1
|
Jiang L, Chen X, Zhang K, Fan M, Qian H, Wang L, Li Y. Modifications and in vitro absorption of 5-heptadecyresorcinol from cereals using digestion and ussing chamber models. Food Res Int 2024; 195:114985. [PMID: 39277247 DOI: 10.1016/j.foodres.2024.114985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/25/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024]
Abstract
5-Heptadecylresorcinol (AR-C17), a homologue of alkylresorcinols (ARs) and mainly observed in cereal brans, has stronger physiological functions compared with its homologues. However, not only is its content rare but also the purification low. Besides, few researches on its digestion characteristics and bioavailability limits its maximum applications. Here, we mainly relied on solid-state fermentation, embedment, in vitro models to systematically evaluate processing technologies, digestion and absorption characteristics of AR-C17. We showed that the highest content of AR-C17 was 57.6 μg/g extracted from triticale bran fermented by Saccharomyces cerevisiae relying on ultrasound-assistance. Additionally, AR-C17 was chiefly absorbed in duodenum and jejunum, and its apparent absorption increased by around 2.1 times when quercetin was added as the synergistic agent, which was higher than other phenolics in bran extract. Furthermore, AR-C17 embedded by β-cyclodextrin avoided the decomposition of in strong acidic environment, enhancing the retention rate to 96 % in in vitro digestion. According to the results above, we mixed AR-C17 with the quercetin, and embedded the mixture by β-cyclodextrin, which maximized the apparent absorption of AR-C17, reaching 19.8 % when the ratio of quercetin and AR-C17 was 1:1.
Collapse
Affiliation(s)
- Lei Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Xiaofang Chen
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kuiliang Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
2
|
Lázaro Á, Frangiamone M, Maietti A, Cimbalo A, Vila-Donat P, Manyes L. Allium sativum L. var. Voghiera Reduces Aflatoxin B1 Bioaccessibility and Cytotoxicity In Vitro. Foods 2024; 13:487. [PMID: 38338622 PMCID: PMC10855818 DOI: 10.3390/foods13030487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
The present work focuses on the evaluation of AFB1's bioaccessibility and cytotoxicity in vitro using bread (naturally contaminated) enriched or not enriched with fresh Voghiera garlic (2%). Two different experiments were carried out: experiment 1 (E1), with low-AFB1-concentration breads (1.6-1.7 mg/kg); and experiment 2 (E2), with high-AFB1-concentration breads (96.4-102.7 mg/kg). Eight breads were prepared, four for E1 (experiment 1) and another four for E2 (experiment 2), with each experiment having a control group (C), a garlic-enriched group (2%) (G), an AFB1 group (A), and an AFB1 + garlic group (A + G). Simulated digestion was performed on each type of bread, and gastric and intestinal digests were obtained. AFB1 content in flours, baked bread, and gastric and intestinal digests was measured by High-Performance Liquid Chromatography coupled to Fluorescence Detection. The results demonstrate dose-dependent AFB1 bioaccessibility and that the presence of garlic contributed to its reduction in both doses (7-8%). Moreover, garlic's presence in AFB1-contaminated bread increased cell viability (9-18%) in differentiated Caco-2 cells and mitigated the arrest of S and G2/M phases provoked by AFB1 on Jurkat T cells and reduced apoptosis/necrosis, cellular reactive oxygen species (ROS), and mitochondrial ROS by 16%, 71%, and 24% respectively. The inclusion of garlic as a functional ingredient helped relieve the presence and effects of AFB1.
Collapse
Affiliation(s)
- Álvaro Lázaro
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, University of Valencia, 46100 Burjassot, Spain; (Á.L.); (M.F.); (P.V.-D.); (L.M.)
| | - Massimo Frangiamone
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, University of Valencia, 46100 Burjassot, Spain; (Á.L.); (M.F.); (P.V.-D.); (L.M.)
| | - Annalisa Maietti
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy;
| | - Alessandra Cimbalo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, University of Valencia, 46100 Burjassot, Spain; (Á.L.); (M.F.); (P.V.-D.); (L.M.)
| | - Pilar Vila-Donat
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, University of Valencia, 46100 Burjassot, Spain; (Á.L.); (M.F.); (P.V.-D.); (L.M.)
| | - Lara Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, University of Valencia, 46100 Burjassot, Spain; (Á.L.); (M.F.); (P.V.-D.); (L.M.)
| |
Collapse
|
3
|
Escrivá L, Calpe J, Lafuente C, Moreno A, Musto L, Meca G, Luz C. Aflatoxin B1 and ochratoxin A reduction by Lactobacillus spp. during bread making. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7095-7103. [PMID: 37332099 DOI: 10.1002/jsfa.12796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/09/2023] [Accepted: 06/19/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Aflatoxin B1 (AFB1) and ochratoxin A (OTA) are among the most important mycotoxins with common presence in bread and bakery products. Biological detoxification of mould food spoilage and mycotoxin contamination by lactic acid bacteria (LABs) exhibits high potential on a cost-effective and large scale. In this work, the effect of Lactobacillus strains isolated from goat milk whey on reducing AFB1 and OTA during bread making was evaluated by the determination of mycotoxin reduction potential of 12 LAB strains after 72 h incubation in De Man-Rogosa-Sharpe (MRS) broth (37 °C). The most effective LABs were lyophilized and added as ingredient in bread formulation, analysing mycotoxins by high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry after bread fermentation and baking. RESULTS AFB1 was reduced in MRS broth by seven LABs (11-35%), highlighting Lactobacillus plantarum B3 activity; while all LABs reduced OTA (12-40%) with L. plantarum B3 and Lactobacillus paracasei B10 as the most active strains. Both LABs were lyophilized and added in contaminated bread with and without yeast, reaching AFB1 and OTA reductions up to 27% and 32% respectively in dough and up to 55% and 34% respectively in bread. CONCLUSION The selected strains significantly reduced AFB1 and OTA during bread fermentation, pointing to a potential biocontrol strategy for mycotoxins detoxification in bread and bakery products. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Laura Escrivá
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Jorge Calpe
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Carla Lafuente
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Ana Moreno
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Leonardo Musto
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Giuseppe Meca
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Carlos Luz
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| |
Collapse
|
4
|
Frangiamone M, Lozano M, Cimbalo A, Lazaro A, Font G, Manyes L. The Protective Effect of Pumpkin and Fermented Whey Mixture against AFB1 and OTA Immune Toxicity In Vitro. A Transcriptomic Approach. Mol Nutr Food Res 2023; 67:e2200902. [PMID: 37544930 DOI: 10.1002/mnfr.202200902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/04/2023] [Indexed: 08/08/2023]
Abstract
SCOPE The aim of the study is to investigate in Jurkat cells the possible beneficial effect of pumpkin (P) and fermented milk whey (FW) mixture against aflatoxin B1 (AFB1) and ochratoxin A (OTA) induced alterations in gene expression profile. METHODS AND RESULTS Human T cells are exposed for 7 days to digested bread extracts containing P-FW mixture along with AFB1 and OTA, individually and in combination. The results of RNA sequencing show that AFB1 P-FW exposure resulted in 34 differentially expressed genes (DEGs) while 3450 DEGs are found in OTA P-FW exposure and 3264 DEGs in AFB1-OTA P-FW treatment. Gene ontology analysis reveals biological processes and molecular functions related to immune system and inflammatory response. Moreover, PathVisio analysis points to eicosanoid signaling via lipoxygenase as the main pathway altered by AFB1 P-FW exposure whereas interferon signaling is the most affected pathway after OTA P-FW and AFB1-OTA P-FW treatments. CONCLUSIONS The mitigation of genes and inherent pathways typically associated with the inflammatory response suggest not only the anti-inflammatory and protective role of P-FW mixture but also their possible application in food industry to counteract AFB1 and OTA toxic effects on human and animal health.
