1
|
Wang S, Yang H, Kang X, Yang Y. Enhanced Fenton-like reactions via interface electron reconstruction in low-crystallinity FeCo bimetallic metal-organic frameworks: Bidirectional control of Fe (III) and Co (II) sites. J Colloid Interface Sci 2025; 678:168-179. [PMID: 39293361 DOI: 10.1016/j.jcis.2024.09.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
In this study, the activity and stability of Fenton-like reactions are enhanced by constructing a low-crystallinity FeCo bimetallic metal-organic framework (FeCox-BDC (BDC denotes as terephthalic acid)) through interface electron reconstruction. However, the specific origins and mechanisms of their enhanced activity, particularly in Fenton-like reactions, remains unclear. Systematic analysis revealed that the isomorphic substitution of Co (II) reduces the coordination number and d-electron count at local Fe (III) sites, shifting the d-band centers (-1.59 eV) closer to the Fermi level. Additionally, Co 3d-orbitals can accept electrons, improving the occupation of antibonding orbitals. Notably, Fe (III) and Co (II) sites exhibit a synergistic effect: Fe (III) sites strongly adsorbed the Oα point of the peroxy bond (lOαOβ), while Co (II) sites efficiently activated Oβ. Within 5 min, FeCo1/3-BDC achieved a 98 % reduction in Rhodamine-B (RhB), surpassing Fe-BDC by a factor of 76 and homogeneous Fenton catalytic systems (Co (II)/peroxymonosulfate (PMS) and Fe (III)/Co (II)/PMS). This work provides a profound understanding of interface electron reconstruction, offering valuable insights into guiding Fenton-like mechanisms.
Collapse
Affiliation(s)
- Shi Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Hanpei Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Xudong Kang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yuankun Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
2
|
Flores CV, Machín-Garriga A, Obeso JL, Flores JG, Ibarra IA, Portillo-Vélez NS, Leyva C, Peralta RA. Room-temperature synthesis of bimetallic ZnCu-MOF-74 as an adsorbent for tetracycline removal from an aqueous solution. Dalton Trans 2024. [PMID: 39113478 DOI: 10.1039/d4dt01607f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The novel bimetallic MOF, ZnCu-MOF-74, has been evaluated for the remediation of tetracycline-contaminated water. ZnCu-MOF-74 was obtained at room temperature, avoiding high pressure and temperature. ZnCu-MOF-74 exhibited chemical stability in the 4-8 pH range. The adsorption result analysis was described using the Elovich kinetic model and the Langmuir adsorption isotherm, suggesting a physicochemical process. The maximum adsorption capacity was estimated at 775.66 mg g-1. The pH of the solution and the presence of ions such as NO3-, SO42-, Na+, Mg2+, Cl-, and Ca2+ had no influence on the removal of tetracycline. In addition, π-interactions and metal complexation were proposed as possible adsorption mechanisms through FT-IR and XPS. ZnCu-MOF-74 showed outstanding cyclability performance, preserving its adsorption capacity after 4 adsorption-desorption cycles, besides exhibiting chemical stability, proving the benefits of applying ZnCu-MOF-74 in the water treatment process.
Collapse
Affiliation(s)
- Catalina V Flores
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Irrigación, 11500, Miguel Hidalgo, CDMX, Mexico.
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico
| | - Andy Machín-Garriga
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Irrigación, 11500, Miguel Hidalgo, CDMX, Mexico.
| | - Juan L Obeso
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Irrigación, 11500, Miguel Hidalgo, CDMX, Mexico.
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico
| | - J Gabriel Flores
- Departamento de Ingeniería de Procesos e Hidráulica, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Ciudad de México, Mexico
- Área de Química Aplicada, Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco, 02200, Ciudad de México, Mexico
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico
- On Sabbatical as "Catedra Dr. Douglas Hugh Everett" at Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Leyes de Reforma 1ra Sección, Iztapalapa, Ciudad de México 09310, Mexico
| | - Nora S Portillo-Vélez
- Departamento de Química, División de Ciencias Básicas e Ingeniería. Universidad Autónoma Metropolitana (UAM-I), 09340, Mexico.
| | - Carolina Leyva
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Irrigación, 11500, Miguel Hidalgo, CDMX, Mexico.
| | - Ricardo A Peralta
- Departamento de Química, División de Ciencias Básicas e Ingeniería. Universidad Autónoma Metropolitana (UAM-I), 09340, Mexico.
| |
Collapse
|
3
|
Malhotra M, Kaur B, Soni V, Patial S, Sharma K, Kumar R, Singh P, Thakur S, Pham PV, Ahamad T, Le QV, Nguyen VH, Raizada P. Fe-based MOFs as promising adsorbents and photocatalysts for re-use water contained arsenic: Strategies and challenges. CHEMOSPHERE 2024; 357:141786. [PMID: 38537716 DOI: 10.1016/j.chemosphere.2024.141786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/03/2024] [Accepted: 03/22/2024] [Indexed: 04/29/2024]
Abstract
Arsenic (As) contaminated water, especially groundwater reservoirs, is a major issue worldwide owing to its hazardous consequences on human health and the global environment issues. Also, irrigating agricultural fields with As-contaminated water not only produces an accumulation of As in the soil but also compromises food safety due to As entering into agricultural products. Hence, there is an urgent need to develop an efficient method for As removal in water. Fe-based MOFs have attained special attention due to their low toxicity, high water stability, better physical and chemical properties, and high abundance of iron. The arsenic species removal by Fe-MOF follows the adsorption and oxidation mechanism where As (III) converts into As (V). Moreover, the adsorption mechanism is facilitated by electrostatic interactions, H-bonding, acid-base interaction, hydrophobic interactions, van der Waals forces, π-π stacking interactions, and coordinative bindings responsible for Fe-O-As bond generation. This review thoroughly recapitulates and analyses recent advancements in the facile synthesis and potential application of Fe-based MOF adsorbents for the elimination of As ions. The most commonly employed hydro/solvothermal, ultrasonic, microwave-assisted, mechanochemical, and electrochemical synthesis for Fe-MOF has been discussed along with their adsorptive and oxidative mechanisms involved in arsenic removal. The effects of factors like pH and coexisting ions have also been discussed. Lastly, the article also proposed the prospects for developing the application of Fe-based MOF in treating As-contaminated water.
Collapse
Affiliation(s)
- Monika Malhotra
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Balvinder Kaur
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Vatika Soni
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Shilpa Patial
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Kusum Sharma
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Rohit Kumar
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Phuong V Pham
- Department of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Van-Huy Nguyen
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Tamil Nadu, India.
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India.
| |
Collapse
|
4
|
Ghumman ASM, Shamsuddin R, Qomariyah L, Lim JW, Sami A, Ayoub M. Heavy metal sequestration from wastewater by metal-organic frameworks: a state-of-the-art review of recent progress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33317-7. [PMID: 38622423 DOI: 10.1007/s11356-024-33317-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Metal-organic frameworks (MOFs) have emerged as highly promising adsorbents for removing heavy metals from wastewater due to their tunable structures, high surface areas, and exceptional adsorption capacities. This review meticulously examines and summarizes recent advancements in producing and utilizing MOF-based adsorbents for sequestering heavy metal ions from water. It begins by outlining and contrasting commonly employed methods for synthesizing MOFs, such as solvothermal, microwave, electrochemical, ultrasonic, and mechanochemical. Rather than delving into the specifics of adsorption process parameters, the focus shifts to analyzing the adsorption capabilities and underlying mechanisms against critical metal(loid) ions like chromium, arsenic, lead, cadmium, and mercury under various environmental conditions. Additionally, this article discusses strategies to optimize MOF performance, scale-up production, and address environmental implications. The comprehensive review aims to enhance the understanding of MOF-based adsorption for heavy metal remediation and stimulate further research in this critical field. In brief, this review article presents a comprehensive overview of the contemporary information on MOFs as an effective adsorbent and the challenges being faced by these adsorbents for heavy metal mitigation (including stability, cost, environmental issues, and optimization), targeting to develop a vital reference for future MOF research.
Collapse
Affiliation(s)
- Ali Shaan Manzoor Ghumman
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Rashid Shamsuddin
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia.
- Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah, 42311, Madinah, Kingdom of Saudi Arabia.
| | - Lailatul Qomariyah
- Department of Industrial Chemical Engineering, Institut Teknologi Sepuluh Nopember, 60111, Surabaya, Surabaya, Indonesia
| | - Jun Wei Lim
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 , Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, 602105, Chennai, India
| | - Abdul Sami
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Muhammad Ayoub
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
5
|
Essalmi S, Lotfi S, BaQais A, Saadi M, Arab M, Ait Ahsaine H. Design and application of metal organic frameworks for heavy metals adsorption in water: a review. RSC Adv 2024; 14:9365-9390. [PMID: 38510487 PMCID: PMC10951820 DOI: 10.1039/d3ra08815d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
The growing apprehension surrounding heavy metal pollution in both environmental and industrial contexts has spurred extensive research into adsorption materials aimed at efficient remediation. Among these materials, Metal-Organic Frameworks (MOFs) have risen as versatile and promising contenders due to their adjustable properties, expansive surface areas, and sustainable characteristics, compared to traditional options like activated carbon and zeolites. This exhaustive review delves into the synthesis techniques, structural diversity, and adsorption capabilities of MOFs for the effective removal of heavy metals. The article explores the evolution of MOF design and fabrication methods, highlighting pivotal parameters influencing their adsorption performance, such as pore size, surface area, and the presence of functional groups. In this perspective review, a thorough analysis of various MOFs is presented, emphasizing the crucial role of ligands and metal nodes in adapting MOF properties for heavy metal removal. Moreover, the review delves into recent advancements in MOF-based composites and hybrid materials, shedding light on their heightened adsorption capacities, recyclability, and potential for regeneration. Challenges for optimization, regeneration efficiency and minimizing costs for large-scale applications are discussed.
