1
|
Khan N, Shahid S, Ahmed K, Yaseen ZM. Modeling spatial PM 2.5 risk dynamics and projecting disease burden in Pakistan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126060. [PMID: 40090455 DOI: 10.1016/j.envpol.2025.126060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/25/2025] [Accepted: 03/12/2025] [Indexed: 03/18/2025]
Abstract
Air pollution, especially small particulate matter (PM2.5), has emerged as a significant public health crisis in Pakistan, yet its long-term health impacts remain understudied. There is a critical lack of high-resolution spatiotemporal analysis that captures the changing exposure levels and associated mortality trends over extended periods. This study investigates this gap by addressing the spatiotemporal variations in PM2.5 exposure and its associated mortality burden from 2000 to 2021. Additionally, it projects possible spatiotemporal changes in mortality for two scenarios, business-as-usual and PM2.5 mitigation. The Global Exposure Mortality Model (GEMM) was applied on 0.01° resolution gridded PM2.5 and population concentration data to quantify PM2.5-attributed mortality for major diseases: ischemic heart disease (IHD), cerebrovascular disease (CEV), chronic obstructive pulmonary disease (COPD), lower respiratory infection (LRI) and lung cancer (LC). The results showed escalating levels and expanded geographical spread of PM2.5 and mortality in Pakistan. Population exposure estimates reveal high-risk zones with over 80 μg/m3 concentrations engulfing densely inhabited areas far exceeding the WHO annual limit of 5 μg/m3. The number of PM2.5 -related deaths increased from 57,100 in 2000 to 157,762 in 2021. IHD showed the highest sensitivity to PM2.5, marked by over three times higher hazard ratio at 150 μg/m3 exposure. Spatial mapping revealed IHD and LRI mortality hotspots corresponding to settlers near the Indus River basin. Notably, central parts recorded over 2 μg/m3 annual PM2.5 increase. Future projections based on growth trajectories forecast that the uncontrolled increase in PM2.5 could inflate ischemic heart disease deaths from 14,248 to 142,903 by 2030, leading to a total PM2.5 -related mortality burden exceeding 290,000 deaths. However, stabilizing PM2.5 levels under a mitigation scenario could significantly reduce mortality to 29,062 by 2030. This study provides critical insights into demographic vulnerabilities, high-risk zones, and future mortality trends, emphasizing the urgency for mitigation policies to safeguard millions facing existential risk.
Collapse
Affiliation(s)
- Najeebullah Khan
- Department of Water and Environmental Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia; Department of Civil Engineering, Faculty of Engineering Science and Technology, Lasbela University of Agriculture, Water and Marine Sciences, 90150, Balochistan, Pakistan.
| | - Shamsuddin Shahid
- Department of Water and Environmental Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia; Regional Climate Change Centre, National Center for Meteorology, Al Warood District, Prince Majid Road, P.O. Box: 1358, Jeddah, 21431, Saudi Arabia; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, 64001, Nasiriyah, Thi-Qar, Iraq.
| | - Kamal Ahmed
- Department of Civil Engineering, Faculty of Engineering Science and Technology, Lasbela University of Agriculture, Water and Marine Sciences, 90150, Balochistan, Pakistan.
| | - Zaher Mundher Yaseen
- Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
2
|
Hua C, Ma W, Zheng F, Zhang Y, Xie J, Ma L, Song B, Yan C, Li H, Liu Z, Liu Q, Kulmala M, Liu Y. Health risks and sources of trace elements and black carbon in PM 2.5 from 2019 to 2021 in Beijing. J Environ Sci (China) 2024; 142:69-82. [PMID: 38527897 DOI: 10.1016/j.jes.2023.05.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 03/27/2024]
Abstract
A comprehensive health risk assessment of PM2.5 is meaningful to understand the current status and directions regarding further improving air quality from the perspective of human health. In this study, we evaluated the health risks of PM2.5 as well as highly toxic inorganic components, including heavy metals (HMs) and black carbon (BC) based on long-term observations in Beijing from 2019 to 2021. Our results showed that the relative risks of chronic obstructive pulmonary disease, lung cancer, acute lower respiratory tract infection, ischemic heart disease, and stroke decreased by 4.07%-9.30% in 2020 and 2.12%-6.70% in 2021 compared with 2019. However, they were still at high levels ranging from 1.26 to 1.77, in particular, stroke showed the highest value in 2021. Mn had the highest hazard quotient (HQ, from 2.18 to 2.56) for adults from 2019 to 2021, while Ni, Cr, Pb, As, and BC showed high carcinogenic risks (CR > 1.0×10-6) for adults. The HQ values of Mn and As and the CR values of Pb and As showed constant or slight upwards trends during our observations, which is in contrast to the downward trends of other HMs and PM2.5. Mn, Cr, and BC are crucial toxicants in PM2.5. A significant shrink of southern region sourcesof HMs and BCshrank suggests the increased importance of local sources. Industry, dust, and biomass burning are the major contributors to the non-carcinogenic risks, while traffic emissions and industry are the dominant contributors to the carcinogenic risks in Beijing.
