1
|
Moreno-González R, Juan ME, Planas JM. Determination of pentacyclic triterpenes and polyphenols from table olives in colon and plasma and their chemopreventive effects on 1,2-dimethylhydrazine-induced preneoplastic lesions in rat colon. Food Funct 2025; 16:1588-1602. [PMID: 39918253 DOI: 10.1039/d4fo04313h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Table olives are a rich dietary source of pentacyclic triterpenes (PT) and polyphenols (P), many of which have demonstrated significant antiproliferative and proapoptotic activities. This study aimed to evaluate the effect of this food on the early stages of colon carcinogenesis induced by 1,2-dimethylhydrazine (DMH) at 20 mg kg-1. Male Sprague-Dawley rats were administered either water or a suspension of Arbequina table olives (OA; 3.85 g kg-1) by gavage at 10 mL kg-1 for 49 days. Each group was then divided into two subgroups that received subcutaneous injections of the carcinogen (DMH+/Olives- and DMH+/Olives+) or the solvent (DMH-/Olives- and DMH-/Olives+) on days 8, 15, and 22. Analysis by LC-MS of AO enabled us to calculate the administered doses of PT (12.38 mg kg-1) and P (4.02 g kg-1) as well as the colon content of these compounds. At the end of the intervention, we found 5.1% of PT and 0.2% of P of the administered dose in the colonic content of the DMH+/Olives+ group. The highest concentrations were for maslinic and oleanolic acids (321 ± 67 and 84.8 ± 14.3 nmol g-1, respectively) followed by hydroxytyrosol (3.31 ± 0.24 nmol g-1). The supplementation with AO reduced aberrant crypt foci by 54.1%, and mucin depleted foci by 35.7% compared to the control group. The daily consumption of table olives exerts chemopreventive activities by reducing preneoplastic intestinal lesions, which might be explained, at least in part, by the significant concentrations of PT and P remaining in the colon.
Collapse
Affiliation(s)
- Rocío Moreno-González
- Grup de Fisiologia i Nutrició Experimental (FINEX), Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB, María de Maeztu Unit of Excellence), Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028-Barcelona, Spain.
| | - M Emília Juan
- Grup de Fisiologia i Nutrició Experimental (FINEX), Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB, María de Maeztu Unit of Excellence), Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028-Barcelona, Spain.
| | - Joana M Planas
- Grup de Fisiologia i Nutrició Experimental (FINEX), Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB, María de Maeztu Unit of Excellence), Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028-Barcelona, Spain.
| |
Collapse
|
2
|
Bermúdez-Oria A, Castejón ML, Rubio-Senent F, Fernández-Prior Á, Rodríguez-Gutiérrez G, Fernández-Bolaños J. Isolation and structural determination of cis- and trans-p-coumaroyl-secologanoside (comselogoside) from olive oil waste (alperujo). Photoisomerization with ultraviolet irradiation and antioxidant activities. Food Chem 2024; 432:137233. [PMID: 37651786 DOI: 10.1016/j.foodchem.2023.137233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/03/2023] [Accepted: 08/20/2023] [Indexed: 09/02/2023]
Abstract
p-Coumaroyl-6́-secologanoside (comselogoside) is a secoiridoid identified in large amounts in olive fruits, although no studies in vitro or in vivo of comselogoside have been reported. This work focuses on the recovery and purification of this compound from olive mill waste (alperujo). The successive isolation on Amberlite XAD-16 and Sephadex LH-20 resins, allowed a comselogoside extract with 80-85% of purity. A photoisomerization of the vinyl-double bond in the p-coumaroyl moiety occurred when the extract was exposed to ultraviolet radiation and a mixture of the trans and cis-isomers was obtained. Both isomers were characterized using NMR, mass spectroscopy, and UV spectrometry. The J (coupling constant) of the protons on the C7 and C8 on the unsaturated chain were found to be the difference between cis (12.8 Hz) and trans- (15.9 Hz) comselogoside. Cis-isomer exhibited lower radical-scavenging activity than trans, although a synergistic effect occurred when the cis-isomer was supplement by the trans-isomer.
