1
|
Moon H, Lee K, Ha JH, Kim NY, Shin HR, Cho TJ, Oh NS, Park J, Tang J, Kim JK, Kim M. Momoridica charantia and fermented Momoridica charantia with Leuconostoc mesenteroides MKSR change intestinal microbial diversity indices and compositions in high-fat and high-cholesterol diet-fed C57BL/6 male mice. Front Vet Sci 2024; 11:1496067. [PMID: 39742315 PMCID: PMC11686596 DOI: 10.3389/fvets.2024.1496067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction This study explores the impact of 4% Momordica charantia (MC) and 4% fermented Momordica charantia (FMC) on gut microbiota and obesity-related health outcomes in male C57BL/6 mice, a model relevant to veterinary sciences for understanding metabolic and gut health disorders in animals. Methods Mice were assigned to four dietary regimens, including control, high-fat and high-cholesterol diet (POS), POS with 4% MC, and POS with 4% FMC (fermented with Leuconostoc mesenteroides MKSR) over 12 weeks. Fecal samples were collected for 16S rRNA sequencing to evaluate microbial diversity and composition, key factors influencing animal health. Results Both MC and FMC groups exhibited significant alterations in gut microbial communities, with FMC inducing a distinct shift in beta diversity indices. Changes in microbial taxa such as Bacteroidetes, Verrucomicrobia, and Firmicutes were observed, along with enhancement in the 'L-glutamate and L-glutamine biosynthesis' pathway. These shifts were associated with reduced body weight gain and liver weights. Discussion The findings suggest that MC and FMC have potential benefits for managing diet-induced metabolic disorders and protecting against obesity by modulating gut microbiota and improving gut metabolism.
Collapse
Affiliation(s)
- Heewon Moon
- Department of Food Science and Nutrition, Dankook University, Cheonan, Republic of Korea
| | - Kangwook Lee
- Department of Food Biotechnology, Korea University, Sejong, Republic of Korea
| | - Jung-Heun Ha
- Department of Food Science and Nutrition, Dankook University, Cheonan, Republic of Korea
| | - Na Yeun Kim
- Department of Food Biotechnology, Korea University, Sejong, Republic of Korea
| | - Hyo Ri Shin
- Department of Food Biotechnology, Korea University, Sejong, Republic of Korea
| | - Tae Jin Cho
- Department of Food Biotechnology, Korea University, Sejong, Republic of Korea
| | - Nam Su Oh
- Department of Food Biotechnology, Korea University, Sejong, Republic of Korea
| | - Jinbong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jingsi Tang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Development of Biology, Chinese Academy of Sciences, Beijing, China
| | - Jae Kyeom Kim
- Department of Food Biotechnology, Korea University, Sejong, Republic of Korea
| | - Misook Kim
- Department of Food Science and Nutrition, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
2
|
Miller G, Grundmann O. A Narrative Review of Moringa oleifera Lam., Moringaceae, Swietenia mahagoni L. Jacq., Meliaceae, and Momordica charantia L., Cucurbitaceae Plants Found in The Bahamas as Antidiabetes Phytomedicine. J Med Food 2024. [PMID: 39660368 DOI: 10.1089/jmf.2024.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Moringa (Moringa oleifera Lam., Moringaceae), West Indian mahogany (Swietenia mahagoni [L.] Jacq., Meliaceae), and Cerasee (Momordica charantia L., Cucurbitaceae) are plants that are used for medicinal purposes in The Bahamas. They have various medicinal uses, including treating diabetes, anemia, inflammation, dermatological issues, backaches, cold, flu, and gastrointestinal problems. This review aims to summarize the current knowledge about natural products found in The Bahamas that can be used to treat diabetes mellitus. The search terms "Moringa oleifera Lam.," "Swietenia mahagoni (L.)," "Momordica charantia L.," "Tecoma stans," "Persea americana," "Psidium guajava," "Hamelia patens," and "Carica papaya L." in combination with "diabetes" were utilized to obtain pertinent data by searching PubMed and Google Scholar. Moringa oleifera Lam. significantly decreased fasting glucose levels in rodents after 3 months of consumption. The ethanolic extract of S. mahagoni seeds and the methanol extract of its bark can decrease blood glucose levels. Momordica charantia L. and H. patens Jacq. produce the same hypoglycemic effects as metformin. The plant extracts and compounds of T. stans (L.) Juss. ex Kunth, P. americana Mill., P. guajava L., and C. papaya L. showed diverse pharmacological activities such as reducing fasting glucose, lowering blood pressure and blood sugar, decreasing total triglycerides and total cholesterol, and improving structural damage of cardiac muscles caused by diabetes. Literature analysis reveals that the diverse pharmacological activities of various plants native to The Bahamas show promise as a medicinal food in the treatment of diabetes.