Collapse
Affiliation(s)
- Massimo Frangiamone
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, Spain
| | - Manuel Lozano
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, Spain
| | - Alessandra Cimbalo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, Spain
| | - Alvaro Lazaro
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, Spain
| | - Guillermina Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, Spain
| | - Lara Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, Spain
| |
Collapse
|
5
|
Li Y, Cui Z, Hu L. Recent technological strategies for enhancing the stability of lycopene in processing and production. Food Chem 2022; 405:134799. [DOI: 10.1016/j.foodchem.2022.134799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
|
6
|
Ochratoxin A and Citrinin Differentially Modulate Bovine Mammary Epithelial Cell Permeability and Innate Immune Function. Toxins (Basel) 2022; 14:toxins14090640. [PMID: 36136578 PMCID: PMC9502480 DOI: 10.3390/toxins14090640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022] Open
Abstract
Frequent detection of mycotoxins ochratoxin A (OTA) and citrinin (CIT) in ruminant feed and feedstuff can be a potential threat to feed safety, animal performance and health. Ineffective biodegradation of these mycotoxins by rumen microflora following ingestion of contaminated feeds can lead to their circulatory transport to tissues such as mammary gland as the result of their biodistribution throughout the body. The bovine mammary epithelium plays a pivotal role in maintaining milk yield and composition and contributes to innate immune defense of the udder. The present study is the first to investigate individual effects of OTA and CIT on barrier and innate immune functions of the bovine mammary epithelium using a bovine mammary epithelial cell line (MAC-T). Results indicated that OTA and CIT exposure for 48 h significantly decreased cell viability in a concentration-dependent manner (p < 0.05). A decrease in transepithelial electrical resistance and increase in paracellular flux of FITC-40 kDa dextran was significantly induced by OTA treatment (p < 0.05), but not by CIT after 48 h exposure. qPCR was performed for assessment of expression of tight-junction proteins, Toll-like receptor 4 (TLR4) and cytokines after 4, 24 and 48 h of exposure. Both OTA and CIT markedly downregulated expression of claudin 3 and occludin (p < 0.05), whereas CIT did not affect zonula occludens-1 expression. Expression of TLR4 was significantly upregulated by OTA (p < 0.001) but downregulated by CIT (p < 0.05) at 48 h. Expression of IL-6, TNF-a and TGF-β was significantly upregulated by OTA (p < 0.05), whereas IL-6 and TGF-β expression was downregulated by CIT (p < 0.01). These results suggest that OTA and CIT could potentially differentially modulate barrier and innate immune functions of mammary epithelium. The present study not only throws light on the individual toxicity of each mycotoxin on bovine mammary epithelium but also lays the foundation for future studies on the combined effects of the two mycotoxins.
Collapse
|
7
|
Emadi A, Eslami M, Yousefi B, Abdolshahi A. In vitro strain specific reducing of aflatoxin B1 by probiotic bacteria: a systematic review and meta-analysis. TOXIN REV 2022. [DOI: 10.1080/15569543.2021.1929323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Alireza Emadi
- Semnan University of Medical Sciences and Health Services, Semnan, Iran
| | - Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Anna Abdolshahi
- Semnan University of Medical Sciences and Health Services, Semnan, Iran
| |
Collapse
|
8
|
Komijani M, Mohebbi M, Ghorani B. Assembly of electrospun tri-layered nanofibrous structure of zein/basil seed gum/zein for increasing the bioaccessibility of lycopene. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
9
|
Frangiamone M, Alonso-Garrido M, Font G, Cimbalo A, Manyes L. Pumpkin extract and fermented whey individually and in combination alleviated AFB1- and OTA-induced alterations on neuronal differentiation invitro. Food Chem Toxicol 2022; 164:113011. [PMID: 35447289 DOI: 10.1016/j.fct.2022.113011] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 02/06/2023]
Abstract
Food and feed are daily exposed to mycotoxin contamination which effects may be counteracted by functional compounds like carotenoids and fermented whey. Among mycotoxins, the most toxic and studied are aflatoxin B1 (AFB1) and ochratoxin A (OTA), which neurotoxicity is not well reported. Therefore, SH-SY5Y human neuroblastoma cells ongoing differentiation were exposed during 7 days to digested bread extracts contained pumpkin and fermented whey, individually and in combination, along with AFB1 and OTA and their combination, in order to evaluate their presumed effects on neuronal differentiation. The immunofluorescence analysis of βIII-tubulin and dopamine markers pointed to OTA as the most damaging treatment for cell differentiation. Cell cycle analysis reported the highest significant differences for OTA-contained bread compared to the control in phase G0/G1. Lastly, RNA extraction was performed and gene expression was analyzed by qPCR. The selected genes were related to neuronal differentiation and cell cycle. The addition of functional ingredients in breads not only enhancing the expression of neuronal markers, but also induced an overall improvement of gene expression compromised by mycotoxins activity. These data confirm that in vitro neuronal differentiation may be impaired by AFB1 and OTA-exposure, which could be modulated by bioactive compounds naturally found in diet.
