1
|
Sun M, Liang J, Peng Y, Qin L, Ma D, Cai X, Ran L, Wang Y, Wang H, Yang C, Liu X, Deng Z. Enrichment of polymethoxyflavones from citrus fruits using an optimized enzyme/acid-catalyzed hybrid hydrolysis process and its influence on mice gut microbiota. Food Funct 2025; 16:510-523. [PMID: 39679913 DOI: 10.1039/d4fo03391d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Citrus polymethoxyflavones (PMFs) have considerable medicinal, health-promoting, and commercial importance. To provide a stable and reliable source of PMFs, an efficient process of large-scale preparation is warranted. Here, an extraction model for enriching PMFs from citrus fruits was proposed using an enzyme/acid-catalyzed hybrid hydrolysis approach. This method was optimized using response surface methodology (RSM). Furthermore, this model was applied to ten citrus varieties to prepare PMF-rich extracts, and six main PMFs were qualitatively and quantitatively analyzed using UPLC-ESI-MS/MS. Among the ten investigated citrus extracts, nobiletin was the most predominant PMF. The total yields of the six PMFs were ranked as C. unshiu > C. reticulata > C. sinensis, indicating that C. unshiu was the most suitable raw material for PMF preparation. Additionally, the PMF-rich extracts showed beneficial regulatory effects on gut microbiota, highlighting their potential health-promoting and therapeutic functions, which warrant further exploration.
Collapse
Affiliation(s)
- Meng Sun
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China.
- Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Jianjia Liang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China.
- Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Yan Peng
- The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang 443002, China
| | - Leilei Qin
- Three Gorges Public Inspection and Testing Center, Yichang, 443005, China
| | - Dongxu Ma
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China.
- Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Xiaorong Cai
- Three Gorges Public Inspection and Testing Center, Yichang, 443005, China
| | - Lu Ran
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China.
- Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Yueyi Wang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China.
- Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Huimin Wang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China.
- Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Changying Yang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China.
- Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Xiaowen Liu
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China.
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Zhangshuang Deng
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China.
- Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
2
|
Aidiel M, Abdul Mutalib M, Ramasamy R, Nik Ramli NN, Tang SGH, Adam SH. Mechanistic Insights into the Anticancer Potential of Methoxyflavones Analogs: A Review. Molecules 2025; 30:346. [PMID: 39860214 PMCID: PMC11768088 DOI: 10.3390/molecules30020346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/27/2025] Open
Abstract
2-phenylchromen-4-one, commonly known as flavone, plays multifaceted roles in biological response that can be abundantly present in natural sources. The methoxy group in naturally occurring flavones promotes cytotoxic activity in various cancer cell lines by targeting protein markers, in facilitating ligand-protein binding mechanisms and activating cascading downstream signaling pathways leading to cell death. However, the lipophilic nature of these analogs is a key concern as it impacts drug membrane transfer. While lipophilicity is crucial for drug efficacy, the excessive lipophilic effects in flavonoids can reduce water solubility and hinder drug transport to target sites. Recent in vitro studies suggest that the incorporation of polar hydroxyl groups which can form hydrogen bonds and stabilize free radicals may help overcome the challenges associated with methoxy groups while maintaining their essential lipophilic properties. Naturally coexisting with methoxyflavones, this review explores the synergistic role of hydroxy and methoxy moieties through hydrogen bonding capacity in maximizing cytotoxicity against cancer cell lines. The physicochemical analysis revealed the potential intramolecular interaction and favorable electron delocalization region between both moieties to improve cytotoxicity levels. Together, the analysis provides a useful strategy for the structure-activity relationship (SAR) of flavonoid analogs in distinct protein markers, suggesting optimal functional group positioning to achieve balanced lipophilicity, effective hydrogen bonding, and simultaneously minimized steric hindrance in targeting specific cancer cell types.
Collapse
Affiliation(s)
- Mohammad Aidiel
- School of Graduate Studies, Management & Science University, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia; (M.A.); (N.N.N.R.)
| | - Maisarah Abdul Mutalib
- School of Graduate Studies, Management & Science University, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia; (M.A.); (N.N.N.R.)
| | - Rajesh Ramasamy
- Department of Pathology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Nik Nasihah Nik Ramli
- School of Graduate Studies, Management & Science University, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia; (M.A.); (N.N.N.R.)
| | - Shirley Gee Hoon Tang
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Siti Hajar Adam
- Preclinical Department, Faculty of Medicine & Defence Health, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 57000, Malaysia;
| |
Collapse
|
3
|
Wang D, Li Z, Jiang Z, Li Y, Chen Q, Zhou Z. Polymethoxylated flavone variations and in vitro biological activities of locally cultivated Citrus varieties in China. Food Chem 2025; 463:141047. [PMID: 39236394 DOI: 10.1016/j.foodchem.2024.141047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Citrus peels are rich in polymethoxylated flavones (PMFs), which have beneficial health and pharmacological properties. In this study, the profiles, variations, and biological activities of PMFs in the peel extracts of 27 Citrus varieties (eight species) native to China were investigated. UPLC-QTOF-MS/MS analysis revealed that mandarin accumulated more diversity and higher detectable PMF contents. Wangcangzhoupigan (ZPG) possessed the highest antioxidant capacity. Gailiangcheng (GLC) and Bingtangcheng (BTC), sweet oranges showed excellent inhibitory effects against pancreatic lipase and α-glucosidase, respectively. Most citrus extracts effectively inhibited the production of ROS and pro-inflammatory cytokines, while increasing the accumulation of anti-inflammatory cytokines. In addition, Limeng (LM), Cupig-oushigan (GSG), and Yanxiwanlu (YXWL) showed anti-proliferative effects against DU145 and PC3 cancer cells. This study provides a comprehensive PMF profile and biological activities of various citrus species and will benefit future functional citrus breeding practices aimed at designing plants rich in total or specific PMFs for health benefits.
Collapse
Affiliation(s)
- Dan Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu 610299, China
| | - Zhenqing Li
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Zixiao Jiang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Yi Li
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Qiyang Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| | - Zhiqin Zhou
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; The Southwest Institute of Fruits Nutrition, Banan District, Chongqing 400054, China.
| |
Collapse
|
4
|
Fatima J, Siddique YH. The Neuroprotective Role of Tangeritin. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:144-157. [PMID: 39297465 DOI: 10.2174/0118715273325789240904065214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 02/25/2025]
Abstract
The prevalence of neurodegenerative diseases has increased with longer life expectancies, necessitating the exploration of novel neuroprotective agents. Tangeretin, a polymethoxylated flavone derived from citrus fruits, has gathered attention for its potential therapeutic effects. This review highlights the neuroprotective properties of tangeretin via its antioxidant and anti-inflammatory mechanisms. Tangeretin demonstrates efficacy in mitigating oxidative stress, neuroinflammation, and neuronal damage across various neurodegenerative conditions, including Alzheimer's disease, Parkinson's disease, cerebral ischemia, and epilepsy. It shows promise in ameliorating cognitive deficits and memory impairments associated with these diseases. Moreover, tangeretin modulates multiple signalling pathways and protects against neuronal apoptosis, underscoring its potential as a therapeutic agent.
Collapse
Affiliation(s)
- Javeria Fatima
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Yasir Hasan Siddique
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
5
|
Chen X, Sun W, Ji S, Liu X, Hu Y, Zhou X, Zhou B, Ren J, Li B, Liang H. Citrus Polymethoxyflavones Regulate against Aging-Associated Diseases: Advances in Biological Mechanisms Responsible for Their Regulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28209-28224. [PMID: 39661568 DOI: 10.1021/acs.jafc.4c08004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
As the proportion of the aging population globally is surging year by year, age-associated diseases, including neurodegenerative, metabolic, and cardiovascular diseases, have recently attracted widespread attention of food scientists and nutritionists. Polymethoxyflavonoids (PMFs), a type of dietary flavonoids, have emerged as potential antiaging candidates owing to their diverse bioactivities, encompassing antioxidant, anti-inflammatory, neuroprotective, and metabolic regulatory effects. Herein, this comprehensive updated review has summarized and discussed the effects of PMFs on aging, and the possible mechanisms that link PMFs-mediated modulation and the prevention or treatment of various aging-related diseases have been elaborated in detail. Furthermore, the biological fate of PMFs have been discussed elaborately from their absorption, distribution, metabolism, and excretion in vivo. Special attention is given to the bioavailability-bioactivity relationship of PMFs, as PMF's biological activity is significantly hampered by poor bioavailability. Overall, all of these conclusions may help in providing a perspective for further study of PMFs on aging.
Collapse
Affiliation(s)
- Xiaojuan Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Weiyi Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Sicheng Ji
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Liu
- Wuhan Senlan Biotechnology Co., Ltd, Wuhan 430120, China
| | - Yueqi Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyue Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Zhou
- Key Laboratory of Fermentation Engineering, Ministry of Education, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Jingnan Ren
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
- Wuhan Senlan Biotechnology Co., Ltd, Wuhan 430120, China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| |
Collapse
|
6
|
Ramunno A, Vitale RM, Amodeo P, Crescenzi C, Panti A, Fiorenzani P, De Luca M, Spizzirri UG, Restuccia D, Aiello F, Fusi F. Bioguided Identification of Polymethoxyflavones as Novel Vascular Ca V1.2 Channel Blockers from Citrus Peel. Molecules 2024; 29:5693. [PMID: 39683852 DOI: 10.3390/molecules29235693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
The huge amount of citrus peel produced worldwide represents an economic burden for society. However, this agricultural by-product is a rich source of natural molecules, potentially endowed with interesting pharmacological activities. In this regard, we decided to investigate if the polymethoxyflavones contained in citrus peel waste could be exploited as novel vasorelaxant agents. A hydroalcoholic blond orange (Citrus sinensis) peel extract, obtained by ultrasonication, was partitioned in dichloromethane. Column chromatography allowed for the isolation of four polymethoxyflavones, namely, scutellarein tetramethyl ether, nobiletin, tangeretin, and sinensetin, identified by nuclear magnetic resonance (NMR) spectroscopy and UPLC-HRMS/MS and confirmed by multivariate curve resolution of NMR fractional spectra. The four molecules showed interesting in vitro vasorelaxant activity, at least, in part, due to the blockade of smooth muscle CaV1.2 channels. Molecular modeling and docking analysis elucidated the binding mode of the polymethoxyflavones at the homology model of the rat CaV1.2c subunit and provided the structural basis to rationalise the highest activity of scutellarein tetramethyl ether in the set and the dramatic effect of the additional methoxy group occurring in nobiletin and sinensetin. In conclusion, citrus peel can be considered a freely available, valuable source of vasoactive compounds worthy of pharmaceutical and/or nutraceutical exploitation.