Collapse
Affiliation(s)
- Gloria Miller
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Oliver Grundmann
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Elnahas SM, Mansour HAEH, El-Sawi MR, Abou-El-Naga AM. Therapeutic effect of Momordica charantia on cardiomyopathy in a diabetic maternal rat model. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:977-990. [PMID: 38973290 DOI: 10.1002/jez.2854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/01/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
Myocardial structural and functional abnormalities are hallmarks of diabetic cardiomyopathy (DCM), a chronic consequence of diabetes mellitus (DM). Maternal DM affects and increases the risk of heart defects in diabetic mothers compared with nondiabetic mothers. Momordica charantia exhibits antidiabetic effects due to various bioactive compounds that are phytochemicals, a broad group that includes phenolic compounds, alkaloids, proteins, steroids, inorganic compounds, and lipids. Pregnant maternal rats were split into four groups: control (C), M. charantia-treated (MC), type 2 diabetes mellitus (T2DM) (DM), and diabetic (MC + DM) groups. Diabetes mothers had increased serum glucose, insulin, total cholesterol, triglyceride, and low-density lipoprotein cholesterol levels and reduced high-density lipoprotein cholesterol levels. Cardiac biomarkers such as cardiac troponin T (cTnT), creatine kinase-myocardial band (CK-MB), and lactate dehydrogenase were increased. Hormone levels of follicle-stimulating hormone, luteinizing hormone, progesterone, and estrogen decreased significantly. Inflammatory markers such as interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), and vascular adhesion molecule-1 (VCAM-1) were elevated in diabetic mothers. Oxidative stress markers indicated increased malondialdehyde and nitric oxide levels, while antioxidants such as glutathione, superoxide dismutase, and catalase were decreased in maternal heart tissue. The levels of apoptotic markers such as tumor suppressor 53 (P53) and cysteine aspartic protease-3 (caspase-3) were significantly greater in diabetic maternal heart tissue. Histopathological analysis revealed heart tissue abnormalities in diabetic maternal rats. M. charantia extract improved maternal diabetes-induced changes in inflammation, antioxidant levels, and heart tissue structure.
Collapse
Affiliation(s)
- Shaimaa M Elnahas
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | | - Mamdouh R El-Sawi
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
4
|
Zheng J, Shang M, Dai G, Dong J, Wang Y, Duan B. Bioactive polysaccharides from Momordica charantia as functional ingredients: a review of their extraction, bioactivities, structural-activity relationships, and application prospects. Crit Rev Food Sci Nutr 2024; 64:12103-12126. [PMID: 37599638 DOI: 10.1080/10408398.2023.2248246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Momordica charantia L. is a well-known medicine and food homology plant with high pharmaceutical and nutritional values. Polysaccharides are carbohydrate polymers connected by glycosidic bonds, one of the key functional ingredients of M. charantia. Recently, M. charantia polysaccharides (MCPs) have attracted much attention from industries and researchers due to their anti-oxidant, anti-tumor, anti-diabetes, anti-bacteria, immunomodulatory, neuroprotection, and organ protection activities. However, the development and utilization of MCPs-based functional foods and medicines were hindered by the lack of a deeper understanding of the structure-activity relationship (SAR), structural modification, applications, and safety of MCPs. Herein, we provide an overview of the extraction, purification, structural characterization, bioactivities, and mechanisms of MCPs. Besides, SAR, toxicities, application, and influences of the modification associated with bioactivities are spotlighted, and the potential development and future study direction are scrutinized. This review provides knowledge and research underpinnings for the further research and application of MCPs as therapeutic agents and functional food additives.