Collapse
Affiliation(s)
- Alejandra Bermúdez-Oria
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - María Luisa Castejón
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - Fátima Rubio-Senent
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - África Fernández-Prior
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - Guillermo Rodríguez-Gutiérrez
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - Juan Fernández-Bolaños
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain.
| |
Collapse
|
3
|
García-Serrano P, Brenes-Álvarez M, Romero C, Medina E, García-García P, Brenes M. Physicochemical and microbiological assessment of commercial dehydrated black olives. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2022]
|
4
|
Gallardo-Fernández M, Gonzalez-Ramirez M, Cerezo AB, Troncoso AM, Garcia-Parrilla MC. Hydroxytyrosol in Foods: Analysis, Food Sources, EU Dietary Intake, and Potential Uses. Foods 2022; 11:foods11152355. [PMID: 35954121 PMCID: PMC9368174 DOI: 10.3390/foods11152355] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Hydroxytyrosol (HT) is a phenolic compound with proven biological properties present in a limited number of foods such as table olives, virgin olive oil (VOO) and wines. The present work aims to evaluate the dietary intake of HT in the European (EU) population by compiling scattered literature data on its concentration in foods. The consumption of the involved foods was estimated based on the EFSA Comprehensive European Food Consumption Database. The updated average contents of HT are as follows: 629.1, 5.2 and 2.1 µg/g for olives, olive oil and wine, respectively. The HT estimated intake in the European Union (EU) adult population falls within 0.13–6.82 mg/day/person, with table olives and wine being the main contributors. The estimated mean dietary intake of HT in EU countries is 1.97 ± 2.62 mg/day. Greece showed the highest HT intake (6.82 mg/day), while Austria presented the lowest (0.13 mg/day). Moreover, HT is an authorized novel food ingredient in the EU that can be added to different foods. Since the estimated HT intake is substantially low, the use of HT as a food ingredient seems feasible. This opens new possibilities for revalorizing waste products from olive oil and olive production which are rich HT sources.
Collapse
|
5
|
Beteinakis S, Papachristodoulou A, Mikros E, Halabalaki M. From sample preparation to NMR-based metabolic profiling in food commodities: The case of table olives. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:83-93. [PMID: 34096121 DOI: 10.1002/pca.3070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/10/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Nuclear magnetic resonance (NMR)-based metabolic profiling has been widely used in food and plant sciences. Despite its simplicity and inherent reproducibility, the determination of the appropriate pre-processing procedures greatly affects the obtained metabolic profile. OBJECTIVES The current study represents a detailed guide of use for untargeted NMR-based metabolic profiling of table olives (Olea europaea L.). METHODS Greek Kalamon table olives from different geographical origins were selected as reference materials. Differently treated samples were extracted using different solvents and/or solvent systems. Chemical profiles were evaluated with high-performance thin layer chromatography (HPTLC). Different deuterated solvents and sample concentrations were evaluated for the recording of optimal quality spectra. RESULTS The methanol extract of freeze-dried table olives was found to contain the most representative secondary metabolites, in higher concentrations, as well. The optimal deuterated solvent for the NMR analysis was methanol-d4 , while final sample concentration should be within the range of 10 to 15 mg/mL. Multivariate data analysis was also used to estimate and confirm the variation and clustering caused by different characteristics of the samples. CONCLUSIONS Results of the present study make evident the necessity for thorough planning and method development prior to any extensive metabolomic study based on NMR spectroscopy. Pre-processing and sample preparation stages seemed to greatly affect the metabolic profile and spectral quality in the case of table olives, which by extrapolation could apply to other food commodities. Nevertheless, the nature of the samples must be fully described in general, in order to proceed to solid conclusions.