Collapse
Affiliation(s)
- Chenjie Hua
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei Ma
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Feixue Zheng
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yusheng Zhang
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiali Xie
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Li Ma
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Boying Song
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Yan
- Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Hongyan Li
- School of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Zhen Liu
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Markku Kulmala
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Yongchun Liu
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
3
|
Wang L, Zhao W, Luo P, He Q, Zhang W, Dong C, Zhang Y. Environmentally persistent free radicals in PM 2.5 from a typical Chinese industrial city during COVID-19 lockdown: The unexpected contamination level variation. J Environ Sci (China) 2024; 135:424-432. [PMID: 37778816 PMCID: PMC9418963 DOI: 10.1016/j.jes.2022.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 05/16/2023]
Abstract
The outbreak of COVID-19 has caused concerns globally. To reduce the rapid transmission of the virus, strict city lockdown measures were conducted in different regions. China is the country that takes the earliest home-based quarantine for people. Although normal industrial and social activities were suspended, the spread of virus was efficiently controlled. Simultaneously, another merit of the city lockdown measure was noticed, which is the improvement of the air quality. Contamination levels of multiple atmospheric pollutants were decreased. However, in this work, 24 and 14 air fine particulate matter (PM2.5) samples were continuously collected before and during COVID-19 city lockdown in Linfen (a typical heavy industrial city in China), and intriguingly, the unreduced concentration was found for environmentally persistent free radicals (EPFRs) in PM2.5 after normal life suspension. The primary non-stopped coal combustion source and secondary Cu-related atmospheric reaction may have impacts on this phenomenon. The cigarette-based assessment model also indicated possible exposure risks of PM2.5-bound EPFRs during lockdown of Linfen. This study revealed not all the contaminants in the atmosphere had an apparent concentration decrease during city lockdown, suggesting the pollutants with complicated sources and formation mechanisms, like EPFRs in PM2.5, still should not be ignored.
Collapse
Affiliation(s)
- Lingyun Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; Center of Advanced Analysis and Gene Sequencing, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Wuduo Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; Center of Advanced Analysis and Gene Sequencing, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Peiru Luo
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; Center of Advanced Analysis and Gene Sequencing, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Qingyun He
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; Center of Advanced Analysis and Gene Sequencing, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Wenfen Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; Center of Advanced Analysis and Gene Sequencing, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Yanhao Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China.
| |
Collapse
|
4
|
Xiong NX, Fang ZX, Kuang XY, Wang F, Ou J, Luo SW. Upregulation of oxidative stress by triphenyl phosphate (TPhP) exposure causes antioxidant insult and apoptotic process in Epithelioma papulosum cyprini (EPC) cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119217-119227. [PMID: 37922075 DOI: 10.1007/s11356-023-30697-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2023]
Abstract
Triphenyl phosphate (TPhP) is the predominant compound of organophosphate flame retardants (OPFRs), which can elicit a toxicological effect on physiological response and tissue development of fish. In this study, we investigated the effect of TPhP exposure on cell viability, antioxidant capacities, and apoptosis in EPC cells. Current study revealed that TPhP exposure could decrease cell viability and promote intracellular oxidative stress in EPC cells. In addition, high-dose TPhP exposure could facilitate antioxidant insults and cause mitochondrial collapse in a dose-dependent manner, along with increased gene expressions involved in apoptosis and unfolded protein response (UPR). These results indicated that reactive oxygen species (ROS)-induced cytotoxic stress and cell death were involved in antioxidant insults and apoptotic activation in TPhP-exposed fish cells.