Collapse
Affiliation(s)
- Massimo Frangiamone
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Vicent Andrés Estellés s/n, 46100, Burjassot, Spain
| | - Manuel Alonso-Garrido
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Vicent Andrés Estellés s/n, 46100, Burjassot, Spain
| | - Guillermina Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Vicent Andrés Estellés s/n, 46100, Burjassot, Spain
| | - Alessandra Cimbalo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Vicent Andrés Estellés s/n, 46100, Burjassot, Spain.
| | - Lara Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Vicent Andrés Estellés s/n, 46100, Burjassot, Spain
| |
Collapse
|
10
|
Llorens P, Pietrzak-Fiećko R, Moltó JC, Mañes J, Juan C. Development of an Extraction Method of Aflatoxins and Ochratoxin A from Oral, Gastric and Intestinal Phases of Digested Bread by In Vitro Model. Toxins (Basel) 2022; 14:toxins14010038. [PMID: 35051014 PMCID: PMC8779207 DOI: 10.3390/toxins14010038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/13/2021] [Accepted: 12/22/2021] [Indexed: 02/01/2023] Open
Abstract
Validated extraction methods from in vitro digestion phases are necessary to obtain a suitable bioaccessibility study of mycotoxins in bakery products. The bakery industry produces bread with different ingredients to enrich the nutritional properties of this product and protect it from fungal growth. This bread can be contaminated by AFB1, AFB2, AFG1, AFG2 and OTA, so an extraction method was developed to analyse these five legislated mycotoxins in digested phases of two types of bread, one with wheat and the other with wheat and also enriched with Cucurbita Maxima Pepo at 20%. The studied “in vitro” digestion model consists of oral, gastric and duodenal phases, each one with different salt solutions and enzymes, that can affect the extraction and most probably the stability of the mycotoxins. The proposed method is a liquid–liquid extraction using ethyl acetate by extract concentration. These analytes and components have an important effect on the matrix effect (MEs) in the analytical equipment, therefore, validating the method and obtaining high sensitivity will be suitable. In the proposed method, the highest MEs were observed in the oral phase of digested pumpkin bread (29 to 15.9 %). Regarding the accuracy, the recoveries were above 83% in the digested duodenal wheat bread and above 76 % in the digested duodenal pumpkin wheat bread. The developed method is a rapid, easy and optimal option to apply to oral, gastric and duodenal phases of digested bread contaminated at a level of established maximum levels by European legislation (RC. 1881/2006) for food.
Collapse
Affiliation(s)
- Paula Llorens
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (P.L.); (J.C.M.); (J.M.)
| | - Renata Pietrzak-Fiećko
- Department of Commodities and Food Analysis, Faculty of Food Sciences, University of Warmia and Mazury, 10-719 Olsztyn, Poland
- Correspondence: (R.P.-F.); (C.J.)
| | - Juan Carlos Moltó
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (P.L.); (J.C.M.); (J.M.)
| | - Jordi Mañes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (P.L.); (J.C.M.); (J.M.)
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (P.L.); (J.C.M.); (J.M.)
- Correspondence: (R.P.-F.); (C.J.)
| |
Collapse
|
11
|
Escrivá L, Agahi F, Vila-Donat P, Mañes J, Meca G, Manyes L. Bioaccessibility Study of Aflatoxin B 1 and Ochratoxin A in Bread Enriched with Fermented Milk Whey and/or Pumpkin. Toxins (Basel) 2021; 14:toxins14010006. [PMID: 35050983 PMCID: PMC8779489 DOI: 10.3390/toxins14010006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 01/12/2023] Open
Abstract
The presence of mycotoxins in cereals and cereal products remains a significant issue. The use of natural ingredients such as pumpkin and whey, which contain bioactive compounds, could be a strategy to reduce the use of conventional chemical preservatives. The aim of the present work was to study the bioaccessibility of aflatoxin B1 (AFB1) and ochratoxin (OTA) in bread, as well as to evaluate the effect of milk whey (with and without lactic acid bacteria fermentation) and pumpkin on reducing mycotoxins bioaccessibility. Different bread typologies were prepared and subjected to an in vitro digestion model. Gastric and intestinal extracts were analyzed by HPLC-MS/qTOF and mycotoxins bioaccessibility was calculated. All the tested ingredients but one significantly reduced mycotoxin intestinal bioaccessibility. Pumpkin powder demonstrated to be the most effective ingredient showing significant reductions of AFB1 and OTA bioaccessibility up to 74% and 34%, respectively. Whey, fermented whey, and the combination of pumpkin-fermented whey showed intestinal bioaccessibility reductions between 57-68% for AFB1, and between 11-20% for OTA. These results pointed to pumpkin and milk whey as potential bioactive ingredients that may have promising applications in the bakery industry.
Collapse
|
12
|
Jayasinghe GDTM, Herbello-Hermelo P, Domínguez-González R, Bermejo-Barrera P, Moreda-Piñeiro A. Bioavailability of Aflatoxins in Cultured Fish and Animal Livers Using an In Vitro Dialyzability Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11451-11460. [PMID: 34524794 DOI: 10.1021/acs.jafc.1c03643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The objective of the present study was to investigate the bioavailability of aflatoxins (AFs) from fish, and chicken and rabbit livers using an in vitro dialyzability approach. Ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was used to assess the aflatoxin content in samples, as well as in dialyzate and residue fractions after the in vitro procedure. A vortex-assisted dispersive liquid-liquid microextraction (VALLME) technique was used for preconcentrating AFs before determination. Raw samples showed bioavailability ratios of 41-45% for aflatoxin B1 (AFB1), 28-38% for aflatoxin B2 (AFB2), and 42% for aflatoxin G2 (AFG2). Aflatoxin G1 (AFG1) was not detected. The culinary process (steaming or grilling) was found to change AFs' bioavailability (higher bioavailability ratios were found in cooked samples). AFB2 was found to be transformed into other compounds during the in vitro process, and the presence of AFB2 and AFB2 transformation/degradation products was investigated and confirmed by high-resolution mass spectrometry (HRMS).
