1
|
Heidarrezaei M, Mauriello G, Shokravi H, Lau WJ, Ismail AF. Delivery of Probiotic-Loaded Microcapsules in the Gastrointestinal Tract: A Review. Probiotics Antimicrob Proteins 2025; 17:193-211. [PMID: 38907825 DOI: 10.1007/s12602-024-10311-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 06/24/2024]
Abstract
Probiotics are live microorganisms that inhabit the gastrointestinal tract and confer health benefits to consumers. However, a sufficient number of viable probiotic cells must be delivered to the specific site of interest in the gastrointestinal tract to exert these benefits. Enhanced viability and tolerance to sublethal gastrointestinal stress can be achieved using appropriate coating materials and food matrices for orally consumed probiotics. The release mechanism and interaction of probiotic microcapsules with the gastrointestinal tract have been minimally explored in the literature to date. To the authors' knowledge, no review has been published to discuss the nature of release and the challenges in the targeted delivery of probiotics. This review addresses gastrointestinal-related complications in the formulation of targeted delivery and controlled release of probiotic strains. It investigates the impacts of environmental stresses during the transition stage and delivery to the target region in the gastrointestinal tract. The influence of factors such as pH levels, enzymatic degradation, and redox conditions on the release mechanisms of probiotics is presented. Finally, the available methods to evaluate the efficiency of a probiotic delivery system, including in vitro and in vivo, are reviewed and assessed. The paper concludes with a discussion highlighting the emerging technologies in the field and emphasising key areas in need of future study.
Collapse
Affiliation(s)
- Mahshid Heidarrezaei
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia.
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia.
| | - Gianluigi Mauriello
- Department of Agricultural Science, University of Naples Federico II, 80049, Naples, Italy
| | - Hoofar Shokravi
- Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - Woei Jye Lau
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - Ahmad Fauzi Ismail
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| |
Collapse
|
2
|
Saikia L, Talukdar NC, Dutta PP. Exploring the Therapeutic Role of Flavonoids Through AMPK Activation in Metabolic Syndrome: A Narrative Review. Phytother Res 2025. [PMID: 39789806 DOI: 10.1002/ptr.8428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 01/12/2025]
Abstract
Metabolic syndrome (MetS) is a cluster of interrelated metabolic abnormalities that significantly elevate the risk of cardiovascular disease, obesity, and diabetes. Flavonoids, a diverse class of bioactive polyphenolic compounds found in plant-derived foods and beverages, have garnered increasing attention as potential therapeutic agents for improving metabolic health. This review provides a comprehensive analysis of the therapeutic effects of flavonoids in the context of the MetS, with a particular focus on their modulation of the AMP-activated protein kinase (AMPK) pathway. AMPK serves as a central regulator of cellular energy balance, glucose metabolism, and lipid homeostasis, making it a critical target for metabolic intervention. Through a systematic review of the literature up to April 2024, preclinical studies across various flavonoid subclasses, including flavonols, and flavan-3-ols, were analysed to elucidate their mechanistic roles in metabolic regulation. Many studies suggests that flavonoids enhance glycolipid metabolism by facilitating glucose transporter 4 (GLUT4) translocation and activating the AMPK pathway, thereby improving glycemic control in diabetes models. In obesity-related studies, flavonoids demonstrated significant inhibitory effects on lipid synthesis, reduced adipogenesis, and attenuated proinflammatory cytokine secretion via AMPK activation. These findings show the broad therapeutic potential of flavonoids in addressing the MetS and its associated disorders. While these preclinical insights highlight flavonoids as promising natural agents for metabolic health improvement, it is important to note that their excessive concentrations may disrupt these pathways, potentially leading to metabolic imbalance and cytotoxicity. Further studies and clinical trials are essential to determine optimal dosing regimens, formulations, and the long-term safety and efficacy of flavonoids. This review highlights the importance of flavonoids for natural interventions targeting MetS and its comorbidities, offering a foundation for future translational research.
Collapse
Affiliation(s)
- Lunasmrita Saikia
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, India
| | | | - Partha Pratim Dutta
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, India
| |
Collapse
|
3
|
Kamble M, Singh A, Singh SV, Upadhyay A, Kondepudi KK, Chinchkar AV. Effect of gastrointestinal resistant encapsulate matrix on spray dried microencapsulated Lacticaseibacillus rhamnosus GG powder and its characterization. Food Res Int 2024; 192:114804. [PMID: 39147504 DOI: 10.1016/j.foodres.2024.114804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/07/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
This study investigated spray drying a method for microencapsulating Lacticaseibacillus rhamnosus GG using a gastrointestinal resistant composite matrix. An encapsulate composite matrix comprising green banana flour (GBF) blended with maltodextrin (MD) and gum arabic (GA). The morphology of resulted microcapsules revealed a near-spherical shape with slight dents and no surface cracks. Encapsulation efficiency and product yield varied significantly among the spray-dried microencapsulated probiotic powder samples (SMPPs). The formulation with the highest GBF concentration (FIV) exhibited maximum post-drying L. rhamnosus GG viability (12.57 ± 0.03 CFU/g) and best survivability during simulated gastrointestinal digestion (9.37 ± 0.05 CFU/g). Additionally, glass transition temperature (Tg) analysis indicated good thermal stability of SMPPs (69.3 - 92.9 ℃), while Fourier Transform infrared (FTIR) spectroscopy confirmed the structural integrity of functional groups within microcapsules. The SMPPs characterization also revealed significant variation in moisture content, water activity, viscosity, and particle size. Moreover, SMPPs exhibited differences in total phenolic and flavonoid, along with antioxidant activity and color values throughout the study. These results suggested that increasing GBF concentration within the encapsulating matrix, while reducing the amount of other composite materials, may offer enhanced protection to L. rhamnosus GG during simulated gastrointestinal conditions, likely due to the gastrointestinal resistance properties of GBF.