Collapse
Affiliation(s)
- Anna Ramunno
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy
| | - Rosa Maria Vitale
- Institute of Biomolecular Chemistry-National Research Council (ICB-CNR), 80078 Pozzuoli, NA, Italy
| | - Pietro Amodeo
- Institute of Biomolecular Chemistry-National Research Council (ICB-CNR), 80078 Pozzuoli, NA, Italy
| | - Carlo Crescenzi
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy
| | - Alice Panti
- Department of Life Sciences, University of Siena, 53100 Siena, TS, Italy
| | - Paolo Fiorenzani
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, 53100 Siena, TS, Italy
| | - Michele De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Umile Gianfranco Spizzirri
- Ionian Department of Law, Economics and Environment, University of Bari Aldo Moro, 74123 Taranto, TA, Italy
| | - Donatella Restuccia
- Department of Management, University of Roma La Sapienza, 00161 Rome, RM, Italy
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Fabio Fusi
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, 53100 Siena, TS, Italy
| |
Collapse
|
7
|
Liang X, Wang Y, Shen W, Liao B, Liu X, Yang Z, Chen J, Zhao C, Liao Z, Cao J, Wang P, Wang P, Ke F, Xu J, Lin Q, Xi W, Wang L, Xu J, Zhao X, Sun C. Genomic and metabolomic insights into the selection and differentiation of bioactive compounds in citrus. MOLECULAR PLANT 2024; 17:1753-1772. [PMID: 39444162 DOI: 10.1016/j.molp.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/30/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
Bioactive compounds play an increasingly prominent role in breeding functional and nutritive fruit crops such as citrus. However, the genomic and metabolic bases for the selection and differentiation underlying bioactive compound variations in citrus remain poorly understood. In this study, we constructed a species-level variation atlas of genomes and metabolomes using 299 citrus accessions. A total of 19 829 significant SNPs were targeted to 653 annotated metabolites, among which multiple significant signals were identified for secondary metabolites, especially flavonoids. Significant differential accumulation of bioactive compounds in the phenylpropane pathway, mainly flavonoids and coumarins, was unveiled across ancestral citrus species during differentiation, which is likely associated with the divergent haplotype distribution and/or expression profiles of relevant genes, including p-coumaroyl coenzyme A 2'-hydroxylases, flavone synthases, cytochrome P450 enzymes, prenyltransferases, and uridine diphosphate glycosyltransferases. Moreover, we systematically evaluated the beneficial bioactivities such as the antioxidant and anticancer capacities of 219 citrus varieties, and identified robust associations between distinct bioactivities and specific metabolites. Collectively, these findings provide citrus breeding options for enrichment of beneficial flavonoids and avoidance of potential risk of coumarins. Our study will accelerate the application of genomic and metabolic engineering strategies in developing modern healthy citrus cultivars.
Collapse
Affiliation(s)
- Xiao Liang
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Yue Wang
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Wanxia Shen
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, China
| | - Bin Liao
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Xiaojuan Liu
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Zimeng Yang
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Jiebiao Chen
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Chenning Zhao
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Zhenkun Liao
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Jinping Cao
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya, China
| | - Ping Wang
- Zhejiang Citrus Research Institute, Taizhou, China
| | - Peng Wang
- Zhejiang Citrus Research Institute, Taizhou, China
| | - Fuzhi Ke
- Zhejiang Citrus Research Institute, Taizhou, China
| | - Jianguo Xu
- Zhejiang Citrus Research Institute, Taizhou, China
| | - Qiong Lin
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wanpeng Xi
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Lishu Wang
- Department of Hematology and Hematopoietic Cell Transplantation, Comprehensive Cancer Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Xiaochun Zhao
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, China
| | - Chongde Sun
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya, China.
| |
Collapse
|
8
|
Nkoana JK, Mphahlele MJ, More GK, Choong YS. Exploring the 3,5-Dibromo-4,6-dimethoxychalcones and Their Flavone Derivatives as Dual α-Glucosidase and α-Amylase Inhibitors with Antioxidant and Anticancer Potential. Antioxidants (Basel) 2024; 13:1255. [PMID: 39456508 PMCID: PMC11505200 DOI: 10.3390/antiox13101255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The rising levels of type 2 diabetes mellitus (T2DM) and the poor medical effects of the commercially available antidiabetic drugs necessitate the development of potent analogs to treat this multifactorial metabolic disorder. It has been demonstrated that targeting two or more biochemical targets associated with the onset and progression of diabetes along with oxidative stress and/or cancer could be a significant strategy for treating complications related to this metabolic disorder. The 3,5-dibromo-4,6-dimethoxychalcones (2a-f) and the corresponding flavone derivatives (3a-f) were synthesized and characterized using spectroscopic (NMR, HR-MS and FT-IR) techniques. The inhibitory effect of both series of compounds against α-glucosidase and α-amylase was evaluated in vitro through enzymatic assays. Selected compounds were also evaluated for potential to activate or inhibit superoxide dismutase. Compound 3c was selected as a representative model for the flavone series and evaluated spectrophotometrically for potential to coordinate Cu(II) and/or Zn(II) ions implicated in the metal-catalyzed free radical generation. A plausible mechanism for metal-chelation of the test compounds is presented. Furthermore, the most active compounds from each series against the test carbohydrate-hydrolyzing enzymes were selected and evaluated for their antigrowth effect on the human breast (MCF-7) and lung (A549) cancer cell lines and for cytotoxicity against the African Green Monkey kidney (Vero) cell line. The parent chalcone 2a and flavone derivatives 3a, 3c and 3e exhibited relatively high inhibitory activity against the MCF-7 cells with IC50 values of 4.12 ± 0.55, 8.50 ± 0.82, 5.10 ± 0.61 and 6.96 ± 0.66 μM, respectively. The chalcones 2a and 2c exhibited significant cytotoxicity against the A549 cells with IC50 values of 7.40 ± 0.67 and 9.68 ± 0.80 μM, respectively. Only flavone 3c exhibited relatively strong and comparable cytotoxicity against the MCF-7 and A549 cell lines with IC50 values of 6.96 ± 0.66 and 6.42 ± 0.79 μM, respectively. Both series of compounds exhibited strong activity against the MCF-7 and A549 cell lines compared to the analogous quercetin (IC50 = 35.40 ± 1.78 and 35.38 ± 1.78 μM, respectively) though moderate compared to nintedanib (IC50 = 0.53 ± 0.11 and 0.74 ± 0.15 μM, respectively). The test compounds generally exhibited reduced cytotoxicity against the Vero cells compared to this anticancer drug. Molecular docking revealed strong alignment of the test compounds with the enzyme backbone to engage in hydrogen bonding interaction/s and hydrophobic contacts with the residues in the active sites of α-glucosidase and α-amylase. The test compounds possess favorable drug-likeness properties, supporting their potential as therapeutic candidates against T2DM.
Collapse
Affiliation(s)
- Jackson K. Nkoana
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa;
| | - Malose J. Mphahlele
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa;
| | - Garland K. More
- College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida 1710, South Africa;
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, George Town 11800, Penang, Malaysia;
| |
Collapse
|
9
|
Wani I, Koppula S, Balda A, Thekkekkara D, Jamadagni A, Walse P, Manjula SN, Kopalli SR. An Update on the Potential of Tangeretin in the Management of Neuroinflammation-Mediated Neurodegenerative Disorders. Life (Basel) 2024; 14:504. [PMID: 38672774 PMCID: PMC11051149 DOI: 10.3390/life14040504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Neuroinflammation is the major cause of neurodegenerative disorders such as Alzheimer's and Parkinson's disease. Currently available drugs present relatively low efficacy and are not capable of modifying the course of the disease or delaying its progression. Identifying well-tolerated and brain-penetrant agents of plant origin could fulfil the pressing need for novel treatment techniques for neuroinflammation. Attention has been drawn to a large family of flavonoids in citrus fruits, which may function as strong nutraceuticals in slowing down the development and progression of neuroinflammation. This review is aimed at elucidating and summarizing the effects of the flavonoid tangeretin (TAN) in the management of neuroinflammation-mediated neurodegenerative disorders. A literature survey was performed using various resources, including ScienceDirect, PubMed, Google Scholar, Springer, and Web of Science. The data revealed that TAN exhibited immense neuroprotective effects in addition to its anti-oxidant, anti-diabetic, and peroxisome proliferator-activated receptor-γ agonistic effects. The effects of TAN are mainly mediated through the inhibition of oxidative and inflammatory pathways via regulating multiple signaling pathways, including c-Jun N-terminal kinase, phosphoinositide 3-kinase, mitogen-activated protein kinase, nuclear factor erythroid-2-related factor 2, extracellular-signal-regulated kinase, and CRE-dependent transcription. In conclusion, the citrus flavonoid TAN has the potential to prevent neuronal death mediated by neuroinflammatory pathways and can be developed as an auxiliary therapeutic agent in the management of neurodegenerative disorders.
Collapse
Affiliation(s)
- Irshad Wani
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Sushruta Koppula
- College of Biomedical and Health Science, Konkuk University, Chungju-si 380-701, Republic of Korea;
| | - Aayushi Balda
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Dithu Thekkekkara
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Ankush Jamadagni
- Fortem Biosciences Private Limited (Ayurvibes), No. 24, Attur, 4th Cross, Tirumala Nagar, A Block, Bangalore 560064, India
| | - Prathamesh Walse
- Fortem Biosciences Private Limited (Ayurvibes), No. 24, Attur, 4th Cross, Tirumala Nagar, A Block, Bangalore 560064, India
| | | | - Spandana Rajendra Kopalli
- Department of Integrated Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| |
Collapse
|
10
|
Yuan S, Gao P, Wu S, Liang X, Xiao Y, Tu P, Jiang Y. Rapid and comprehensive metabolites identification of 5-demethylnobiletin in rats using UPLC/Triple-TOF-MS/MS based on multiple mass defect filter and their neuroprotection against ferroptosis. J Pharm Biomed Anal 2024; 238:115842. [PMID: 37939548 DOI: 10.1016/j.jpba.2023.115842] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/18/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
5-Demethylnobiletin (5-deNOB) is a hydroxylated polymethoxyflavone (PMF) from Citrus plants known for its neurotrophic, anti-tumor, and antioxidant bioactivities. An ultra-high performance liquid chromatography coupled with triple-time of flight tandem mass spectrometry (UPLC/Triple-TOF-MS/MS) analysis combining with multiple mass defect filter (MMDF) and MetabolitePilot™ was employed to detect and characterize the metabolites of 5-deNOB in rats. A total of 130 metabolites were identified in rats, with 100, 25, 34, and 52 metabolites found in urine, plasma, bile, and feces, respectively. The major metabolic pathways involved demethylation, hydroxylation, dehydroxylation, glucuronidation, and methylation. In a bioassay of evaluating neuroprotection against ferroptosis in PC12 cells, most of the metabolites exhibited superior activity compared to 5-deNOB. These results provide valuable insights into the in vivo pharmacodynamic properties of 5-deNOB and offer potential active small molecules for neuroprotective therapy. Furthermore, the findings demonstrate the effectiveness of UPLC/Triple-TOF-MS/MS combined with MMDF and MetabolitePilot™ for rapid discovery and identification of the in vivo metabolites of natural products.