Collapse
Affiliation(s)
- S Essalmi
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, MohammedV University in Rabat Morocco
- Université de Toulon, AMU, CNRS, IM2NP CS 60584 Toulon Cedex 9 France
| | - S Lotfi
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, MohammedV University in Rabat Morocco
| | - A BaQais
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University P. O. Box 84428 Riyadh 11671 Saudi Arabia
| | - M Saadi
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, MohammedV University in Rabat Morocco
| | - M Arab
- Université de Toulon, AMU, CNRS, IM2NP CS 60584 Toulon Cedex 9 France
| | - H Ait Ahsaine
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, MohammedV University in Rabat Morocco
| |
Collapse
|
6
|
Jiang C, Zhang S, Zhang T. Static and dynamic adsorption of arsenate from water by Fe 3+ complexed with 3-aminopropyltriethoxysilane-modified carboxymethyl chitosan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21430-21441. [PMID: 38393569 DOI: 10.1007/s11356-024-32524-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Fe3+ complexed with 3-aminopropyltriethoxysilane (APTES)-modified carboxymethyl chitosan (CMC) named Fe-ACMC was synthesized by a one-step method at room temperature and pressure. The surface morphology and chemical structure of Fe-ACMC were characterized by SEM-EDS, XRD, BET, FT-IR, XPS, and ζ-potential. In batch adsorption, the optimum pH for arsenate [As(V)] adsorption onto Fe-ACMC was 3-9 with removal efficiency > 99%. The adsorption of As(V) could reach equilibrium within 25 min and the maximum adsorption capacity was 84.18 mg g-1. The pseudo-second-order model fitted well the kinetic data (R2 = 0.995), while the Freundlich model well described the adsorption isotherm of As(V) on Fe-ACMC (R2 = 0.979). The co-existing anions (NO3-, CO32-, and SO42-) exhibited a slight impact on the As(V) adsorption efficiency, whereas PO43- inhibited As(V) adsorption on Fe-ACMC. The real applicability of Fe-ACMC was achieved to remove ca. 10.0 mg L-1 of As(V) from natural waters to below 0.05 mg L-1. The regeneration and reuse of Fe-ACMC for As(V) adsorption were achieved by adding 0.2 mol L-1 HCl. The main adsorption mechanism of As(V) on Fe-ACMC was attributed to electrostatic attraction and inner-sphere complexation between -NH2···Fe3+ and As(V). In fixed-bed column adsorption, the Thomas model was the most suitable model to elucidate the dynamic adsorption behavior of As(V). The loading capacity of the Fe-ACMC packed column for As(V) was 47.04 mg g-1 at pH 7 with an initial concentration of 60 mg L-1, flow rate of 3 mL min-1, and bed height of 0.6 cm.
Collapse
Affiliation(s)
- Changjin Jiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, People's Republic of China
| | - Shuang Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, People's Republic of China
| | - Ting Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| |
Collapse
|
7
|
Zhang L, Mao D, Qu Y, Chen X, Zhang J, Huang M, Wang J. Facile Synthesis of Ce-MOF for the Removal of Phosphate, Fluoride, and Arsenic. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3048. [PMID: 38063744 PMCID: PMC10707913 DOI: 10.3390/nano13233048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 05/16/2024]
Abstract
Ce-MOF was synthesized by a solvothermal synthesis method and was used to simultaneously remove phosphate, fluoride and arsenic (V) from water by adsorption. Ce-MOF was characterized by a nitrogen adsorption-desorption isotherm, scanning electron microscopy, and infrared spectroscopy. The effects of initial concentration, adsorption time, adsorption temperature, pH value and adsorbent on the adsorption properties were investigated. A Langmuir isotherm model was used to fit the adsorption data, and the adsorption capacity of phosphate, fluoride, and arsenic (V) was calculated to be 41.2 mg·g-1, 101.8 mg·g-1 and 33.3 mg·g-1, respectively. Compared with the existing commercially available CeO2 and other MOFs, Ce-MOF has a much higher adsorption capacity. Furthermore, after two reuses, the performance of the adsorbent was almost unchanged, indicating it is a stable adsorbent and has good application potential in the field of wastewater treatment.
Collapse
Affiliation(s)
- Lili Zhang
- School of Chemistry and Resources Engineering, Honghe University, Mengzi 661100, China; (L.Z.); (J.Z.)
| | - Decheng Mao
- School of Materials and Energy, Yunnan University, Kunming 650091, China;
| | - Yining Qu
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China;
| | - Xiaohong Chen
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650091, China;
| | - Jindi Zhang
- School of Chemistry and Resources Engineering, Honghe University, Mengzi 661100, China; (L.Z.); (J.Z.)
| | - Mengyang Huang
- School of Chemistry and Resources Engineering, Honghe University, Mengzi 661100, China; (L.Z.); (J.Z.)
| | - Jiaqiang Wang
- School of Chemistry and Resources Engineering, Honghe University, Mengzi 661100, China; (L.Z.); (J.Z.)
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China;
| |
Collapse
|
8
|
Wang Z, Zhu Z, Wang G, Ma X, Lu W. Iron (II) phthalocyanine loaded tourmaline efficiently activates PMS to degrade pharmaceutical contaminants under solar light. ENVIRONMENTAL TECHNOLOGY 2023; 44:3491-3503. [PMID: 35437123 DOI: 10.1080/09593330.2022.2064236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Iron (II) phthalocyanine (FePc) is loaded on the surface of the tourmaline (TM) by the reflow method to obtain FePc/TM. This research effectively prevents the π-π stacking of FePc, increased the effective utilization rate of PMS activation under solar light, and further improved the catalytic performance of the catalytic system. The catalytic oxidation efficiency of FePc/TM on carbamazepine (CBZ) and sulfadiazine (SD) can reach 99% under solar light for 15 and 5 min, the total organic carbon (TOC) removal rate can reach 58% and 69% under solar light for 120 min. After 6 cycles, the CBZ removal rate remained above 95%. In addition, the FePc/TM catalytic system has an excellent removal rate for other pharmaceuticals. The results of spin-trapped electron paramagnetic resonance and classical quenching experiments show that FePc/TM can effectively activate PMS to generate active species under solar light, including superoxide radical (•O2-), singlet oxygen (1O2), hydroxyl radicals(•OH), and sulphate radicals (SO4•-). The intermediates of CBZ were identified by Ultra-high performance liquid chromatography and high resolution mass spectrometry, and the degradation pathway was proposed. As the reaction progresses, all CBZ and intermediates are reduced and converted into small acids, or mineralized to H2O, CO2. This work provides an alternative method for the design of efficient activation of PMS activation catalysts under solar light to eliminate residual pharmaceuticals in actual water bodies.
Collapse
Affiliation(s)
- Zhendong Wang
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Zhexin Zhu
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Gangqiang Wang
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Xiaoji Ma
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Wangyang Lu
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| |
Collapse
|
9
|
Luo J, Luo X, Gan Y, Xu X, Xu B, Liu Z, Ding C, Cui Y, Sun C. Advantages of Bimetallic Organic Frameworks in the Adsorption, Catalysis and Detection for Water Contaminants. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2194. [PMID: 37570512 PMCID: PMC10421224 DOI: 10.3390/nano13152194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023]
Abstract
The binary metal organic framework (MOF) is composed of two heterometallic ions bonded to an organic ligand. Compared with monometallic MOFs, bimetallic MOFs have greatly improved in terms of structure, porosity, active site, adsorption, selectivity, and stability, which has attracted wide attention. At present, many effective strategies have been designed for the synthesis of bimetallic MOF-based nanomaterials with specific morphology, structure, and function. The results show that bimetallic MOF-based nanocomposites could achieve multiple synergistic effects, which will greatly improve their research in the fields of adsorption, catalysis, energy storage, sensing, and so on. In this review, the main preparation methods of bimetallic MOFs-based materials are summarized, with emphasis on their applications in adsorption, catalysis, and detection of target pollutants in water environments, and perspectives on the future development of bimetallic MOFs-based nanomaterials in the field of water are presented.
Collapse
Affiliation(s)
- Jun Luo
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
| | - Xiao Luo
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
| | - Yonghai Gan
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
| | - Xiaoming Xu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bin Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
| | - Zhuang Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
| | - Chengcheng Ding
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
| | - Yibin Cui
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
| | - Cheng Sun
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China; (J.L.)
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
10
|
Rahman N, Ahmad I. Insights into the statistical physics modeling and fractal like kinetic approach for the adsorption of As(III) on coordination polymer gel based on zirconium(IV) and 2-thiobarbituric acid. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131783. [PMID: 37327609 DOI: 10.1016/j.jhazmat.2023.131783] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/13/2023] [Accepted: 06/03/2023] [Indexed: 06/18/2023]
Abstract
A novel coordination polymer gel based on zirconium(IV) and 2-thiobarbituric (ZrTBA) was synthesized and explored its potential to remediate As(III) from water. Box-Behnken design with desirability function and genetic algorithm yielded the optimized conditions (initial concentration=194 mg L-1, dosage = 42.2 mg, time= 95 min and pH = 4.9) for maximum removal efficiency (99.19 %). The experimental saturation capacity for As(III) was 178.30 mg g-1. The steric parameter n > 1 of the best fitted statistical physics model: monolayer with two energies (R2 = 0.987-0.992) suggested multimolecular mechanism with vertical orientation of As(III) molecules onto the two active sites. XPS and FTIR confirmed the two active sites being zirconium and oxygen. The adsorption energies (E1 = 35.81-37.63 kJ/mol; E2 = 29.50-36.49 kJ/mol) and isosteric heat of adsorption indicated that physical forces governed the As(III) uptake. DFT calculations implied that the weak electrostatic interaction and hydrogen bonding were involved. The best fitted (R2>0.99) fractal like pseudo first order model established energetic heterogeneity. ZrTBA showed excellent removal efficiency in the presence of potential interfering ions and could be used up to 5 cycles of adsorption-desorption with < 8 % loss in the efficiency. ZrTBA removed ≥96.06 % As(III) from real water samples spiked at different levels of As(III).