Collapse
Affiliation(s)
- Ning-Xia Xiong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Zi-Xuan Fang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Xu-Ying Kuang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Fei Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Jie Ou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Sheng-Wei Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China.
| |
Collapse
|
5
|
Wang F, Qin ZL, Luo WS, Xiong NX, Huang MZ, Ou J, Luo SW, Liu SJ. Alteration of synergistic immune response in gut-liver axis of white crucian carp (Carassius cuvieri) after gut infection with Aeromonas hydrophila. JOURNAL OF FISH DISEASES 2023; 46:917-927. [PMID: 37205784 DOI: 10.1111/jfd.13799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
Aeromonas hydrophila can pose a great threat to the survival of farmed fish. In current study, we investigated the pathological characteristics and immune response in gut-liver axis of white crucian carp (WCC) upon gut infection. WCC anally intubated with A. hydrophila exerted a tissue deformation in damaged midgut with elevated levels of goblet cells along with a significant decrease in tight junction proteins and villi length-to-width ratios. In addition, immune-related gene expressions and antioxidant properties increased dramatically in gut-liver axis of WCC following gut infection with A. hydrophila. These results highlighted the immune modulation and redox alteration in gut-liver axis of WCC in response to gut infection.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Zi-Le Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Wei-Sheng Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Ning-Xia Xiong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Ming-Zhu Huang
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China
| | - Jie Ou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Sheng-Wei Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Shao-Jun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| |
Collapse
|
6
|
Liu M, Xiao S, Wang Y, Li L, Mi J, Wang S. Synergistic analysis of atmospheric pollutants NO 2 and PM 2.5 based on land use regression models: a case study of the Yangtze River Delta, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1048. [PMID: 37589897 DOI: 10.1007/s10661-023-11637-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/24/2023] [Indexed: 08/18/2023]
Abstract
Air pollution is considered one of the greatest threats to human health. This study combines a land use regression (LUR) model with satellite measurements and a distributed-lagged non-linear model (DLNM). It aims to predict high-resolution ground-level concentrations of nitrogen dioxide (NO2) and particulate matter 2.5 (PM2.5) in the Yangtze River Delta (YRD) and reveal the mechanisms of influence between NO2 and PM2.5 and precursors and meteorological factors. Results showed that the annual average NO2 and PM2.5 in the YRD urban agglomeration 2019 were 39.5 µg/m3 and 37.5 µg/m3, respectively. The seasonal variation of NO2 and PM2.5 showed winter > spring > autumn > summer. There is a compelling and complex relationship between NO2 and PM2.5. Predictors indicate that latitude (Y), surface pressure (P), ozone (O3), carbon monoxide (CO), aerosol optical depth (AOD), residential, and rangeland have positive impacts on NO2 and PM2.5. In contrast, temperature (T), precipitation (PRE), and industrial trees hurt NO2 and PM2.5. DLNM model results show that NO2 and PM2.5 had significant associations with the included precursors and meteorological elements, with lagged and non-linear effects observed. Satellite data could help significantly increase the accuracy of LUR models; the R2 of tenfold cross-validation was enhanced by 0.18-0.22. In 2019, PM2.5 will be the dominant pollutant in the YRD, and NO2 showed a high value in the central and eastern parts of the YRD. High concentrations of NO2 and PM2.5 are present in 86% of the YRD, meaning that residents will have difficulty avoiding exposure to these two high pollution levels.
Collapse
Affiliation(s)
- Minxia Liu
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, China.