Collapse
Affiliation(s)
- Shuo Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Peng Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Shourong Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaomin Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuling Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
11
|
Jan KC, Gavahian M. Hydroxylated Tetramethoxyflavone Affects Intestinal Cell Permeability and Inhibits Cytochrome P450 Enzymes. Molecules 2024; 29:322. [PMID: 38257234 PMCID: PMC10820070 DOI: 10.3390/molecules29020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Tetramethoxyflavones (TMFs) found in the Citrus genus have garnered considerable interest from food scientists and the health food industry because of their promising biological properties. Nonetheless, there are currently limited data available regarding the effectiveness and bioavailability of "hydroxylated TMFs", which are flavones known for their potential in disease prevention through dietary means. This study aims to provide insights into the chemical and biological properties of hydroxylated TMF and evaluates its effects on intestinal cell permeability and cytochrome P450 (CYP) inhibition. Liquid chromatography-mass spectrometry (LC-MS) and microsomes analyze the TMFs and hydroxylated TMFs, elucidating cell penetration and metabolic inhibition potential. 3H7-TMF shows the fastest (1-h) transport efficiency in intestinal cells. The Caco-2 cell model exhibits significant transport and absorption efficiency. Dissolved hydroxyl-TMF with hydrophilicity possibly permeates the gut. 3H7-TMF has higher transport efficiency (46%) 3H6-TMF (39%). IC50 values of TMFs (78-TMF, 57-TMF, 3H7-TMF, 3H6-TMF) against CYP enzymes (CYP1A2, CYP2D6, CYP2C9, CYP2C19, CYP3A4) range from 0.15 to 108 μM, indicating potent inhibition. Hydroxyl groups enhance TMF hydrophilicity and membrane permeability. TMFs display varied inhibitory effects due to hydroxyl and methoxy hindrance. This study underscores the strong CYP inhibitory capabilities in these TMFs, implying potential food-drug interactions if used in medicines or supplements. These findings can also help with food nutrition improvement and pharma food developments through innovative approaches for Citrus waste valorization.
Collapse
Affiliation(s)
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, No. 1, Xuefu Rd, Neipu, Pingtung 91201, Taiwan;
| |
Collapse
|
12
|
Zang L, Kagotani K, Hayakawa T, Tsuji T, Okumura K, Shimada Y, Nishimura N. The Hexane Extract of Citrus sphaerocarpa Ameliorates Visceral Adiposity by Regulating the PI3K/AKT/FoxO1 and AMPK/ACC Signaling Pathways in High-Fat-Diet-Induced Obese Mice. Molecules 2023; 28:8026. [PMID: 38138517 PMCID: PMC10745821 DOI: 10.3390/molecules28248026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Obesity is an emerging global health issue with an increasing risk of disease linked to lifestyle choices. Previously, we reported that the hexane extract of Citrus sphaerocarpa (CSHE) suppressed lipid accumulation in differentiated 3T3-L1 adipocytes. In this study, we conducted in vivo experiments to assess whether CSHE suppressed obesity in zebrafish and mouse models. We administered 10 and 20 μg/mL CSHE to obese zebrafish juveniles. CSHE significantly inhibited visceral fat accumulation compared to untreated obese fish. Moreover, the oral administration (100 μg/g body weight/day) of CSHE to high-fat-diet-induced obese mice significantly reduced their body weight, visceral fat volume, and hepatic lipid accumulation. The expression analyses of key regulatory genes involved in lipid metabolism revealed that CSHE upregulated the mRNA expression of lipolysis-related genes in the mouse liver (Pparα and Acox1) and downregulated lipogenesis-related gene (Fasn) expression in epididymal white adipose tissue (eWAT). Fluorescence immunostaining demonstrated the CSHE-mediated enhanced phosphorylation of AKT, AMPK, ACC, and FoxO1, which are crucial factors regulating adipogenesis. CSHE-treated differentiated 3T3L1 adipocytes also exhibited an increased phosphorylation of ACC. Therefore, we propose that CSHE suppresses adipogenesis and enhances lipolysis by regulating the PI3K/AKT/FoxO1 and AMPK/ACC signaling pathways. These findings suggested that CSHE is a promising novel preventive and therapeutic agent for managing obesity.
Collapse
Affiliation(s)
- Liqing Zang
- Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507, Mie, Japan;
- Mie University Zebrafish Drug Screening Center, Mie University, Tsu 514-8507, Mie, Japan; (K.K.); (Y.S.)
| | - Kazuhiro Kagotani
- Mie University Zebrafish Drug Screening Center, Mie University, Tsu 514-8507, Mie, Japan; (K.K.); (Y.S.)
- Tsuji Health & Beauty Science Laboratory, Mie University, Tsu 514-8507, Mie, Japan; (T.H.); (T.T.)
- Tsuji Oil Mills Co., Ltd., Matsusaka 515-0053, Mie, Japan
| | - Takuya Hayakawa
- Tsuji Health & Beauty Science Laboratory, Mie University, Tsu 514-8507, Mie, Japan; (T.H.); (T.T.)
- Tsuji Oil Mills Co., Ltd., Matsusaka 515-0053, Mie, Japan
| | - Takehiko Tsuji
- Tsuji Health & Beauty Science Laboratory, Mie University, Tsu 514-8507, Mie, Japan; (T.H.); (T.T.)
- Tsuji Oil Mills Co., Ltd., Matsusaka 515-0053, Mie, Japan
| | - Katsuzumi Okumura
- Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu 514-8507, Mie, Japan;
| | - Yasuhito Shimada
- Mie University Zebrafish Drug Screening Center, Mie University, Tsu 514-8507, Mie, Japan; (K.K.); (Y.S.)
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan
- Department of Bioinformatics, Mie University Advanced Science Research Promotion Centre, Tsu 514-8507, Mie, Japan
| | - Norihiro Nishimura
- Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507, Mie, Japan;
- Mie University Zebrafish Drug Screening Center, Mie University, Tsu 514-8507, Mie, Japan; (K.K.); (Y.S.)
| |
Collapse
|
13
|
Fang L, Wen M, Zou Y, Chu C, Wu C, Tong S. Matrix solid-phase dispersion combined with micro-fractionation bioactivity evaluation screening polymethoxylated flavones from Citrus peels. J Sep Sci 2023; 46:e2300570. [PMID: 37759397 DOI: 10.1002/jssc.202300570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/08/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
Polymethoxyflavones were a unique class of natural and safe flavonoids containing two or more methoxy groups, which were also the most abundant edible part in Citrus peel. The optimum condition in the process of selective extraction of polymethoxylated flavones from Citrus peel by matrix solid-phase dispersion (MSPD) was as follows: SBA-15 as adsorbent, ethyl acetate as eluent, the mass ratio of adsorbent to sample 1:1, and the mixture of sample and adsorbent was ground for 3 min. Twelve antioxidants were successfully screened by micro-fractionation bioactivity evaluation assay, in which four of them were flavonoid glycosides, seven of them were polymethoxylated flavones, and one was phenylpropanoid. 1-sinapoly-β-D-glucopyranoside (1) was reported for the first time in Citrus peel. And antioxidant capacity of 1-sinapoly-β-D-glucopyranoside, 5, 7, 8, 3', 4', 5'-hexamethoxyflavone (6), hexamethoxyflavone (11), and 5, 6, 7, 4'-tetramethoxyflavone (7) were reported for the first time. Nobiletin (compound 8), 3, 5, 6, 7, 8, 3', 4'-heptamethoxyflavone (9) and tangeretin (10) were isolated and purified by countercurrent chromatography combined with preparative liquid chromatography. Antioxidant activity evaluation indicated that the three isolated polymethoxylated flavones owned similar antioxidant activity. This study indicated that MSPD combined with micro-fractionation bioactive evaluation was efficient in screening bioactive compounds for rapid extraction and effective pinpointing bioactive substances in natural products.
Collapse
Affiliation(s)
- Liqun Fang
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Mengyi Wen
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Yanfang Zou
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Chu Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Chunyan Wu
- Taizhou Vocational College of Science and Technology, Taizhou, P.R. China
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| |
Collapse
|
14
|
Lin WS, Cheng WC, Ho PY, Ho CT, Pan MH. Regulation of Xenobiotic-Metabolizing Enzymes by 5-Demethylnobiletin and Nobiletin to Mitigate Benzo[a]pyrene-Induced DNA Damage In Vitro and In Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14604-14614. [PMID: 37610775 DOI: 10.1021/acs.jafc.3c03347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Benzo[a]pyrene (B[a]P) is a genotoxic polycyclic aromatic hydrocarbon that is metabolized by cytochrome P450 family 1 enzymes (CYP 1s) and can bind to DNA to form DNA adducts, leading to DNA damage and increased colorectal cancer risk. Previous studies have shown polymethoxyflavones to have a high potential for anticancer effects by regulating CYP 1s, especially nobiletin (NBT) and 5-demethylnobiletin (5-DMNB). However, the effects of NBT and 5-DMNB on B[a]P metabolism remain unclear. Therefore, this study aimed to clarify the effects of NBT and 5-DMNB on B[a]P-induced DNA damage in vitro and in vivo. In NCM460 cells, 5-DMNB and NBT appeared to reduce the metabolic conversion of B[a]P by regulating the aryl hydrocarbon receptor (AhR)/CYP 1s signaling pathway. This process protected NCM460 cells from B[a]P's cytotoxic effects by decreasing DNA damage and suppressing B[a]P diol-epoxide-DNA adduct formation. In BALB/c mice, 5-DMNB and NBT also protected against B[a]P-induced DNA damage. Altogether, these findings indicate that 5-DMNB and NBT attenuate B[a]P-induced DNA damage by modulating biotransformation, highlighting their chemopreventive potential against B[a]P-induced carcinogenesis. Therefore, 5-DMNB and NBT are promising agents for colorectal cancer chemoprevention in the future.
Collapse
Affiliation(s)
- Wei-Sheng Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Wan-Chen Cheng
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Pin-Yu Ho
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
15
|
Su ZY, Chien JC, Tung YC, Wu TY, Liao JA, Wei GJ. Tangeretin and 4'-demethyltangeretin prevent damage to mouse hepatocytes from oxidative stress by activating the Nrf2-related antioxidant pathway via an epigenetic mechanism. Chem Biol Interact 2023; 382:110650. [PMID: 37517432 DOI: 10.1016/j.cbi.2023.110650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/30/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Polymethoxyflavones (PMFs) in citrus fruits have a variety of biological activities, including antioxidant, anti-inflammatory, anticancer, and anti-atherosclerotic effects. The liver is the major detoxifying organ of the human body; however, factors such as acetaminophen (APAP) overdose may increase oxidative stress in liver cells and lead to severe liver failure. In this study we examined the effects of tangeretin (TAN), a common citrus PMF, and its metabolite 4'-demethyltangeretin (4'-OH-TAN) on activation of the Nrf2 antioxidant system in mouse AML-12 hepatocytes through regulation by epigenetic mechanisms. The ability of TAN and 4'-OH-TAN to inhibit APAP-induced hepatotoxicity was also evaluated. The results showed that TAN and 4'-OH-TAN significantly increased the mRNA and protein levels of Nrf2 and Nrf2-mediated antioxidant and detoxifying enzymes (UGT1A, HO-1, and NQO1) in AML-12 cells. TAN and 4'-OH-TAN also suppressed protein expression of histone deacetylases (HDACs) and DNA methyltransferases (DMNTs) and reduced DNA methylation of the nrf2 promoter. Furthermore, TAN and 4'-OH-TAN prevented APAP-induced injury and inhibited APAP-induced ROS generation in AML-12 cells. Based on these results, we conclude that TAN and 4'-OH-TAN may increase the antioxidant capacity of liver cells by regulating epigenetic alteration to activate the Nrf2-related antioxidant system, thereby preventing liver cells from being damaged by APAP-induced oxidative stress.