Collapse
Affiliation(s)
- Meenatai Kamble
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM-K), Kundli, Sonipat, Haryana 131028, India; Department of Food Technology, Vignan's Foundation for Science, Technology and Research, Guntur, Andhra Pradesh 522213, India
| | - Anurag Singh
- Department of Food Technology, Harcourt Butler Technical University, Nawabganj, Kanpur, Uttar Pradesh 208002, India.
| | - Sukh Veer Singh
- Department of Food Technology and Management, Loyola Academy (Degree and PG College), Old Alwal, Secunderabad, Telangana 500010, India
| | - Ashutosh Upadhyay
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM-K), Kundli, Sonipat, Haryana 131028, India
| | - Kanthi Kiran Kondepudi
- Department of Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab 140306, India
| | - Ajay V Chinchkar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM-K), Kundli, Sonipat, Haryana 131028, India
| |
Collapse
|
4
|
Deng Y, Liu G, Zhang H, Zhou P, Tang X, Li P, Zhao Z, Zhang Y, Wang Z, Wei Z, Zhang M. Effects of wall materials on the physicochemical properties of spray-dried bitter gourd (Momordica charantia L.) powders. NPJ Sci Food 2024; 8:37. [PMID: 38902297 PMCID: PMC11190200 DOI: 10.1038/s41538-024-00278-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/14/2024] [Indexed: 06/22/2024] Open
Abstract
Bitter gourd has numerous health-promoting effects on the human body. However, its use has been greatly limited due to its poor acceptance by consumers, resulting from its strong bitterness. This study investigated the effects of five wall materials, namely, soybean protein isolate, gum arabic, maltodextrin, resistant starch, and a soybean lecithin calcium caseinate mixture, on the physicochemical properties of spray-dried bitter gourd powders. The results showed that all five wall materials reduced the moisture content, water activity, browning degree, agglomeration, and bitterness of the spray-dried bitter gourd powder. Maltodextrin was found to be the most effective at reducing water activity, while soybean protein isolate was best at protecting the colour, and the soybean lecithin calcium caseinate mixture was best at reducing hygroscopicity and masking bitterness. Additionally, all five wall materials improved the preservation of flavonoids, saponins, and vitamin C, with soybean protein isolate being the most effective in improving the total flavonoid retention ratio and the soybean lecithin calcium caseinate mixture being the best in improving the retention ratios of total saponins and vitamin C. The spray-dried bitter gourd powder prepared with soybean protein isolate had the highest antioxidant activity and α-glucosidase inhibitory activity. These results are significant for understanding the relationship between wall materials and the physicochemical properties of spray-dried powder. Additionally, these materials provide bitter gourd product manufacturers with useful guidance for producing high-quality products. Furthermore, the results could provide useful insights for processing fruits with similar product characteristics, thus contributing to the enrichment of food processing knowledge.
Collapse
Affiliation(s)
- Yuanyuan Deng
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences / Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs / Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Guang Liu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences / Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs / Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Huimin Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences / Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs / Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Pengfei Zhou
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences / Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs / Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Xiaojun Tang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences / Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs / Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Ping Li
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences / Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs / Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Zhihao Zhao
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences / Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs / Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Yan Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences / Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs / Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Zhangying Wang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences / Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, 510640, China
| | - Zhencheng Wei
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences / Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs / Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China.
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences / Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs / Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China.
| |
Collapse
|
5
|
Subbaiyan R, Ganesan A, Varadharajan V, Jeyachandran PR, Thangavel H. Formulation and validation of probioticated foxtail millet laddu as a source of antioxidant for biological system using response surface methodology. Braz J Microbiol 2024; 55:647-661. [PMID: 38006513 PMCID: PMC10920542 DOI: 10.1007/s42770-023-01188-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 07/20/2023] [Indexed: 11/27/2023] Open
Abstract
Probiotics play a critical role in supporting a healthy gut microbiome, which significantly impacts overall health and well-being. While there has been an increase in the availability of probiotic foods in recent years, there may still be limited options and accessibility in certain regions. This study focused on formulating a traditional Indian sweet called laddu enriched with millet and Lactobacillus acidophilus. The formulation of laddu ingredients was optimized using Design Expert software to create an optimal product for testing. The probiotic Lactobacillus acidophilus culture was incorporated into the laddu in three forms: lyophilized, microencapsulated powder, and natural curd. The probiotic foxtail laddu was selected based on specific criteria such as color, odor, and texture. The nutritional analysis revealed that the laddu contained approximately 64.46 g of carbohydrates, 15.13 g of protein, and 5.06 g of fat per 100 g of laddu. A microbial count analysis was performed over a two-month storage period to assess the viability of the incorporated Lactobacillus acidophilus. The results showed that the lyophilized and microencapsulated culture demonstrated good viability, with counts of 6.10 ± 0.09 log CFU/g and 7.43 ± 0.02 log CFU/g, respectively, when stored at 4 °C. In comparison, storage at room temperature resulted in counts of 5.41 ± 0.08 log CFU/g and 6.97 ± 0.02 log CFU/g at the end of the storage period. Based on the findings, the probiotic millet laddu developed in this study has the potential to be a value-added food product that can enhance the overall health of consumers. Incorporating probiotics into traditional food items like laddu offers a convenient and enjoyable way to promote gut health and improve the product's nutritional value.
Collapse
Affiliation(s)
- Rubavathi Subbaiyan
- Department of Biotechnology, K.S. Rangasamy College of Technology, Namakkal - 637 215, Tiruchengode, Tamil Nadu, India
| | - Ayyappadasan Ganesan
- Department of Biotechnology, K.S. Rangasamy College of Technology, Namakkal - 637 215, Tiruchengode, Tamil Nadu, India.
| | | | - Philip Robinson Jeyachandran
- Department of Biotechnology, K.S. Rangasamy College of Technology, Namakkal - 637 215, Tiruchengode, Tamil Nadu, India
| | - Harini Thangavel
- Department of Biotechnology, K.S. Rangasamy College of Technology, Namakkal - 637 215, Tiruchengode, Tamil Nadu, India
| |
Collapse
|
6
|
Díaz Vergara LI, Arata Badano J, Aminahuel CA, Vanden Braber NL, Rossi YE, Pereyra CM, Cavaglieri LR, Montenegro MA. Chitosan-glucose derivative as effective wall material for probiotic yeasts microencapsulation. Int J Biol Macromol 2023; 253:127167. [PMID: 37793535 DOI: 10.1016/j.ijbiomac.2023.127167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/30/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023]
Abstract
A chitosan-glucose derivative (ChG) with lower antimicrobial activity against whey native probiotic yeast K. marxianus VM004 was synthesized by the Maillard reaction. The ChG derivative was characterized by FT-IR, 1H NMR, and SLS to determine the structure, deacetylation degree (DD), and molecular weight (Mw). In addition, we evaluated the antioxidant, cytotoxic, and antimicrobial activities of ChG. ChG was then used for microencapsulation of K. marxianus VM004 by spray drying. The microcapsules were characterized by evaluating their encapsulation yield, encapsulation efficiency, morphology, tolerance to the gastrointestinal tract, and viability during storage. The results indicated that a non-cytotoxic product with lower MW and DD and higher antioxidant activity than native chitosan was obtained by the Maillard reaction. The yeast ChG microcapsules exhibited an encapsulation efficiency >57 %, improved resistance to gastrointestinal conditions, and enhanced stability during storage. These results demonstrate that ChG may be a promising wall material for the microencapsulation of probiotic yeasts.