Collapse
Affiliation(s)
- G D Thilini Madurangika Jayasinghe
- Trace Element, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n, 15782 Santiago de Compostela, Spain
| | - Paloma Herbello-Hermelo
- Trace Element, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n, 15782 Santiago de Compostela, Spain
| | - Raquel Domínguez-González
- Trace Element, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n, 15782 Santiago de Compostela, Spain
| | - Pilar Bermejo-Barrera
- Trace Element, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n, 15782 Santiago de Compostela, Spain
| | - Antonio Moreda-Piñeiro
- Trace Element, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
13
|
Sohrabi Balsini M, Edalatian Dovom MR, Kadkhodaee R, Habibi Najafi MB, Yavarmanesh M. Effect of digestion and thermal processing on the stability of microbial cell-aflatoxin B1 complex. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Massarolo KC, Mendoza JR, Verma T, Kupski L, Badiale-Furlong E, Bianchini A. Fate of aflatoxins in cornmeal during single-screw extrusion: A bioaccessibility approach. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Afonso C, Guarda I, Mourato M, Martins L, Fonseca I, Gomes R, Matos J, Gomes A, Bandarra N, Cardoso C. Treptacantha abies-marina (S.G. Gmelin) Kützing: Characterization and Application as a Whole Food Ingredient. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2020. [DOI: 10.1080/10498850.2020.1826617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- C. Afonso
- Division of Aquaculture and Upgrading (Divav), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Lisbon, Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - I. Guarda
- Division of Aquaculture and Upgrading (Divav), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Lisbon, Portugal
- Instituto Superior De Agronomia, Universidade De Lisboa, Lisbon, Portugal
| | - M. Mourato
- Instituto Superior De Agronomia, Universidade De Lisboa, Lisbon, Portugal
| | - L.L. Martins
- Instituto Superior De Agronomia, Universidade De Lisboa, Lisbon, Portugal
| | - I. Fonseca
- Division of Aquaculture and Upgrading (Divav), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Lisbon, Portugal
- Instituto Superior De Agronomia, Universidade De Lisboa, Lisbon, Portugal
| | - R. Gomes
- Division of Aquaculture and Upgrading (Divav), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Lisbon, Portugal
| | - J. Matos
- Division of Aquaculture and Upgrading (Divav), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Lisbon, Portugal
- Faculdade De Ciências, Universidade De Lisboa, Lisbon, Portugal
| | - A. Gomes
- Division of Aquaculture and Upgrading (Divav), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Lisbon, Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - N.M. Bandarra
- Division of Aquaculture and Upgrading (Divav), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Lisbon, Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - C. Cardoso
- Division of Aquaculture and Upgrading (Divav), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Lisbon, Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| |
Collapse
|
16
|
Crudo F, Aichinger G, Mihajlovic J, Dellafiora L, Varga E, Puntscher H, Warth B, Dall'Asta C, Berry D, Marko D. Gut microbiota and undigested food constituents modify toxin composition and suppress the genotoxicity of a naturally occurring mixture of Alternaria toxins in vitro. Arch Toxicol 2020; 94:3541-3552. [PMID: 32623606 PMCID: PMC7502057 DOI: 10.1007/s00204-020-02831-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/24/2020] [Indexed: 01/11/2023]
Abstract
Molds of the genus Alternaria produce several mycotoxins, some of which may pose a threat for health due to their genotoxicity. Due to the lack of adequate toxicological and occurrence data, they are currently not regulated. Interactions between mycotoxins, gut microbiota and food constituents might occur after food ingestion, modifying the bioavailability and, therefore, overall toxicity of mycotoxins. The present work aimed to investigate the impact of in vitro short-term fecal incubation on the in vitro DNA-damaging effects exerted by 5 µg/mL of an Alternaria alternata extract, containing, among others, 15 nM alternariol, 12 nM alternariol monomethyl ether, 241 nM altertoxin II and 301 nM stemphyltoxin III, all of which are known as genotoxic. The involvement of microorganisms, undigested food constituents and soluble substances of human fecal samples in modifying the composition and the genotoxicity of the extract was investigated through the application of LC-MS/MS analysis and comet assays in HT-29 cells. Results showed that the potential of the mycotoxins to induce DNA strand breaks was almost completely quenched, even before anaerobic incubation, by contact with the different fractions of the fecal samples, while the potency to induce formamidopyrimidine DNA glycosylase (FPG)-sensitive sites was only slightly reduced. These effects were in line with a reduction of mycotoxin concentrations found in samples analyzed by LC-MS/MS. Although a direct correlation between the metabolic activity of the gut microbiota and modifications in mycotoxin contents was not clearly observed, adsorptive phenomena to bacterial cells and to undigested food constituents might explain the observed modifications.
Collapse
Affiliation(s)
- Francesco Crudo
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090, Vienna, Austria
- Department of Food and Drug, University of Parma, Area Parco delle Scienze 27/A, 43124, Parma, Italy
| | - Georg Aichinger
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090, Vienna, Austria
| | - Jovana Mihajlovic
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Althanstr. 14, 1090, Vienna, Austria
| | - Luca Dellafiora
- Department of Food and Drug, University of Parma, Area Parco delle Scienze 27/A, 43124, Parma, Italy
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090, Vienna, Austria
| | - Hannes Puntscher
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090, Vienna, Austria
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090, Vienna, Austria
| | - Chiara Dall'Asta
- Department of Food and Drug, University of Parma, Area Parco delle Scienze 27/A, 43124, Parma, Italy
| | - David Berry
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090, Vienna, Austria
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Althanstr. 14, 1090, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090, Vienna, Austria.
- Department of Food and Drug, University of Parma, Area Parco delle Scienze 27/A, 43124, Parma, Italy.
| |
Collapse
|
17
|
Liu A, Zheng Y, Liu L, Chen S, He L, Ao X, Yang Y, Liu S. Decontamination of Aflatoxins by Lactic Acid Bacteria. Curr Microbiol 2020; 77:3821-3830. [PMID: 32979055 DOI: 10.1007/s00284-020-02220-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
Aflatoxins are toxic secondary metabolic products, which exert great hazards to human and animal health. Decontaminating aflatoxins from food ingredients to a threshold level is a prime concern for avoiding risks to the consumers. Biological decontamination processes of aflatoxins have received widespread attention due to their mild and environmental-friendly nature. Many reports have been published on the decontamination of aflatoxins by microorganisms, especially lactic acid bacteria (LAB), a well-explored probiotic and generally recognized as safe. The present review aims at updating the decontamination of produced aflatoxins using LAB, with an emphasis on the decontamination mechanism and influence factors for decontamination. This comprehensive analysis provides insights into the binding mechanisms between LAB and aflatoxins, facilitating the theoretical and practical application of LAB for decontaminating hazardous substances in food and agriculture.
Collapse
Affiliation(s)
- Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China.
| | - Yiliu Zheng
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Lang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Xiaoling Ao
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China.
| |
Collapse
|
18
|
Abdi M, Asadi A, Maleki F, Kouhsari E, Fattahi A, Ohadi E, Lotfali E, Ahmadi A, Ghafouri Z. Microbiological Detoxification of Mycotoxins: Focus on Mechanisms and Advances. Infect Disord Drug Targets 2020; 21:339-357. [PMID: 32543365 DOI: 10.2174/1871526520666200616145150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 11/22/2022]
Abstract
Some fungal species of the genera Aspergillus, Penicillium, and Fusarium secretes toxic metabolites known as mycotoxins, have become a global concern that is toxic to different species of animals and humans. Biological mycotoxins detoxification has been studied by researchers around the world as a new strategy for mycotoxin removal. Bacteria, fungi, yeast, molds, and protozoa are the main living organisms appropriate for the mycotoxin detoxification. Enzymatic and degradation sorptions are the main mechanisms involved in microbiological detoxification of mycotoxins. Regardless of the method used, proper management tools that consist of before-harvest prevention and after-harvest detoxification are required. Here, in this review, we focus on the microbiological detoxification and mechanisms involved in the decontamination of mycotoxins.