Collapse
Affiliation(s)
- Nafisur Rahman
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Izhar Ahmad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
11
|
Guo Q, Li Y, Zheng LW, Wei XY, Xu Y, Shen YW, Zhang KG, Yuan CG. Facile fabrication of Fe/Zr binary MOFs for arsenic removal in water: High capacity, fast kinetics and good reusability. J Environ Sci (China) 2023; 128:213-223. [PMID: 36801036 DOI: 10.1016/j.jes.2022.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 06/18/2023]
Abstract
A water-stable bimetallic Fe/Zr metal-organic framework [UiO-66(Fe/Zr)] for exceptional decontamination of arsenic in water was fabricated through a facile one-step strategy. The batch adsorption experiments revealed the excellent performances with ultrafast adsorption kinetics due to the synergistic effects of two functional centers and large surface area (498.33 m2/g). The absorption capacity of UiO-66(Fe/Zr) for arsenate [As(V)] and arsenite [As(III)] reached as high as 204.1 mg/g and 101.7 mg/g, respectively. Langmuir model was suitable to describe the adsorption behaviors of arsenic on UiO-66(Fe/Zr). The fast kinetics (adsorption equilibrium in 30 min, 10 mg/L As) and pseudo-second-order model implied the strong chemisorption between arsenic ions and UiO-66(Fe/Zr), which was further confirmed by DFT theoretical calculations. The results of FT-IR, XPS analysis and TCLP test demonstrated that arsenic was immobilized on the surface of UiO-66(Fe/Zr) through Fe/Zr-O-As bonds, and the leaching rates of the adsorbed As(III) and As(V) from the spent adsorbent were only 5.6% and 1.4%, respectively. UiO-66(Fe/Zr) can be regenerated for five cycles without obvious removal efficiency decrease. The original arsenic (1.0 mg/L) in lake and tap water was effectively removed in 2.0 hr [99.0% of As(III) and 99.8% of As(V)]. The bimetallic UiO-66(Fe/Zr) has great potentials in water deep purification of arsenic with fast kinetics and high capacity.
Collapse
Affiliation(s)
- Qi Guo
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Yuan Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China; Wetland Research Center for Baiyangdian Lake, North China Electric Power University, Baoding 071000, China
| | - Li-Wei Zheng
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Xiao-Yang Wei
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Yan Xu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Yi-Wen Shen
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Ke-Gang Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China; Wetland Research Center for Baiyangdian Lake, North China Electric Power University, Baoding 071000, China
| | - Chun-Gang Yuan
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China; Wetland Research Center for Baiyangdian Lake, North China Electric Power University, Baoding 071000, China.
| |
Collapse
|
12
|
Zhu R, Cai M, Fu T, Yin D, Peng H, Liao S, Du Y, Kong J, Ni J, Yin X. Fe-Based Metal Organic Frameworks (Fe-MOFs) for Bio-Related Applications. Pharmaceutics 2023; 15:1599. [PMID: 37376050 DOI: 10.3390/pharmaceutics15061599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Metal-organic frameworks (MOFs) are porous materials composed of metal ions and organic ligands. Due to their large surface area, easy modification, and good biocompatibility, MOFs are often used in bio-related fields. Fe-based metal-organic frameworks (Fe-MOFs), as important types of MOF, are favored by biomedical researchers for their advantages, such as low toxicity, good stability, high drug-loading capacity, and flexible structure. Fe-MOFs are diverse and widely used. Many new Fe-MOFs have appeared in recent years, with new modification methods and innovative design ideas, leading to the transformation of Fe-MOFs from single-mode therapy to multi-mode therapy. In this paper, the therapeutic principles, classification, characteristics, preparation methods, surface modification, and applications of Fe-MOFs in recent years are reviewed to understand the development trends and existing problems in Fe-MOFs, with the view to provide new ideas and directions for future research.
Collapse
Affiliation(s)
- Rongyue Zhu
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mengru Cai
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Tingting Fu
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Dongge Yin
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hulinyue Peng
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shilang Liao
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuji Du
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiahui Kong
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jian Ni
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xingbin Yin
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
13
|
Li Z, Ma S, Sang L, Qu G, Zhang T, Xu B, Jin W, Zhao Y. Enhanced arsenite removal from water using zirconium-ferrocene MOFs coupled with peroxymonosulfate:oxidation and multi-sites adsorption mechanism. CHEMOSPHERE 2023; 319:138044. [PMID: 36736837 DOI: 10.1016/j.chemosphere.2023.138044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/08/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The efficient removal of arsenite (As(III)) poses a significant challenge to traditional water treatment technologies due to its high toxicity and mobility. In this work, multifunctional Zirconium-Ferrocene Metal Organic Framework (ZrFc-MOF) fabricated with redox-active 1,1-ferrocene dicarboxylic acid ligands and Zr4+ precursors were elaborated to achieve remarkably enhanced As(III) removal via activation by peroxymonosulfate (PMS). The adsorption affinity coefficient increased from 0.097 to 2.035 L mg-1 and the maximum adsorption capacity increased from 59.79 to 111.34 mg g-1 compared with that without PMS. Besides the conventional homogeneous PMS oxidation and the following adsorption through Zr-O clusters of ZrFc-MOFs, the enhanced As(III) removal synergistic combines the oxidation mechanism of As(III) by reactive oxygen species (•OH, SO4•-, O2•- and 1O2) formed in Ferrocene (Fc) activating PMS process with the simultaneous formed extra adsorption sites of Ferrocenium (Fc+). PMS also help ZrFc-MOF to avoid destruction in harsh alkaline condition, making the effluent in this advanced treatment meet the World Health Organization (WHO) threshold of 10 μg L-1 over a wide range of initial pH (2-11) with high selectivity and durability. These results indicate that this novel Fc-based MOFs activating PMS system has potential applicability for As(III) in oxidation and selectively capturing in the water environment.
Collapse
Affiliation(s)
- Zongchen Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Shengjia Ma
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Linfeng Sang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Guojuan Qu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Tao Zhang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Bin Xu
- School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Wei Jin
- School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yaping Zhao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
14
|
Li W, Liu Z, Wang L, Gao G, Xu H, Huang W, Yan N, Wang H, Qu Z. FeS x@MOF-808 composite for efficient As(III) removal from wastewater: behavior and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130681. [PMID: 36584652 DOI: 10.1016/j.jhazmat.2022.130681] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Arsenic is extremely toxic to humans with water as its carrier. One challenge for arsenic control is the complete elimination of As(III) due to its high toxicity, mobility, and solubility. Herein, an active FeSx@MOF-808 composite was fabricated to enhance the As(III) removal for wastewater remediation. The FeSx@MOF-808 showed better As(III) adsorptive performance (Qe = 73.60 mg/g) compared with Fe2S3 (Qe=12.38 mg/g), MOF-808 (Qe = 27.85 mg/g), and Fe@MOF-808 (Qe=34.26 mg/g). This can be attributed to an improved porous structure provided by MOF-808 and abundant reactive sites provided by FeSx. Calculated by the Langmuir model (R2 =0.9965), the maximum adsorption capacity (Qmax) of FeSx@MOF-808 for As(III) removal at 298 K and pH = 7 was 203.28 ± 6.43 mg/g, which is beyond most of the traditional materials and MOFs. Additionally, FeSx@MOF-808 exhibited good stability in a wide pH range (1-13). Results also showed that the different Fe/S ratios (1:0-1:8) and FeSx loading amount (0.00625-0.25 mmol) have effects on the FeSx@MOF-808 performance. By kinetics studies, XPS, and DFT calculation, the mechanisms for arsenic by FeSx@MOF-808 were proposed. Multiple reaction mechanisms combine the adsorption by the MOF-808 support, the co-precipitation of iron oxides via hydroxyl (Fe-OH) groups, and most importantly, the precipitation through the break of Fe-S and the bond of As-S.
Collapse
Affiliation(s)
- Weiwei Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhisong Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Longlong Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guanqun Gao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haomiao Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wenjun Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Naiqiang Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Hongwei Wang
- Wuhan Municipal Road&Bridge Co., Ltd, No. 426 Gaoxin Avenue, Wuhan East Lake New Technology Development Zone, Wuhan 430223, China
| | - Zan Qu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
15
|
Wu J, Huang S, Su J, Yi X, Wang Y. Continuous fixation of dissolved arsenite from flooded soil by cooperating ferrihydrite with Geobacter sulfurreducens. CHEMOSPHERE 2023; 318:137965. [PMID: 36706815 DOI: 10.1016/j.chemosphere.2023.137965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/09/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The fixed arsenic in soil is easy to be released into the aquatic environment in the form of arsenite (As(III)) with high toxicity and mobility due to the eutrophication of environment under anaerobic conditions. However, As(III) is difficult to be fixed in situ continuously by traditional methods, especially for the most efficient fixation method by iron ores. Based on that Fe(II) could promote the fixation of As(III), this study investigated the possibility that Geobacter sulfurreducens (G. sulfurreducens) cooperates with ferrihydrite to fix released As(III) from flooded soil in a glass column continuously under anaerobic conditions. During 42 days of operation of reactors that simulated the actual flooded soil environment, the concentration of released As(III) in the reactor with adding G. sulfurreducens and ferrihydrite is always lower than that in reactors with adding ferrihydrite or no treatment. Compared with reactors without treatment, the accumulated content of released As(III) (2455.0 ± 313.1 μg) decreased by 39.4% in the reactor with adding G. sulfurreducens and ferrihydrite on the last day, while that in reactors with adding ferrihydrite only decreased by 11.6%, respectively. These were caused by the cooperation of G. sulfurreducens and ferrihydrite, which increased the relative abundance of iron-reducing microorganisms to inhibit metabolisms of As-reducing microorganisms, inhibited the quick release of As(III) from solid soil, and promoted the release of iron to accelerate the formation of stable secondary ores with As. This study could provide an environmentally friendly method to fix dissolved As(III) pollutants from soil continuously.
Collapse
Affiliation(s)
- Jianping Wu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shenhua Huang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - JiaYing Su
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaofeng Yi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China; Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, China.
| |
Collapse
|
16
|
Xiong X, Wong NH, Ernawati L, Sunarso J, Zhang X, Jin Y, Han D, Wu C, Yu B, Yang X, Wang Y, Chen G, Yao J. Revealing the enhanced photoelectrochemical water oxidation activity of Fe-based metal-organic polymer-modified BiVO4 photoanode. J Colloid Interface Sci 2023; 644:533-545. [PMID: 37012113 DOI: 10.1016/j.jcis.2023.03.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Metal-organic polymers (MOPs) can enhance the photoelectrochemical (PEC) water oxidation performance of BiVO4 photoanodes, but their PEC mechanisms have yet to be comprehended. In this work, we constructed an active and stable composite photoelectrode by overlaying a uniform MOP on the BiVO4 surface using Fe2+ as the metal ions and 2,5-dihydroxyterephthalic acid (DHTA) as ligand. Such modification on the BiVO4 surface yielded a core-shell structure that could effectively enhance the PEC water oxidation activity of the BiVO4 photoanode. Our intensity-modulated photocurrent spectroscopy analysis revealed that the MOP overlayer could concurrently reduce the surface charge recombination rate constant (ksr) and enhance the charge transfer rate constant (ktr), thus accelerating water oxidation activity. These phenomena can be ascribed to the passivation of the surface that inhibits the recombination of the charge carrier and the MOP catalytic layer that improves the hole transfer. Our rate law analysis also demonstrated that the MOP coverage shifted the reaction order of the BiVO4 photoanode from the third-order to the first-order, resulting in a more favorable rate-determining step where only one hole accumulation is required to overcome water oxidation. This work provides new insights into the reaction mechanism of MOP-modified semiconductor photoanodes.