Collapse
Affiliation(s)
- Zheng-Yuan Su
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City, 320314, Taiwan.
| | - Jen-Chun Chien
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City, 320314, Taiwan
| | - Yen-Chen Tung
- Department of Food Science, National Ilan University, Yilan County, 260007, Taiwan
| | - Tien-Yuan Wu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110301, Taiwan
| | - Jie-An Liao
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City, 320314, Taiwan
| | - Guor-Jien Wei
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan.
| |
Collapse
|
16
|
Wang Q, Qiu Z, Chen Y, Song Y, Zhou A, Cao Y, Xiao J, Xiao H, Song M. Review of recent advances on health benefits, microbial transformations, and authenticity identification of Citri reticulatae Pericarpium bioactive compounds. Crit Rev Food Sci Nutr 2023; 64:10332-10360. [PMID: 37326362 DOI: 10.1080/10408398.2023.2222834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The extensive health-promoting effects of Citri Reticulatae Pericarpium (CRP) have attracted researchers' interest. The difference in storage time, varieties and origin of CRP are closely related to the content of bioactive compounds they contain. The consitituent transformation mediated by environmental microorganisms (bacteria and fungi) and the production of new bioactive components during the storage process may be the main reason for 'the older, the better' of CRP. In addition, the gap in price between different varieties can be as large as 8 times, while the difference due to age can even reach 20 times, making the 'marketing young-CRP as old-CRP and counterfeiting origin' flood the entire market, seriously harming consumers' interests. However, so far, the research on CRP is relatively decentralized. In particular, a summary of the microbial transformation and authenticity identification of CRP has not been reported. Therefore, this review systematically summarized the recent advances on the main bioactive compounds, the major biological activities, the microbial transformation process, the structure, and content changes of the active substances during the transformation process, and authenticity identification of CRP. Furthermore, challenges and perspectives concerning the future research on CRP were proposed.
Collapse
Affiliation(s)
- Qun Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zhenyuan Qiu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yilu Chen
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Yuqing Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Aimei Zhou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
17
|
Zhu C, Chen J, Zhao C, Liu X, Chen Y, Liang J, Cao J, Wang Y, Sun C. Advances in extraction and purification of citrus flavonoids. FOOD FRONTIERS 2023; 4:750-781. [DOI: 10.1002/fft2.236] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
AbstractFlavonoids are the representative active substances of citrus with various biological activities and high nutritional value. In order to evaluate and utilize citrus flavonoids, isolation and purification are necessary steps. This manuscript reviewed the research advances in the extraction and purification of citrus flavonoids. The structure classification, the plant and nutritional functions, and the biosynthesis of citrus flavonoids were summarized. The characteristics of citrus flavonoids and the selection of separation strategies were explained. The technical system of extraction and purification of citrus flavonoids was systematically described. Finally, outlook and research directions were proposed.
Collapse
Affiliation(s)
- Chang‐Qing Zhu
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Jie‐Biao Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Chen‐Ning Zhao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Xiao‐Juan Liu
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Yun‐Yi Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Jiao‐Jiao Liang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Jin‐Ping Cao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Yue Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Chong‐De Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| |
Collapse
|
18
|
Salerno TMG, Trovato E, Cafeo G, Vento F, Zoccali M, Donato P, Dugo P, Mondello L. Hidden threat lurking in extensive hand hygiene during the Covid-19 pandemic: investigation of sensitizing molecules in gel products by hyphenated chromatography techniques. Anal Bioanal Chem 2023:10.1007/s00216-023-04714-7. [PMID: 37191715 DOI: 10.1007/s00216-023-04714-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023]
Abstract
During the Covid-19 pandemic, health agencies worldwide have recommended frequent handwashing and sanitizing. A variety of hand gel products were made available on the market, often with fragrances added to curtail the strong smell of alcohol. Commonly used Citrus fragrances contain volatile aroma constituents and non-volatile oxygen heterocyclic compounds (OHCs), consisting mostly of polymethoxyflavones, coumarins, and furocoumarins. The latter have long been investigated for their phototoxic properties, and their safety as cosmetic product ingredients has been debated recurrently. To this concern, twelve commercial Citrus-scented products were investigated in this study. An extraction method was optimized for thirty-seven OHC compounds, obtaining absolute mean recovery values in the 73.5-116% range with only few milliliters of solvent consumption. Analysis by ultra-high-pressure liquid chromatography with tandem mass spectrometry detection evidenced that three samples did not conform to the labeling requirements for fragrance allergens (coumarin) laid down by the European Union Regulation on Cosmetic Products. The total furocoumarin (FC) content of the samples investigated was in the 0.003-3.7ppm range, with some noteworthy exceptions. Specifically, in two samples, the total FCs were quantified as 89 and 219 ppm, thus exceeding the safe limits recommended up to a factor of 15. Finally, the consistency of the volatile fingerprint attained by gas chromatography allowed drawing conclusions on the authenticity of the Citrus fragrances labeled, and several products did not conform to the information reported on the label concerning the presence of essential oils. Besides the issue of product authenticity, analytical tools and regulatory actions for widespread testing of hand hygiene products are urgent, to protect consumers' health and safety.
Collapse
Affiliation(s)
- Tania M G Salerno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale G. Palatucci, 98168, Messina, Italy
| | - Emanuela Trovato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale G. Palatucci, 98168, Messina, Italy
| | - Giovanna Cafeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale G. Palatucci, 98168, Messina, Italy
| | - Federica Vento
- Chromaleont S.R.L., at Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale G. Palatucci, 98168, Messina, Italy
| | - Mariosimone Zoccali
- Department of Mathematical and Computer Science, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Paola Donato
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
| | - Paola Dugo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale G. Palatucci, 98168, Messina, Italy
- Chromaleont S.R.L., at Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale G. Palatucci, 98168, Messina, Italy
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale G. Palatucci, 98168, Messina, Italy.
- Chromaleont S.R.L., at Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale G. Palatucci, 98168, Messina, Italy.
| |
Collapse
|
19
|
Gado DA, Abdalla MA, Ehlers MM, McGaw LJ. Pharmacological properties and radical scavenging potential of 5-demethyl sinensetin obtained from Loxostylis alata. SOUTH AFRICAN JOURNAL OF BOTANY 2023; 156:385-391. [DOI: 10.1016/j.sajb.2023.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Ahmad B, Friar EP, Vohra MS, Khan N, Serpell CJ, Garrett MD, Loo JSE, Fong IL, Wong EH. Hydroxylated polymethoxyflavones reduce the activity of pancreatic lipase, inhibit adipogenesis and enhance lipolysis in 3T3-L1 mouse embryonic fibroblast cells. Chem Biol Interact 2023; 379:110503. [PMID: 37084996 DOI: 10.1016/j.cbi.2023.110503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 04/23/2023]
Abstract
Hydroxylated polymethoxyflavones (HPMFs) have been shown to possess various anti-disease effects, including against obesity. This study investigates the anti-obesity effects of HPMFs in further detail, aiming to gain understanding of their mechanism of action in this context. The current study demonstrates that two HPMFs; 3'-hydroxy-5,7,4',5'-tetramethoxyflavone (3'OH-TetMF) and 4'-hydroxy-5,7,3',5'-tetramethoxyflavone (4'OH-TetMF) possess anti-obesity effects. They both significantly reduced pancreatic lipase activity in a competitive manner as demonstrated by molecular docking and kinetic studies. In cell studies, it was revealed that both of the HPMFs suppress differentiation of 3T3-L1 mouse embryonic fibroblast cells during the early stages of adipogenesis. They also reduced expression of key adipogenic and lipogenic marker genes, namely peroxisome proliferator-activated receptor-gamma (PPAR-γ), CCAAT/enhancer-binding protein α and β (C/EBP α and β), adipocyte binding protein 2 (aP2), fatty acid synthase (FASN), and sterol regulatory element-binding protein 1 (SREBF 1). They also enhanced the expression of cell cycle genes, i.e., cyclin D1 (CCND1) and C-Myc, and reduced cyclin A2 expression. When further investigated, it was also observed that these HPMFs accelerate lipid breakdown (lipolysis) and enhance lipolytic gene expression. Moreover, they also reduced the secretion of proteins (adipokines), including pro-inflammatory cytokines, from mature adipocytes. Taken together, this study concludes that these HPMFs have anti-obesity effects, which are worthy of further investigation.
Collapse
Affiliation(s)
- Bilal Ahmad
- School of Biosciences, Faculty of Health and Medical Sciences Taylor's University Lakeside Campus, No1 Jalan Taylor's, 47500, Subang Jaya, Malaysia
| | - Emily P Friar
- School of Chemistry and Forensic Science, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom
| | - Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences Taylor's University Lakeside Campus, No1 Jalan Taylor's, 47500, Subang Jaya, Malaysia
| | - Nasar Khan
- R3 Medical Research, 10045 East Dynamite Boulevard Suite 260, Scottsdale, AZ, 85262, United States
| | - Christopher J Serpell
- School of Chemistry and Forensic Science, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom.
| | - Michelle D Garrett
- School of Biosciences, Stacey Building, University of Kent, Canterbury, Kent, CT2 7NJ, United Kingdom
| | - Jason Siau Ee Loo
- School of Pharmacy, Faculty of Health and Medical Sciences Taylor's University Lakeside Campus, No1 Jalan Taylor's, 47500, Subang Jaya, Malaysia
| | - Isabel Lim Fong
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak (UNIMAS), 94300, Kota Samarahan, Sarawak, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences Taylor's University Lakeside Campus, No1 Jalan Taylor's, 47500, Subang Jaya, Malaysia.
| |
Collapse
|
21
|
Fontana G, Bruno M, Sottile F, Badalamenti N. The Chemistry and the Anti-Inflammatory Activity of Polymethoxyflavonoids from Citrus Genus. Antioxidants (Basel) 2022; 12:antiox12010023. [PMID: 36670885 PMCID: PMC9855034 DOI: 10.3390/antiox12010023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Polymethoxyflavonoids (PMFs) are a large group of compounds belonging to the more general class of flavonoids that possess a flavan carbon framework decorated with a variable number of methoxy groups. Hydroxylated polymethoxyflavonoids (HPMFs), instead, are characterized by the presence of both hydroxyl and methoxy groups in their structural unities. Some of these compounds are the aglycone part in a glycoside structure in which the glycosidic linkage can involve the -OH at various positions. These compounds are particular to Citrus genus plants, especially in fruits, and they are present mainly in the peel. A considerable number of PMFs and HPMFs have shown promising biological activities and they are considered to be important nutraceuticals, responsible for some of the known beneficial effects on health associated with a regular consumption of Citrus fruits. Among their several actions on human health, it is notable that the relevant contribution in controlling the intracellular redox imbalance is associated with the inflammation processes. In this work, we aim to describe the status concerning the chemical identification and the anti-inflammatory activity of both PMFs and HPMFs. In particular, all of the chemical entities unambiguously identified by isolation and complete NMR analysis, and for which a biochemical evaluation on the pure compound was performed, are included in this paper.