Collapse
Affiliation(s)
- Jiamei Zheng
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Mingyue Shang
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Guona Dai
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Jingjing Dong
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Yaping Wang
- College of Pharmaceutical Science, Dali University, Dali, China
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali, China
| |
Collapse
|
5
|
Feitosa Ribeiro T, Carvalho de Souza NA, Cícero de Lima Araújo T, Ferreira Macedo CA, Souza Silva F, de Oliveira Siqueira A, Modesto Nascimento Menezes P, Gomes de Melo C, Rolim Neto PJ, Gonçalves de Oliveira Junior R, Douglas Melo Coutinho H, Raposo A, Araújo Rolim L. Antitussive, Expectorant and Antipyretic Effect of the Ethanolic Extract of the Leaves of Momordica charantia L. Chem Biodivers 2024; 21:e202400072. [PMID: 38780224 DOI: 10.1002/cbdv.202400072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
The traditional use of the M. charantia L. plant to treat coughs, fever and expectoration is widely practiced in different cultures, but its effectiveness and safety still require scientific investigation. This study sought to perform a chemical analysis and evaluate the antitussive, expectorant and antipyretic effects of the ethanolic extract of M. charantia leaves (EEMc) in rats and mice. The EEMc was subjected to chemical analysis by HPLC-DAD, revealing the presence of the flavonoids astragalin and isoquercetin. Acute oral toxicity in mice did not result in deaths, although changes in liver weight and stool consistency were observed. EEMc demonstrated an antitussive effect at doses of 100 and 300 mg/kg in mice subjected to cough induction by citric acid nebulization. Furthermore, it showed expectorant activity at a dose of 300 mg/kg, assessed based on the elimination of the phenol red marker in bronchoalveolar lavage. In the evaluation of antipyretic activity in rats, fever induced by Saccharomyces cerevisiae was reduced at all doses tested during the first hour after treatment. This innovative study identified the presence of astragalin and isoquercetin in EEMc and indicated that the extract has antitussive, expectorant and antipyretic properties. Therefore, EEMc presents itself as a promising option in herbal medicine for the treatment of respiratory symptoms and fever.
Collapse
Affiliation(s)
- Tiago Feitosa Ribeiro
- Central for Analysis of Drugs, Medicines and Food (CAFMA), Federal University of Vale do São Francisco, Pernambuco, Brazil
- Northeast Network of Biotechnology (RENORBIO), Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
| | - Nathália Andrezza Carvalho de Souza
- Central for Analysis of Drugs, Medicines and Food (CAFMA), Federal University of Vale do São Francisco, Pernambuco, Brazil
- Northeast Network of Biotechnology (RENORBIO), Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
| | - Tarcísio Cícero de Lima Araújo
- Central for Analysis of Drugs, Medicines and Food (CAFMA), Federal University of Vale do São Francisco, Pernambuco, Brazil
- Northeast Network of Biotechnology (RENORBIO), Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
| | | | - Fabrício Souza Silva
- Program of Graduate Studies in Biotechnology, State University of Feira de Santana (UEFS), Bahia, Brazil
- Federal University of Vale do São Francisco (UNIVASF), Petrolina, Pernambuco, Brazil
| | | | | | | | | | | | | | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024, Lisboa, Portugal
| | - Larissa Araújo Rolim
- Central for Analysis of Drugs, Medicines and Food (CAFMA), Federal University of Vale do São Francisco, Pernambuco, Brazil
- Northeast Network of Biotechnology (RENORBIO), Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
| |
Collapse
|
6
|