Collapse
Affiliation(s)
- Milad Abdi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arezoo Asadi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farajolah Maleki
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ilam University of Medical sciences, Ilam, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Azam Fattahi
- Center for Research and Training in Skin Disease and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Elnaz Ohadi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ensieh Lotfali
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Ahmadi
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zahra Ghafouri
- Department of Biochemistry, Biophysics and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
19
|
Tran VN, Viktorova J, Augustynkova K, Jelenova N, Dobiasova S, Rehorova K, Fenclova M, Stranska-Zachariasova M, Vitek L, Hajslova J, Ruml T. In Silico and In Vitro Studies of Mycotoxins and Their Cocktails; Their Toxicity and Its Mitigation by Silibinin Pre-Treatment. Toxins (Basel) 2020; 12:E148. [PMID: 32121188 PMCID: PMC7150870 DOI: 10.3390/toxins12030148] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/31/2022] Open
Abstract
Mycotoxins found in randomly selected commercial milk thistle dietary supplement were evaluated for their toxicity in silico and in vitro. Using in silico methods, the basic physicochemical, pharmacological, and toxicological properties of the mycotoxins were predicted using ACD/Percepta. The in vitro cytotoxicity of individual mycotoxins was determined in mouse macrophage (RAW 264.7), human hepatoblastoma (HepG2), and human embryonic kidney (HEK 293T) cells. In addition, we studied the bioavailability potential of mycotoxins and silibinin utilizing an in vitro transwell system with differentiated human colon adenocarcinoma cells (Caco-2) simulating mycotoxin transfer through the intestinal epithelial barrier. The IC50 values for individual mycotoxins in studied cells were in the biologically relevant ranges as follows: 3.57-13.37 nM (T-2 toxin), 5.07-47.44 nM (HT-2 toxin), 3.66-17.74 nM (diacetoxyscirpenol). Furthermore, no acute toxicity was obtained for deoxynivalenol, beauvericin, zearalenone, enniatinENN-A, enniatin-A1, enniatin-B, enniatin-B1, alternariol, alternariol-9-methyl ether, tentoxin, and mycophenolic acid up to the 50 nM concentration. The acute toxicity of these mycotoxins in binary combinations exhibited antagonistic effects in the combinations of T-2 with DON, ENN-A1, or ENN-B, while the rest showed synergistic or additive effects. Silibinin had a significant protective effect against both the cytotoxicity of three mycotoxins (T-2 toxin, HT-2 toxin, DAS) and genotoxicity of AME, AOH, DON, and ENNs on HEK 293T. The bioavailability results confirmed that AME, DAS, ENN-B, TEN, T-2, and silibinin are transported through the epithelial cell layer and further metabolized. The bioavailability of silibinin is very similar to mycotoxins poor penetration.
Collapse
Affiliation(s)
- Van Nguyen Tran
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Jitka Viktorova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Katerina Augustynkova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Nikola Jelenova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Simona Dobiasova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Katerina Rehorova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Marie Fenclova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (M.F.); (M.S.-Z.); (J.H.)
| | - Milena Stranska-Zachariasova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (M.F.); (M.S.-Z.); (J.H.)
| | - Libor Vitek
- First Faculty of Medicine, Charles University, Katerinska 32, 12108 Prague 2, Czech Republic;
- Faculty General Hospital, U Nemocnice 2, 12808 Praha 2, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (M.F.); (M.S.-Z.); (J.H.)
| | - Tomas Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| |
Collapse
|
20
|
Lv Q, He Q, Wu Y, Chen X, Ning Y, Chen Y. Investigating the Bioaccessibility and Bioavailability of Cadmium in a Cooked Rice Food Matrix by Using an 11-Day Rapid Caco-2/HT-29 Co-culture Cell Model Combined with an In Vitro Digestion Model. Biol Trace Elem Res 2019; 190:336-348. [PMID: 30357757 DOI: 10.1007/s12011-018-1554-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/15/2018] [Indexed: 01/08/2023]
Abstract
Investigating the bioaccessibility and bioavailability of Cd based on real contaminated cooked rice matrixes helps establish an accurate risk assessment method and effectively reduce the digestion and absorption of Cd. An 11-day in vitro rapid Caco-2/HT-29 co-culture cell model was used to establish and evaluate the simulation of the absorption and transport of Cd in the small intestine with a 70:30 Caco-2/HT-29 co-culture ratio and 1.0 mmol L-1 butyric acid as a differentiation inducer. The bioaccessibility and bioavailability of Cd in cooked rice were studied using the cell model combined with an in vitro digestion model. The bioaccessibility of Cd of each of the three cooked rice samples was significantly higher in the gastric phase (59.04-80.23%) than in the gastrointestinal phase (37.14-52.93%). Despite the extension of the digestion time of the gastrointestinal phase, no significant difference was found among the time points. Results demonstrated that the amount of undigested residue, not the level of Cd contamination, significantly contributed to the bioaccessibility of Cd, which was affected by pH or ion. The absorption rate of Cd (25.08% ± 3.05%) was greater than the values obtained using the pure Caco-2 cell models. The bioavailability of Cd (8.29% ± 1.95%) was almost similar to that of Zn2+ (6.66% ± 1.41%) in the cooked rice matrix, indicating that the intestinal epithelium expressed a strong absorptive capacity of Cd during the absorption of essential metallic elements. The 11-day rapid Caco-2/HT-29 co-culture cell model combined with the in vitro digestion model was an efficient tool for studying the bioaccessibility and bioavailability of Cd or other substances in a food matrix to further investigate mechanistic steps and screen a broad set of food matrix factors.