Collapse
Affiliation(s)
- Stavros Beteinakis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Papachristodoulou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Emmanuel Mikros
- Division of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
6
|
Xie P, Cecchi L, Bellumori M, Balli D, Giovannelli L, Huang L, Mulinacci N. Phenolic Compounds and Triterpenes in Different Olive Tissues and Olive Oil By-Products, and Cytotoxicity on Human Colorectal Cancer Cells: The Case of Frantoio, Moraiolo and Leccino Cultivars ( Olea europaea L.). Foods 2021; 10:foods10112823. [PMID: 34829103 PMCID: PMC8618932 DOI: 10.3390/foods10112823] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/02/2021] [Accepted: 11/13/2021] [Indexed: 12/16/2022] Open
Abstract
Phenolic and triterpenoid compounds of the olive tree are recognized as having a key role in health promotion, thanks to their multiple protective actions in humans. To expand the source of these bioactive compounds, the phenolic and triterpenoid profiles of leaf, branch, destoned fruit, destoned pomace, shell, seed, and extra virgin olive oil from the Frantoio, Leccino, and Moraiolo olive cultivars were simultaneously characterized by HPLC-DAD-MS. Overall, 43 molecules were quantitated and expressed on the obtained dry extracts. Oleuropein was mainly concentrated in branches (82.72 g/kg), fruits (55.79 g/kg), leaves (36.71 g/kg), and shells (1.26 g/kg), verbascoside (4.88 g/kg) in pomace, and nüzhenide 11-methyl oleoside (90.91 g/kg) in seeds. Among triterpenoids, which were absent in shells, the highest amount of oleanolic acid was found in olive leaves (11.88 g/kg). HCT-116 colorectal cells were chosen to assess the cytotoxicity of the dry extract, using the phytocomplex from Frantoio, which was the richest in phenols and triterpenoids. The IC50 was also determined for 13 pure molecules (phenols and terpenoids) detected in the extracts. The greatest inhibition on the cell’s proliferation was induced by the branch dry extract (IC50 88.25 μg/mL) and by ursolic acid (IC50 24 μM). A dose-dependent relationship was observed for the tested extracts.
Collapse
Affiliation(s)
- Pujun Xie
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China; (P.X.); (L.H.)
- National Engineering Laboratory for Biomass Chemical Utilization, Nanjing 210042, China
- Key and Open Laboratory on Forest Chemical Engineering, SFA, Nanjing 210042, China
- Key Laboratory of Biomass Energy and Material, Nanjing 210042, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Lorenzo Cecchi
- Department of NEUROFARBA, Nutraceutical and Pharmaceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (L.C.); (M.B.); (D.B.)
| | - Maria Bellumori
- Department of NEUROFARBA, Nutraceutical and Pharmaceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (L.C.); (M.B.); (D.B.)
| | - Diletta Balli
- Department of NEUROFARBA, Nutraceutical and Pharmaceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (L.C.); (M.B.); (D.B.)
| | - Lisa Giovannelli
- Department of NEUROFARBA, Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy;
| | - Lixin Huang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China; (P.X.); (L.H.)
- National Engineering Laboratory for Biomass Chemical Utilization, Nanjing 210042, China
- Key and Open Laboratory on Forest Chemical Engineering, SFA, Nanjing 210042, China
- Key Laboratory of Biomass Energy and Material, Nanjing 210042, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Nadia Mulinacci
- Department of NEUROFARBA, Nutraceutical and Pharmaceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (L.C.); (M.B.); (D.B.)