Aung SLL, Liu FY, Gou YN, Nwe ZM, Yu ZH, Deng JX. Morphological and phylogenetic analyses reveal two new Alternaria species (Pleosporales, Pleosporaceae) in Alternaria section from Cucurbitaceae plants in China. MycoKeys 2024; 107:125-139. [PMID: 39081831 PMCID: PMC11287080 DOI: 10.3897/mycokeys.107.124814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
Alternaria species are commonly found as saprophytes, endophytes and plant pathogens. During a survey of small-spored Alternaria in China, two new species were discovered from Cucurbitaceae plants collected in Hubei and Sichuan provinces. This study identified two new species of Alternaria using seven genes (ITS, GAPDH, TEF1, RPB2, Alt a 1, EndoPG, and OPA10-2) for phylogenetic analyses and morphological characteristics. The two new species A.jingzhouensis and A.momordicae were described and illustrated. Alternariajingzhouensis sp. nov., associated with Citrulluslanatus, is characterized by producing muriform, ellipsoidal, flask-shaped, rostrate, and beaked conidia. It differs from A.koreana, A.ovoidea, and A.baoshanensis by bearing conidia in a simple conidiogenous locus with occasionally longer beaks in a chain, and from A.momordicae sp. nov. by having shorter beaks. Alternariamomordicae sp. nov. from Momordicacharantia was distinct from A.koreana, A.ovoidea, and A.baoshanensis by producing muriform, long ellipsoid or ovoid to obclavate, sometimes inverted club-shaped conidia on a single conidiogenous locus with a wider body and longer beak in a chain, and distinct from A.jingzhouensis sp. nov. by a longer beak conidia. These two species were clearly distinguished from other species in the section Alternaria based on DNA based phylogeny and morphological characteristics. The morphological features were discussed and compared to relevant species in the present paper.
Collapse
Affiliation(s)
- Sein Lai Lai Aung
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou 434025, ChinaYangtze UniversityJingzhouChina
| | - Feng-Yin Liu
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou 434025, ChinaYangtze UniversityJingzhouChina
| | - Ya-Nan Gou
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou 434025, ChinaYangtze UniversityJingzhouChina
| | - Zin Mar Nwe
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou 434025, ChinaYangtze UniversityJingzhouChina
| | - Zhi-He Yu
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou 434025, ChinaYangtze UniversityJingzhouChina
| | - Jian-Xin Deng
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou 434025, ChinaYangtze UniversityJingzhouChina
| |
Collapse
|
7
|
Yen S, Wang Y, Liao LD. Investigating cerebral neurovascular responses to hyperglycemia in a rat model of type 2 diabetes using multimodal assessment techniques. iScience 2024; 27:110108. [PMID: 38952685 PMCID: PMC11215308 DOI: 10.1016/j.isci.2024.110108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/22/2024] [Accepted: 05/23/2024] [Indexed: 07/03/2024] Open
Abstract
To study neurovascular function in type 2 diabetes mellitus (T2DM), we established a high-fat diet/streptozotocin (HFD/STZ) rat model. Electrocorticography-laser speckle contrast imaging (ECoG-LSCI) revealed that the somatosensory-evoked potential (SSEP) amplitude and blood perfusion volume were significantly lower in the HFD/STZ group. Cortical spreading depression (CSD) velocity was used as a measure of neurovascular function, and the results showed that the blood flow velocity and the number of CSD events were significantly lower in the HFD/STZ group. In addition, to compare changes during acute hyperglycemia and hyperglycemia, we used intraperitoneal injection (IPI) of glucose to induce transient hyperglycemia. The results showed that CSD velocity and blood flow were significantly reduced in the IPI group. The significant neurovascular changes observed in the brains of rats in the HFD/STZ group suggest that changes in neuronal apoptosis may play a role in altered glucose homeostasis in T2DM.