| | - Shirui Xiao
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, China
| | - Yang Wang
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, China
| | - Le Li
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, China
| | - Jiale Mi
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, China
| | - Siyuan Wang
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, China
| |
Collapse
|
7
|
Li S, Qu M. Spatiotemporal variations and mechanism of PM 2.5 pollution in urban area: The case of Guiyang, Guizhou, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118030. [PMID: 37172348 DOI: 10.1016/j.jenvman.2023.118030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/26/2022] [Accepted: 04/25/2023] [Indexed: 05/14/2023]
Abstract
PM2.5 has been a hot concern in the recent decade. Many studies have focused on metropolises or those areas with poor air quality, but the PM2.5 of more widespread areas is less considered. Considering the challenges of rapid economic growth and environmental problems against a developing region, we took Guiyang as a study case to assess the spatiotemporal variations and mechanism of PM2.5 pollution in an urban area from 2000 to 2020 in an extended sense. Based on PM2.5 concentration data from 14 monitoring points in Guiyang, spatiotemporal variations and formation mechanism were assessed using wavelet, moving maximal information coefficients, and spatial correlation analysis. The urban Nighttime light data was selected to evaluate the impacts of socioeconomic factors on PM2.5 concentration using spatial correlation analysis. Further, wavelet and statistical analysis were adopted to analyze multi-dimensional temporal variations of PM2.5 hourly concentration and the relationship with pressure, temperature, vapor pressure, relative humidity, wind, and visibility. The PM2.5 hourly concentration was obtained from the monitoring points in downtown Guiyang according to data continuity and availability. PM2.5 had different temporal variations at daily, monthly, seasonal, and annual levels, and interannual variation was the most obvious. The temperature was the main factor leading to the interannual temporal variation of PM2.5. Wind and pressure were more significant for the responses of a shorter period variation with -0.76 and -0.80 of the minimum of correlation coefficient, respectively. Meanwhile, human activities significantly influenced spatiotemporal variations of PM2.5. A spatial correlation analysis between PM2.5 and the related influencing factors from 2000 to 2018 was implemented based on a geographic information system. Besides, the landcovers within a buffer zone with a radius of 1 km on 14 monitoring points were visually interpreted to analyze the relationship between PM2.5 and landcovers. Moreover, multivariate wavelet coherence analysis revealed the PM2.5 interaction among monitoring points. The PM2.5 concentration in Guiyang dropped from 49 μg/m3 in 2012 to about 27 μg/m3 in 2018, and the air quality greatly improved. As in most cities, Guiyang has a significant PM2.5 pollution island effect, with traffic and building land density contributing to higher PM2.5 concentrations. There were some typical nonlinear spatiotemporal variations between PM2.5 and its influencing factors, and these variations varied with the selected scale.
Collapse
Affiliation(s)
- Song Li
- School of Geography and Resources, Guizhou Education University, Guiyang, Guizhou, 550018, China; Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Mingxin Qu
- Guiyang Municipal Environmental Monitoring Center, Guiyang, Guizhou, 550007, China
| |
Collapse
|
8
|
He X, Zhao Q, Chai X, Song Y, Li X, Lu X, Li S, Chen X, Yuan Y, Cai Z, Qi Z. Contribution and Effects of PM 2.5-Bound Lead to the Cardiovascular Risk of Workers in a Non-Ferrous Metal Smelting Area Considering Chemical Speciation and Bioavailability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1743-1754. [PMID: 36683337 PMCID: PMC10775141 DOI: 10.1021/acs.est.2c07476] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Lead is known to have toxic effects on the cardiovascular system. Owing to its high concentration, transmission range, and absorption efficiency in organisms, inhalation of fine particulate matter (PM2.5)-bound lead (PM2.5-Pb) may cause significant cardiovascular damage. However, the contribution and adverse effects of PM2.5-Pb on workers and residents in non-ferrous metal smelting areas are not fully understood. In this work, the concentration and chemical speciation of PM2.5-Pb were analyzed to determine its pollution characteristics at a typical non-ferrous metal smelting site. A panel study conducted among factory workers revealed that PM2.5-Pb exposure makes an important contribution to the human absorption of Pb. Although the chemical speciation of PM2.5-Pb suggested poor water solubility, a high bioavailability was observed in mice (tissue average value: 50.1%, range: 31.1-71.1%) subjected to inhalation exposure for 8 weeks. Based on the bioavailability data, the relationship between PM2.5-Pb exposure and cardiovascular damage was evaluated in animal simulation experiments. Finally, a damage threshold and cardiovascular-specific risk assessment model were established for the non-ferrous metal smelting area. Our project not only accurately estimates the risk of PM2.5-bound heavy metals on the cardiovascular system but also offers a scientific basis for future prevention and therapy of PM2.5-Pb-related diseases.