Collapse
Affiliation(s)
- Ladislao I Díaz Vergara
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Universidad Nacional de Villa María, Campus Universitario, Av. Arturo Jauretche 1555, Villa María, Córdoba, Argentina
| | - Joaquín Arata Badano
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Universidad Nacional de Villa María, Campus Universitario, Av. Arturo Jauretche 1555, Villa María, Córdoba, Argentina
| | - Carla A Aminahuel
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Universidad Nacional de Villa María, Campus Universitario, Av. Arturo Jauretche 1555, Villa María, Córdoba, Argentina
| | - Noelia L Vanden Braber
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Universidad Nacional de Villa María, Campus Universitario, Av. Arturo Jauretche 1555, Villa María, Córdoba, Argentina
| | - Yanina E Rossi
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Universidad Nacional de Villa María, Campus Universitario, Av. Arturo Jauretche 1555, Villa María, Córdoba, Argentina
| | - Carina M Pereyra
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta Nacional 36 KM 601, Río Cuarto, Córdoba, Argentina
| | - Lilia R Cavaglieri
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta Nacional 36 KM 601, Río Cuarto, Córdoba, Argentina
| | - Mariana A Montenegro
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Universidad Nacional de Villa María, Campus Universitario, Av. Arturo Jauretche 1555, Villa María, Córdoba, Argentina.
| |
Collapse
|
7
|
do Carmo Alves AP, do Carmo Alves A, Ferreira Rodrigues RA, da Silva Cerozi B, Possebon Cyrino JE. Microencapsulation of Bacillus subtilis and oat β-glucan and their application as a synbiotic in fish feed. J Microencapsul 2023; 40:491-501. [PMID: 37254699 DOI: 10.1080/02652048.2023.2220394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 05/26/2023] [Indexed: 06/01/2023]
Abstract
To improve survival during storage and exposure to adverse conditions, Bacillus subtilis was microencapsulated with oat β-glucan by spray-drying technology. The characterisation of the microcapsules was designed to compare free and microencapsulated cells through exposure to simulated gastric fluids (SGF) throughout storage for 90 days at different temperatures. The characterisation included analysis of efficiency, morphology, moisture, water activity, hygroscopicity, particle size, and zeta potential. The microcapsules presented a particle size of 1.5 ± 0.34 μm and an encapsulation efficiency of 77.9 ± 3.06%. After SGF, the survival of microencapsulated cells was 8.4 ± 0.07 log CFU mL-1 while that of free cells was 7.6 ± 0.06 log CFU mL-1. After 90 days of storage, only microencapsulated cells remained above 6 log-unit of viability. In conclusion, spray-drying technique combined with the addition of oat β-glucan proved to be an efficient method to protect B. subtilis under storage and SGF with potential application in fish feed.
Collapse
Affiliation(s)
- Angélica Priscila do Carmo Alves
- Departamento de Zootecnia, Escola Superior de Agricultura Luiz de Queiroz [ESALQ], Universidade de São Paulo [USP], Piracicaba, São Paulo, Brazil
| | - Amanda do Carmo Alves
- Departamento de Biotecnologia Vegetal, Universidade Federal de Lavras [UFLA], Lavras, Minas Gerais, Brazil
| | - Rodney Alexandre Ferreira Rodrigues
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas [CPQBA], Universidade Estadual de Campinas [UNICAMP], Campinas, São Paulo, Brazil
| | - Brunno da Silva Cerozi
- Departamento de Zootecnia, Escola Superior de Agricultura Luiz de Queiroz [ESALQ], Universidade de São Paulo [USP], Piracicaba, São Paulo, Brazil
| | - José Eurico Possebon Cyrino
- Departamento de Zootecnia, Escola Superior de Agricultura Luiz de Queiroz [ESALQ], Universidade de São Paulo [USP], Piracicaba, São Paulo, Brazil
| |
Collapse
|
8
|
Xu Y, Dong M, Xiao H, Young Quek S, Ogawa Y, Ma G, Zhang C. Advances in spray-dried probiotic microcapsules for targeted delivery: a review. Crit Rev Food Sci Nutr 2023; 64:11222-11238. [PMID: 37459278 DOI: 10.1080/10408398.2023.2235424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Probiotics have gained significant attention owing to their roles in regulating human health. Recently, spray drying has been considered as a promising technique to produce probiotic powders due to its advantages of high efficiency, cost-saving, and good powder properties. However, the severe environmental conditions from drying and digestion can significantly reduce cell viability, resulting in poor bioaccessibility and bioavailability of live cells. Therefore, there is a need to develop effective targeted delivery systems using spray drying to protect bacteria and to maintain their physiological functions in the targeted sites. This review highlights recent studies about spray-dried targeted delivery vehicles for probiotics, focusing on key strategies to protect bacteria when encountering external stresses, the formation mechanism of particles, the targeted release and colonization mechanisms of live cells in particles with different structures. Advances in the targeted delivery of live probiotics via spray-dried vehicles are still in their early stages. To increase the possibilities for industrialization and commercialization, functional improvement of microcapsules in terms of protection, targeted release, and colonization of bacteria, as well as the effect of spray drying on bacterial physiological functions in the host, need to be further investigated.
