpalOSC4 produced cycloartenol, while CpalOSC2-CpalOSC5, CpalOSC7, and CpalOSC8 all produced lanosterol. However, no catalytic product was detected for CpalOSC1. Moreover, two downstream flavonoid uridine diphosphate (UDP)-glycosyltransferases (UGTs) (CpalUGT015 and CpalUGT100) that catalyze the last step of flavonoid glycoside biosynthesis were functionally elucidated. These results uncovered the key genes involved in the biosynthesis of triterpenoid saponins and flavonoid glycosides in C. paliurus that could be applied to produce flavonoid glycosides and key triterpenoid saponins in the future via a synthetic strategy.
Collapse
Affiliation(s)
- Shuang-Yan Zhang
- College of Agronomy and Biotechnology, National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, Yunnan, China
| | - Yu-Qing Peng
- College of Agronomy and Biotechnology, National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, Yunnan, China
| | - Gui-Sheng Xiang
- College of Agronomy and Biotechnology, National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, Yunnan, China
| | - Wan-Ling Song
- College of Agronomy and Biotechnology, National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, Yunnan, China
| | - Lei Feng
- College of Agronomy and Biotechnology, National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, Yunnan, China
| | - Xin-Yue Jiang
- College of Agronomy and Biotechnology, National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, Yunnan, China
| | - Xue-Jiao Li
- College of Agronomy and Biotechnology, National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, Yunnan, China
| | - Si-Mei He
- College of Agronomy and Biotechnology, National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, Yunnan, China
| | - Sheng-Chao Yang
- College of Agronomy and Biotechnology, National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, Yunnan, China
| | - Yan Zhao
- College of Agronomy and Biotechnology, National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China.
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, Yunnan, China.
| | - Guang-Hui Zhang
- College of Agronomy and Biotechnology, National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China.
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, Yunnan, China.
| |
Collapse
|
11
|
Zhang S, He J, Li J, He H, He Y, Wang X, Shu H, Zhang J, Xu D, Zou K. Triterpenoid Compounds from Cyclocarya paliurus: A Review of Their Phytochemistry, Quality Control, Pharmacology, and Structure-Activity Relationship. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:2041-2075. [PMID: 37957120 DOI: 10.1142/s0192415x2350088x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cyclocarya paliurus (Batalin) Iljinskaja (C. paliurus) is a single species of Cyclocarya paliurus in Juglandaceae. It is a unique rare medicinal plant resource in China that is mainly distributed in the south of China. The leaves of C. paliurus, as a new food ingredient, are processed into tea products in daily life. Triterpenoids are the main active ingredient in C. paliurus. So far, 164 triterpenoid compounds have been isolated and identified from C. paliurus, which are included 3,4-seco-dammaranes, dammaranes, oleanane, ursane, lupinanes, taraxeranes, and norceanothanes. Modern pharmacological studies manifested that these ingredients have a wide range of pharmacological activities both in vitro and in vivo, such as reducing blood sugar, lowering blood lipids, and anti-tumor, anti-inflammatory, anti-oxidant, and other activities. In addition, current results indicate that the pharmacological mechanisms of triterpenoids were closely related to their chemical structure, molecular signaling pathways, and the expression of related proteins. In order to further study C. paliurus based on the current research situation, this review summarizes the prospect and systematic summary of the triterpenes of C. paliurus from the aspects of structural characteristics, quality control, biological activity, and the structure-activity relationship, which provide a reference for further research and application of the triterpenoids from C. paliurus in the field of functional food and medicine.