Collapse
Affiliation(s)
- Qian Lv
- National Engineering Laboratory for Rice and By-product Deep Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha, 410004, Hunan, People's Republic of China
| | - Qiang He
- National Engineering Laboratory for Rice and By-product Deep Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha, 410004, Hunan, People's Republic of China
| | - Yue Wu
- National Engineering Laboratory for Rice and By-product Deep Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha, 410004, Hunan, People's Republic of China.
| | - Xi Chen
- Academy of State Administration of Grain, No.11 Baiwanzhuang Street, Beijing, 100037, People's Republic of China
| | - Yali Ning
- National Engineering Laboratory for Rice and By-product Deep Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha, 410004, Hunan, People's Republic of China
| | - Yan Chen
- National Engineering Laboratory for Rice and By-product Deep Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha, 410004, Hunan, People's Republic of China
| |
Collapse
|
21
|
Wochner KF, Moreira MCC, Kalschne DL, Colla E, Drunkler DA. Detoxification of Aflatoxin B
1
and M
1
by
Lactobacillus acidophilus
and prebiotics in whole cow's milk. J Food Saf 2019. [DOI: 10.1111/jfs.12670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Katia F. Wochner
- Departamento de AlimentosPrograma de Pós‐Graduação em Tecnologia de Alimentos (PPGTA), Universidade Tecnológica Federal do Paraná (UTFPR), Câmpus Medianeira Medianeira, Paraná Brazil
| | - Maria C. C. Moreira
- Departamento de AlimentosGraduação em Engenharia de Alimentos, Universidade Tecnológica Federal do Paraná (UTFPR), Câmpus Medianeira Medianeira, Paraná Brazil
| | - Daneysa L. Kalschne
- Departamento de AlimentosPrograma de Pós‐Graduação em Tecnologia de Alimentos (PPGTA), Universidade Tecnológica Federal do Paraná (UTFPR), Câmpus Medianeira Medianeira, Paraná Brazil
| | - Eliane Colla
- Departamento de AlimentosPrograma de Pós‐Graduação em Tecnologia de Alimentos (PPGTA), Universidade Tecnológica Federal do Paraná (UTFPR), Câmpus Medianeira Medianeira, Paraná Brazil
| | - Deisy A. Drunkler
- Departamento de AlimentosPrograma de Pós‐Graduação em Tecnologia de Alimentos (PPGTA), Universidade Tecnológica Federal do Paraná (UTFPR), Câmpus Medianeira Medianeira, Paraná Brazil
| |
Collapse
|
22
|
Influence of oven and microwave cooking with the addition of herbs on the exposure to multi-mycotoxins from chicken breast muscle. Food Chem 2019; 276:274-284. [DOI: 10.1016/j.foodchem.2018.10.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 11/23/2022]
|
23
|
da Silva MN, Massarolo KC, Kupski L, Furlong EB. Hydrothermal treatment of rice: Reduction of aflatoxins and bioaccessibility. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2018.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Sokoutifar R, Razavilar V, Anvar AA, Shoeiby S. Degraded aflatoxin M1 in artificially contaminated fermented milk using
Lactobacillus acidophilus
and
Lactobacillus plantarum
affected by some bio‐physical factors. J Food Saf 2018. [DOI: 10.1111/jfs.12544] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Roghayeh Sokoutifar
- Department of Food Hygiene, Science and Research BranchIslamic Azad University Tehran Iran
| | - Vadood Razavilar
- Department of Food Hygiene, Science and Research BranchIslamic Azad University Tehran Iran
| | - Amir Ali Anvar
- Department of Food Hygiene, Science and Research BranchIslamic Azad University Tehran Iran
| | - Shahram Shoeiby
- Food and Drug Laboratory Research CenterFood and Drug Organization, Ministry of Health and Medical Education Tehran Iran
| |
Collapse
|
25
|
Mahmood Fashandi H, Abbasi R, Mousavi Khaneghah A. The detoxification of aflatoxin M1
by Lactobacillus acidophilus
and Bifidobacterium
spp.: A review. J FOOD PROCESS PRES 2018. [DOI: 10.1111/jfpp.13704] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hamid Mahmood Fashandi
- Department of Food Science and Technology, College of Food Science and Technology, Tehran Science and Research Branch; Islamic Azad University; Tehran Iran
| | - Roya Abbasi
- Department of Food Science and Technology, College of Food Science and Technology, Tehran Science and Research Branch; Islamic Azad University; Tehran Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| |
Collapse
|
26
|
The efficiency of lactic acid bacteria against pathogenic fungi and mycotoxins. Arh Hig Rada Toksikol 2018; 69:32-45. [PMID: 29604200 DOI: 10.2478/aiht-2018-69-3051] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 03/01/2018] [Indexed: 11/20/2022] Open
Abstract
Mycotoxins are produced by some fungal species of the genera Aspergillus, Penicillium, and Fusarium and are common contaminants of a wide range of food commodities. Numerous strategies are used to minimise fungal growth and mycotoxin contamination throughout the food chain. This review addresses the use of lactic acid bacteria, which can inhibit fungal growth and participate in mycotoxin degradation and/or removal from contaminated food. Being beneficial for human and animal health, lactic acid bacteria have established themselves as an excellent solution to the problem of mycotoxin contamination, yet in practice their application in removing mycotoxins remains a challenge to be addressed by future research.
Collapse
|
27
|
Saladino F, Posarelli E, Luz C, Luciano F, Rodriguez-Estrada M, Mañes J, Meca G. Influence of probiotic microorganisms on aflatoxins B 1 and B 2 bioaccessibility evaluated with a simulated gastrointestinal digestion. J Food Compost Anal 2018. [DOI: 10.1016/j.jfca.2017.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Aflatoxin M1 Detoxification Ability of Probiotic Lactobacilli of Indian Origin in In vitro Digestion Model. Probiotics Antimicrob Proteins 2018; 11:460-469. [DOI: 10.1007/s12602-018-9414-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
29
|
Maisanaba S, Saladino F, Font G, Jos Á, Cameán AM, Meca G. Bioaccesibility of Cylindrospermopsin from cooked fish muscle after the application of an in vitro digestion model and its bioavailability. Food Chem Toxicol 2017; 110:360-370. [DOI: 10.1016/j.fct.2017.10.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 11/17/2022]
|
30
|
Assunção R, Silva M, Alvito P. Challenges in risk assessment of multiple mycotoxins in food. WORLD MYCOTOXIN J 2016. [DOI: 10.3920/wmj2016.2039] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Most fungi are able to produce several mycotoxins simultaneously and, consequently, to contaminate a wide variety of foodstuffs. Therefore, the risk of human co-exposure to multiple mycotoxins is real, raising a growing concern about their potential impact on human health. Besides, government and industry regulations are usually based on individual toxicities, and do not take into account the complex dynamics associated with interactions between co-occurring groups of mycotoxins. The present work assembles, for the first time, the challenges posed by the likelihood of human co-exposure to these toxins and the possibility of interactive effects occurring after absorption, towards knowledge generation to support a more accurate human risk assessment. Regarding hazard assessment, a physiologically-based framework is proposed in order to infer the health effects from exposure to multiple mycotoxins in food, including knowledge on the bioaccessibility, toxicokinetics and toxicodynamics of single and combined toxins. The prioritisation of the most relevant mixtures to be tested under experimental conditions that attempt to mimic human exposure and the use of adequate mathematical approaches to evaluate interactions, particularly concerning the combined genotoxicity, were identified as the main challenges for hazard assessment. Regarding exposure assessment, the need of harmonised food consumption data, availability of multianalyte methods for mycotoxin quantification, management of left-censored data, use of probabilistic models and multibiomarker approaches are highlighted, in order to develop a more precise and realistic exposure assessment. To conclude, further studies on hazard and exposure assessment of multiple mycotoxins, using harmonised methodologies, are crucial towards an improvement of data quality and a more reliable and robust risk characterisation, which is central for risk management and, consequently, to prevent mycotoxins-associated adverse effects. A deep understanding of the nature of interactions between multiple mycotoxins will contribute to draw real conclusions on the health impact of human exposure to mycotoxin mixtures.