Collapse
Affiliation(s)
- Yuyan Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hongmei Xiao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Siew Young Quek
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Yukiharu Ogawa
- Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Guangyuan Ma
- Jiangsu Innovation Center of Marine Biological Resources, Nanjing, China
| | - Chuang Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
- Sanya Institute of Nanjing Agricultural University, Sanya, China
| |
Collapse
|
9
|
Ji C, Gao Y, Huang X, Yan F, Yu T. Microencapsulation of Bacillus smithii XY1 by spray drying and evaluation for treatment of inflammatory bowel disease. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
10
|
Karakaş CY, Yildirim RM, Karadag A. Encapsulation of Lactobacillus plantarum ELB90 by electrospraying in a double emulsion (W1/O/W2) loaded alginate beads to improve the gastrointestinal survival and thermal stability. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3427-3436. [PMID: 36764922 DOI: 10.1002/jsfa.12494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/24/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND In the present study, the Lactobacillus plantarum ELB90 was encapsulated in double emulsion (W1/O/W2) loaded alginate beads (emulbeads) by electrospraying and compared with emulsion-free control beads. The viability of encapsulated and free cells was assessed by exposing them to thermal processing (65 °C for 30 min and 72 °C for 3 min) and simulated gastrointestinal conditions. The beads were characterized by optical, scanning electron, fluorescence, and confocal laser scanning microscopy, as well as Fourier transform infrared and gel strength analysis. RESULTS After the intestinal stage of digestion, the survival rate of free bacteria was 38% [3.70 log colony-forming units (CFU) g-1 ], only increased to 43% and 53% for bare and chitosan-coated control beads, and it elevated the survival rate to 75% and 84% (8.70 log CFU g-1 ) for bare and chitosan-coated emulbeads, respectively. The presence of inulin increased gastrointestinal viability only in uncoated emulbeads. The bacteria loaded in emulbeads retained greater viability (5.90-6.90 log CFU g-1 ) against thermal treatment, compared to control beads (2.07-4.10 log CFU g-1 ) and free bacteria (2.57-3.11 log CFU mL-1 ). Encapsulation of L. plantarum ELB90 only in emulsion-free beads may not be appropriate for providing thermal stability. Inulin addition and chitosan-coating of the beads increased the size, and emulbeads presented smoother surfaces compared to emulsion-free beads. CONCLUSION The contribution of a double emulsion into the gel matrix of electrosprayed alginate beads exhibited enhanced protection for probiotic bacteria that could be useful for the development of functional foods. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Canan Yağmur Karakaş
- Food Engineering Department, Chemical, and Metallurgical Engineering Faculty, Yildiz Technical University, Istanbul, Turkey
| | - Rusen Metin Yildirim
- Food Engineering Department, Chemical, and Metallurgical Engineering Faculty, Yildiz Technical University, Istanbul, Turkey
| | - Ayse Karadag
- Food Engineering Department, Chemical, and Metallurgical Engineering Faculty, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
11
|
Shobuz M, Sabur K, Khan MR, Julkifal I, Uttam Kumar S, Hasan GMMA, Ahmed M. Viability and stability of microencapsulated probiotic bacteria by freeze‐drying under in vitro gastrointestinal conditions. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Mahmud Shobuz
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200 Bangladesh
| | - khan Sabur
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200 Bangladesh
| | - Mahbubur Rahman Khan
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200 Bangladesh
| | - Islam Julkifal
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200 Bangladesh
| | - Sarker Uttam Kumar
- Department of Chemistry, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200 Bangladesh
| | - G. M. M. Anwarul Hasan
- Institute of Food Science &Technology (IFST) Bangladesh Council of Scientific &Industrial Research (BCSIR), Dr Qudrat‐I‐ Khuda Road, Dhaka‐1205 Bangladesh
| | - Maruf Ahmed
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200 Bangladesh
| |
Collapse
|
12
|
Sakoui S, Derdak R, Pop OL, Vodnar DC, Addoum B, Teleky BE, Elemer S, Elmakssoudi A, Suharoschi R, Soukri A, El Khalfi B. Effect of encapsulated probiotic in Inulin-Maltodextrin-Sodium alginate matrix on the viability of Enterococcus mundtii SRBG1 and the rheological parameters of fermentedmilk. Curr Res Food Sci 2022; 5:1713-1719. [PMID: 36212080 PMCID: PMC9539782 DOI: 10.1016/j.crfs.2022.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 12/02/2022] Open
Abstract
In the current research, Enterococcus mundtii SRBG1 newly isolated from Bat guano was encapsulated using spray drying technique to create a probiotic powder using six combinations of inulin, maltodextrin and sodium alginate. The encapsulation yield, moisture content, physical characteristics, and shape were investigated. Microcapsules yields ranged from 67 to 85 percent, which is consistent with typical B-290 spray-drier yields. The moisture content showed to increase (4 ± 0.15%) with the addition of sodium alginate to inulin and maltodextrin. In the gastrointestinal conditions (simulated gastric juice and bile salts), it was shown that the viability of probiotic cells in capsules was higher than that of free cells. This demonstrated the effectiveness of combining inulin and maltodextrin to encapsulate substances in surviving in gastro-intestinal conditions. Additionally, we evaluated the non-encapsulated and encapsulated SRBG1 by assessing their impact on the rheological parameters of fermented milk. The results showed that in the absence of sodium alginate the viscosity of milk was lower than with the other protectors, which was confirmed by the quick acidification of the fermented milk by microcapsules containing sodium alginate. Enterococcus mundtii SRBG1 isolated from Bat guano was encapsulated by spray drying. Six combinations of inulin, maltodextrin and sodium alginate were used. Microcapsules yields ranged from 67 to 85 percent. Inulin and maltodextrin were effective in protecting SRBG1. In the absence of sodium alginate the viscosity of fermented milk decreased.
Collapse
|
13
|
Chitosan chemistry review for living organisms encapsulation. Carbohydr Polym 2022; 295:119877. [DOI: 10.1016/j.carbpol.2022.119877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/20/2022]
|
14
|
Altamirano‐Ríos AV, Guadarrama‐Lezama AY, Arroyo‐Maya IJ, Hernández‐Álvarez A, Orozco‐Villafuerte J. Effect of encapsulation methods and materials on the survival and viability of
Lactobacillus acidophilus
: A review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ana Veronica Altamirano‐Ríos
- Facultad de Química Universidad Autónoma del Estado de México Paseo Colón esq. Paseo Tollocan s/n, Col. Residencial Colón Toluca, Estado de México 50120 México
| | - Andrea Y. Guadarrama‐Lezama
- Facultad de Química Universidad Autónoma del Estado de México Paseo Colón esq. Paseo Tollocan s/n, Col. Residencial Colón Toluca, Estado de México 50120 México
| | - Izlia J. Arroyo‐Maya
- Departamento de Procesos y Tecnología Universidad Autónoma Metropolitana‐Cuajimalpa Cuajimalpa, CDMX 05300 México
| | | | - Juan Orozco‐Villafuerte
- Facultad de Química Universidad Autónoma del Estado de México Paseo Colón esq. Paseo Tollocan s/n, Col. Residencial Colón Toluca, Estado de México 50120 México
| |
Collapse
|
15
|
Application of Spray Dried Encapsulated Probiotics in Functional Food Formulations. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Misra S, Pandey P, Dalbhagat CG, Mishra HN. Emerging Technologies and Coating Materials for Improved Probiotication in Food Products: a Review. FOOD BIOPROCESS TECH 2022; 15:998-1039. [PMID: 35126801 PMCID: PMC8800850 DOI: 10.1007/s11947-021-02753-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/16/2021] [Indexed: 12/29/2022]
Abstract
From the past few decades, consumers' demand for probiotic-based functional and healthy food products is rising exponentially. Encapsulation is an emerging field to protect probiotics from unfavorable conditions and to deliver probiotics at the target place while maintaining the controlled release in the colon. Probiotics have been encapsulated for decades using different encapsulation methods to maintain their viability during processing, storage, and digestion and to give health benefits. This review focuses on novel microencapsulation techniques of probiotic bacteria including vacuum drying, microwave drying, spray freeze drying, fluidized bed drying, impinging aerosol technology, hybridization system, ultrasonication with their recent advancement, and characteristics of the commonly used polymers have been briefly discussed. Other than novel techniques, characterization of microcapsules along with their mechanism of release and stability have shown great interest recently in developing novel functional food products with synergetic effects, especially in COVID-19 outbreak. A thorough discussion of novel processing technologies and applications in food products with the incorporation of recent research works is the novelty and highlight of this review paper.