Collapse
Affiliation(s)
- Gianfranco Fontana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| | - Maurizio Bruno
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
- Correspondence: (M.B.); (F.S.)
| | - Francesco Sottile
- Dipartimento di Architettura, Università Degli Studi di Palermo, Centro di Conservazione della Biodiversità di Interesse Agrario, Viale delle Scienze Ed. 14, 90128 Palermo, Italy
- Correspondence: (M.B.); (F.S.)
| | - Natale Badalamenti
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| |
Collapse
|
22
|
Zhu SC, Shi MZ, Yu YL, Cao J. Optimization of mechanically assisted coamorphous dispersion extraction of hydrophobic compounds from plant tea (Citri Reticulatae Pericarpium) using water. Food Chem 2022; 393:133462. [PMID: 35751220 DOI: 10.1016/j.foodchem.2022.133462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/18/2022] [Accepted: 06/09/2022] [Indexed: 11/04/2022]
Abstract
This study aimed to establish a novel mechanically assisted coamorphous dispersion extraction (MADE) method for the extraction of hydrophobic compounds (hesperidin, nobiletin and tangeretin) from Citri Reticulatae Pericarpium using water. The surface morphology, particle size distributions, phase states and functional groups of the coground product surface were characterized by Scanning Electron Microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. The parameters affecting the efficiency of extraction method were optimized by single-factor experiments and response surface methodology. The method showed good linear relationships in the range of 1-500 μg/mL with correlation coefficients (R2) ≥ 0.9990, low limits of detection ranging from 3.0 to 28.3 ng/mL, and acceptable recoveries ranging from 87.0 to 91.0%. Therefore, the proposed MADE method is a promising, efficient and organic solvent-free method for the extraction of hydrophobic compounds from plant tea.
Collapse
Affiliation(s)
- Si-Chen Zhu
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Min-Zhen Shi
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Ya-Ling Yu
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Jun Cao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
23
|
Štellerová D, Michalík M, Lukeš V. Methoxylated flavones with potential therapeutic and photo-protective attributes: Theoretical investigation of substitution effect. PHYTOCHEMISTRY 2022; 203:113387. [PMID: 36055427 DOI: 10.1016/j.phytochem.2022.113387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
The molecular and electronic structure of parent flavone and 49 (poly)methoxylated flavones (P)MFs were studied theoretically. Selected group of flavonoids consists of compounds naturally occurring in citrus plants or synthetic derivatives of flavone. These compounds exhibit several bioactivities in vitro and in vivo and can protect plants from solar ultraviolet (UV) radiation. Substitution induced structural changes in (P)MFs were correlated with published experimental values of P-glycoprotein inhibition effect. We have demonstrated that the C5-C10 bond length of 1-benzopyran-4-one moiety represents a suitable structural descriptor for this bioactivity. Obtained linear equations for the compounds with substituted and non-substituted C3 position enable the prediction of the potential anti-cancer chemo-preventive effect of the rest of studied (P)MFs. Consequently, potentially more effective substances were suggested. Optical properties of (P)MFs and their relationship with the molecular structure was examined in detail for methanol environment, as well. The multiple linear regression model was applied to assess the correlation between experimental absorption and fluorescence wavelengths with the theoretically predicted ones. The UV photo-protective potential of studied derivatives was estimated from the calculated optical properties.
Collapse
Affiliation(s)
- Dagmar Štellerová
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovakia
| | - Martin Michalík
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovakia
| | - Vladimír Lukeš
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovakia.
| |
Collapse
|
24
|
Acetylation Enhances the Anticancer Activity and Oral Bioavailability of 5-Demethyltangeretin. Int J Mol Sci 2022; 23:ijms232113284. [PMID: 36362072 PMCID: PMC9658984 DOI: 10.3390/ijms232113284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
A kind of hydroxylated polymethoxyflavone (PMFs) existing in the citrus genus, 5-Demethyltangeretin (5-DTAN), has been reported to possess several bioactivities in vitro and in vivo. The aim of this study was to investigate whether acetylation could enhance the anticancer activity and oral bioavailability of 5-DTAN. PC-3 human prostate cancer cells were treated with tangeretin (TAN), 5-DTAN, and 5-acetylated TAN (5-ATAN), and the results showed that the cytotoxic effect 5-ATAN (IC50 value of 5.1 µM) on the cell viability of PC-3 cells was stronger than that of TAN (IC50 value of 17.2 µM) and 5-DTAN (IC50 value of 11.8 µM). Compared to 5-DTAN, 5-ATAN treatment caused a more pronounced DNA ladder, increased the sub-G1 phase population, and induced G2/M phase arrest in the cell cycle of PC-3 cells. We also found that 5-ATAN triggered the activation of caspase-3 and the progression of the intrinsic mitochondrial pathway in PC-3 cells, suggesting the induction of apoptosis. In a cell wound healing test, 5-ATAN dose-dependently reduced the cell migration, and the expression of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) was decreased after 48 h of 5-ATAN treatment. Moreover, oral administration of 5-ATAN showed a significantly stronger inhibitory effect on tumor size and tumor weight in tumor-bearing nude mice than those of vehicle or the 5-DTAN group (p < 0.05). Furthermore, pharmacokinetic results showed that single-dose oral administration of 5-ATAN exhibited a higher maximum concentration (Cmax) and area under the curve (AUC) of 5-DTAN in plasma than that of 5-DTAN. More extensive distribution of 5-DTAN to most tissues of mice was also observed in mice treated with 5-ATAN for 7 days. In conclusion, acetylation strongly enhances the anticancer activity and oral bioavailability of 5-DTAN and could be a promising strategy to promote the potential bioactivities of natural products.
Collapse
|
25
|
Faqueti LG, da Silva LAL, Moreira GSG, Kraus S, de Jesus GDSC, Honorato LA, de Araujo BV, Dos Santos ARS, Costa TD, Biavatti MW. Preclinical Pharmacokinetic and Pharmacodynamic Investigation of 5'-Methoxynobiletin from Ageratum conyzoides: In vivo and In silico Approaches. Pharm Res 2022; 39:2135-2145. [PMID: 35831672 DOI: 10.1007/s11095-022-03332-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 07/04/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE 5'-methoxynobiletin (5'-MeONB), a polymethoxyflavone isolated from A. conyzoides, has shown anti-inflammatory property. Nevertheless, the antinociceptive activity and pre-clinical pharmacokinetics (PK) characteristics of 5'-MeONB remain unknown. Considering the anti-inflammatory potential of the 5'-MeONB, this study aimed to investigate the pre-clinical PK behavior of 5'-MeONB, as well as its time course antinociceptive activity. METHODS 5'-MeONB plasma concentrations were determined in Wistar rats after intravenous (i.v.) (10 mg/kg) and oral (50 mg/kg) administration, and in Swiss mice after oral administration (100 mg/kg). Plasma samples were deproteinization and 5'-MeONB quantified by a validated UPLC-MS method. Additionally, the antinociceptive activity of 5'-MeONB was evaluated after 15, 30, 60, 180 and 360 min following oral administration on the acute nocifensive behavior of mice induced by formalin. RESULTS 5'-MeONB rats and mice plasma concentration-time profiles were best one-compartment model. After i.v. administration to rats, a short half-life, a high clearance and moderate volume of distribution at steady state were observed. Similar results were obtained after oral administration. The oral bioavailability ranged from 8 to 11%. Additionally, 5'-MeONB exhibited antinociceptive activity in both formalin phases, especially in the inflammatory phase of the model, inhibiting 68% and 91% of neurogenic and inflammatory responses, respectively, after 30 min of oral administration. CONCLUSIONS The results described here provide novel insights on 5'-MeONB pharmacokinetics and pharmacodynamic effect, serving as support for future studies to confirm this compound as anti-nociceptive and anti-inflammatory effective agent.
Collapse
Affiliation(s)
- Larissa Gabriela Faqueti
- Department of Pharmaceutical Sciences, CCS, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Layzon Antonio Lemos da Silva
- Department of Pharmaceutical Sciences, CCS, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Gabriela Salim Gomes Moreira
- Department of Pharmaceutical Sciences, CCS, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Scheila Kraus
- Department of Physiological Sciences, CCB, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | | | - Luciana Aparecida Honorato
- Department of Pharmacology, CCB, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Bibiana Verlindo de Araujo
- Pharmacokinetics and PK/PD Modelling Laboratory, College of Pharmacy, Universidade Federal Do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | | | - Teresa Dalla Costa
- Pharmacokinetics and PK/PD Modelling Laboratory, College of Pharmacy, Universidade Federal Do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Maique Weber Biavatti
- Department of Pharmaceutical Sciences, CCS, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil.
- Farmacognosy Laboratory, CIF/CCS, UFSC Campus Universitário/Trindade, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
26
|
Flavonoids: Food associations, therapeutic mechanisms, metabolism and nanoformulations. Food Res Int 2022; 157:111442. [PMID: 35761682 DOI: 10.1016/j.foodres.2022.111442] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 01/09/2023]
Abstract
Flavonoids possess an impressive therapeutic potential, thereby imparting them a nutraceutical character. As it becomes increasingly common to consume foods associated with healing properties, it is imperative to understand the associations of different foods with different classes of nutraceutic compounds, and their mechanisms of therapeutic action. At the same time, it is important to address the limitations thereof so that plausible future directions may be drawn. This review summarizes the food associations of flavonoids, and discusses the mechanisms responsible for imparting them their nutraceutic properties, detailing the nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway, inhibition of inflammatory signaling pathways such as toll-like receptor (TLR), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), cyclooxygenase 2 (COX-2) and lipoxygenase-2 (LOX-2) mediators. Further on, the review explains the mechanism of flavonoids metabolism, reasons for low bioavailability and thereafter recapitulates the role of technological interventions to overcome the limitations, with a particular focus on nanoformulations that utilize the synergy between flavonoids and biocompatible materials used as nanocarriers, as reported in works spanning over a decade. It is the Generally Recognized as Safe (GRAS) classified carriers that will become the basis for developing functional formulations. It is promisingly noteworthy that some flavonoid formulations have been commercialized and mentioned therein. Such commercially viable and safe for consumption technological applications pave way for bringing science to the table, and add value to the innate properties of flavonoids.
Collapse
|
27
|
Wang X, Li D, Cao Y, Ho CT, Huang Q. Identification and Quantification of Both Methylation and Demethylation Biotransformation Metabolites of 5-Demethylsinensetin in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3162-3171. [PMID: 35230106 DOI: 10.1021/acs.jafc.1c07509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
5-Demethylated polymethoxyflavones (5-OH PMFs) are the most unique monodemethylated PMFs with relatively low polarities and are proved to possess better anticancer and anti-inflammatory effects than their respective permethoxylated ones. However, their detailed in vivo metabolic fates have not been fully studied. 5-Demethylsinensetin (5-OH Sin), being one of the 5-demethylated citrus PMFs, was used in the present research to investigate its biotransformation in pharmacokinetics and excretion in rats. The results showed that 5-OH Sin was mostly accumulated in the large intestine, indicating its poor absorption in the small intestine. In addition, 5,3'-didemethylsinensetin and 5,4'-didemethylsinensetin were identified as two dominated metabolites of 5-OH Sin, and the C-3' position of 5-OH Sin was more facile to be demethylated in systemic circulation. Moreover, other than demethylation reactions, the methylation transformation of 5-OH Sin and its metabolites were also observed and quantified, suggesting that the bidirectional biotransformation between 5-OH Sin and its parent compound, Sin, occurred under in vivo conditions.