Collapse
Affiliation(s)
- Xiaochong He
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong
University of Technology, Guangzhou510006, China
| | - Qiting Zhao
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong
University of Technology, Guangzhou510006, China
| | - Xuyang Chai
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong
University of Technology, Guangzhou510006, China
| | - Yuanyuan Song
- State
Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, Hong Kong00000, China
| | - Xuelan Li
- The
Center for Reproductive Medicine, Shunde Hospital, Southern Medical University (The First People’s Hospital of
Shunde), 528300Foshan, Guangdong, China
| | - Xingwen Lu
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong
University of Technology, Guangzhou510006, China
| | - Shoupeng Li
- Analysis
and Test Center, Guangdong University of
Technology, Guangzhou510006, China
| | - Xin Chen
- The
Center for Reproductive Medicine, Shunde Hospital, Southern Medical University (The First People’s Hospital of
Shunde), 528300Foshan, Guangdong, China
| | - Yong Yuan
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong
University of Technology, Guangzhou510006, China
| | - Zongwei Cai
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong
University of Technology, Guangzhou510006, China
- State
Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, Hong Kong00000, China
| | - Zenghua Qi
- Guangdong-Hong
Kong-Macao Joint Laboratory for Contaminants Exposure and Health,
School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong
University of Technology, Guangzhou510006, China
| |
Collapse
|
9
|
Yang S, Wen L, Chai X, Song Y, Chen X, Chen ZF, Li R, Dong C, Qi Z, Cai Z. The protective effects of taurine and fish oil supplementation on PM 2.5-induced heart dysfunction among aged mice: A random double-blind study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:157966. [PMID: 35964740 DOI: 10.1016/j.scitotenv.2022.157966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/24/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
As it is nearly impossible to reduce PM2.5 concentrations in most cities to safe limits in a short period of time, dietary supplementation presents a promising approach for mitigating the adverse effects of PM2.5 exposure. A cross-sectional study showed that the elderly population of Linfen (PM2.5: 102 μg/m3) exhibited significantly lower serum taurine levels, as well as higher oxidative stress levels and cardiovascular health risks, than the corresponding population in Guangzhou (PM2.5: 39 μg/m3). We conducted a random double-blind study on aged mice that employed a "real-world" PM2.5 exposure system to simulate the conditions of Linfen with the aim of investigating the protective effects of taurine and fish oil supplementation on PM2.5-induced heart dysfunction. When compared with the placebo group, supplementation with taurine and fish oil not only maintained normal taurine levels, but also suppressed oxidative stress and inflammation in aged mice subjected to high concentrations of PM2.5. Variations in heart rate, contractile function, cardiac oxidative stress, inflammation and fibrosis among different groups of aged mice were used to clarify the beneficial effects of taurine and fish oil supplementation. Our results not only revealed the protective effects of taurine and fish oil supplementation on heart dysfunction induced by PM2.5 exposure from the aged mice experiments and also provided new means for the elderly to resist PM2.5 pollution at the individual level.
Collapse
Affiliation(s)
- Shiyi Yang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Luyao Wen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xuyang Chai
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Xin Chen
- The Center for Reproductive Medicine, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), 528300 Foshan, Guangdong, China
| | - Zhi-Feng Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Zenghua Qi
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zongwei Cai
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
10
|
Sun Y, Aishan T, Halik Ü, Betz F, Rezhake R. Assessment of air quality before and during the COVID-19 and its potential health impacts in an arid oasis city: Urumqi, China. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT : RESEARCH JOURNAL 2022; 37:1265-1279. [PMID: 36438164 PMCID: PMC9676778 DOI: 10.1007/s00477-022-02338-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
As a key node city of the "Silk Road Economic Belt" Urumqi has been listed as one of the ten most polluted cities in the world, posing a serious threat to the urban environment and residents' health. This study analyzed the air quality before and during the COVID-19 (Coronavirus disease 2019) pandemic and its potential health effects based on the data of PM2.5, PM10, SO2, NO2, CO, and O3_8h levels from 10 air quality monitoring stations in Urumqi from January 1, 2017, to December 31, 2021. As per the results, the concentrations of the air pollutants PM2.5, PM10, SO2, NO2, CO, and O3_8h in Urumqi from 2017 to 2021 showed a cyclical trend, and the implementation of COVID-19 prevention and control measures could effectively reduce the concentration(ρ) of air pollutants. The mean value of ρ(PM2.5) decreased from 2017 to 2021, whereas ρ(O3_8h) showed a waveform change trend (increased in 2017-2018, decreased in 2018-2020, and increased after 2020). Meanwhile, the maximum annual average values of ρ(PM2.5) and ρ(O3_8h) for the six monitoring stations during 2017-2021 occurred at sites S2 (74.37 µg m-3) and S6 (91.80 µg m-3), respectively; rapid industrialization had a greater impact on PM2.5 and O3_8h concentrations compared to commercial and residential areas. In addition, the air quality index data series can characterize the fluctuation trend of PM2.5. The high pollution levels (Class IV and V) of the air pollutants PM2.5 and O3_8h in Urumqi have been decreasing annually, and good days can account for 80-95% of the total number of days in the year, indicating that the number of days with a potential threat to residents' health is gradually decreasing. Therefore, more attention should be paid in controlling and managing air pollution in Urumqi.