- Correspondence: ; Tel.: +39-0554573773
| |
Collapse
|
7
|
García‐Serrano P, Romero C, García‐García P, Brenes M. Influence of the type of calcium salt on the cation absorption and firmness of black ripe olives. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pedro García‐Serrano
- Instituto de la Grasa (IG‐CSIC) Building 46, Ctra. Utrera km 1 41013 Seville Spain
| | - Concepción Romero
- Instituto de la Grasa (IG‐CSIC) Building 46, Ctra. Utrera km 1 41013 Seville Spain
| | - Pedro García‐García
- Instituto de la Grasa (IG‐CSIC) Building 46, Ctra. Utrera km 1 41013 Seville Spain
| | - Manuel Brenes
- Instituto de la Grasa (IG‐CSIC) Building 46, Ctra. Utrera km 1 41013 Seville Spain
| |
Collapse
|
8
|
Berlanga-Del Pozo M, Gallardo-Guerrero L, Gandul-Rojas B. Influence of Alkaline Treatment on Structural Modifications of Chlorophyll Pigments in NaOH-Treated Table Olives Preserved without Fermentation. Foods 2020; 9:foods9060701. [PMID: 32492785 PMCID: PMC7353664 DOI: 10.3390/foods9060701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/01/2022] Open
Abstract
Alkaline treatment is a key stage in the production of green table olives and its main aim is rapid debittering of the fruit. Its action is complex, with structural changes in both the skin and the pulp, and loss of bioactive components in addition to the bitter glycoside oleuropein. One of the components seriously affected are chlorophylls, which are located mainly in the skin of the fresh fruit. Chlorophyll pigments are responsible for the highly-valued green color typical of table olive specialties not preserved by fermentation. Subsequently, the effect on chlorophylls of nine processes, differentiated by NaOH concentration and/or treatment time, after one year of fruit preservation under refrigeration conditions, was investigated. A direct relationship was found between the intensity of the alkali treatment and the degree of chlorophyll degradation, with losses of more than 60% being recorded when NaOH concentration of 4% or greater were used. Oxidation with opening of the isocyclic ring was the main structural change, followed by pheophytinization and degradation to colorless products. To a lesser extent, decarbomethoxylation and dephytylation reactions were detected. An increase in NaOH from 2% to 5% reduced the treatment time from 7 to 4 h, but fostered greater formation of allomerized derivatives, and caused a significant decrease in the chlorophyll content of the olives. However, NaOH concentrations between 6% and 10% did not lead to further time reductions, which remained at 3 h, nor to a significant increase in oxidized compounds, though the proportion of isochlorin e4-type derivatives was modified. Chlorophyll compounds of series b were more prone to oxidation and degradation reactions to colorless products than those of series a. However, the latter showed a higher degree of pheophytinization, and, exclusively, decarbomethoxylation and dephytylation reactions.
Collapse
|
9
|
Traipop S, Chuanuwatanakul S, Chailapakul O, Punrat E. Facile and Fast Detection of Genistein in Derris scandens by Square Wave Voltammetry using a Cobalt(II) Phthalocyanine-Modified Screen-Printed Electrochemical Sensor. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411014666180521091053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background:
Recently, Derris scandens, a Thai herbal medicine with anti-inflammatory
activity, is widely used as beverage and supplementary food. When the traditional medicine is a
choice for health therapy, the simple and reliable equipment is required to control the suitable consuming
amount of the active component.
Objective:
To develop the electrochemical sensor for genistein determination in Derris scandens with
high sensitivity and rapid operation.
Methods:
An in-house screen-printed electrochemical sensor consisting of a three-electrode system
was developed for genistein determination. A silver/silver chloride (Ag/AgCl) reference electrode, a
carbon counter electrode and a carbon working electrode were prepared on a 0.3-mm-thick plastic
substrate by the screen-printing technique using conductive ink. The dimensions of each sensor were
2.5×1.0 cm. Only 50 µL of sample solution was required on this device for the determination of
genistein concentration by rapid response square wave voltammetry.
Results:
The oxidation peak of genistein appeared with good response in acidic media at a peak potential
of 0.6 V. Moreover, the signal was enhanced by modifying the conductive carbon ink with cobalt(
II) phthalocyanine. Under the optimized conditions, the linear range was found to be 2.5-150 µM
and the detection limit was 1.5 µM. Moreover, the small volume extraction was successfully developed
without any further pre-concentration. This proposed method was applied to determine genistein
in Derris scandens with satisfying results.