Collapse
|
17
|
Polyacrylonitrile support impregnated with amine-functionalized graphitic carbon nitride/magnetite composite nanofibers towards enhanced arsenic remediation: A mechanistic approach. J Colloid Interface Sci 2023; 640:890-907. [PMID: 36907149 DOI: 10.1016/j.jcis.2023.02.104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/03/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023]
Abstract
Recently, novel composite materials are rapidly being explored for water treatment applications. However, their physicochemical behavior and mechanistic investigations are still a mystery. Therefore, our key prospect is to develop a highly stable mixed-matrix adsorbent system using polyacrylonitrile (PAN) support impregnated with amine-functionalized graphitic carbon nitride/magnetite (gCN-NH2/Fe3O4) composite nanofibers (PAN/gCN-NH2/Fe3O4: PCNFe) by simple electrospinning techniques. Various instrumental techniques were used to explore the structural, physicochemical, and mechanical behavior of the synthesized nanofiber. The developed PCNFe with a specific surface area of 39.0 m2/g was found to be non-aggregated and to have outstanding water dispersibility, abundant surface functionality, greater hydrophilicity, superior magnetic property, and higher thermal & mechanical characteristics making it favorable for rapid As removal. Based on the experimental findings from the batch study, 97.0 and 99.0 % of arsenite (As(III)) and arsenate (As(V)), respectively, could be adsorbed by utilizing0.02 g of adsorbent dosage within 60 min of contact time at pH 7 and 4, with an initial concentration of 10 mg/L. Adsorption of As(III) and As(V) followed the pseudo-second-order kinetic and Langmuir isotherm models with an sorption capacities of 32.26 and 33.22 mg/g, respectively, at ambient temperature. The adsorption was endothermic and spontaneous, in accordance with the thermodynamic study. Furthermore, the addition of co-anions in a competitive environment did not affect As adsorption except for PO43-. Moreover, PCNFe preserves its adsorption efficiency above 80 % after five regeneration cycles. The combined results of FTIR and XPS after adsorption further support the adsorption mechanism. Also, the composite nanostructures retain their morphological and structural integrity after the adsorption process. The facile synthesis protocol, high As adsorption capacity, and enhanced mechanical integrity of PCNFe foreshadow its huge prospects for real wastewater treatment.
Collapse
|
18
|
A review on metal-organic frameworks for the removal of hazardous environmental contaminants. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Samimi M, Zakeri M, Alobaid F, Aghel B. A Brief Review of Recent Results in Arsenic Adsorption Process from Aquatic Environments by Metal-Organic Frameworks: Classification Based on Kinetics, Isotherms and Thermodynamics Behaviors. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:60. [PMID: 36615970 PMCID: PMC9823661 DOI: 10.3390/nano13010060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 05/25/2023]
Abstract
In nature, arsenic, a metalloid found in soil, is one of the most dangerous elements that can be combined with heavy metals. Industrial wastewater containing heavy metals is considered one of the most dangerous environmental pollutants, especially for microorganisms and human health. An overabundance of heavy metals primarily leads to disturbances in the fundamental reactions and synthesis of essential macromolecules in living organisms. Among these contaminants, the presence of arsenic in the aquatic environment has always been a global concern. As (V) and As (III) are the two most common oxidation states of inorganic arsenic ions. This research concentrates on the kinetics, isotherms, and thermodynamics of metal-organic frameworks (MOFs), which have been applied for arsenic ions uptake from aqueous solutions. This review provides an overview of the current capabilities and properties of MOFs used for arsenic removal, focusing on its kinetics and isotherms of adsorption, as well as its thermodynamic behavior in water and wastewater.
Collapse
Affiliation(s)
- Mohsen Samimi
- Department of Chemical Engineering, Faculty of Engineering, Kermanshah University of Technology, Kermanshah 6715685420, Iran
| | - Mozhgan Zakeri
- Department of Chemical Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan 9816745639, Iran
| | - Falah Alobaid
- Institut Energiesysteme und Energietechnik, Technische Universität Darmstadt, Otto-Berndt-Straße 2, 64287 Darmstadt, Germany
| | - Babak Aghel
- Department of Chemical Engineering, Faculty of Engineering, Kermanshah University of Technology, Kermanshah 6715685420, Iran
- Institut Energiesysteme und Energietechnik, Technische Universität Darmstadt, Otto-Berndt-Straße 2, 64287 Darmstadt, Germany
| |
Collapse
|
20
|
Jiang C, Zhang T, Li S, Yang Z. A comparative study on Fe(III)-chitosan and Fe(III)-chitosan-CTAB composites for As(V) removal from water: preparation, characterization and reaction mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77851-77863. [PMID: 35680754 DOI: 10.1007/s11356-022-20701-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Fe(III)-chitosan and Fe(III)-chitosan-CTAB composites were prepared using an ionotropic gelation method. Various techniques were used to analyze the morphology, structure, and property of the adsorbents, including SEM, EDS, FT-IR, XPS, and zeta potential. Compared with Fe(III)-chitosan, Fe(III)-chitosan-CTAB was more effective for As(V) adsorption at a wide range of pH (3.0-8.0). The adsorption of As(V) onto Fe(III)-chitosan and Fe(III)-chitosan-CTAB could reach equilibrium in 20 min, and their maximum adsorption capacities were 33.85 and 31.69 mg g‒1, respectively. The adsorption kinetics was best described by the pseudo-second-order model (R2 = 0.998 and 0.992), whereas the adsorption isotherm was fitted well by the Freundlich model (R2 = 0.963 and 0.987). The presence of H2PO4- significantly inhibited the adsorption of As(V) onto Fe(III)-chitosan and Fe(III)-chitosan-CTAB, and humic acid also led to a slight decrease in As(V) adsorption by Fe(III)-chitosan-CTAB. Over 94% of As(V) at the initial concentration of no more than 5 mg L-1 was removed from real water by the two adsorbents. 1% (w/v) NaOH solution was determined to be the most suitable desorption agent. Fe(III)-chitosan and Fe(III)-chitosan-CTAB still maintained their initial adsorption capacities after five adsorption-desorption cycles. Based on different characterization results, both electrostatic attraction and surface complexation mechanisms played important roles in As(V) adsorption on Fe(III)-chitosan and Fe(III)-chitosan-CTAB.
Collapse
Affiliation(s)
- Changjin Jiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, People's Republic of China
| | - Ting Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, People's Republic of China.
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Shuhui Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, People's Republic of China
| | - Zhaoguang Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, People's Republic of China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, 410083, Hunan, People's Republic of China
| |
Collapse
|
21
|
Liang Z, Qi T, Liu H, Wang L, Li Q. Zero-valent bimetallic catalyst/absorbent for simultaneous facilitation of MgSO 3 oxidation and arsenic uptake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157147. [PMID: 35798112 DOI: 10.1016/j.scitotenv.2022.157147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Cobalt (Co)-based catalysts can efficiently reduce the heat waste from sulfate concentration by enhancing sulfite oxidation during wet flue gas desulfurization system. However, arsenic (As) can poison such catalysts and migrate into the sulfate by-products, resulting in severe secondary pollution. In this study, a zero-valent Co/iron (Fe)-based nanoparticle (NZV-Co2Fe1) was fabricated and applied as a bifunctional catalyst/adsorbent. The catalytic stability of the Co-based catalyst was enhanced by the introduction of Fe because the poisonous effect of As was substantially suppressed because of the high adsorption capacity of Fe for As. Compared with the noncatalytic benchmark, the presence of 0.5 g/L NZV-Co2Fe1 can increase the rate of MgSO3 oxidation by approximately 12-fold even at a high concentration of As (2.5 mg/L). The Langmuir model was fitted to the As adsorption isotherms, indicating that As uptake is a single-layer adsorption process. The pseudo-second-order kinetic model indicated that As was removed through chemisorption. The oxidation pathway of As(III) involves reactive radicals (mainly OH, SO4- and SO5-) and ligand-to-metal charge transfer between SO32- and Co2+. The availability of MgSO3 improved the removal efficiency at high concentrations of As(III) (1 mg/L). These results indicate that using NZV-Co2Fe1 as a catalyst to purify the by-products of flue gas desulfurization can effectively prevent secondary pollution.
Collapse
Affiliation(s)
- Zhengwei Liang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Tieyue Qi
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Hui Liu
- School of Foreign Languages, North China Electric Power University, Beijing 102206, PR China
| | - Lidong Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Qiangwei Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| |
Collapse
|
22
|
Abdi J, Mazloom G. Machine learning approaches for predicting arsenic adsorption from water using porous metal-organic frameworks. Sci Rep 2022; 12:16458. [PMID: 36180503 PMCID: PMC9525301 DOI: 10.1038/s41598-022-20762-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022] Open
Abstract
Arsenic in drinking water is a serious threat for human health due to its toxic nature and therefore, its eliminating is highly necessary. In this study, the ability of different novel and robust machine learning (ML) approaches, including Light Gradient Boosting Machine (LightGBM), Extreme Gradient Boosting, Gradient Boosting Decision Tree, and Random Forest was implemented to predict the adsorptive removal of arsenate [As(V)] from wastewater over 13 different metal–organic frameworks (MOFs). A large experimental dataset was collected under various conditions. The adsorbent dosage, contact time, initial arsenic concentration, adsorbent surface area, temperature, solution pH, and the presence of anions were considered as input variables, and adsorptive removal of As(V) was selected as the output of the models. The developed models were evaluated using various statistical criteria. The obtained results indicated that the LightGBM model provided the most accurate and reliable response to predict As(V) adsorption by MOFs and possesses R2, RMSE, STD, and AAPRE (%) of 0.9958, 2.0688, 0.0628, and 2.88, respectively. The expected trends of As(V) removal with increasing initial concentration, solution pH, temperature, and coexistence of anions were predicted reasonably by the LightGBM model. Sensitivity analysis revealed that the adsorption process adversely relates to the initial As(V) concentration and directly depends on the MOFs surface area and dosage. This study proves that ML approaches are capable to manage complicated problems with large datasets and can be affordable alternatives for expensive and time-consuming experimental wastewater treatment processes.