Collapse
Affiliation(s)
- Yaxin Sun
- College of Ecology and Environment, Xinjiang University, Urumqi, 830046 Xinjiang China
- Ministry of Education Key Laboratory of Oasis Ecology, Urumqi, 830046 Xinjiang China
| | - Tayierjiang Aishan
- College of Ecology and Environment, Xinjiang University, Urumqi, 830046 Xinjiang China
- Ministry of Education Key Laboratory of Oasis Ecology, Urumqi, 830046 Xinjiang China
| | - Ümüt Halik
- College of Ecology and Environment, Xinjiang University, Urumqi, 830046 Xinjiang China
- Ministry of Education Key Laboratory of Oasis Ecology, Urumqi, 830046 Xinjiang China
| | - Florian Betz
- Faculty of Mathematics and Geography, University of Eichstaett-Ingolstadt, Ostenstraße 14, 85071 Eichstaett, Germany
| | - Remila Rezhake
- Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830017 Xinjiang China
| |
Collapse
|
11
|
Thuong DTH, Dang TN, Phosri A, Siriwong W, Dung TTT, Vy NTT, Kallawicha K. Fine particulate matter and daily hospitalizations for mental and behavioral disorders: A time-series study in Ho Chi Minh City, Vietnam. ENVIRONMENTAL RESEARCH 2022; 213:113707. [PMID: 35718167 DOI: 10.1016/j.envres.2022.113707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Various adverse health outcomes caused by particulate matter (PM) exposure has been documented, while the evidence for the adverse effects of PM exposure on mental and behavioral disorders (MBDs) is limited. To date, few epidemiological studies, especially in developing countries, have focused on these adverse effects. In the past decade, air pollution sources in Vietnam have noticeably increased, resulting to the elevated concentrations of ambient air pollutants particularly fine PM or PM with an aerodynamic diameter ≤2.5 μm (PM2.5). Hence, investigating the short-term association between PM2.5 and MBDs is worthwhile. In this study, a quasi-Poisson time-series regression analysis was used to investigate the association between PM2.5 exposure and daily hospitalizations for MBDs to the Ho Chi Minh City Mental Health Hospital during 2017-2020. A natural cubic spline smooth function for time was used to screen out long-term and seasonality trends. Stratified analyses were also performed by sex, age, and season. During study period, 9,986 hospitalizations for MBDs were recorded and included in the analysis. Results suggested that a 10 μg/m3 daily increase in PM2.5 concentration was associated with a statistically significant 2.96% (95% confidence interval: 0.23%-5.76%) increase in hospitalizations for MBDs. The effects of PM2.5 exposure on hospital admissions were more pronounced in female patients and the middle-age group (35-59 years). This finding could increase awareness regarding prevention and minimization of MBDs on the public.