Collapse
Affiliation(s)
- Sourav Misra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302 India
| | - Pooja Pandey
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302 India
| | - Chandrakant Genu Dalbhagat
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302 India
| | - Hari Niwas Mishra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302 India
| |
Collapse
|
17
|
Ghasemi L, Nouri L, Mohammadi Nafchi A, Al‐Hassan AA. The effects of encapsulated probiotic bacteria on the physicochemical properties, staling, and viability of probiotic bacteria in gluten‐free bread. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16359] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Leila Ghasemi
- Department of Food Science and Technology Damghan Branch, Islamic Azad University Damghan Iran
| | - Leila Nouri
- Department of Food Science and Technology Damghan Branch, Islamic Azad University Damghan Iran
| | - Abdorreza Mohammadi Nafchi
- Department of Food Science and Technology Damghan Branch, Islamic Azad University Damghan Iran
- Food Technology Division School of Industrial Technology Universiti Sains Malaysia Penang Malaysia
| | - Ahmed Ali Al‐Hassan
- Department of Food Science and Human Nutrition College of Agriculture and Veterinary Medicine Qassim University Burydah Saudi Arabia
| |
Collapse
|
18
|
Bermúdez‐Quiñones G, Ochoa‐Martínez LA, Gallegos‐Infante JA, Rutiaga‐Quiñones OM, Lara‐Ceniceros TE, Delgado‐Licon E, González‐Herrera SM. Synbiotic microcapsules using agavins and inulin as wall materials for
Lactobacillus casei
and
Bifidobacterium breve
: Viability, physicochemical properties, and resistance to in vitro oro‐gastrointestinal transit. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Gabriela Bermúdez‐Quiñones
- Departamento de Ingenierías Química y Bioquímica Tecnológico Nacional de México/Instituto Tecnológico de Durango Durango México
| | - Luz Araceli Ochoa‐Martínez
- Departamento de Ingenierías Química y Bioquímica Tecnológico Nacional de México/Instituto Tecnológico de Durango Durango México
| | - José Alberto Gallegos‐Infante
- Departamento de Ingenierías Química y Bioquímica Tecnológico Nacional de México/Instituto Tecnológico de Durango Durango México
| | - Olga Miriam Rutiaga‐Quiñones
- Departamento de Ingenierías Química y Bioquímica Tecnológico Nacional de México/Instituto Tecnológico de Durango Durango México
| | - Tania Ernestina Lara‐Ceniceros
- Advanced Functional Materials and Nanotechnology Group Centro de Investigación en Materiales Avanzados S. C. (CIMAV – Unidad Monterrey) PIIT Apodaca México
| | - Efrén Delgado‐Licon
- Department of Family and Consumer Sciences New Mexico State University Las Cruces New Mexico USA
| | - Silvia Marina González‐Herrera
- Departamento de Ingenierías Química y Bioquímica Tecnológico Nacional de México/Instituto Tecnológico de Durango Durango México
| |
Collapse
|
19
|
Ha HK, Hong JY, Ayu IL, Lee MR, Lee WJ. Development and evaluation of probiotic delivery systems using the rennet-induced gelation of milk proteins. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:1182-1193. [PMID: 34796356 PMCID: PMC8564304 DOI: 10.5187/jast.2021.e92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/09/2021] [Accepted: 07/21/2021] [Indexed: 11/25/2022]
Abstract
The aims of this study were to develop a milk protein-based probiotic delivery
system using a modified rennet-induced gelation method and to determine how the
skim milk powder concentration level and pH, which can affect the rennet-induced
intra- and inter-molecular association of milk proteins, affect the
physicochemical properties of the probiotic delivery systems, such as the
particle size, size distribution, encapsulation efficiency, and viability of
probiotics in simulated gastrointestinal tract. To prepare a milk protein-based
delivery system, skim milk powder was used as a source of milk proteins with
various concentration levels from 3 to 10% (w/w) and rennet was added to skim
milk solutions followed by adjustment of pH from 5.4 or 6.2.
Lactobacillus rhamnosus GG was used as a probiotic culture.
In confocal laser scanning microscopic images, globular particles with a size
ranging from 10 μm to 20 μm were observed, indicating that milk
protein-based probiotic delivery systems were successfully created. When the
skim milk powder concentration was increased from 3 to 10% (w/w), the size of
the delivery system was significantly (p < 0.05)
increased from 27.5 to 44.4 μm, while a significant (p
< 0.05) increase in size from 26.3 to 34.5 μm was observed as the
pH was increased from 5.4 to 6.4. An increase in skim milk powder concentration
level and a decrease in pH led to a significant (p <
0.05) increase in the encapsulation efficiency of probiotics. The viability of
probiotics in a simulated stomach condition was increased when probiotics were
encapsulated in milk protein-based delivery systems. An increase in the skim
milk powder concentration and a decrease in pH resulted in an increase in the
viability of probiotics in simulated stomach conditions. It was concluded that
the protein content by modulating skim milk powder concentration level and pH
were the key manufacturing variables affecting the physicochemical properties of
milk protein-based probiotic delivery systems.