Collapse
Affiliation(s)
- Shuran Zhang
- Yichang Key Laboratory of Development and Utilization of Health Products with Drug Food Homology, Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, P. R. China
| | - Junyu He
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, P. R. China
| | - Jie Li
- Yichang Key Laboratory of Development and Utilization of Health Products with Drug Food Homology, Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, P. R. China
| | - Haibo He
- Yichang Key Laboratory of Development and Utilization of Health Products with Drug Food Homology, Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, P. R. China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Shiyan 442000, P. R. China
- Department of Gastroenterology, Seventh People's Hospital of Wenzhou, Wenzhou 325005, P. R. China
| | - Yumin He
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, P. R. China
| | - Xiao Wang
- Yichang Key Laboratory of Development and Utilization of Health Products with Drug Food Homology, Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, P. R. China
| | - Heng Shu
- Yichang Key Laboratory of Development and Utilization of Health Products with Drug Food Homology, Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, P. R. China
| | - Jihong Zhang
- Chinese Medicine Clinical Medical College and Hubei Clinical Research Center for Functional Digestive Diseases of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, P. R. China
| | - Daoxiang Xu
- Department of Gastroenterology, Seventh People's Hospital of Wenzhou, Wenzhou 325005, P. R. China
| | - Kun Zou
- Yichang Key Laboratory of Development and Utilization of Health Products with Drug Food Homology, Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, P. R. China
| |
Collapse
|
12
|
Huh G, Oh Y, Jeon Y, Kang KS, Kim SN, Jung SH, Kim SH, Kim YJ. Insampaedok-San Extract Exerts an Immune-Enhancing Effect through NF- κB p65 Pathway Activation. BIOMED RESEARCH INTERNATIONAL 2023; 2023:5458504. [PMID: 37780486 PMCID: PMC10541303 DOI: 10.1155/2023/5458504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/09/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023]
Abstract
Insampaedok-san (IS) has traditionally been prescribed as a medication for cold-related symptoms in Northeast Asia, including Korea and China. In this study, we focused on elucidating the molecular mechanism underlying the immunomodulatory activity of IS water extract (ISE) in macrophages. ISE significantly enhanced the levels of nitric oxide (NO) and prostaglandin E2 (PGE2) by increasing the expression of inducible NO synthase and cyclooxygenase-2 (COX-2) in a dose-dependent manner. ISE, which consists of many herbs, contains a large number of active compounds whose pharmacological targets and mechanisms are complicated. Therefore, network pharmacology analysis was used to predict the potential key components, targets, and mechanisms of ISE as immunomodulators. Subsequently, the network pharmacology results were validated experimentally. Seven key components were identified through HPLC-QTOF-MS. As predicted by the network pharmacology analysis, ISE increased the mRNA expression of Tnf and Il6. Furthermore, ISE increased the phosphorylation, nuclear translocation, and transcriptional activity of the p65 subunit of the nuclear factor-κB (NF-κB) signaling pathway. In contrast, rapamycin, an NF-κB inhibitor, suppressed the ISE-induced mRNA expression of Tnf and Il6. In conclusion, ISE is an immune activator that can elevate the production of NO, PGE2, and proinflammatory cytokines mediated by NF-κB signaling.
Collapse
Affiliation(s)
- Gyuwon Huh
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Youngse Oh
- College of Pharmacy, Yonsei Institute of Pharmaceutical Science, Yonsei University, Incheon 21983, Republic of Korea
| | - Youngsic Jeon
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Su Nam Kim
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Sang Hoon Jung
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Seung Hyun Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Science, Yonsei University, Incheon 21983, Republic of Korea
| | - Young-Joo Kim
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| |
Collapse
|
13
|
Peng X, Chen S, Zhong L, Li Y, Wu C, Zhong L, Chen W, Yang J, Zeng J, Tang S. Cyclocarya paliurus leaves extracts alleviate metabolic phenotypes in Chinese T2DM patients by modulating gut microbiota and metabolites: a clinical randomized controlled trial. Front Endocrinol (Lausanne) 2023; 14:1176256. [PMID: 37293505 PMCID: PMC10246770 DOI: 10.3389/fendo.2023.1176256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/04/2023] [Indexed: 06/10/2023] Open
Abstract
Objective We aimed to investigate the effect of Cyclocarya paliurus leaves extracts (CP) on glucose and blood lipid metabolism and its relationship with intestinal flora in type 2 diabetes mellitus (T2DM) patients. Methods In this open-label, 84-day randomized controlled trial, a total of 38 T2DM patients were randomly assigned to the CP group or the Glipizide group (G group) in a 2:1 ratio. T2DM-associated metabolic phenotypes, gut microbiota and metabolites including short-chain fatty acids (SCFAs) and bile acids (BAs) were detected. Results At the end of intervention, CP, like Glipizide, significantly improved HbA1c level and other glucose metabolism parameters (fasting plasma glucose (FBG), 2-hour post-meal blood glucose (2hPBG), the area under curve of oral glucose tolerance test glucose (OGTT glucose AUC)). Moreover, CP also resulted in the significant improvement in the levels of blood lipid and blood pressure. Notably, the improvement in blood lipid(triglycerides (TG) and high-density lipoprotein cholesterol (HDL-c)) and blood pressure (diastolic blood pressure (DBP)) was significantly greater in the CP group compared with the G group. Furthermore, the liver and kidney function parameters did not significantly change in both CP group and the G group over the 84-day period. Additionally, the enrichment of potentially beneficial bacteria (Faecalibacterium and Akkermansia), SCFAs and unconjugated BAs and the depletion of potential pathogenic bacteria (Prevotella_9) and conjugated BAs were observed in the CP group, while the abundances of the gut microbial were kept stable in the G group after intervention. Conclusion CP displays a more beneficial effect in the alleviation of T2DM-associated metabolic phenotypes than glipizide by regulating gut microbiota and metabolites in T2DM patients, with no significant effects on liver and kidney function.