Collapse
Affiliation(s)
- Jafar Abdi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran.
| | - Golshan Mazloom
- Department of Chemical Engineering, Faculty of Engineering, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
23
|
Pervez MN, Chen C, Li Z, Naddeo V, Zhao Y. Tuning the structure of cerium-based metal-organic frameworks for efficient removal of arsenic species: The role of organic ligands. CHEMOSPHERE 2022; 303:134934. [PMID: 35561775 DOI: 10.1016/j.chemosphere.2022.134934] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
The ability of organic ligands to change the structure of metal-organic frameworks (MOFs) in nature and influence their adsorption efficiency for arsenic species is enormous. The current work was designed to investigate the adsorption performance of cerium-based MOFs with tunable structures through the use of organic ligands (Ce-MOF-66 and Ce-MOF-808) towards arsenic species from water. The structural features of Ce-MOF-66 and Ce-MOF-808 with varying crystallinity, morphology, particle size, and surface area are considerably altered by organic ligands tuning, resulting in clearly distinct arsenate (As (V)) and arsenite (As (III)) adsorption capabilities. The experimental results showed that the Langmuir adsorption capacities of As (V) by Ce-MOF-66 and Ce-MOF-808 reached 355.67 and 217.80 mg/g, respectively, while for As (III) were 5.52 and 402.10 mg/g for Ce-MOF-66 and Ce-MOF-808, respectively. Except for the impact of PO43- on As (V), co-existing ions had no significant influence on adsorption, illustrating the high selectivity. Furthermore, to understand the structure and adsorption mechanism, two adsorbents were characterized by powder X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, specific surface area, Fourier transform infrared and X-ray photoelectron spectroscopy, in which identified that unsaturated sites and ligand exchange were the main adsorption mechanisms of As (V) and As (III). Overall, this research presents a novel approach for developing high-performance Ce-derived MOFs adsorbents to capture arsenic species.
Collapse
Affiliation(s)
- Md Nahid Pervez
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, and Institute of Eco-Chongming, Shanghai, 200241, China; Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| | - Changxun Chen
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, and Institute of Eco-Chongming, Shanghai, 200241, China
| | - Zongchen Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, and Institute of Eco-Chongming, Shanghai, 200241, China
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| | - Yaping Zhao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, and Institute of Eco-Chongming, Shanghai, 200241, China.
| |
Collapse
|
24
|
Haider J, Shahzadi A, Akbar MU, Hafeez I, Shahzadi I, Khalid A, Ashfaq A, Ahmad SOA, Dilpazir S, Imran M, Ikram M, Ali G, Khan M, Khan Q, Maqbool M. A review of synthesis, fabrication, and emerging biomedical applications of metal-organic frameworks. BIOMATERIALS ADVANCES 2022; 140:213049. [PMID: 35917685 DOI: 10.1016/j.bioadv.2022.213049] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/13/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
The overwhelming potential of porous coordination polymers (PCP), also known as Metal-Organic Frameworks (MOFs), especially their nanostructures for various biomedical applications, have made these materials worth investigating for more applications and uses. MOFs unique structure has enabled them for most applications, particularly in biomedical and healthcare. A number of very informative review papers are available on the biomedical applications of MOFs for the reader's convenience. However, many of those reviews focus mainly on drug delivery applications, and no significant work has been reported on other MOFs for biomedical applications. This review aims to present a compact and highly informative global assessment of the recent developments in biomedical applications (excluding drug-delivery) of MOFs along with critical analysis. Researchers have recently adopted both synthetic and post-synthetic routes for the fabrication and modification of MOFs that have been discussed and analyzed. A critical review of the latest reports on the significant and exotic area of bio-sensing capabilities and applications of MOFs has been given in this study. In addition, other essential applications of MOFs, including photothermal therapy, photodynamic therapy, and antimicrobial activities, are also included. These recently grown emergent techniques and cancer treatment options have gained attention and require further investigations to achieve fruitful outcomes. MOF's role in these applications has been thoroughly discussed, along with future challenges and valuable suggestions for the research community that will help meet future demands.
Collapse
Affiliation(s)
- Junaid Haider
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Anum Shahzadi
- Faculty of Pharmacy, The university of Lahore, Lahore, Pakistan
| | - Muhammad Usama Akbar
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Pakistan
| | - Izan Hafeez
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore, Pakistan
| | - Iram Shahzadi
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Ayesha Khalid
- Physics Department, Lahore Garrison University, Lahore, Pakistan
| | - Atif Ashfaq
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Pakistan
| | - Syed Ossama Ali Ahmad
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Pakistan
| | - S Dilpazir
- Department of Chemistry, Comsats University, 45550, Islamabad, Pakistan
| | - Muhammad Imran
- Department of Chemistry, Government College University Faisalabad, Pakpattan Road, Sahiwal, Punjab 57000, Pakistan
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Pakistan.
| | - Ghafar Ali
- Pakistan Institute of Nuclear Sciences and Technology, Islamabad, Pakistan
| | - Maaz Khan
- Pakistan Institute of Nuclear Sciences and Technology, Islamabad, Pakistan
| | - Qasim Khan
- Institute of Microscale Optoelectronics, Shenzhen University, Guangdong 518000, China.
| | - Muhammad Maqbool
- Department of Clinical & Diagnostic Sciences, Health Physics Program, The University of Alabama at Birmingham, USA.
| |
Collapse
|
25
|
Fu X, Song X, Zheng Q, Liu C, Li K, Luo Q, Chen J, Wang Z, Luo J. Frontier Materials for Adsorption of Antimony and Arsenic in Aqueous Environments: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10824. [PMID: 36078532 PMCID: PMC9518092 DOI: 10.3390/ijerph191710824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 05/14/2023]
Abstract
As highly toxic and carcinogenic substances, antimony and arsenic often coexist and cause compound pollution. Heavy metal pollution in water significantly threatens human health and the ecological environment. This article elaborates on the sources and hazards of compound antimony and arsenic contamination and systematically discusses the research progress of treatment technology to remove antimony and arsenic in water. Due to the advantages of simple operation, high removal efficiency, low economic cost, and renewable solid and sustainable utilization, adsorption technology for removing antimony and arsenic from sewage stand out among many treatment technologies. The adsorption performance of adsorbent materials is the key to removing antimony and arsenic in water. Therefore, this article focused on summarizing frontier adsorption materials' characteristics, adsorption mechanism, and performance, including MOFs, COFs, graphene, and biomass materials. Then, the research and application progress of antimony and arsenic removal by frontier materials were described. The adsorption effects of various frontier adsorption materials were objectively analyzed and comparatively evaluated. Finally, the characteristics, advantages, and disadvantages of various frontier adsorption materials in removing antimony and arsenic from water were summarized to provide ideas for improving and innovating adsorption materials for water pollution treatment.
Collapse
Affiliation(s)
- Xiaohua Fu
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xinyu Song
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Qingxing Zheng
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Chang Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Kun Li
- A.B Freeman School of Business, Tulane University, 6823 Saint Charles Ave, New Orleans, LA 70118, USA
- Guangzhou Huacai Environmental Protection Technology Co., Ltd., Guangzhou 511480, China
| | - Qijin Luo
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jianyu Chen
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zhenxing Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jian Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
26
|
Facile fabrication of amino-functionalized MIL-68(Al) metal-organic framework for effective adsorption of arsenate (As(V)). Sci Rep 2022; 12:11865. [PMID: 35831402 PMCID: PMC9279506 DOI: 10.1038/s41598-022-16038-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 07/04/2022] [Indexed: 12/07/2022] Open
Abstract
An amino-functionalized MIL-68(Al) metal–organic framework (amino-MIL-68(Al) MOF) was synthesized by solvothermal method and then characterized by FESEM, XRD, FTIR, EDX-mapping, and BET-BJH techniques. In order to predict arsenate (As(V)) removal, a robust quadratic model (R2 > 0.99, F-value = 2389.17 and p value < 0.0001) was developed by the central composite design (CCD) method and then the genetic algorithm (GA) was utilized to optimize the system response and four independent variables. The results showed that As(V) adsorption on MOF was affected by solution pH, adsorbent dose, As(V) concentration and reaction time, respectively. Predicted and experimental As(V) removal efficiencies under optimal conditions were 99.45 and 99.87%, respectively. The fitting of experimental data showed that As(V) adsorption on MOF is well described by the nonlinear form of the Langmuir isotherm and pseudo-second-order kinetic. At optimum pH 3, the maximum As(V) adsorption capacity was 74.29 mg/g. Thermodynamic studies in the temperature range of 25 to 50 °C showed that As(V) adsorption is a spontaneous endothermic process. The reusability of MOF in ten adsorption/regeneration cycles was studied and the results showed high reusability of this adsorbent. The highest interventional effect in inhibiting As(V) adsorption was related to phosphate anion. The results of this study showed that amino-MIL-68(Al) can be used as an effective MOF with a high surface area (> 1000 m2/g) and high reusability for As(V)-contaminated water.
Collapse
|
27
|
Synthesis, characterization, and application of diethylenetriamine functionalized MIL-53(Fe) metal-organic framework for efficient As(V) removal from surface and groundwater. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Sukatis FF, Wee SY, Aris AZ. Potential of biocompatible calcium-based metal-organic frameworks for the removal of endocrine-disrupting compounds in aqueous environments. WATER RESEARCH 2022; 218:118406. [PMID: 35525031 DOI: 10.1016/j.watres.2022.118406] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/28/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Rapid urbanization, industrialization and population growth have accelerated the amount and variety of emerging contaminants being released into the aqueous environment, including endocrine-disrupting compounds (EDCs). The introduction of these compounds constitutes a threat to human health and the environment, even at trace levels. Hence, new water treatment technologies are urgently required to effectively remove EDCs from water. The currently available technologies used in water remediation processes are expensive and ineffective, and some produce harmful by-products. Calcium-based metal-organic frameworks (Ca-MOFs) are porous synthetic materials that can potentially be applied as adsorbents. These MOFs are hydrolytically stable, biocompatible and low-cost compared with conventional porous materials. The structure of Ca-MOFs is maintained even though calcium metal centers in the structure can easily coordinate with water. Ca-MOFs and their composite derivatives have the potential for use in water purification because these biocompatible adsorbents have been shown to selectively extract a significant quantity of contaminants. This review highlights the potential of Ca-MOFs to adsorb EDCs from aqueous environments and discusses adsorbent preparation methods, adsorption mechanisms, removal capacity, water stability and recyclability. This review will support future efforts in synthesizing new biocompatible MOFs as an environmental treatment technology that can effectively remove EDCs from water, thereby improving environmental and human health.