Collapse
Affiliation(s)
- Ho-Kyung Ha
- Department of Animal Science and Technology, Sunchon National University, Sunchon 57922, Korea.,Interdisciplinary Program in IT-Bio Convergence System, Sunchon National University, Sunchon 57922, Korea
| | - Ji-Young Hong
- Department of Animal Bioscience (Institute of Agriculture and Life Science), Gyeongsang National University, Jinju 52828, Korea
| | - Istifiani Lola Ayu
- Department of Food and Nutrition, Daegu University, Gyeongsan 38453, Korea
| | - Mee-Ryung Lee
- Department of Food and Nutrition, Daegu University, Gyeongsan 38453, Korea
| | - Won-Jae Lee
- Department of Animal Bioscience (Institute of Agriculture and Life Science), Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
20
|
Hu D, Wu J, Jin L, Yuan L, Li J, Chen X, Yao J. Evaluation of Pediococcus pentosaceus strains as probiotic adjunct cultures for soybean milk post-fermentation. Food Res Int 2021; 148:110570. [PMID: 34507724 DOI: 10.1016/j.foodres.2021.110570] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/19/2021] [Accepted: 06/27/2021] [Indexed: 12/13/2022]
Abstract
Soybean milk is an economical substitute for dairy products. Pediococcus pentosaceus has been used as a food additive to improve taste, nutrition, and food safety. In this study, four P. pentosaceus strains (CICC 24444, QK-1, MQ-1 and RQ-1) isolated from various food sources and known to exhibit broad-spectrum antibacterial activities were used to ferment soybean milk, and their fermentation characteristics and the properties of the resulting beverages were evaluated. The results revealed that the P. pentosaceus strains can inhibited the growth of five types of pathogenic bacteria (Salmonella enterica subsp. enterica serotype Enteritidis, Yersinia enterocolitica, Shigella dysenteriae, Escherichia coli, and Staphylococcus aureus), and their in vitro survival rates in the simulated stomach and intestinal environments were above 90%, satisfying the probiotic requirements. Isomaltose oligosaccharide was used as a protective agent to resist low-temperature freeze-drying damage and ensure a high survival rate, and P. pentosaceus was directly injected into fermented soymilk. The acidification of fermented soybean milk was the weakest with P. pentosaceus QK-1, and the viable bacterial counts of all strains were stable after 28 days of storage. After fermentation, the antioxidant ability was enhanced. Arginine and β-alanine levels increased after fermentation, and the adjunct culture of P. pentosaceus QK-1 increased proline levels. Our data indicate that P. pentosaceus QK-1 is a suitable strain for the development of functional plant-based beverages.
Collapse
Affiliation(s)
- Dan Hu
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Jinyong Wu
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Long Jin
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China; Probiotics Institute, Hefei 230031, China
| | - Lixia Yuan
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jun Li
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Xiangsong Chen
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | - Jianming Yao
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
21
|
Effect of hurdle technology of gentle pasteurisation and drying process on bioactive proteins, antioxidant activity and microbial quality of cow and buffalo colostrum. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Motalebi Moghanjougi Z, Rezazadeh Bari M, Alizadeh Khaledabad M, Amiri S, Almasi H. Microencapsulation of Lactobacillus acidophilus LA-5 and Bifidobacterium animalis BB-12 in pectin and sodium alginate: A comparative study on viability, stability, and structure. Food Sci Nutr 2021; 9:5103-5111. [PMID: 34532019 PMCID: PMC8441350 DOI: 10.1002/fsn3.2470] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 11/18/2022] Open
Abstract
The present study aimed at examining whether the microencapsulation of Lactobacillus acidophilus LA-5 and Bifidobacterium animalis BB-12 inside hydrogels could prolong their survival in freeze-drying conditions, stored at 4℃ and in the gastrointestinal medium. Microencapsulation was performed by emulsion with a syringe, while sodium alginate and high methoxyl pectin were used as a carrier material. A relatively high efficiency of encapsulation was obtained (>92%). Z-Average and pdI in samples were not significant (p < .05). In different treatments, changes in the number of bacteria after freeze-drying, 30 days of storage, and gastrointestinal conditions, compared to each other, were significant (p < .05). However, the survival rate after a reduction during storage was higher than 106 cfu/g, indicating the suitability of the microencapsulation process. The surface of microcapsules observed by a scanning electron microscope (SEM) confirmed the success of encapsulation. Finally, a lower decrease in the count of microencapsulated was observed in comparison to the free cells.
Collapse
Affiliation(s)
| | - Mahmoud Rezazadeh Bari
- Department of Food Science and TechnologyFactually of AgricultureUrmia UniversityUrmiaIran
| | | | - Saber Amiri
- Department of Food Science and TechnologyFactually of AgricultureUrmia UniversityUrmiaIran
| | - Hadi Almasi
- Department of Food Science and TechnologyFactually of AgricultureUrmia UniversityUrmiaIran
| |
Collapse
|
23
|
Zhou Y, Feng J, Peng H, Guo T, Xiao J, Zhu W, Qian W, Zhang J, Wu L. Allicin inclusions with α-cyclodextrin effectively masking its odor: Preparation, characterization, and olfactory and gustatory evaluation. J Food Sci 2021; 86:4026-4036. [PMID: 34409609 DOI: 10.1111/1750-3841.15882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/03/2021] [Accepted: 07/20/2021] [Indexed: 11/29/2022]
Abstract
Allicin, a chemical found in functional foods, has a variety of beneficial bioactivities but the unpleasent odor and unstability hinder its applications. Isolating products from cyclodextrin (CD) complexation, using β-CD and its derivatives, is usually a time and energy-consuming process. Herein, a high-efficiency and eco-friendly preparation method of an inclusion (allicin@α-CD) formed by allicin and α-CD was designed, which turned liquid allicin into crystal particles with high-speed stirring (10,000 r/min) at 25°C for 10 min in water. In vivo and in vitro masking evaluations showed that the inclusion particles could decrease the unpleasant odor of allicin. Molecular docking and experimental characterization results illustrated that the main reason of odor masking was due to the disulfide and thiocarbonyl groups of allicin being partially encapsulated by the cavity of α-CD. Compared with the physical mixture, the stability of allicin in allicin@α-CD at 60°C for 10 days was 33-fold improved. Overall, this efficient strategy of inclusion provided a promising approach for the industrialization of allicin-related formulations. PRACTICAL APPLICATION: In this study, an environmentally friendly method of α-CD inclusion without the use of organic reagents was designed to solidify and stabilize allicin, which effectively masked the unpleasant odor and taste of allicin. It has contributed greatly to improving the compliance of consumers and provided a new and effective approach to broaden the application of allicin.
Collapse
Affiliation(s)
- Yong Zhou
- Jiangxi University of Chinese Medicine, Nanchang, China.,Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jing Feng
- Jiangxi University of Chinese Medicine, Nanchang, China.,Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hui Peng
- Science and Technology Center, By-Health Co. Ltd., Guangzhou, China
| | - Tao Guo
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jian Xiao
- Science and Technology Center, By-Health Co. Ltd., Guangzhou, China
| | - Weifeng Zhu
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wei Qian
- Science and Technology Center, By-Health Co. Ltd., Guangzhou, China
| | - Jiwen Zhang
- Jiangxi University of Chinese Medicine, Nanchang, China.,Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Li Wu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
24
|
Huang H, Li K, Lee Y, Chen M. Preventive Effects of Lactobacillus Mixture against Chronic Kidney Disease Progression through Enhancement of Beneficial Bacteria and Downregulation of Gut-Derived Uremic Toxins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7353-7366. [PMID: 34170659 DOI: 10.1021/acs.jafc.1c01547] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gut dysbiosis is a major contributor to adverse chronic kidney disease (CKD) progression, and microbiota-based strategies could be considered as a novel therapeutic and preventative target. In this study, a probiotic screening platform based on gut-derived uremic toxin-reducing probiotics was developed and the underlying mechanism was further verified through a 0.2% adenine-induced CKD mouse model. Two strains (Lactobacillus paracasei and Lactobacillus plantarum) were selected due to their high clearance ability and named Lactobacillus mix (Lm). The results showed that Lm significantly improved the kidney function by reducing kidney injury and fibrotic-related proteins. Furthermore, Lm decreased oxidative stress and proinflammatory reactions and elevated immune responses in the kidney. Importantly, Lm reversed gut dysbiosis and restored the abundance of commensal bacteria, especially short-chain fatty acid producers, leading to improved intestinal barrier integrity via modulation of microbial composition and metabolite production. Taken together, these findings provided evidence that Lm could be a preventive approach against CKD.