Conclusion:
The proposed method is promising as an alternative method for genistein determination
with facile and fast analysis.
Collapse
Affiliation(s)
- Surinya Traipop
- Electrochemistry and Optical Spectroscopy Center of Excellent, Faculty of Science, Department of Chemistry, Chulalongkorn University, Bangkok, Thailand
| | - Suchada Chuanuwatanakul
- Electrochemistry and Optical Spectroscopy Center of Excellent, Faculty of Science, Department of Chemistry, Chulalongkorn University, Bangkok, Thailand
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellent, Faculty of Science, Department of Chemistry, Chulalongkorn University, Bangkok, Thailand
| | - Eakkasit Punrat
- Faculty of Science, Department of Chemistry, Ramkhamhaeng University, Bangkok, Thailand
| |
Collapse
|
10
|
|
11
|
Moreno-González R, Juan ME, Planas JM. Profiling of pentacyclic triterpenes and polyphenols by LC-MS in Arbequina and Empeltre table olives. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Medina E, García‐García P, Romero C, Castro A, Brenes M. Aerobic industrial processing of Empeltre cv. natural black olives and product characterisation. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eduardo Medina
- Instituto de la Grasa (IG‐CSIC) University Campus Building 46, Ctra. Utrera km 1 Seville41013Spain
| | - Pedro García‐García
- Instituto de la Grasa (IG‐CSIC) University Campus Building 46, Ctra. Utrera km 1 Seville41013Spain
| | - Concepción Romero
- Instituto de la Grasa (IG‐CSIC) University Campus Building 46, Ctra. Utrera km 1 Seville41013Spain
| | - Antonio Castro
- Instituto de la Grasa (IG‐CSIC) University Campus Building 46, Ctra. Utrera km 1 Seville41013Spain
| | - Manuel Brenes
- Instituto de la Grasa (IG‐CSIC) University Campus Building 46, Ctra. Utrera km 1 Seville41013Spain
| |
Collapse
|
13
|
Santos-Buelga C, González-Paramás AM, Oludemi T, Ayuda-Durán B, González-Manzano S. Plant phenolics as functional food ingredients. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 90:183-257. [PMID: 31445596 DOI: 10.1016/bs.afnr.2019.02.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phenolic compounds have attracted much attention in recent times as their dietary intake has been associated with the prevention of some chronic and degenerative diseases that constitute major causes of death and incapacity in developed countries, such as cardiovascular diseases, type II diabetes, some types of cancers or neurodegenerative disorders like Alzheimer's and Parkinson's diseases. Nowadays it is considered that these compounds contribute, at least in part, for the protective effects of fruit and vegetable-rich diets, so that the study of their role in human nutrition has become a central issue in food research. This chapter reviews the current knowledge on the phenolic compounds as food components, namely their occurrence in the diet, bioavailability and metabolism, biological activities and mechanisms of action. Besides, the approaches for their extraction from plant matrices and technological improvements regarding their preparation, stability and bioavailability in order to be used as functional food ingredients are also reviewed, as well as their legal situation regarding the possibility of making "health claims" based on their presence in food and beverages.
Collapse
Affiliation(s)
- Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Universidad de Salamanca, Salamanca, Spain.
| | - Ana M González-Paramás
- Grupo de Investigación en Polifenoles (GIP-USAL), Universidad de Salamanca, Salamanca, Spain
| | - Taofiq Oludemi
- Mountain Research Center (CIMO), Polytechnic Institute of Bragança, Bragança, Portugal
| | - Begoña Ayuda-Durán
- Grupo de Investigación en Polifenoles (GIP-USAL), Universidad de Salamanca, Salamanca, Spain
| | - Susana González-Manzano
- Grupo de Investigación en Polifenoles (GIP-USAL), Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|