Collapse
Affiliation(s)
- Shaoyu Yen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Yuhling Wang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
- Department of Electrical Engineering, National United University, No. 2, Lianda, Nanshili, Miaoli City 36063, Taiwan
| | - Lun-De Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| |
Collapse
|
8
|
Liu J, Guo Y, Sun J, Lei Y, Guo M, Wang L. Extraction methods, multiple biological activities, and related mechanisms of Momordica charantia polysaccharide: A review. Int J Biol Macromol 2024; 263:130473. [PMID: 38423437 DOI: 10.1016/j.ijbiomac.2024.130473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Momordica Charantia Polysaccharide (MCP) is a key bioactive compound derived from bitter melon fruit. This review summarizes the advancements in MCP research, including extraction techniques, biological activities, and mechanisms. MCP can be extracted using various methods, and has demonstrated hypoglycemic, antioxidant, anti-inflammatory, and immunoregulatory effects. Research suggests that MCP may regulate metabolic enzymes, oxidative stress reactions, and inflammatory pathways. The review highlights the potential applications of MCP in areas such as anti-diabetes, antioxidant, anti-inflammatory, and immunoregulatory research. Future research should focus on elucidating the molecular mechanisms of MCP and optimizing extraction methods. This review provides a foundation for further research and utilization of MCP.
Collapse
Affiliation(s)
- Jinshen Liu
- Department of Ophthalmology, 73 Jianshe South Road, Lubei District, Tangshan City, Hebei Province, China; Department of Ophthalmology, North China University of Science and Technology Affiliated Hospital, Tangshan 062000, China.
| | - Yuying Guo
- Department of Ophthalmology, 73 Jianshe South Road, Lubei District, Tangshan City, Hebei Province, China; Department of Ophthalmology, North China University of Science and Technology Affiliated Hospital, Tangshan 062000, China
| | - Jie Sun
- Department of Ophthalmology, 73 Jianshe South Road, Lubei District, Tangshan City, Hebei Province, China; Department of Ophthalmology, North China University of Science and Technology Affiliated Hospital, Tangshan 062000, China
| | - Yuxin Lei
- Department of Ophthalmology, 73 Jianshe South Road, Lubei District, Tangshan City, Hebei Province, China; Department of Ophthalmology, North China University of Science and Technology Affiliated Hospital, Tangshan 062000, China
| | - Mingyi Guo
- Department of Ophthalmology, 73 Jianshe South Road, Lubei District, Tangshan City, Hebei Province, China; Department of Ophthalmology, North China University of Science and Technology Affiliated Hospital, Tangshan 062000, China
| | - Linhong Wang
- Department of Ophthalmology, 73 Jianshe South Road, Lubei District, Tangshan City, Hebei Province, China; Department of Ophthalmology, North China University of Science and Technology Affiliated Hospital, Tangshan 062000, China.
| |
Collapse
|
9
|
Choudhury AA, Arumugam M, Ponnusamy N, Sivaraman D, Sertsemariam W, Thiruvengadam M, Pandiaraj S, Rahaman M, Devi Rajeswari V. Anti-diabetic drug discovery using the bioactive compounds of Momordica charantia by molecular docking and molecular dynamics analysis. J Biomol Struct Dyn 2024:1-15. [PMID: 38334124 DOI: 10.1080/07391102.2024.2313156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
Diabetes mellitus (DM) is a multifactorial life-threatening endocrine disease characterized by abnormalities in glucose metabolism. It is a chronic metabolic disease that involves multiple enzymes such as α-amylase and α-glucosidases. Inhibition of these enzymes has been identified as a promising method for managing diabetes, and researchers are currently focusing on discovering novel α-amylase and α-glucosidase inhibitors for diabetes therapy. Hence, we have selected 12 bioactive compounds from the Momordica charantia (MC) plant and performed a virtual screening and molecular dynamics investigation to identify natural inhibitors of α-amylase and α-glucosidases. Our in silico result revealed that phytocompound Rutin showed the highest binding affinity against α-amylase (1HNY) enzymes at (-11.68 kcal/mol), followed by Karaviloside II (-9.39), Momordicoside F (-9.19), Campesterol (-9.11. While docking against α-glucosidases (4J5T), Rutin again showed the greatest binding affinity (-11.93 kcal/mol), followed by Momordicine (-9.89), and Campesterol (-8.99). Molecular dynamics (MD) simulation research is currently the gold standard for drug design and discovery. Consequently, we conducted simulations of 100 nanoseconds (ns) to assess the stability of protein-ligand complexes based on parameters like RMSD, RMSF, RG, PCA, and FEL. The significance of our findings indicates that rutin from MC might serve as an effective natural therapeutic agent for diabetes management due to its strongest binding affinities with α-amylase and α-glucosidase enzymes. Further research in animals and humans is essential to validate the efficacy of these drug molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abbas Alam Choudhury