Collapse
Affiliation(s)
- R. Assunção
- Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge, I.P. (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus de Santiago 3810-193 Aveiro, Portugal
- IIFA, Universidade de Évora, Palácio do Vimioso, Largo Marquês de Marialva, Apartado 94, 7002-554 Évora, Portugal
| | - M.J. Silva
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, I.P. (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Center for Toxicogenomics and Human Health (ToxOmics), Nova Medical School, FCM-UNL, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| | - P. Alvito
- Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge, I.P. (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus de Santiago 3810-193 Aveiro, Portugal
| |
Collapse
|
31
|
Mohammad-Hasani F, Mirlohi M, Mosharraf L, Hasanzade A. Occurrence of aflatoxins in wheat flour specified for sangak bread and its reduction through fermentation and baking. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2016. [DOI: 10.3920/qas2015.0600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- F. Mohammad-Hasani
- Department of Food Sciences and Technology, Food Security Research Center, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, P.O. Box 81746, Isfahan 81745-673461, Iran
| | - M. Mirlohi
- Department of Food Sciences and Technology, Food Security Research Center, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, P.O. Box 81746, Isfahan 81745-673461, Iran
| | - L. Mosharraf
- Agricultural Engineering Research Department, Isfahan Agricultural and Natural Resources Research and Education Center, AREEO, Amirieh street, Isfahan 81745-199, Iran
| | - A. Hasanzade
- Department of Epidemiology, Food Security Research Center, School of Health, Isfahan University of Medical Sciences, Hezargrib street, Isfahan Iran
| |
Collapse
|
32
|
Bordin K, Saladino F, Fernández-Blanco C, Ruiz MJ, Mañes J, Fernández-Franzón M, Meca G, Luciano FB. Reaction of zearalenone and α-zearalenol with allyl isothiocyanate, characterization of reaction products, their bioaccessibility and bioavailability in vitro. Food Chem 2016; 217:648-654. [PMID: 27664682 DOI: 10.1016/j.foodchem.2016.09.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 07/19/2016] [Accepted: 09/06/2016] [Indexed: 11/28/2022]
Abstract
This study investigates the reduction of zearalenone (ZEA) and α-zearalenol (α-ZOL) on a solution model using allyl isothiocyanate (AITC) and also determines the bioaccessibility and bioavailability of the reaction products isolated and identified by MS-LIT. Mycotoxin reductions were dose-dependent, and ZEA levels decreased more than α-ZOL, ranging from 0.2 to 96.9% and 0 to 89.5% respectively, with no difference (p⩽0.05) between pH 4 and 7. Overall, simulated gastric bioaccessibility was higher than duodenal bioaccessibility for both mycotoxins and mycotoxin-AITC conjugates, with duodenal fractions representing ⩾63.5% of the original concentration. Simulated bioavailability of reaction products (α-ZOL/ZEA-AITC) were lower than 42.13%, but significantly higher than the original mycotoxins. The cytotoxicity of α-ZOL and ZEA in Caco-2/TC7 cells was also evaluated, with toxic effects observed at higher levels than 75μM. Further studies should be performed to evaluate the toxicity and estrogenic effect of α-ZOL/ZEA-AITC.
Collapse
Affiliation(s)
- K Bordin
- School of Life Sciences, Pontifícia Universidade Católica, Rua Imaculada Conceição 1155, 80215-910 Curitiba, Paraná, Brazil.
| | - F Saladino
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| | - C Fernández-Blanco
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| | - M J Ruiz
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| | - J Mañes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| | - M Fernández-Franzón
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| | - G Meca
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| | - F B Luciano
- School of Life Sciences, Pontifícia Universidade Católica, Rua Imaculada Conceição 1155, 80215-910 Curitiba, Paraná, Brazil.
| |
Collapse
|
33
|
Patulin and ochratoxin A co-occurrence and their bioaccessibility in processed cereal-based foods: A contribution for Portuguese children risk assessment. Food Chem Toxicol 2016; 96:205-14. [PMID: 27497766 DOI: 10.1016/j.fct.2016.08.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/27/2016] [Accepted: 08/03/2016] [Indexed: 11/22/2022]
Abstract
Patulin (PAT) and ochratoxin A (OTA) are well known enteropathogenic mycotoxins that are present in several foodstuffs. Processed cereal-based foods are among the first solid foods eaten by children, a particularly vulnerable population group. There is a lack of knowledge related to the co-occurrence of PAT and OTA in food intended for children consumption and their potential interactions during the digestion process. The present study aims to evaluate, for the first time, the co-occurrence of PAT and OTA in processed cereal-based foods for children consumption, the bioaccessibility of these two mycotoxins, and the contribution of the bioaccessibility data for human health risk assessment. PAT and OTA incidence were 75% and 50%, respectively. These mycotoxins co-occurred in 40% of analysed samples. Bioaccessibility assays revealed mean values of 52% and 56% for PAT, alone and combined with OTA; and 100% and 106% for OTA, alone and combined with PAT. Considering the human health risk assessment, and taking into account the co-occurrence and the bioaccessibility results, this study indicates a tolerable exposure to these mycotoxins representing a low risk for Portuguese children. The present work reinforces the importance of a holistic approach for risk assessment which gathers data from occurrence, exposure and bioaccessibility.