Collapse
Affiliation(s)
- Do Thi Hoai Thuong
- College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand; Grant and Innovation Center, University of Medicine and Pharmacy at Ho Chi Minh City, Viet Nam
| | - Tran Ngoc Dang
- Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City, Viet Nam
| | - Arthit Phosri
- Department of Environmental Health Sciences, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Wattasit Siriwong
- College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Truong Thi Thuy Dung
- Department of Public Health, School of Medicine, International University of Health and Welfare, Japan
| | - Nguyen Thi Tuong Vy
- MedPharmRes Journal, University of Medicine and Pharmacy at Ho Chi Minh City, Viet Nam
| | - Kraiwuth Kallawicha
- College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
12
|
Spatiotemporal Distribution Patterns and Exposure Risks of PM2.5 Pollution in China. REMOTE SENSING 2022. [DOI: 10.3390/rs14133173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The serious pollution of PM2.5 caused by rapid urbanization in recent years has become an urgent problem to be solved in China. Annual and daily satellite-derived PM2.5 datasets from 2001 to 2020 were used to analyze the temporal and spatial patterns of PM2.5 in China. The regional and population exposure risks of the nation and of urban agglomerations were evaluated by exceedance frequency and population weight. The results indicated that the PM2.5 concentrations of urban agglomerations decreased sharply from 2014 to 2020. The region with PM2.5 concentrations less than 35 μg·m−3 accounted for 80.27% in China, and the average PM2.5 concentrations in 8 urban agglomerations were less than 35 μg·m−3 in 2020. The spatial distribution pattern of PM2.5 concentrations in China revealed higher concentrations to the east of the Hu Line and lower concentrations to the west. The annual regional exposure risk (RER) in China was at a high level, with a national average of 0.75, while the average of 14 urban agglomerations was as high as 0.86. Among the 14 urban agglomerations, the average annual RER was the highest in the Shandong Peninsula (0.99) and lowest in the Northern Tianshan Mountains (0.76). The RER in China has obvious seasonality; the most serious was in winter, and the least serious was in summer. The population exposure risk (PER) east of the Hu Line was significantly higher than that west of the Hu Line. The average PER was the highest in Beijing-Tianjin-Hebei (4.09) and lowest in the Northern Tianshan Mountains (0.71). The analysis of air pollution patterns and exposure risks in China and urban agglomerations in this study could provide scientific guidance for cities seeking to alleviate air pollution and prevent residents’ exposure risks.
Collapse
|
13
|
Zeng J, Wang C. Temporal characteristics and spatial heterogeneity of air quality changes due to the COVID-19 lockdown in China. RESOURCES, CONSERVATION, AND RECYCLING 2022; 181:106223. [PMID: 35153377 PMCID: PMC8825306 DOI: 10.1016/j.resconrec.2022.106223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/19/2022] [Accepted: 02/05/2022] [Indexed: 05/16/2023]
Abstract
Previous studies have evaluated the impact of lockdown measures on air quality during the COVID-19 pandemic in China, but few have focused on the temporal characteristics and spatial heterogeneity of the impact across all 337 prefecture cities. In this study, we estimated the impact of the lockdown measures on air quality in each of 337 cities using the Regression Discontinuity in Time method. There was a short-term influence from January 24th to March 31th in 2020. The 337 cities could be divided into six categories showing different response and resilience patterns to the epidemic. Fine particulate matter (PM2.5) in 89.5% of the cities was sensitive to the lockdown measures. The change of air pollutants showed high spatial heterogeneity. The provinces with a greater than 20% reduction in PM2.5 and PM10 and greater than 40% reduction in NO2 during the impact period were mainly concentrated southeast of the "Hu Line". Compared to the no-pandemic scenario, the national annual average concentration of PM2.5, NO2, PM10, SO2, and CO in 2020 were decreased by 6.3%, 10.6%, 7.4%, 9.0%, and 12.5%, respectively, while that of O3 increased by 1.1%.This result indicates that 2020 can still be used as a baseline for setting and allocating air improvement targets for the next five years.
Collapse
Affiliation(s)
- Jinghai Zeng
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, Tsinghua University, Beijing 100084, China
- Department of Atmospheric Environment (Atmospheric Environment Administration of the Beijing-Tianjin-Hebei Region and Surrounding Areas), Ministry of Ecology and Environment, Beijing 100005, China
| | - Can Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Liu C, Huang Z, Huang J, Liang C, Ding L, Lian X, Liu X, Zhang L, Wang D. Comparison of PM 2.5 and CO 2 Concentrations in Large Cities of China during the COVID-19 Lockdown. ADVANCES IN ATMOSPHERIC SCIENCES 2022; 39:861-875. [PMID: 35313553 PMCID: PMC8926446 DOI: 10.1007/s00376-021-1281-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/01/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
Estimating the impacts on PM2.5 pollution and CO2 emissions by human activities in different urban regions is important for developing efficient policies. In early 2020, China implemented a lockdown policy to contain the spread of COVID-19, resulting in a significant reduction of human activities. This event presents a convenient opportunity to study the impact of human activities in the transportation and industrial sectors on air pollution. Here, we investigate the variations in air quality attributed to the COVID-19 lockdown policy in the megacities of China by combining in-situ environmental and meteorological datasets, the Suomi-NPP/VIIRS and the CO2 emissions from the Carbon Monitor project. Our study shows that PM2.5 concentrations in the spring of 2020 decreased by 41.87% in the Yangtze River Delta (YRD) and 43.30% in the Pearl River Delta (PRD), respectively, owing to the significant shutdown of traffic and manufacturing industries. However, PM2.5 concentrations in the Beijing-Tianjin-Hebei (BTH) region only decreased by 2.01% because the energy and steel industries were not fully paused. In addition, unfavorable weather conditions contributed to further increases in the PM2.5 concentration. Furthermore, CO2 concentrations were not significantly affected in China during the short-term emission reduction, despite a 19.52% reduction in CO2 emissions compared to the same period in 2019. Our results suggest that concerted efforts from different emission sectors and effective long-term emission reduction strategies are necessary to control air pollution and CO2 emissions.