Collapse
Affiliation(s)
- Fahren Fazzer Sukatis
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Sze Yee Wee
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia.
| |
Collapse
|
29
|
Synthesis and Characterization of Green ZnO@polynaniline/Bentonite Tripartite Structure (G.Zn@PN/BE) as Adsorbent for As (V) Ions: Integration, Steric, and Energetic Properties. Polymers (Basel) 2022; 14:polym14122329. [PMID: 35745905 PMCID: PMC9229974 DOI: 10.3390/polym14122329] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022] Open
Abstract
A green ZnO@polynaniline/bentonite composite (G.Zn@PN/BE) was synthesized as an enhanced adsorbent for As (V) ions. Its adsorption properties were assessed in comparison with the integrated components of bentonite (BE) and polyaniline/bentonite (PN/BE) composites. The G.Zn@PN/BE composite achieved an As (V) retention capacity (213 mg/g) higher than BE (72.7 mg/g) and PN/BE (119.8 mg/g). The enhanced capacity of G.Zn@PN/BE was studied using classic (Langmuir) and advanced equilibrium (monolayer model of one energy) models. Considering the steric properties, the structure of G.Zn@PN/BE demonstrated a higher density of active sites (Nm = 109.8 (20 °C), 108.9 (30 °C), and 67.8 mg/g (40 °C)) than BE and PN/BE. This declared the effect of the integration process in inducing the retention capacity by increasing the quantities of the active sites. The number of adsorbed As (V) ions per site (1.76 up to 2.13) signifies the retention of two or three ions per site by a multi-ionic mechanism. The adsorption energies (from -3.07 to -3.26 kJ/mol) suggested physical retention mechanisms (hydrogen bonding and dipole bonding forces). The adsorption energy, internal energy, and free enthalpy reflected the exothermic, feasible, and spontaneous nature of the retention process. The structure is of significant As (V) uptake capacity in the existence of competitive anions or metal ions.
Collapse
|
30
|
Paz R, Viltres H, Gupta NK, Rajput K, Roy DR, Romero-Galarza A, Biesinger MC, Leyva C. Zirconium-organic framework as a novel adsorbent for arsenate remediation from aqueous solutions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118957] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
31
|
Li M, Kuang S, Kang Y, Ma H, Dong J, Guo Z. Recent advances in application of iron-manganese oxide nanomaterials for removal of heavy metals in the aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153157. [PMID: 35038502 DOI: 10.1016/j.scitotenv.2022.153157] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Heavy metal pollution has a serious negative impact on the ecological environment and human health due to its toxicity, persistence, and non-biodegradable properties. Among the technologies applied in heavy metals removal, adsorption has been widely used as the most promising method because of its simple operation, high removal efficiency, strong applicability, and low cost. Iron-manganese oxide nanomaterials, as an effective absorbent, have attracted wide attention due to their simple preparation, wide material sources, and lower ecological impact. So far, no quantitative investigation has been conducted on the preparation and application of iron-manganese oxide nanomaterials in heavy metals removal. This review discussed the preparation methods and characteristics of iron‑manganese oxide nanomaterials over the past decade and provided some basic information for the improvement of preparation methods. The physicochemical properties of iron‑manganese oxide nanomaterials and environmental conditions are regarded as important factors that affect the removal efficiency of heavy metals. In addition, the removal mechanisms of heavy metals in aqueous solution with iron‑manganese oxide nanomaterials were mainly included redox, complex precipitation, electrostatic attraction, and ion exchange. The reusability and practicability in actual wastewater treatment of 3nganese oxide nanomaterials were further discussed. Several key problems still need to be solved in the existing progress, such as improving the ability and stability of the iron‑manganese oxide nanomaterials to remove heavy metals from actual wastewater. In conclusion, this review provides a future direction for the application of iron‑manganese oxide nanomaterials for heavy metals removal and even in the large-scale treatment of actual wastewater.
Collapse
Affiliation(s)
- Mei Li
- School of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Shaoping Kuang
- School of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Yan Kang
- School of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266000, China.
| | - Haoqin Ma
- School of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Jiahao Dong
- School of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Zizhang Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
32
|
An Fe-MOF/MXene-based Ultra-Sensitive Electrochemical Sensor for Arsenic(III) measurement. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Huang X, Huang L, Babu Arulmani SR, Yan J, Li Q, Tang J, Wan K, Zhang H, Xiao T, Shao M. Research progress of metal organic frameworks and their derivatives for adsorption of anions in water: A review. ENVIRONMENTAL RESEARCH 2022; 204:112381. [PMID: 34801541 DOI: 10.1016/j.envres.2021.112381] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Anion pollution in water has become a problem that cannot be ignored. The anion concentration should be controlled below the national emission standard to meet the demand for clean water. Among the methods for removing excess anions in water, the adsorption method has a unique removal performance, and the core of the adsorption method is the adsorbent. In recent years, the emerging metal-organic frameworks (MOFs) have the advantages of adjustable porosity, high specific surface area, diverse functions, and easy modification. They are very competitive in the field of adsorption of liquid anions. This article focuses on the adsorption of fluoride, arsenate, chromate, radioactive anions (ReO4-, TcO4-, SeO42-/SeO32-), phosphate ion, chloride ion, and other anions by MOFs and their derivatives. The preparation methods of MOFs are introduced in turn, the application of different types of metal-based MOFs to adsorb various anions were discussed in categories with their crystal structure and functional groups. The influence on the adsorption of anions is analyzed, including the more common and special adsorption mechanisms, adsorption kinetics and thermodynamics, and regeneration performance are briefly described. Finally, the current situation of MOFs adsorption of anions is summarized, and the outlook for future development is summarized to provide my own opinions for the practical application of MOFs.
Collapse
Affiliation(s)
- Xuanjie Huang
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Lei Huang
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Samuel Raj Babu Arulmani
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Jia Yan
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Qian Li
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Jinfeng Tang
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Kuilin Wan
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Hongguo Zhang
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, PR China.
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, Energy Institute, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, And Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
34
|
Liu H, Dang S, Li M, Ye B. MIL-101(Fe)@TiO 2 nanotube composite material is used for the solid phase extraction of non-steroidal anti-inflammatory drugs under the synergy of multiple interactions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:798-805. [PMID: 35113083 DOI: 10.1039/d1ay01705e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Increasing the adsorption sites and effective interactions between sorbents and the targets can improve the solid-phase extraction (SPE) efficiency. Herein, based on the advantages of MOFs and TiO2 nanotubes (TiO2 NTs), an MIL-101(Fe)@TiO2 NT composite was prepared and applied to extract non-steroidal anti-inflammatory drugs (NSAIDs) from water samples coupled with high performance liquid chromatography (HPLC). Through characterization, it was established that MIL-101(Fe) was effectively composited on the surface and inside the TiO2 nanotubes, increasing effective adsorption sites. The obtained composite material well retains the structure and functional groups of the two original materials, and while retaining the original force with the target, it achieves a synergistic effect and produces more interactions with the target. Therefore, the extraction efficiency was greatly improved. The recovery efficiency reached 97.7-105.1% with an RSD of less than 6.71%, the detection limit was 0.1-0.2 μg L-1, and the linear range was 1-200 μg L-1 with a determination coefficient of 0.9972-0.9994. Owing to the stability of the two original materials, the composite material could be recycled and reused to extract NSAIDs up to 15 times without a loss of the recovery rate. Satisfactory results were obtained when it was used to extract NSAIDs from the Yellow River. These results indicate that the synthesized MIL-101(Fe)@TiO2 NT material is a promising sorbent to extract NSAIDs at trace concentrations with high efficiency and long lifetimes.
Collapse
Affiliation(s)
- Hongmei Liu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China.
| | - Shihao Dang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China.
| | - Mingdeng Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China.
| | - Baogui Ye
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China.
| |
Collapse
|
35
|
Au Nanoparticles Decorated Graphene-Based Hybrid Nanocomposite for As(III) Electroanalytical Detection. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Electrochemical sensors integrating hybrid nanostructured platforms are a promising alternative to conventional detection techniques for addressing highly relevant challenges of heavy metal determination in the environment. Hybrid nanocomposites based on graphene derivatives and inorganic nanoparticles (NPs) are ideal candidates as active materials for detecting heavy metals, as they merge the relevant physico-chemical properties of both the components, finally leading to a rapid and sensitive current response. In this work, a hybrid nanocomposite formed of reduced graphene oxide (RGO) sheets, surface functionalized by π-π interactions with 1-pyrene carboxylic acid (PCA), and decorated in situ by Au NPs, was synthesized by using a colloidal route. The hybrid nanocomposite was characterized by cyclic voltammetry and electrochemical impedance spectroscopy with respect to the corresponding single components, both bare and deposited as a layer-by-layer junction onto the electrode. The results demonstrated the high electrochemical activity of the hybrid nanocomposite with respect to the single components, highlighting the crucial role of the nanostructured surface morphology of the electrode and the PCA coupling agent at the NPs-RGO interphase in enhancing the nanocomposite electroactivity. Finally, the Au NP-decorated PCA-RGO sheets were tested by anodic stripping voltammetry of As(III) ion—a particularly relevant analyte among heavy metal ions—in order to assess the sensing ability of the nanocomposite material with respect to its single components. The nanocomposite has been found to present a sensitivity higher than that characterizing the bare components, with LODs complying with the directives established by the U.S. EPA and in line with those reported for state-of-the-art electrochemical sensors based on other Au-graphene nanocomposites.