Collapse
Affiliation(s)
- Xiaojuan Peng
- Department of Endocrinology, Liuzhou People’s Hospital, Liuzhou, Guangxi, China
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
- Department of Endocrinology, Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Sisi Chen
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Lu Zhong
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Yuting Li
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Chutian Wu
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Lixian Zhong
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Weiwei Chen
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Jinying Yang
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Jiahua Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Shaohui Tang
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Liang X, Deng S, Huang Y, Pan L, Chang Y, Hou P, Ren C, Xu W, Yang R, Li K, Li J, He R. Triterpenoids from the Leaves of Cyclocarya paliurus and Their Glucose Uptake Activity in 3T3-L1 Adipocytes. Molecules 2023; 28:molecules28083294. [PMID: 37110527 PMCID: PMC10145478 DOI: 10.3390/molecules28083294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Four new dammarane triterpenoid saponins cypaliurusides Z1-Z4 (1-4) and eight known analogs (5-12) were isolated from the leaves of Cyclocarya paliurus. The structures of the isolated compounds were determined using a comprehensive analysis of 1D and 2D NMR and HRESIMS data. The docking study demonstrated that compound 10 strongly bonded with PTP1B (a potential drug target for the treatment of type-II diabetes and obesity), hydrogen bonds, and hydrophobic interactions, verifying the importance of sugar unit. The effects of the isolates on insulin-stimulated glucose uptake in 3T3-L1 adipocytes were evaluated and three dammarane triterpenoid saponins (6, 7 and 10) were found to enhance insulin-stimulated glucose uptake in 3T3-L1 adipocytes. Furthermore, compounds 6, 7, and 10 exhibited potent abilities to promote insulin-stimulated glucose uptake in 3T3-L1 adipocytes in a dose-dependent manner. Thus, the abundant dammarane triterpenoid saponins from C. paliurus leaves exhibited stimulatory effects on glucose uptake with application potential as a antidiabetic treatment.
Collapse
Affiliation(s)
- Xiaoqin Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shengping Deng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yan Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Liwei Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yanling Chang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Ping Hou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Chenyang Ren
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Weifeng Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Ruiyun Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Kanyuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jun Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Ruijie He
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| |
Collapse
|
15
|
Gui R, Wang YK, Wu JP, Deng GM, Cheng F, Zeng HL, Zeng PH, Long HP, Zhang W, Wei XF, Wang WX, Zhu GZ, Ren WQ, Chen ZH, He XA, Xu KP. Cyclocarya paliurus leaves alleviate hyperuricemic nephropathy via modulation of purine metabolism, antiinflammation, and antifibrosis. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
16
|
Ahmed M, Khan KUR, Ahmad S, Aati HY, Sherif AE, Ashkan MF, Alrahimi J, Abdullah Motwali E, Imran Tousif M, Abbas Khan M, Hussain M, Umair M, Ghalloo BA, Korma SA. Phytochemical, antioxidant, enzyme inhibitory, thrombolytic, antibacterial, antiviral and in silico studies of Acacia jacquemontii leaves. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
17
|
Shi X, Chang M, Zhao M, Shi Y, Zhang Y. Traditional Chinese medicine compounds ameliorating glomerular diseases via autophagy: A mechanism review. Biomed Pharmacother 2022; 156:113916. [DOI: 10.1016/j.biopha.2022.113916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022] Open
|
18
|
Wang YY, Lu SJ, Gui R, Wu JP, Li J, He XA, Zhang W, Deng GM, Wang WX, Long HP, Wei XF, Zeng GY, Zhang N, Zang SM, Yao Y, Chen ZH, Fei C, Wang YK, Xu KP. Hepatic lipidomics and proteomics analysis reveals the mechanism of Cyclocarya paliurus flavonoids in preventing non-alcoholic steatohepatitis in mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