Collapse
Affiliation(s)
- Chuwei Liu
- Collaborative Innovation Center for Western Ecological Safety (CIWES), College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000 China
| | - Zhongwei Huang
- Collaborative Innovation Center for Western Ecological Safety (CIWES), College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000 China
| | - Jianping Huang
- Collaborative Innovation Center for Western Ecological Safety (CIWES), College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000 China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101 China
| | - Chunsheng Liang
- Collaborative Innovation Center for Western Ecological Safety (CIWES), College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000 China
| | - Lei Ding
- Collaborative Innovation Center for Western Ecological Safety (CIWES), College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000 China
| | - Xinbo Lian
- Collaborative Innovation Center for Western Ecological Safety (CIWES), College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000 China
| | - Xiaoyue Liu
- Collaborative Innovation Center for Western Ecological Safety (CIWES), College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000 China
| | - Li Zhang
- Collaborative Innovation Center for Western Ecological Safety (CIWES), College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000 China
| | - Danfeng Wang
- Collaborative Innovation Center for Western Ecological Safety (CIWES), College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000 China
| |
Collapse
|
15
|
Dhital NB, Wang LC, Yang HH, Lee CH, Shih WH, Wu CS. Effects of the COVID-19 pandemic on public bus occupancy and real-world tailpipe emissions of gaseous pollutants per passenger kilometer traveled. SUSTAINABLE ENVIRONMENT RESEARCH 2022; 32:35. [PMCID: PMC9361239 DOI: 10.1186/s42834-022-00146-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/25/2022] [Indexed: 06/17/2023]
Abstract
Public buses typically have less emission per passenger kilometer traveled (PKT) than private cars and motorcycles, and the emission benefit of public buses increases with ridership. However, the drop in public bus usage during the novel coronavirus (COVID-19) pandemic could lead to an increase in air pollutant emissions per PKT, making the emission benefits of public buses questionable. This study investigated the effects of the COVID-19 pandemic on public bus occupancy rates in Taichung City, Taiwan, and also compared real-world emissions per PKT of carbon monoxide (CO), total hydrocarbons (THC), nitric oxide (NO), and carbon dioxide (CO2) of a public bus before and during the pandemic. Mean bus occupancy rates were 11–25% on different bus routes before the pandemic, indicating that only a fourth or less of the bus passenger capacity was utilized. During the pandemic, mean bus occupancy rates dropped to 4–15%. Moreover, the public bus was less polluting based on CO and THC emissions than the car and motorcycle, even at the low passenger occupancy rates observed during the pandemic. However, NO and CO2 emissions per PKT of the bus were remarkably higher during the pandemic than those of the car and motorcycle. Furthermore, we estimated the break-even passenger occupancy rate for buses as 15%, which was the minimum threshold occupancy rate below which the buses would be more polluting than cars and motorcycles in terms of CO, THC, and CO2 emissions per PKT. Our findings will help transport management authorities and policymakers to optimize bus route designs and frequencies and implement anti-pandemic measures to maximize the environmental benefits of the public bus transit systems.
Collapse
Affiliation(s)
- Narayan Babu Dhital
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung City, 413310 Taiwan
- Department of Environmental Science, Patan Multiple Campus, Tribhuvan University, Patandhoka, 44700 Nepal
| | - Lin-Chi Wang
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan City, 320314 Taiwan
- Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan City, 320314 Taiwan
| | - Hsi-Hsien Yang
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung City, 413310 Taiwan
| | - Che-Hsuan Lee
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung City, 413310 Taiwan
| | - Wei-Hung Shih
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung City, 413310 Taiwan
| | - Cheng-Shiu Wu
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung City, 413310 Taiwan
| |
Collapse
|