Collapse
|
36
|
Yin C, Li S, Liu L, Huang Q, Zhu G, Yang X, Wang S. Structure-tunable trivalent Fe-Al-based bimetallic organic frameworks for arsenic removal from contaminated water. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117101] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
37
|
Wang J, Su Y, Lv SW, Sun LH. The efficient removal of diclofenac sodium and bromocresol green from aqueous solution by sea urchin-like Ni/Co-BTC bimetallic organic framework: adsorption isotherms, kinetics and mechanism. NEW J CHEM 2022. [DOI: 10.1039/d2nj03134e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel adsorbent based on nanostructured Ni/Co-BTC bimetallic organic framework (namely Ni/Co-BTC MOF) was successfully prepared by a simple solvothermal method. Adsorption experiments showed that the optimal molar ratio of...
Collapse
|
38
|
Shanmugam M, Chuaicham C, Augustin A, Sagayaraj PJJ, Sasaki K, Sekar K. Upcycling of Hazardous Metals and PET Waste derived Metal-Organic Frameworks: A Review in Recent Progress and Prospects. NEW J CHEM 2022. [DOI: 10.1039/d2nj02481k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An intense increase in non-biodegradable plastics and waste metals is an immediate threat to the world and needs to be addressed urgently. There are several strategies deployed to control, eliminate,...
Collapse
|
39
|
Guo Q, Li Y, Wei XY, Zheng LW, Li ZQ, Zhang KG, Yuan CG. Electrospun metal-organic frameworks hybrid nanofiber membrane for efficient removal of As(III) and As(V) from water. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112990. [PMID: 34798359 DOI: 10.1016/j.ecoenv.2021.112990] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/06/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Metal-organic frameworks (MOFs) have been widely applied for pollutants removal in water. However, the powdered MOFs are always suffered from aggregation during use and difficult collection after use. These problems discount their efficiency and inhibit their reusability. In this work, Zr-based MOF (UiO-66) was successfully imprisoned into a water-stable polyacrylonitrile (PAN) substrate by electrospinning. The containing UiO-66 hybrid membrane was confirmed by instrumental characterizations and its stability was also investigated by ICP-OES analysis. The obtained composite membrane can efficiently remove both arsenite (AsIII) and arsenate (AsV) from water under natural pH conditions. The adsorption kinetic fitted well with pseudo-second-order model and was dominated by chemisorption. Its adsorption isotherm can be described by Langmuir model. The maximal adsorption capacities of the hybrid membrane for As(V) and As(III) were 42.17 mg/g and 32.90 mg/g, respectively. Our results demonstrated that the MOFs-dispersed electrospun nanofiber membrane can greatly inherit the MOFs' original adsorption properties and exhibits good regenerability without loss of MOFs. Electrospinning is an effective and practical method for the preparation of MOFs hybrid membrane, which makes the composite very easy to be collected after use.
Collapse
Affiliation(s)
- Qi Guo
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China; Wetland Research Center for Baiyangdian Lake, North China Electric Power University, Baoding 071000, China
| | - Yuan Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China; Wetland Research Center for Baiyangdian Lake, North China Electric Power University, Baoding 071000, China
| | - Xiao-Yang Wei
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China; Wetland Research Center for Baiyangdian Lake, North China Electric Power University, Baoding 071000, China
| | - Li-Wei Zheng
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China; Wetland Research Center for Baiyangdian Lake, North China Electric Power University, Baoding 071000, China
| | - Zhi-Qiong Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China; Environmental Science Laboratory Centre, Department of Environmental Science, Jiamusi University, Jiamusi 154002, China
| | - Ke-Gang Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China; Wetland Research Center for Baiyangdian Lake, North China Electric Power University, Baoding 071000, China
| | - Chun-Gang Yuan
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China; Wetland Research Center for Baiyangdian Lake, North China Electric Power University, Baoding 071000, China.
| |
Collapse
|
40
|
Yang B, Zhou X, Chen Y, Fang Y, Luo H. Preparation of a spindle δ-MnO2@Fe/Co-MOF-74 for effective adsorption of arsenic from water. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127378] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Ou JH, Sheu YT, Chang BK, Verpoort F, Surampalli RY, Kao CM. Application of zeolitic imidazolate framework for hexavalent chromium removal: A feasibility and mechanism study. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1995-2009. [PMID: 33835627 DOI: 10.1002/wer.1571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/13/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
The mechanisms and effectiveness of using zeolitic imidazolate framework (ZIF-8) [a sub-family of metal-organic framework (MOF)] particles on hexavalent chromium [Cr(VI)] removal were evaluated. The ultrasonic mixing method was applied for the preparation of ZIF-8, and chemicals used for ZIF-8 synthesis included ammonium hydroxide, zinc nitrate hexahydrate, and 2-methylimidazole. ZIF-8 particle had a clear rhombic dodecahedron morphology shape and a strong peak intensity with high crystallinity. The adsorption capacity (AC) of ZIF-8 was 30.3 mg of Cr(VI)/g of ZIF-8 [Cr(VI) = 50 mg/L]. The AC of Cr(VI) raised to 34.3 mg/g under acidic conditions (pH = 5), and the AC dropped to below 13.7 mg/g with a pH range from 7 to 11. It could be because of the competitive effects between CrO4 2- and hydroxide ions for adsorption locations of ZIF-8. Cr(VI) removal relied on the amount of Cr(VI) adsorbed on the particles of ZIF-8, and the mechanisms of Cr(VI) adsorption by ZIF-8 included chemical/physical processes and the rate-limiting step was the chemical adsorption. A fraction of sorbed Cr(VI) was reduced to Cr(III), and thus, ZIF-8 could serve as a reducing agent during Cr(VI) reduction. Cr(VI) was removed effectively from the water phase by ZIF-8 via adsorption and reduction mechanisms. PRACTITIONER POINTS: ZIF-8 particles had an adsorption capacity of 30.33 mg of Cr(VI)/g of ZIF-8. Cr(VI) sorption by ZIF-8 has chemical (rate-limiting step) and physical processes. ZIF-8 can serve as a reducing agent for Cr(VI) reduction. Cr(VI) can be removed by ZIF-8 via the adsorption and reduction mechanisms.
Collapse
Affiliation(s)
- Jiun-Hau Ou
- Institute of Environmental Engr., National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yih-Terng Sheu
- Institute of Environmental Engr., National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Bor Kae Chang
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, Taiwan
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| | - Rao Y Surampalli
- Global Institute for Energy, Environment and Sustainability, Lenexa, KS, USA
| | - Chih-Ming Kao
- Institute of Environmental Engr., National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
42
|
Alhaddad M, El-Sheikh SM. Selective and Fast Detection of Fluoride-Contaminated Water Based on a Novel Salen-Co-MOF Chemosensor. ACS OMEGA 2021; 6:15182-15191. [PMID: 34151097 PMCID: PMC8210401 DOI: 10.1021/acsomega.1c01424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
The development of selective and fast optical sensitive chemosensors for the detection and recognition of different cations and anions in a domain is still a challenge in biological, industrial, and environmental fields. Herein, we report a novel approach for the detection and determination of fluoride ion (F-) sensing based on a salen-cobalt metal-organic framework (Co(II)-MOF). By a simple method, the Co(II)-MOF was synthesized and characterized using several tools to elucidate the structure and morphology. The photoluminescence (PL) spectrum of the Co(II)-MOF (100.0 nM/L) was examined versus different ionic species like F-, Br-, Cl-, I-, SO4 2-, and NO3 - and some cationic species like Mg2+, Ca2+, Na+, and K+. In the case of F- ions, the PL intensity of the Co(II)-MOF was scientifically enhanced with a remarkable red shift. With the increase of F- concentration, the Co(II)-MOF PL emission spectrum was also professionally enhanced. The limit of detection (LOD) for the Co(II)-MOF chemosensor was 0.24 μg/L, while the limit of quantification (LOQ) was 0.72 μg/L. Moreover, a comparison of the Co(II)-MOF optical approach with other published reports was studied, and the mechanism of interaction was also investigated. Additionally, the applicability of the current Co(II)-MOF approach in different real water samples, such as tap water, drinking water, Nile River water, and wastewater, was extended. This easy-to-use future sensor provides reliable detection of F- in everyday applications for nonexpert users, especially in remote rural areas.
Collapse
Affiliation(s)
- Maha Alhaddad
- Department
of Chemistry, Faculty of Science, King Abdulaziz
University, P.O. Box 80203, Jeddah 21589, Kingdom of Saudi Arabia
| | - Said M. El-Sheikh
- Nanomaterials
and Nanotechnology Department, Central Metallurgical
R & D Institute, Cairo 11421, Egypt
| |
Collapse
|
43
|
Min X, Han C, Yang L, Zhou C. Enhancing As(V) and As(III) adsorption performance of low alumina fly ash with ferric citrate modification: Role of FeSiO 3 and monosodium citrate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112302. [PMID: 33714045 DOI: 10.1016/j.jenvman.2021.112302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Fly ash and arsenic species have been regarded as contaminants that pollute the environment. Herein, low alumina fly ash (LAFA) was utilized to fabricate the As(V) and As(III) adsorbent via combining the routes of alkali fusion and incipient-wetness impregnation. The characterization results suggested that the grafted ferric citrate was coordinated to LAFA by substituting a Si4+ to a Fe3+, and the compound monosodium citrate was observed. Based on the XPS analysis, the C-O and -COO- groups of monosodium citrate played the significant role in uptaking As(V) and As(III) species by chemical complexation, the FeOOH adsorbed As(V) and As(III) species via ion-exchange, and the Fe2O3 oxidize As(III) into As(V). Additionally, it was observed that the As(V) removal performance by adsorbent prepared with different modifiers was in the order of FeC6H5O7 (ca. 93.7%) > C6H8O7 (84%) > HCl (73%). And then, the optimal adsorbent synthesis condition for As(V) uptake was explored at ferric citrate loaded LAFA with 1:1 mass ratio (fly ash to NaOH) under temperature 923 K. The maximum monolayer adsorption capacities of the optimal adsorbent were 2725.0 μgAs(V)/g and 2281.9 μgAs(III)/g, and the removal efficiency of As(V) and As(III) was near 100% for their initial concentrations below 500 ppb, where the residual arsenic concentration met the required standard in drinking water (lower than 10 ppb).