Collapse
Affiliation(s)
- Hsiaowen Huang
- Department of Animal Science and Technology, National Taiwan University, No. 50, Lane 155, Section 3, Keelung Road, Taipei 10673, Taiwan
| | - Kuanyi Li
- Department of Animal Science and Technology, National Taiwan University, No. 50, Lane 155, Section 3, Keelung Road, Taipei 10673, Taiwan
| | - Yajane Lee
- Institute of Veterinary Clinical Science, School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
- Department of Internal Medicine, National Taiwan University Veterinary Hospital, No. 153, Section 3, Keelung Road, Taipei 10672, Taiwan
| | - Mingju Chen
- Department of Animal Science and Technology, National Taiwan University, No. 50, Lane 155, Section 3, Keelung Road, Taipei 10673, Taiwan
- Center for Biotechnology, National Taiwan University, No. 81, Changxing Street, Taipei 10672, Taiwan
| |
Collapse
|
25
|
Yoha KS, Anukiruthika T, Anila W, Moses JA, Anandharamakrishnan C. 3D printing of encapsulated probiotics: Effect of different post-processing methods on the stability of Lactiplantibacillus plantarum (NCIM 2083) under static in vitro digestion conditions and during storage. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111461] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Liao Y, Hu Y, Fu N, Hu J, Xiong H, Chen XD, Zhao Q. Maillard conjugates of whey protein isolate-xylooligosaccharides for the microencapsulation of Lactobacillus rhamnosus: protective effects and stability during spray drying, storage and gastrointestinal digestion. Food Funct 2021; 12:4034-4045. [PMID: 33977935 DOI: 10.1039/d0fo03439h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Maillard reaction products (MRPs) of whey protein isolate (WPI) and xylooligosaccharides (XOS) were prepared by a moist heat method for use as protectants to encapsulate Lactobacillus rhamnosus via spray drying. The protective effects of MRPs on bacterial cells during drying, storage, and in vitro digestion were explored. FTIR results indicated that MRPs were successfully prepared. All MRPs showed good thermo-protective effect on the bacteria, and the survival ratio achieved with 1 : 2 XOS-WPI as a wall material reached 99.83 ± 8.44%, which was around 2 times as high as that of the WPI wall material and 1.5 times as high as that of the 1 : 2 XOS-WPI mixture. The dried lactobacilli showed similar growth curves to the fresh culture. After 10 weeks of storage at 4 °C, the decrease in the bacterial activity was less than 1 log CFU g-1 for all types of microcapsules, while the microcapsules composed of all MRPs had better storage stability. MRPs improved the stability of microcapsules during in vitro digestion. The number of viable bacteria in 1 : 2 XOS-WPI MRPs microcapsules was maintained at 4.09 ± 0.59 × 109 CFU g-1 after simulated gastrointestinal digestion for 4 hours, which only decreased by 0.20 log CFU g-1.
Collapse
Affiliation(s)
- Yang Liao
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China.
| | - Yu Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China.
| | - Nan Fu
- China-Australia Joint Research Center of Future Dairy Manufacturing, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Juwu Hu
- Jiangxi Academy of Sciences, Jiangxi 330029, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China.
| | - Xiao Dong Chen
- China-Australia Joint Research Center of Future Dairy Manufacturing, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qiang Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China.
| |
Collapse
|
27
|
Resistant Starch-Based Edible Coating Composites for Spray-Dried Microencapsulation of Lactobacillus acidophilus, Comparative Assessment of Thermal Protection, In Vitro Digestion and Physicochemical Characteristics. COATINGS 2021. [DOI: 10.3390/coatings11050587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Polysaccharides have excellent potential as food-grade coating materials for microencapsulation in pro- and prebiotics-based functional food industry. In this study, potato, maize, and rice resistant starches composite coatings with D-mannose, maltodextrin, and whey protein concentrate were prepared for the spray-dried microencapsulation of Lactobacillus acidophilus KLDS 1.1003. Assessment of different polysaccharide coatings to enhance the longevity of probiotics at high temperatures of spray-drying process, storage, and targeted delivery in the gastrointestinal tract were the key objectives of the present study. The highest microencapsulation efficiencies were shown by maize (95.80%) and potato (94.30%) resistant starches. Similarly, maize resistant starch (MRS)-based composites provided the highest thermal resistance, with Tg 38.77 ± 1.10–93.13 ± 0.81 °C and showed the least 2.1 log cycles viability loss in simulated GI tract. Viability losses during storage were in the following order: control > RRS > PRS > MRS, and the inactivation rate of the microencapsulated cells followed the first-order kinetics (R2 = 0.9264–0.9918). The resistant starch-based spray-dried microcapsules possessed 27.00 ± 0.03 to 52.28 ± 1.02 µm size range and SEM micrographs showed a unified smooth surface without cracks and ruptures. These findings will expand the potential use of natural food-grade coatings in functional foods and allied industries involving spray-dried products.
Collapse
|
28
|
mohammadi R, Abbaszadeh S, Sharifzadeh A, Sepandi M, Taghdir M, Youseftabar Miri N, Parastouei K. In vitro activity of encapsulated lactic acid bacteria on aflatoxin production and growth of Aspergillus Spp. Food Sci Nutr 2021; 9:1282-1288. [PMID: 33747444 PMCID: PMC7958533 DOI: 10.1002/fsn3.2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 11/23/2022] Open
Abstract
This study aimed to investigate the potential ability of simultaneously used L. acidophilus(LA-5), L.rhamnosus(LGG), and L.casei(LC-01) in encapsulated (E) and nonencapsulated (NE) forms in mycelial growth of Aspergillus spp and aflatoxin production by A. flavus. In order to assess the zone of fungal growth inhibition by E and NE lactic acid bacteria, the agar well diffusion method was applied. Quantification of aflatoxin was performed using a high-performance liquid chromatography technique. Lactic acid bacteria exhibited high antifungal activity and significantly reduced AFB1, AFB2, AFG1, and AFG2 production in both E and NE forms compared to the control group. The percentage of reduction in total AFs production in treated samples with E and NE lactic acid bacteria was 94.1% and 95.5%, respectively. These results suggested that simultaneously used lactic acid bacteria in E and NE forms can prevent growth and decrease aflatoxin production of toxigenic aspergilla.