- Department of Biomedical Sciences, School of Bio Sciences and Technology, VIT, Vellore, India
| | - Mohanapriya Arumugam
- Department of Biotechnology, School of Bio Sciences and Technology, VIT, Vellore, India
| | - Nirmaladevi Ponnusamy
- Department of Biotechnology, School of Bio Sciences and Technology, VIT, Vellore, India
| | | | - Woldie Sertsemariam
- Department of Biomedical Sciences, School of Bio Sciences and Technology, VIT, Vellore, India
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, Konkuk University, Seoul, Republic of Korea
| | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, Riyadh, Saudi Arabia
| | - Mostafizur Rahaman
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Bio Sciences and Technology, VIT, Vellore, India
| |
Collapse
|
10
|
Xu Z, Cai K, Su SL, Zhu Y, Liu F, Duan JA. Salvianolic acid B and tanshinone IIA synergistically improve early diabetic nephropathy through regulating PI3K/Akt/NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117356. [PMID: 37890803 DOI: 10.1016/j.jep.2023.117356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/10/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic nephropathy (DN) is one of the most common and serious complications of diabetes, which lacks effective treatment. Salviae Miltiorrhizae Radix Et Rhizoma is one of the key compatible traditional Chinese medicine in the prescription for the treatment of DN. Salvianolic acid B and tanshinone IIA are two monomer active components with high content and clear structure in Salvia miltiorrhiza, which can effectively improve early (DN), respectively. AIM OF THE STUDY To evaluate the compatible effect of salvianolic acid B and tanshinone IIA on early DN rats and elucidate the mechanism. METHODS Early DN rats were induced by streptozotocin combined with high glucose and high fat diet, and intervened by salvianolic acid B, tanshinone IIA and their combinations. The pathological sections of kidney, liver and biochemical indexes were analyzed. Network pharmacology method was used to predict the possible mechanism. The mechanisms were elucidated by metabolomics, Elisa, and Western blot. RESULTS Given our analysis, salvianolic acid B and tanshinone IIA can synergistically regulate 24 h UTP, Urea and Scr and improve kidney damage in early DN rats. The metabolic abnormalities of early DN rats were improved by regulating the biosynthesis of saturated fatty acids, glycerol phospholipid metabolism, steroid biosynthesis, alanine, and arachidonic acid. Salvianolic acid B combined with tanshinone IIA at a mass ratio of 13.4:1 can significantly reduce kidney inflammation, up-regulate p-PI3K/PI3K and p-Akt/Akt and down-regulate p-NF-κB/NF-κB, which better than the single-used group and can be reversed by PI3K inhibitor LY294002. CONCLUSION Salvianolic acid B and tanshinone IIA can synergistically improve glucose and lipid disorders, liver and kidney damage, and resist kidney inflammation in early DN rats, and the mechanism may be related to regulating PI3K/Akt/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhuo Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ke Cai
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shu-Lan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yue Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Feng Liu
- Shaanxi Institute of International Trade and Commerce, Xianyang, 710061, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
11
|
Yao Y, Chen Y, Chen H, Pan X, Li X, Liu W, Bahetjan Y, Lu B, Pang K, Yang X, Pang Z. Black mulberry extract inhibits hepatic adipogenesis through AMPK/mTOR signaling pathway in T2DM mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117216. [PMID: 37741475 DOI: 10.1016/j.jep.2023.117216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/28/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Black mulberry (Morus nigra L.) is an ancient dual-use plant resource for medicine and food. It is widely used in Uyghur folklore for hypoglycemic treatment and is a folkloric plant medicine with regional characteristics. However, the mechanism of Morus nigra L. treatment in diabetes mellitus has not been fully understood, especially from the perspective of hepatic lipid accumulation is less reported. OBJECTIVE OF THIS STUDY This study was to explore the potential of Morus nigra L. fruit ethyl acetate extract (MNF-EA) to reduce blood sugar levels by preventing the production of hepatic lipogenesis and to provide more evidence for the use