Collapse
Affiliation(s)
- Xize Min
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China
| | - Caiyun Han
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China.
| | - Liu Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China
| | - Chundi Zhou
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, PR China
| |
Collapse
|
44
|
Ahmad K, Shah HUR, Ashfaq M, Nawaz H. Removal of decidedly lethal metal arsenic from water using metal organic frameworks: a critical review. REV INORG CHEM 2021. [DOI: 10.1515/revic-2021-0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract
Water contamination is worldwide issue, undermining whole biosphere, influencing life of a large number of individuals all over the world. Water contamination is one of the chief worldwide danger issues for death, sickness, and constant decrease of accessible drinkable water around the world. Among the others, presence of arsenic, is considered as the most widely recognized lethal contaminant in water bodies and poses a serious threat not exclusively to humans but also towards aquatic lives. Hence, steps must be taken to decrease quantity of arsenic in water to permissible limits. Recently, metal-organic frameworks (MOFs) with outstanding stability, sorption capacities, and ecofriendly performance have empowered enormous improvements in capturing substantial metal particles. MOFs have been affirmed as good performance adsorbents for arsenic removal having extended surface area and displayed remarkable results as reported in literature. In this review we look at MOFs which have been recently produced and considered for potential applications in arsenic metal expulsion. We have delivered a summary of up-to-date abilities as well as significant characteristics of MOFs used for this removal. In this review conventional and advanced materials applied to treat water by adsorptive method are also discussed briefly.
Collapse
Affiliation(s)
- Khalil Ahmad
- Institute of Chemistry, Baghdad ul Jadeed Campus, The Islamia University of Bahawalpur , Bahawalpur 63100 , Pakistan
| | - Habib-Ur-Rehman Shah
- Institute of Chemistry, Baghdad ul Jadeed Campus, The Islamia University of Bahawalpur , Bahawalpur 63100 , Pakistan
| | - Muhammad Ashfaq
- Institute of Chemistry, Baghdad ul Jadeed Campus, The Islamia University of Bahawalpur , Bahawalpur 63100 , Pakistan
| | - Haq Nawaz
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences (CAS) , Beijing 100190 , China
| |
Collapse
|
45
|
Liu Y, Yang S, Jiang H, Yang B, Fang X, Shen C, Yang J, Sand W, Li F. Sea urchin-like FeOOH functionalized electrochemical CNT filter for one-step arsenite decontamination. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124384. [PMID: 33229265 DOI: 10.1016/j.jhazmat.2020.124384] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/17/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Advanced nanotechnologies for efficient arsenic decontamination remain largely underdeveloped. The most abundant inorganic arsenic species are neutrally-charged arsenate, As(III), and negatively-charged arsenite, As(V). Compared with As(V), As(III) is 60 times more toxic and more difficult to remove due to high mobility. Herein, an electrochemical filtration system was rationally designed for one-step As(III) decontamination. The key to this technology is a functional electroactive carbon nanotube (CNT) filter functionalized with sea urchin-like FeOOH. With the assistance of electric field, CNT-FeOOH anodic filter can in situ transform As(III) to less toxic As(V) while passing through. Then, as-produced As(V) could be effectively sequestrated by FeOOH. The sufficient exposed sorption sites, flow-through design, and filter's electrochemical reactivity synergistically guaranteed a rapid arsenic removal kinetic. The underlying working mechanism was unveiled based on systematic experimental investigations and theoretical calculations. The system efficacy can be adapted across a wide pH range and environmental matrixes. Exhausted CNT-FeOOH filters could be effectively regenerated by chemical washing with diluted NaOH solution. Outcomes of the present study are dedicated to provide a straightforward and effective strategy by integrating electrochemistry, nanotechnology, and membrane separation for the removal of arsenic and other similar heavy metals from water bodies.
Collapse
Affiliation(s)
- Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China.
| | - Shengnan Yang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Hualin Jiang
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Bo Yang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xiaofeng Fang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Chensi Shen
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Jianmao Yang
- Research Center for Analysis & Measurement, Donghua University, Shanghai 201620, China
| | - Wolfgang Sand
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Institute of Biosciences, Freiberg University of Mining and Technology, Freiberg 09599, Germany
| | - Fang Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
46
|
Wu Q, Siddique MS, Yu W. Iron-nickel bimetallic metal-organic frameworks as bifunctional Fenton-like catalysts for enhanced adsorption and degradation of organic contaminants under visible light: Kinetics and mechanistic studies. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123261. [PMID: 32629344 DOI: 10.1016/j.jhazmat.2020.123261] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Iron-nickel bimetallic organic frameworks (FeNiX-BDC, H2BDC: terephthalic acid) were developed as bifunctional materials for adsorption and photo-Fenton degradation of organic dyes with different charge properties. Significantly enhanced adsorption capacity of FeNi1/15-BDC towards methylene blue (MB) and methyl orange (MO) was achieved, 5.3 and 2.6 times higher than that of pristine Fe-BDC, which was attributed to enlarged specific surface area and pore volume and the decreased surface charges induced by Ni doping. The adsorption kinetics demonstrated that chemisorption was dominant and intra-particle diffusion was the rate-controlling step. Two-stage degradation including slow induction stage and rapid oxidation stage fitted with pseudo-zero-order kinetics well. The increased rate constants (2.472 vs. 1.188 min-1 for MB; 0.616 vs. 0.421 min-1 for MO) in the induction stage as well as the superior removal capability by asynchronism relative to synchronism jointly corroborating the improved adsorption performance was favor for subsequent degradation. Notably, this heterogeneous system not only exhibited obvious advantages like wider pH working range (3-9), better stability and reusability of catalysts, but also achieved the dual objectives of in-situ decontamination and adsorbent regeneration. The coupling of adsorption and degradation along with synergism between photocatalysis and Fenton-like process are responsible for the reinforced removal of organic contaminants.
Collapse
Affiliation(s)
- Qiangshun Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100086, China
| | - Muhammad Saboor Siddique
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100086, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenzheng Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100086, China; Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
47
|
Song X, Wang Y, Zhou L, Luo X, Liu J. Halloysite nanotubes stabilized polyurethane foam carbon coupled with iron oxide for high-efficient and fast treatment of arsenic(III/V) wastewater. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2020.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
48
|
Pan SX, Xie TZ, Xiao TF, Xie JH. Extensive removal of thallium by graphene oxide functionalized with aza-crown ether. RSC Adv 2020; 10:44470-44480. [PMID: 35517178 PMCID: PMC9059138 DOI: 10.1039/d0ra09193f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Thallium (Tl) is a highly toxic heavy metal, and its pollution and remediation in aquatic environments has attracted considerable attention. To reduce or remove Tl pollution in the environment, various strategies have been applied. Graphene oxide (GO) has abundant oxygen-containing functional groups, indicating its high application potential for pollution remediation via methods involving binding to metal ions or positively charged organic molecules or electrostatic interaction and coordination. However, the adsorption of Tl to GO occurs via physical adsorption, for which the adsorption efficiency is low. Therefore, herein, we report a new method to effectively remove Tl pollution in water. We combined GO with aza-crown ether, which enhanced the electronegativity and ability to bind metal ions. The functionalized graphene oxide (FGO) demonstrated high efficiency through a wide pH gradient of 5-10, with a dominant Tl(i) adsorption capacity (112.21 mg g-1) based on the Langmuir model (pH 9.0, adsorbent concentration of 0.8 g L-1). The adsorption of Tl(i) during removal fit a pseudo-second-order kinetic model well. The mechanisms of Tl removal involve physical and chemical adsorption. In summary, our study provides a new method for the detection and treatment of Tl-containing wastewater by using FGO.
Collapse
Affiliation(s)
- Shu-Xin Pan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University Guangzhou 510006 China
- School of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 China
| | - Ting-Zheng Xie
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University Guangzhou 510006 China
- Institute of Environmental Research at Greater Bay, Guangzhou University Guangzhou 510006 China
| | - Tang-Fu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University Guangzhou 510006 China
- School of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 China
| | - Jie-Hui Xie
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University Guangzhou 510006 China
- Institute of Environmental Research at Greater Bay, Guangzhou University Guangzhou 510006 China
| |
Collapse
|
49
|
Rani L, Kaushal J, Srivastav AL, Mahajan P. A critical review on recent developments in MOF adsorbents for the elimination of toxic heavy metals from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44771-44796. [PMID: 32975757 DOI: 10.1007/s11356-020-10738-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Effective and substantial remediation of contaminants especially heavy metals from water is still a big challenge in terms of both environmental and biological perspectives because of their adverse effects on the human health. Many techniques including adsorption, ion exchange, co-precipitation, chemical reduction, ultrafiltration, etc. are reported for eliminating heavy metal ions from the water. However, adsorption has preferred because of its simple and easy handlings. Several types of adsorbents are observed and documented well for the purpose. Recently, highly porous metal-organic frameworks (MOFs) were developed by incorporating metals and organic ligands together and claimed as potent adsorbents for the remediation of highly toxic heavy metals from the aqueous solutions due to their unique features like greater surface area, high chemical stability, green and reuse material, etc. In this review, the authors discussed systematically some recent developments about secure MOFs to eliminate the toxic metals such as arsenic (both arsenite and arsenate), chromium(VI), cadmium (Cd), mercury (Hg) and lead (Pb). MOFs are observed as the most efficient adsorbents with greater selectivity as well as high adsorption capacity for metallic contamination. Graphical abstract.
Collapse
Affiliation(s)
- Lata Rani
- Centre for Water Sciences, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
- Chitkara University School of Basic Sciences, Chitkara University, Baddi, Himachal Pradesh, India
| | - Jyotsna Kaushal
- Centre for Water Sciences, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India.
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Baddi, Himachal Pradesh, India
| | - Pooja Mahajan
- Centre for Water Sciences, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| |
Collapse
|
50
|
Davydiuk T, Chen X, Huang L, Shuai Q, Le XC. Removal of inorganic arsenic from water using metal organic frameworks. J Environ Sci (China) 2020; 97:162-168. [PMID: 32933731 DOI: 10.1016/j.jes.2020.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Tetiana Davydiuk
- Department of Chemistry, University of Alberta, Alberta T6G 2G3, Canada
| | - Xiaojian Chen
- Department of Chemistry, University of Alberta, Alberta T6G 2G3, Canada
| | - Lijin Huang
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Qin Shuai
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - X Chris Le
- Department of Chemistry, University of Alberta, Alberta T6G 2G3, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3,Canada.
| |
Collapse
|