Collapse
|
34
|
Effect of supplementation of fermented milk drink containing probiotic Lactobacillus casei Shirota on the concentrations of aflatoxin biomarkers among employees of Universiti Putra Malaysia: a randomised, double-blind, cross-over, placebo-controlled study. Br J Nutr 2015; 115:39-54. [PMID: 26490018 DOI: 10.1017/s0007114515004109] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Human exposure to aflatoxin is through the diet, and probiotics are able to bind aflatoxin and prevent its absorption in the small intestine. This study aimed to determine the effectiveness of a fermented milk drink containing Lactobacillus casei Shirota (LcS) (probiotic drink) to prevent aflatoxin absorption and reduce serum aflatoxin B1-lysine adduct (AFB1-lys) and urinary aflatoxin M1 concentrations. The present study was a randomised, double-blind, cross-over, placebo-controlled study with two 4-week intervention phases. In all, seventy-one subjects recruited from the screening stage were divided into two groups--the Yellow group and the Blue group. In the 1st phase, one group received probiotic drinks twice a day and the other group received placebo drinks. Blood and urine samples were collected at baseline, 2nd and 4th week of the intervention. After a 2-week wash-out period, the treatments were switched between the groups, and blood and urine samples were collected at the 6th, 8th and 10th week (2nd phase) of the intervention. No significant differences in aflatoxin biomarker concentrations were observed during the intervention. A within-group analysis was further carried out. Aflatoxin biomarker concentrations were not significantly different in the Yellow group. Nevertheless, ANOVA for repeated measurements indicated that AFB1-lys concentrations were significantly different (P=0·035) with the probiotic intervention in the Blue group. The 2nd week AFB1-lys concentrations (5·14 (SD 2·15) pg/mg albumin (ALB)) were significantly reduced (P=0·048) compared with the baseline (6·24 (SD 3·42) pg/mg ALB). Besides, the 4th week AFB1-lys concentrations were significantly lower (P<0·05) with probiotic supplementation than with the placebo. Based on these findings, a longer intervention study is warranted to investigate the effects of continuous LcS consumption to prevent dietary aflatoxin exposure.
Collapse
|
35
|
Cheli F, Giromini C, Baldi A. Mycotoxin mechanisms of action and health impact: ‘in vitro’ or ‘in vivo’ tests, that is the question. WORLD MYCOTOXIN J 2015. [DOI: 10.3920/wmj2014.1864] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this paper is to present examples of in vitro and in vivo tests for mycotoxin mechanisms of action and evaluation of health effects, with a focus on the gut environment and toxicity testing. In vivo investigations may provide information on the net effects of mycotoxins in whole animals, whereas in vitro models represent effective tools to perform simplified experiments under uniform and well-controlled conditions and a suitable alternative to in vivo animal testing providing insights not achievable with animal studies. The main limits of in vitro models are the lack of interactions with other cells and extracellular factors, lack of hormonal or immunological influences, and lack or different levels of in vitro expression of genes involved in the overall response to mycotoxins. The translation of in vitro data into meaningful in vivo effects remains an unsolved problem. The main issues to be considered are the mycotoxin concentration range in accordance with levels encountered in realistic situations, the identification of reliable biomarkers of mycotoxin toxicity, the measurement of the chronic toxicity, the evaluation of single- or multi-toxin challenge. The gastrointestinal wall is the first barrier preventing the entry of undesirable substances. The intestinal epithelium can be exposed to high concentrations of mycotoxins upon ingestion of contaminated food and the amount of mycotoxin consumed via food does not always reflect the amount available to exert toxic actions in a target organ. In vitro digestion models in combination with intestinal epithelial cells are powerful tools to screen and predict the in vivo bioavailability and digestibility of mycotoxins in contaminated food and correctly estimate health effects. In conclusion, in vitro and in vivo tests are complementary approaches for providing a more accurate picture of the health impact of mycotoxins and improved understanding and evaluation of relevant dietary exposure and risk scenarios.
Collapse
Affiliation(s)
- F. Cheli
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Trentacoste 2, 20134, Milano, Italy
| | - C. Giromini
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Trentacoste 2, 20134, Milano, Italy
| | - A. Baldi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Trentacoste 2, 20134, Milano, Italy
| |
Collapse
|
36
|
Potential of lactic acid bacteria in aflatoxin risk mitigation. Int J Food Microbiol 2015; 207:87-102. [DOI: 10.1016/j.ijfoodmicro.2015.04.042] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/10/2015] [Accepted: 04/25/2015] [Indexed: 11/21/2022]
|
37
|
Cardoso C, Afonso C, Lourenço H, Costa S, Nunes ML. Bioaccessibility assessment methodologies and their consequences for the risk–benefit evaluation of food. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2014.08.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
38
|
Influence of pro- and prebiotics on gastric, duodenal and colonic bioaccessibility of the mycotoxin beauvericin. J Food Compost Anal 2013. [DOI: 10.1016/j.jfca.2013.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
González-Arias C, Marín S, Sanchis V, Ramos A. Mycotoxin bioaccessibility/absorption assessment using in vitro digestion models: a review. WORLD MYCOTOXIN J 2013. [DOI: 10.3920/wmj2012.1521] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the evaluation of the oral bioavailability of a mycotoxin, the first step is the determination of its bioaccessibility, i.e. the percentage of mycotoxin released from the food matrix during digestion in the gastrointestinal (GI) tract that could be absorbed through the intestinal epithelium. Different in vitro digestion models have been recently used for determination of bioaccessibility, thereby avoiding the use of more complex cell culture techniques or the use of animals in expensive in vivo experiments. In vitro methods offer an appealing alternative to human and animal studies. They usually are rapid, simple and reasonably low in cost, and can be used to perform simplified experiments under uniform and well-controlled conditions, providing insights not achievable in whole animal studies. The available in vitro methods for GI simulation differ in the design of the system, the composition of the physiological juices assayed, as well as in the use or not of intestinal microbiota. There are models that only simulate the upper part of the GI tract (mouth-stomach-small intestine), whereas other methods include the large intestine, so that the model chosen could have some influence on the bioaccessibility data obtained. Bioaccessibility depends on the food matrix, as well as on the contamination level and the way the food/feed is contaminated (spiked or naturally). This review focuses on the currently available data regarding in vitro digestion models for the study of the bioaccessibility or absorption of mycotoxins, detailing the characteristics of each digestion step and the importance of the physiological juices employed during digestion. The effect that different factors play on mycotoxin release from the food matrix in the GI tract is also considered, and existing data on bioaccessibility of the main mycotoxins are given.
Collapse
Affiliation(s)
- C.A. González-Arias
- Food Technology Department, Lleida University, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - S. Marín
- Food Technology Department, Lleida University, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - V. Sanchis
- Food Technology Department, Lleida University, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - A.J. Ramos
- Food Technology Department, Lleida University, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain
| |
Collapse
|