Collapse
Affiliation(s)
- Xiaoqi Wang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
28
|
Zheng Y, Zeng X, Guan M, Xie S, Peng W, Su W. UHPLC-Q-TOF-MS/MS-based Metabolite Profiling of Ganpu Tea in Rat Urine and Feces. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221084630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Ganpu tea is a novel type of beverage produced from Pu-erh tea stuffed in the pericarp of Citrus reticulata “Chachi”. It has gained considerable popularity in China owing to its inviting flavor and health effects. However, the in vivo metabolites of Ganpu tea, which may contribute to its overall health effects, are still unclear. In the present work, rat urine and feces samples were collected after oral administration of Ganpu tea extract (GTE), and then subjected to ultra-high-performance liquid chromatography/quadrupole-time-of-flight tandem mass spectrometry (UHPLC-Q-TOF-MS/MS)-based metabolite profiling. As a result, 27 prototype compounds and 41 metabolites derived from caffeic acid, gallic acid, p-coumaric acid, xanthine, catechin, polymethoxyflavone, (PMF) flavanone, and flavone were identified in rat urine and feces. Based on the detected metabolites, the ingested prototype compounds derived from Ganpu tea were found to undergo extensive phase II metabolism in rats, especially and sulfation. These results will be valuable for interpreting the health effects of Ganpu tea.
Collapse
Affiliation(s)
- Yuying Zheng
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University Guangzhou, People's Republic of China
| | - Xuan Zeng
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University Guangzhou, People's Republic of China
| | - Minyi Guan
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University Guangzhou, People's Republic of China
| | - Shiting Xie
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University Guangzhou, People's Republic of China
| | - Wei Peng
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University Guangzhou, People's Republic of China
| | - Weiwei Su
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University Guangzhou, People's Republic of China
| |
Collapse
|
29
|
Sarkar T, Salauddin M, Roy A, Sharma N, Sharma A, Yadav S, Jha V, Rebezov M, Khayrullin M, Thiruvengadam M, Chung IM, Shariati MA, Simal-Gandara J. Minor tropical fruits as a potential source of bioactive and functional foods. Crit Rev Food Sci Nutr 2022; 63:6491-6535. [PMID: 35164626 DOI: 10.1080/10408398.2022.2033953] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tropical fruits are defined as fruits that are grown in hot and humid regions within the Tropic of Cancer and Tropic of Capricorn, covering most of the tropical and subtropical areas of Asia, Africa, Central America, South America, the Caribbean and Oceania. Depending on the cultivation area covered, economic value and popularity these tropical fruits are divided into major and minor tropical fruits. There is an annual increment of 3.8% in terms of commercialization of the tropical fruits. In total 26 minor tropical fruits (Kiwifruit, Lutqua, Carambola, Tree Tomato, Elephant apple, Rambutan, Bay berry, Mangosteen, Bhawa, Loquat, Silver berry, Durian, Persimon, Longan, Passion fruit, Water apple, Pulasan, Indian gooseberry, Guava, Lychee, Annona, Pitaya, Sapodilla, Pepino, Jaboticaba, Jackfruit) have been covered in this work. The nutritional composition, phytochemical composition, health benefits, traditional use of these minor tropical fruits and their role in food fortification have been portrayed.
Collapse
Affiliation(s)
- Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Malda, India
| | - Molla Salauddin
- Department of Food Processing Technology, Mir Madan Mohanlal Govt. Polytechnic, West Bengal State Council of Technical Education, Nadia, India
| | - Arpita Roy
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Nikita Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Apoorva Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Saanya Yadav
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Vaishnavi Jha
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Maksim Rebezov
- Liaocheng University, Liaocheng, Shandong, China
- V. M. Gorbatov Federal Research Center for Food Systems, Moscow, Russian Federation
- K.G. Razumovsky Moscow State University of Technologies, and Management (The First Cossack University), Moscow, Russian Federation
| | - Mars Khayrullin
- K.G. Razumovsky Moscow State University of Technologies, and Management (The First Cossack University), Moscow, Russian Federation
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Mohammad Ali Shariati
- Liaocheng University, Liaocheng, Shandong, China
- K.G. Razumovsky Moscow State University of Technologies, and Management (The First Cossack University), Moscow, Russian Federation
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| |
Collapse
|
30
|
Bioactive Compounds of Citrus Fruits: A Review of Composition and Health Benefits of Carotenoids, Flavonoids, Limonoids, and Terpenes. Antioxidants (Basel) 2022; 11:antiox11020239. [PMID: 35204122 PMCID: PMC8868476 DOI: 10.3390/antiox11020239] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
The increased consumption of fruits, vegetables, and whole grains contributes to the reduced risk of many diseases related to metabolic syndrome, including neurodegenerative diseases, cardiovascular disease (CVD), diabetes, and cancer. Citrus, the genus Citrus L., is one of the most important fruit crops, rich in carotenoids, flavonoids, terpenes, limonoids, and many other bioactive compounds of nutritional and nutraceutical value. Moreover, polymethoxylated flavones (PMFs), a unique class of bioactive flavonoids, abundantly occur in citrus fruits. In addition, citrus essential oil, rich in limonoids and terpenes, is an economically important product due to its potent antioxidant, antimicrobial, and flavoring properties. Mechanistic, observational, and intervention studies have demonstrated the health benefits of citrus bioactives in minimizing the risk of metabolic syndrome. This review provides a comprehensive view of the composition of carotenoids, flavonoids, terpenes, and limonoids of citrus fruits and their associated health benefits.
Collapse
|
31
|
Chien WJ, Saputri DS, Lin HY. Valorization of Taiwan's Citrus depressa Hayata peels as a source of nobiletin and tangeretin using simple ultrasonic-assisted extraction. Curr Res Food Sci 2022; 5:278-287. [PMID: 35146444 PMCID: PMC8816667 DOI: 10.1016/j.crfs.2022.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 12/28/2022] Open
Abstract
As the highest yield crop worldwide, citrus peels that possess bioactive compounds were discarded as a futile by-product. Ultrasonication with environmentally friendly solvent (50% ethanol and ddH2O) were used in the present study to extract flavonoids from Citrus depressa Hayata peels with extraction period and fruit maturity as other variables. DPPH scavenging activity was investigated. Qualitative flavonoid content analysis was done by UV/Vis and FTIR-ATR spectra. Quantification of flavonoid using LC-MS/MS found that solvent type, fruit maturity, and ultrasonication period significantly affect the extracted flavonoid yield (p < 0.05). Extraction using 50% ethanol showed a higher yield than ddH2O. Flavonoid content was also higher in unripe than ripe samples. Nobiletin, tangeretin, and rutin were dominant among the identified compounds in all sample treatments. Flavonoid content in Citrus depressa Hayata extract was found to negatively correlate to DPPH scavenging activity, which needs further research to identify other bioactivities of these flavonoids. Utilization of simple ultrasonication method with less preparation to extract flavonoids from Citrus depressa Hayata peels. Fruit maturity, extraction time and solvent preference significantly affect the yield of extracted flavonoid. Environmentally friendly solvent for extraction, deliver a comparable yield of flavonoid compounds to other methods. The negative correlation of extracted flavonoid to DPPH scavenging activity.
Collapse
|
32
|
Yang X, Deng Y, Tu Y, Feng D, Liao W. Nobiletin mitigates NAFLD via lipophagy and inflammation. Food Funct 2022; 13:10186-10199. [DOI: 10.1039/d2fo01682f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD), an increasingly serious health issue in the world, was characterized as lipid metabolic disorder without a satisfactory treatment. Nobiletin (NOB), a citrus flavonoid, was considered...
Collapse
|
33
|
Zapotin, a Polymethoxyflavone, with Potential Therapeutic Attributes. Int J Mol Sci 2021; 22:ijms222413227. [PMID: 34948021 PMCID: PMC8705526 DOI: 10.3390/ijms222413227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022] Open
Abstract
The use of plants as traditional medicines is common and has prevailed in many different cultures over time. Polymethoxyflavones (PMFs) are natural polyphenols from the group of flavonoids. Zapotin, a member of the PMFs, is found mainly in citrus plants and is almost exclusively limited to their peels. The chemical structure of zapotin has been questioned from the very beginning, since the structure of flavonoids with a single oxygen atom in the C2′ position is extremely rare in the plant kingdom. To clarify this, the structural determination and bio-inspired synthesis of zapotin are discussed in detail in this review. Due to the broad biological potential of PMFs, the complication in the isolation process and characterization of PMFs, as well as their purification, have been estimated by adapting various chromatographic methods. According to available data from the literature, zapotin may be a promising curative agent with extensive biological activities, especially as a chemopreventive factor. Apart from that, zapotin acts as an antidepressant-like, anticancer, antifungal, and antioxidant agent. Finally, accessible studies about zapotin metabolism (absorption, distribution, metabolism, excretion, and toxicity) underline its potential in use as a therapeutic substance.
Collapse
|
34
|
Inhibitory effects of orally administered pectic polysaccharides extracted from the citrus Hallabong peel on lung metastasis. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Zhang M, Pan Y, Dong Q, Tang X, Xin Y, Yin B, Zhu J, Kou X, Ho CT, Huang Q. Development of organogel-based emulsions to enhance the loading and bioaccessibility of 5-demethylnobiletin. Food Res Int 2021; 148:110592. [PMID: 34507737 DOI: 10.1016/j.foodres.2021.110592] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/08/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
5-Demethylnobiletin (5-DMN), identified in the aged citrus peels, has received increasing attentions due to its outstanding bioactivity among citrus polymethoxyflavones (PMFs). However, the poor water solubility and high crystallinity limit its oral bioavailability. Besides, the solubility of 5-DMN in the oil is very limited, which restricts its loading capacity in emulsions for bioavailability enhancement. In this study, an organogel formulation was developed to improve the solubility of 5-DMN in medium-chain triacylglycerols by 3.5 times higher without crystal formation during 5-day storage at room temperature. Increasing the gelator (i.e., sugar ester) concentration led to the increase of viscosity and a gel-like structure of the organogel. The ternary phase diagram of organogel-based emulsions was explored, and 40% organogel was selected as the oil phase for emulsion preparation. Increasing the concentration of Tween 80 from 0% to 6% decreased the droplet size and viscoelasticity of the emulsions. Two in vitro models, the pH-stat lipolysis model and TNO gastro-intestinal model (TIM-1), were applied to investigate the bioaccessibility of 5-DMN in different delivery systems. Compared with the conventional emulsion and oil suspension, the pH-stat lipolysis demonstrated that the organogel-based emulsion was the most efficient tool to enhance 5-DMN bioacccessibility. Moreover, TIM-1 digestive study indicated that 5-DMN bioaccessibility delivered by organogel-based emulsions was about 3.26-fold higher than that of oil suspension. Our results suggested that the organogel-based emulsion was an effective delivery route to enhance the loading and bioaccessibility of lipophilic compounds of high crystallinity.