19
|
Qingqianliusus A-N, 3,4-seco-dammarane triterpenoids from the leaves of Cyclocarya paliurus and their biological activities. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
20
|
Li W, Li W, Xing Q, Liu Z, Hu Y, Liu X, Zhang J. Progress in Traditional Chinese Medicine on Treatment of Diabetic Retinopathy. Nat Prod Commun 2022; 17:1934578X2211185. [DOI: 10.1177/1934578x221118547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024] Open
Abstract
Diabetic retinopathy (DR), a common and blinding diabetic microvascular complication, is a harmful metabolic effect caused by persistent hyperglycemia. Owing to the complex pathogenesis of DR, various clinical treatment methods cannot completely prevent its development and are accompanied by various complications. Therefore, there is an urgent need to identify new therapeutic drugs or complementary and alternative therapies. Traditional Chinese medicine (TCM) has the unique advantages of multi-level, multi-target, and minimal side effects. Accumulating evidence has proven that TCM may help delay or prevent the progression of DR. This paper reviews the effect and mechanism of representative TCMs (including extracts, identified compounds, and compound formulas) on DR in recent years and provides evidence for new drug development and clinical efficacy.
Collapse
Affiliation(s)
- Wencan Li
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Wei Li
- Department of Pharmacy, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Qichang Xing
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Zheng Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Yixiang Hu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Xiang Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Jiani Zhang
- Department of Pharmacy, Xiangtan Central Hospital, Xiangtan, Hunan, China
| |
Collapse
|
21
|
Wang X, Tang L, Ping W, Su Q, Ouyang S, Su J. Progress in Research on the Alleviation of Glucose Metabolism Disorders in Type 2 Diabetes Using Cyclocarya paliurus. Nutrients 2022; 14:nu14153169. [PMID: 35956345 PMCID: PMC9370411 DOI: 10.3390/nu14153169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Globally, the incidence of diabetes is increasing annually, and China has the largest number of patients with diabetes. Patients with type 2 diabetes need lifelong medication, with severe cases requiring surgery. Diabetes treatment may cause complications, side-effects, and postoperative sequelae that could lead to adverse health problems and significant social and economic burdens; thus, more efficient hypoglycemic drugs have become a research hotspot. Glucose metabolism disorders can promote diabetes, a systemic metabolic disease that impairs the function of other organs, including the heart, liver, and kidneys. Cyclocarya paliurus leaves have gathered increasing interest among researchers because of their effectiveness in ameliorating glucose metabolism disorders. At present, various compounds have been isolated from C. paliurus, and the main active components include polysaccharides, triterpenes, flavonoids, and phenolic acids. C. paliurus mainly ameliorates glucose metabolism disorders by reducing glucose uptake, regulating blood lipid levels, regulating the insulin signaling pathway, reducing β-cell apoptosis, increasing insulin synthesis and secretion, regulating abundances of intestinal microorganisms, and exhibiting α-glucosidase inhibitor activity. In this paper, the mechanism of glucose metabolism regulation by C. paliurus was reviewed to provide a reference to prevent and treat diabetes, hyperlipidaemia, obesity, and other metabolic diseases.
Collapse
Affiliation(s)
| | | | | | | | - Songying Ouyang
- Correspondence: (S.O.); (J.S.); Tel./Fax: +86-0591-22868199 (S.O.); +86-0591-22868830 (J.S.)
| | - Jingqian Su
- Correspondence: (S.O.); (J.S.); Tel./Fax: +86-0591-22868199 (S.O.); +86-0591-22868830 (J.S.)
| |
Collapse
|
22
|
Li YJ, Wan GZ, Xu FC, Guo ZH, Chen J. Screening and identification of α-glucosidase inhibitors from Cyclocarya paliurus leaves by ultrafiltration coupled with liquid chromatography-mass spectrometry and molecular docking. J Chromatogr A 2022; 1675:463160. [DOI: 10.1016/j.chroma.2022.463160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
|