of MNF-EA as an adjuvant therapy for type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS In this study, the chemical composition of MNF-EA was first analyzed and characterized using UPLC-Q-TOF-MS technique. A series of in vitro studies were performed with HepG2-IR cells and oleic acid (OA)-induced HepG2 cells, including MTT assay, glucose uptake assay, oil red O staining and Western blot analysis. The STZ-HFD co-induced T2DM mice were employed for in vivo research, including physical indices, biochemical analysis, histopathological examination, and Western blot analysis. RESULTS The 19 compounds in MNF-EA were identified by UPLC-Q-TOF-MS technique. Insulin resistance (IR) and lipid droplet accumulation in HepG2 cells were greatly improved by MNF-EA treatment, which had no appreciable side effects at the dosage used. In T2DM mice, MNF-EA decreased fasting blood glucose (FBG), saved body weight, and significantly improved oral glucose tolerance (OGTT) and IR status. In addition, MNF-EA treatment also improved lipid metabolism disorders and liver function in T2DM mice. Histopathological sections showed that MNF-EA treatment reduced hepatic steatosis. Mechanistic studies suggest that MNF-EA acted through the AMPK/mTOR pathway. CONCLUSIONS These results suggest that MNF-EA has great potential to reverse the metabolic abnormalities associated with T2DM by regulating the AMPK/mTOR signaling pathway. Therefore, we believe that MNF is a promising medicinal and food-homologous agent to improve T2DM.
Collapse
Affiliation(s)
- Yudi Yao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Yang Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Huijian Chen
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Xin Pan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Xiaojun Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Wenqi Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Yerlan Bahetjan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Binan Lu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Kejian Pang
- College of Biological and Geographical Sciences, Yili Normal University, Yining, 835000, China
| | - Xinzhou Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| | - Zongran Pang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
12
|
Gauttam VK, Munjal K, Chopra H, Ahmad A, Rana MK, Kamal MA. A Mechanistic Review on Therapeutic Potential of Medicinal Plants and their Pharmacologically Active Molecules for Targeting Metabolic Syndrome. Curr Pharm Des 2024; 30:10-30. [PMID: 38155468 DOI: 10.2174/0113816128274446231220113957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/06/2023] [Indexed: 12/30/2023]
Abstract
Metabolic syndrome (MetS) therapy with phytochemicals is an emerging field of study with therapeutic potential. Obesity, insulin resistance, high blood pressure, and abnormal lipid profiles are all components of metabolic syndrome, which is a major public health concern across the world. New research highlights the promise of phytochemicals found in foods, including fruits, vegetables, herbs, and spices, as a sustainable and innovative method of treating this illness. Anti-inflammatory, antioxidant, and insulin-sensitizing qualities are just a few of the many positive impacts shown by bioactive substances. Collectively, they alleviate the hallmark symptoms of metabolic syndrome by modulating critical metabolic pathways, boosting insulin sensitivity, decreasing oxidative stress, and calming chronic low-grade inflammation. In addition, phytochemicals provide a multimodal strategy by targeting not only adipose tissue but also the liver, skeletal muscle, and vascular endothelium, all of which have a role in the pathogenesis of MetS. Increasing evidence suggests that these natural chemicals may be useful in controlling metabolic syndrome as a complementary treatment to standard medication or lifestyle changes. This review article emphasizes the therapeutic potential of phytochemicals, illuminating their varied modes of action and their ability to alleviate the interconnected causes of metabolic syndrome. Phytochemical-based interventions show promise as a novel and sustainable approach to combating the rising global burden of metabolic syndrome, with the ultimate goal of bettering public health and quality of life.
Collapse
Affiliation(s)
- Vinod Kumar Gauttam
- Department of Pharmacognosy, Shiva Institute of Pharmacy, Bilaspur, Hmachal Pradesh, India
| | - Kavita Munjal
- Department of Pharmacognosy, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Aftab Ahmad
- Department of Pharmacology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahesh Kumar Rana
- Department of Agriculture, M.M. (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia
- Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| |
Collapse
|