Collapse
Affiliation(s)
- Man Zhang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Yijun Pan
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Qiaoru Dong
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Xudong Tang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Yanping Xin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Baoer Yin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jieyu Zhu
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Xingran Kou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
36
|
Chou YC, Lin YH, Lin PH, Tung YC, Ho CT, Pan MH. Dietary 5-demethylnobiletin modulates xenobiotic-metabolizing enzymes and ameliorates colon carcinogenesis in benzo[a]pyrene-induced mice. Food Chem Toxicol 2021; 155:112380. [PMID: 34216713 DOI: 10.1016/j.fct.2021.112380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/19/2021] [Accepted: 06/28/2021] [Indexed: 11/15/2022]
Abstract
The intake of common polycyclic aromatic hydrocarbons (PAHs), such as benzo[a]pyrene (BaP), is strongly correlated to the initiation of colon cancer. BaP is a well-known pro-carcinogen that is metabolically activated by xenobiotic-metabolizing enzymes. Studies indicate that polymethoxyflavones, including 5-demethylnobiletin (5-DMNB), exhibit anti-inflammatory and anti-carcinogenic properties. However, the effects of 5-DMNB on xenobiotic-metabolizing enzymes and BaP-induced carcinogenesis remain unclear. The combination of BaP and a promoting agent-dextran sulfate sodium (DSS)-has been demonstrated to induce tumors in mouse models. Thus, this study aimed to determine the protective effect of 5-DMNB on carcinogen biotransformation and BaP/DSS-induced colon carcinogenesis. Our results showed that 5-DMNB had a substantial inhibitory effect on CYP1B1 induced by BaP and upregulated the detoxification enzymes UDP-glucuronosyltransferases (UGTs) and glutathione S-transferases (GSTs). Furthermore, subsequent analyses confirmed that the dietary administration of 5-DMNB markedly ameliorated tumor formation in BaP/DSS-treated mice. Exposure to BaP/DSS also significantly elevated TNF-α levels, and the administration of 5-DMNB reversed this increase. Taken together, we determined that 5-DMNB attenuates BaP/DSS-induced colon cancer through the regulation of inflammation and xenobiotic-metabolizing enzymes. These results indicate that 5-DMNB has significant potential as a novel chemopreventive agent for preventing carcinogen activation and inflammation-associated carcinogenesis.
Collapse
Affiliation(s)
- Ya-Chun Chou
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Hsuan Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Pin-Hsuan Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Yen-Chen Tung
- Department of Nutrition, China Medical University, Taichung, 40402, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354, Taiwan.
| |
Collapse
|
37
|
Liu N, Li X, Zhao P, Zhang X, Qiao O, Huang L, Guo L, Gao W. A review of chemical constituents and health-promoting effects of citrus peels. Food Chem 2021; 365:130585. [PMID: 34325351 DOI: 10.1016/j.foodchem.2021.130585] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022]
Abstract
Citrus is one of the main fruits processed worldwide, producing a lot of industrial by-products. As the main part of citrus "residue", citrus peels have a wide application prospect. They could not only be directly used to produce various food products, but also be used as promising biofuels to produce ethanol and methane. Additionally, functional components (flavonoids, limonoids, alkaloids, essential oils and pectin) extracted from citrus peels have been related to the improvement of human health against active oxygen, inflammatory, cancer and metabolic disorders. Therefore, it is clear that the citrus peels have great potential to be developed into useful functional foods, medicines and biofuels. This review systematically summarizes the recent advances in current uses, processing, bioactive components and biological properties of citrus peels. A better understanding of citrus peels may provide reference for making full use of it.
Collapse
Affiliation(s)
- Na Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| | - Ping Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Xueqian Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Ou Qiao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| |
Collapse
|
38
|
The Application of Citrus folium in Breast Cancer and the Mechanism of Its Main Component Nobiletin: A Systematic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2847466. [PMID: 34257674 PMCID: PMC8260297 DOI: 10.1155/2021/2847466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/28/2021] [Accepted: 06/19/2021] [Indexed: 02/07/2023]
Abstract
Citrus folium and its main ingredient nobiletin (NOB) have received widespread attention in recent years due to their antitumor effects. The antitumor effect of Citrus folium is related to the traditional use, mainly in its Chinese medicinal properties of soothing the liver and promoting qi, resolving phlegm, and dispelling stagnation. Some studies have proved that Citrus folium and NOB are more effective for triple-negative breast cancer (TNBC), which is related to the syndrome of stagnation of liver qi. From the perspective of modern biomedical research, NOB has anticancer effects. Its potential molecular mechanisms include inhibition of the cell cycle, induction of apoptosis, and inhibition of angiogenesis, invasion, and migration. Citrus folium and NOB can also reduce the side effects of chemotherapy drugs and reverse multidrug resistance (MDR). However, more research studies are needed to clarify the underlying mechanisms. The modern evidence of Citrus folium and NOB in breast cancer treatment has a strong connection with the traditional concepts and laws of applying Citrus folium in Chinese medicine (CM). As a low-toxic anticancer drug candidate, NOB and its structural changes, Citrus folium, and compound prescriptions will attract scientists to use advanced technologies such as genomics, proteomics, and metabolomics to study its potential anticancer effects and mechanisms. On the contrary, there are relatively few studies on the anticancer effects of Citrus folium and NOB in vivo. The clinical application of Citrus folium and NOB as new cancer treatment drugs requires in vivo verification and further anticancer mechanism research. This review aims to provide reference for the treatment of breast cancer by Chinese medicine.
Collapse
|
39
|
Lee DY, Song MY, Kim EH. Role of Oxidative Stress and Nrf2/KEAP1 Signaling in Colorectal Cancer: Mechanisms and Therapeutic Perspectives with Phytochemicals. Antioxidants (Basel) 2021; 10:743. [PMID: 34067204 PMCID: PMC8151932 DOI: 10.3390/antiox10050743] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer still has a high incidence and mortality rate, according to a report from the American Cancer Society. Colorectal cancer has a high prevalence in patients with inflammatory bowel disease. Oxidative stress, including reactive oxygen species (ROS) and lipid peroxidation, has been known to cause inflammatory diseases and malignant disorders. In particular, the nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-related protein 1 (KEAP1) pathway is well known to protect cells from oxidative stress and inflammation. Nrf2 was first found in the homolog of the hematopoietic transcription factor p45 NF-E2, and the transcription factor Nrf2 is a member of the Cap 'N' Collar family. KEAP1 is well known as a negative regulator that rapidly degrades Nrf2 through the proteasome system. A range of evidence has shown that consumption of phytochemicals has a preventive or inhibitory effect on cancer progression or proliferation, depending on the stage of colorectal cancer. Therefore, the discovery of phytochemicals regulating the Nrf2/KEAP1 axis and verification of their efficacy have attracted scientific attention. In this review, we summarize the role of oxidative stress and the Nrf2/KEAP1 signaling pathway in colorectal cancer, and the possible utility of phytochemicals with respect to the regulation of the Nrf2/KEAP1 axis in colorectal cancer.
Collapse
Affiliation(s)
- Da-Young Lee
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Korea
| | - Moon-Young Song
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Korea
| | - Eun-Hee Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Korea
| |
Collapse
|
40
|
Ahmed OM, AbouZid SF, Ahmed NA, Zaky MY, Liu H. An Up-to-Date Review on Citrus Flavonoids: Chemistry and Benefits in Health and Diseases. Curr Pharm Des 2021; 27:513-530. [PMID: 33245267 DOI: 10.2174/1381612826666201127122313] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
Flavonoids, the main class of polyphenols, are characterized by the presence of 2-phenyl-benzo-pyrane nucleus. They are found in rich quantities in citrus fruits. Citrus flavonoids are classified into flavanones, flavones, flavonols, polymethoxyflavones and anthocyanins (found only in blood oranges). Flavanones are the most abundant flavonoids in citrus fruits. In many situations, there are structure-function relationships. Due to their especial structures and presence of many hydroxyls, polymethoxies and glycoside moiety, the flavonoids have an array of multiple biological and pharmacological activities. This article provides an updated overview of the differences in chemical structures of the classes and members of citrus flavonoids and their benefits in health and diseases. The review article also sheds light on the mechanisms of actions of citrus flavonoids in the treatment of different diseases, including arthritis, diabetes mellitus, cancer and neurodegenerative disorders as well as liver, kidney and heart diseases. The accumulated and updated knowledge in this review may provide useful information and ideas in the discovery of new strategies for the use of citrus flavonoids in the protection, prevention and therapy of diseases.
Collapse
Affiliation(s)
- Osama M Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Egypt
| | - Sameh F AbouZid
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Noha A Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Egypt
| | - Mohamed Y Zaky
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Egypt
| | - Han Liu
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| |
Collapse
|
41
|
Zhang M, Zhu S, Ho CT, Huang Q. Citrus polymethoxyflavones as regulators of metabolic homoeostasis: Recent advances for possible mechanisms. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
42
|
Chen CY, Wang JJ, Kao CL, Yeh HC, Song PL, Liu SL, Wu HM, Li HT, Li WJ. A New Flavanone from Citrus reticulata. Chem Nat Compd 2021. [DOI: 10.1007/s10600-021-03336-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Zhang M, Zhu S, Yang W, Huang Q, Ho CT. The biological fate and bioefficacy of citrus flavonoids: bioavailability, biotransformation, and delivery systems. Food Funct 2021; 12:3307-3323. [PMID: 33735339 DOI: 10.1039/d0fo03403g] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Citrus fruits are among the most popularly consumed fruits worldwide, including oranges, grapefruits, pomelos and lemons. Citrus flavonoids such as hesperidin, naringin and nobiletin have shown an array of health benefits in cell, animal and clinical studies, including antioxidative, anti-inflammatory, neuroprotective, anticancer, and anti-obesity activities. Citrus flavonoids have limited bioavailability after oral administration, leaving the major part unabsorbed and persisted in the colon. Recent studies have highlighted the important role of the gut microbiota and in vivo biotransformation on the bioactivity of citrus flavonoids. This article discusses the biological fate of citrus flavonoids from the viewpoint of their absorption, distribution, metabolism and excretion in vivo. Many delivery systems have been designed to enhance the oral bioavailability of citrus flavonoids, such as emulsions, self-emulsifying systems, nanoparticles and solid dispersions. The ultimate goal of these delivery systems is to enhance the bioefficacy of citrus flavonoids. Several studies have found that the increased bioavailability leads to enhanced bioefficacy of citrus flavonoids in specific animal models. Regarding the complex dynamics of citrus flavonoids and gut microbiota, the bioavailability-bioactivity relationship is an interesting but under-discussed area. Comprehensively understanding the biological fate and bioefficacy of citrus flavonoids would be helpful to develop functional foods with better health benefits.
Collapse
Affiliation(s)
- Man Zhang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick 08901, New Jersey, USA.
| | | | | | | | | |
Collapse
|
44
|
Comparative profiling and natural variation of polymethoxylated flavones in various citrus germplasms. Food Chem 2021; 354:129499. [PMID: 33752115 DOI: 10.1016/j.foodchem.2021.129499] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 11/22/2022]
Abstract
Citrus fruits are the main dietary source of polymethoxylated flavones (PMFs) with significant effects on consumer health. In this study, eleven main PMFs were evaluated in the fruit flavedo or leaves of 116 citrus accessions via UPLC-DAD-ESI-QTOF-MS/MS combined with HPLC-DAD analysis, which revealed significant species-specific and spatiotemporal characteristics. All Citrus reticulata and their natural or artificial hybrids were found to have detectable PMFs, especially in the fruit flavedo of the wild or early-cultivated mandarins at early fruit development stages. However, PMFs were not detected in citrons, pummelos, kumquats, trifoliata oranges, papedas, Chinese box oranges and 'Mangshanyegan'. The results enlightened that PMF accumulation only in mandarins and mandarin hybrids is a phenotype inherited from mandarin ancestors. This study provides a comprehensive PMF profile in various citrus germplasms and will benefit future functional citrus breeding practices aimed at designing plants rich in total or specific PMFs for health benefits.
Collapse
|
45
|
Jideani AIO, Silungwe H, Takalani T, Omolola AO, Udeh HO, Anyasi TA. Antioxidant-rich natural fruit and vegetable products and human health. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2020.1866597] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Afam I. O. Jideani
- Department of Food Science and Technology, School of Agriculture, University of Venda, Thohoyandou 0950, South Africa
- Postharvest-Handling Group, ISEKI-Food Association, Vienna, Austria
| | - Henry Silungwe
- Department of Food Science and Technology, School of Agriculture, University of Venda, Thohoyandou 0950, South Africa
| | - Thakhani Takalani
- Univen Centre for Continuing Education, University of Venda, Thohoyandou 0950, South Africa
| | - Adewale O Omolola
- Department of Agricultural Engineering, School of Agriculture, University of Venda, Thohoyandou 0950, South Africa
| | - Henry O Udeh
- Department of Food Science and Technology, School of Agriculture, University of Venda, Thohoyandou 0950, South Africa
| | - Tonna A Anyasi
- Department of Food Science and Technology, Cape Peninsula University of Technology, Bellville 7535, South Africa
| |
Collapse
|
46
|
Bajraktari-Sylejmani G, Weiss J. Potential Risk of Food-Drug Interactions: Citrus Polymethoxyflavones and Flavanones as Inhibitors of the Organic Anion Transporting Polypeptides (OATP) 1B1, 1B3, and 2B1. Eur J Drug Metab Pharmacokinet 2020; 45:809-815. [PMID: 32661908 PMCID: PMC7677148 DOI: 10.1007/s13318-020-00634-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background and Objectives Citrus flavonoids are not only components of daily nutrition, they are also promoted as dietary supplements and are important ingredients in traditional medicines. Interactions of flavonoids with synthetic drugs represent an often neglected issue. We therefore investigated in vitro whether the polymethoxyflavones nobiletin, sinensetin, and tangeretin and the flavonoid rutinosides didymin, hesperidin, and narirutin can inhibit human organic anion transporting polypeptides (OATP) 1B1, 1B3, and 2B1, which are important transporters mediating drug-drug and food-drug interactions. Methods Inhibition was investigated by quantifying the decreased uptake of the fluorescent OATP1B1 and OATP1B3 substrate 8-fluorescein-cAMP in HEK293 cells overexpressing OATP1B1 or OATP1B3 and of the fluorescent OATP2B1 substrate 4′,5′-dibromofluorescein in HEK293 cells overexpressing OATP2B1. Results We demonstrate that all flavonoids investigated inhibit OATP2B1 in the lower micromolar range (IC50 between 1.6 and 14.2 µM), but only the polymethoxyflavones also inhibit OATP1B1 and 1B3 (IC50 between 2.1 and 21 µM). Conclusions All flavonoids investigated might contribute to the intestinal OATP2B1-based interactions with drugs observed with citrus juices or fruits. In contrast, the concentration of the polymethoxyflavones after consumption of citrus juices or fruits is most likely too low to reach relevant systemic concentrations and thus to inhibit hepatic OATP1B1 and OATP1B3, but there might be a risk when they are consumed as medicines or as dietary supplements.
Collapse
Affiliation(s)
- Gzona Bajraktari-Sylejmani
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| |
Collapse
|
47
|
Zhang M, Feng K, Huang G, Xin Y, Xiao J, Cao Y, Ludescher R, Ho CT, Huang Q. Assessment of Oral Bioavailability and Biotransformation of Emulsified Nobiletin Using In Vitro and In Vivo Models. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11412-11420. [PMID: 32935545 DOI: 10.1021/acs.jafc.0c04450] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nobiletin has received much attention for its promising biological activities. Owing to its limited solubility, various encapsulation strategies have been developed to enhance nobiletin bioavailability. However, the understanding of the bioavailability and biotransformation of nobiletin in vivo and the correlation between in vitro and in vivo data remains limited. This study developed a high-loading nobiletin (1%) emulsion. The in vitro models, which combined pH-stat lipolysis with a Franz cell, showed very good correlation with in vivo data for the relative bioavailability. Rat studies showed that nobiletin had a high absolute bioavailability (≈20% for oil suspension). Besides, the emulsification improved the amount of bioavailable nobiletin and its major metabolite in the blood by about two times, as compared to an oil suspension. This work provides scientific insights into a rapid screening method for delivery systems and a better understanding of the biological fate of nobiletin in vivo.
Collapse
Affiliation(s)
- Man Zhang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick 08901, New Jersey, United States
| | - Konglong Feng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, China
| | - Guiying Huang
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China
| | - Yanping Xin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, China
| | - Richard Ludescher
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick 08901, New Jersey, United States
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick 08901, New Jersey, United States
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick 08901, New Jersey, United States
| |
Collapse
|
48
|
Wang Y, Chen Y, Zhang H, Chen J, Cao J, Chen Q, Li X, Sun C. Polymethoxyflavones from citrus inhibited gastric cancer cell proliferation through inducing apoptosis by upregulating RARβ, both in vitro and in vivo. Food Chem Toxicol 2020; 146:111811. [PMID: 33058988 DOI: 10.1016/j.fct.2020.111811] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Abstract
In order to discover the active anti-tumor ingredients during the flavonoids separation process of Ougan (Citrus reticulata cv. Suavissima), gastric cancer cell lines including AGS, BGC-823, and SGC-7901 were employed to evaluate the proliferation inhibition abilities of Ougan extracts, flavanone components, polymethoxyflavone components, neohesperidin, nobiletin, tangeretin, and 5-demethylnobiletin. Quantitative real-time PCR was used to detect the expression of three retinoic acid receptor genes, including RARA, RARB, and RARG. Western blot and immunohistochemistry were used to detect protein expressions. The results showed that the polymethoxyflavone components and the PMFs monomers inhibited the proliferation of three gastric cancer cell lines and induced apoptosis. The mechanism exploration found that PMFs up-regulated the expression of the RARB gene selectively and activated the Caspase3, 9, and PARP1 proteins. In addition to 5-demethylnobiletin, other PMFs also upregulated the expression of cleaved Caspase8. The mechanism was preliminarily verified by a RARβ inhibitor AGN 193109. Moreover, a nude mice tumor xenograft model confirmed the tangeretin could exhibit in vivo anti-tumor effect through inducing apoptosis and upregulating RARβ protein. All result suggested that tangeretin may be a potentially novel, safe and effective drugs with less toxicity and lesser side effects for gastric cancer therapeutics.
Collapse
Affiliation(s)
- Yue Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Yunyi Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - He Zhang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Jiebiao Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Jinping Cao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Qingjun Chen
- Zanyu Tecnology Group Co., LTD, No. 628, Xinggang Road, Qingshan Lake Science and Technology City, Hangzhou, China
| | - Xian Li
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China.
| |
Collapse
|
49
|
Wu X, Li Z, Sun Y, Li F, Gao Z, Zheng J, Xiao H. Identification of Xanthomicrol as a Major Metabolite of 5-Demethyltangeretin in Mouse Gastrointestinal Tract and Its Inhibitory Effects on Colon Cancer Cells. Front Nutr 2020; 7:103. [PMID: 32850933 PMCID: PMC7405597 DOI: 10.3389/fnut.2020.00103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/08/2020] [Indexed: 12/26/2022] Open
Abstract
5-Demethyltangeretin (5DT) is a unique polymethoxyflavone mainly found in the peel of citrus, and has shown potent suppressive effects on multiple human cancer cells. Biotransformation plays a critical role in the biological activities of dietary bioactive components because their metabolites may exert significant bioactivities. In the present study, the metabolic fate of 5DT in mouse gastrointestinal (GI) tract after long-term oral intake and the anti-cancer effects of its major metabolite were determined. It was found that 5DT underwent extensive biotransformation after oral ingestion in mice. A major demethylated metabolite was produced via phase I metabolism, while conjugates (glucuronide and sulfate) were generated via phase II metabolism. Specifically, 4'-position on the B ring of 5DT was the major site for demethylation reaction, which led to the production of xanthomicrol (XAN) as a major metabolite. More importantly, the level of XAN in the colon was significantly higher than that of 5DT in 5DT-fed mice. Thus, we further determined the suppressive effects of XAN on human colon cancer HCT116 cells. We found that XAN effectively inhibited the proliferation of HCT116 cells by arresting cell cycle and inducing cellular apoptosis, which was further evidenced by upregulated p53 and p21 and downregulated cyclin D and CDK4/6 level. In conclusion, this study identified XAN as a major metabolite of 5DT in mouse GI tract, and demonstrated its suppressive effects on HCT116 colon cancer cells.
Collapse
Affiliation(s)
- Xian Wu
- Department of Food Science, University of Massachusetts, Amherst, MA, United States.,Department of Kinesiology and Health, Miami University, Oxford, OH, United States
| | - Zhengze Li
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Yue Sun
- Department of Food Science, University of Massachusetts, Amherst, MA, United States.,Anhui Engineering Laboratory for Agro-products Processing, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Fang Li
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Zili Gao
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Jinkai Zheng
- Department of Food Science, University of Massachusetts, Amherst, MA, United States.,Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
50
|
Kesharwani SS, Mallya P, Kumar VA, Jain V, Sharma S, Dey S. Nobiletin as a Molecule for Formulation Development: An Overview of Advanced Formulation and Nanotechnology-Based Strategies of Nobiletin. AAPS PharmSciTech 2020; 21:226. [PMID: 32761293 DOI: 10.1208/s12249-020-01767-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/16/2020] [Indexed: 12/26/2022] Open
Abstract
Approximately 40% of compounds in clinical drug development suffer from solubility and bioavailability challenges. Evidence from literature demonstrates the growing interest to utilize flavonoids as potential compounds owing to their widespread therapeutic utility in various ailments. Nobiletin (NOB), one such dietary polymethoxylated flavonoid found in citrus fruits, has multiple pharmacological effects such as antioxidant, anti-microbial, anti-cancer, and anti-inflammatory. It is useful in cancer, inflammatory bowel diseases, atherosclerosis, obesity, and Alzheimer's disease. Although preclinical studies demonstrate the therapeutic utility of NOB, it suffers from serious biopharmaceutical limitations such as low aqueous solubility (below 1 μg/ml), poor permeability across biological barriers, and low bioavailability. To overcome these biopharmaceutical challenges associated with NOB, the use of advanced formulations and nanotechnology-based strategies appears to be a promising approach to potentiate its therapeutic action. Multiple reviews cover the various therapeutic benefits of NOB in various diseases; however, there is an absence of a comprehensive review that focuses on the formulation development strategies of NOB. The purpose of this review is to provide a concise perspective on NOB as a candidate molecule for formulation development. The manuscript covers various aspects related to NOB, such as its chemistry, physicochemical properties, and pharmacological effects. This is also a thorough review of various formulation development strategies with advances made in the past years to improve the solubility, bioavailability, and therapeutic efficacy of NOB. The review also contains information related to toxicity and patents involving NOB and its formulation.
Collapse
|