Collapse
Affiliation(s)
- Rouhollah mohammadi
- Health Research CenterLife style instituteBaqiyatallah University of Medical SciencesTehranIran
| | - Sepideh Abbaszadeh
- Health Research CenterLife style instituteBaqiyatallah University of Medical SciencesTehranIran
- Department of Nutrition and Food HygieneFaculty of HealthBaqiyatallah University of Medical SciencesTehranIran
| | - Aghil Sharifzadeh
- Department of Microbiology and Immunology, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Mojtaba Sepandi
- Health Research CenterLife style instituteBaqiyatallah University of Medical SciencesTehranIran
| | - Maryam Taghdir
- Health Research CenterLife style instituteBaqiyatallah University of Medical SciencesTehranIran
| | | | - Karim Parastouei
- Health Research CenterLife style instituteBaqiyatallah University of Medical SciencesTehranIran
| |
Collapse
|
29
|
Ciou J, Yang K, Hou C, You J. The physicochemical properties of spray‐dried sesame powder with different blending ratios. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jhih‐Ying Ciou
- Department of Food Science Tunghai University Taichung Taiwan
| | - Kai‐Min Yang
- Department of Hospitality Management MingDao University Changhua Taiwan
| | - Chih‐Yao Hou
- Department of Seafood Science National Kaohsiung University of Science and Technology Kaohsiung City Taiwan
| | - Jia‐Yin You
- Department of Food Science Tunghai University Taichung Taiwan
| |
Collapse
|
30
|
Jokicevic K, Kiekens S, Byl E, De Boeck I, Cauwenberghs E, Lebeer S, Kiekens F. Probiotic nasal spray development by spray drying. Eur J Pharm Biopharm 2020; 159:211-220. [PMID: 33238191 DOI: 10.1016/j.ejpb.2020.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/08/2020] [Accepted: 11/17/2020] [Indexed: 11/19/2022]
Abstract
The upper respiratory tract (URT) is the main entrance point for many viral and bacterial pathogens, and URT infections are among the most common infections in the world. Recent evidences by our own group and others imply the importance of lactobacilli as gatekeepers of a healthy URT. However, the benefits of putting health-promoting microbes or potential probiotics, such as these URT lactobacilli, in function of URT disease control and prevention is underestimated, among others because of the absence of adequate formulation modalities. Therefore, this study entails important aspects in probiotic nasal spray development with a novel URT-derived probiotic strain by spray drying. We report quantitative and qualitative analysis of several spray-dried formulations, i.e. powders for reconstitution, based on disaccharide or sugar alcohol combinations with a polymer, including their long-term stability. Four formulations with the highest survival of >109 (Colony Forming Units) CFU/g after 28 weeks were further examined upon reconstitution which confirmed sufficiency of one bottle/dosage form during 7 days and rheological properties of shear-thinning. Tests also demonstrated maintained viability and cell morphology overall upon spraying through a nasal spray bottle in all 4 formulations. Lastly, application suitability in terms of high adherence to Calu-3 cells and antimicrobial activity against common URT pathogens was demonstrated and was not impacted neither by powder production process nor by spraying of reconstituted powder through a nasal spray device.
Collapse
Affiliation(s)
- Katarina Jokicevic
- University of Antwerp, Department of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Pharmaceutical Technology and Biopharmacy, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Shari Kiekens
- University of Antwerp, Department of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Pharmaceutical Technology and Biopharmacy, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Eline Byl
- University of Antwerp, Department of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Pharmaceutical Technology and Biopharmacy, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Ilke De Boeck
- University of Antwerp, Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Eline Cauwenberghs
- University of Antwerp, Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Sarah Lebeer
- University of Antwerp, Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Filip Kiekens
- University of Antwerp, Department of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Pharmaceutical Technology and Biopharmacy, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
31
|
Arepally D, Reddy RS, Goswami TK. Studies on survivability, storage stability of encapsulated spray dried probiotic powder. Curr Res Food Sci 2020; 3:235-242. [PMID: 33103122 PMCID: PMC7575842 DOI: 10.1016/j.crfs.2020.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 01/14/2023] Open
Abstract
Awareness about probiotic food and their health benefits is increasing tremendously. However, probiotics have to withstand the harsh conditions that come across during their processing, handling, storage, and gastrointestinal conditions. Encapsulating technologies can be used to protect the probiotics during their passage through the gastrointestinal system of the human gut. Probiotics as an ingredient in dry powder form can be easily handled, stored, and used in developing the probiotic functional products. In the present study, probiotic cells (Lactobacillus acidophilus) were encapsulated by spray drying technology to produce a probiotic powder using 20% of maltodextrin and varied concentrations of gum arabic. The effect of processing conditions such as inlet air temperature (130-150 °C) and gum arabic concentration (0-10%) on the encapsulation efficiency and physical properties were studied. Further, the free and encapsulated probiotic cells were exposed to the simulated-gastric intestinal (SGI) fluid conditions and different storage conditions for their viability. For all the tested formula, moisture content, water activity, encapsulation efficiency, hygroscopicity, and wettability obtained were in the range of 4.59-9.05% (w.b.), 0.33-0.52, 65-89.15%, 12-21.15 g H2O/100g dry weight, and 116 s-353 s, respectively. The Fourier transform infrared (FTIR) results have shown that gum arabic and maltodextrin have structural stability during spray drying. The encapsulated probiotic cells have shown a positive effect and exhibited better viability after exposure to a SGI solution at different pH levels and duration compared to free cells. The viability of encapsulated cells stored at refrigerated condition (4 °C) was found to be higher than the viability of cells stored at room temperature (25 °C).
Collapse
Affiliation(s)
- Divyasree Arepally
- Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur, West Bengal, 721 302, India
| | - Ravula Sudharshan Reddy
- Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur, West Bengal, 721 302, India
| | - Tridib Kumar Goswami
- Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur, West Bengal, 721 302, India
| |
Collapse
|
32
|
Arepally D, Reddy RS, Goswami TK. Encapsulation of Lactobacillus acidophilus NCDC 016 cells by spray drying: characterization, survival after in vitro digestion, and storage stability. Food Funct 2020; 11:8694-8706. [PMID: 32944729 DOI: 10.1039/d0fo01394c] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present study, probiotic cells (Lactobacillus acidophilus) were encapsulated by spray drying technology to produce a probiotic powder using 20% maltodextrin and varied concentrations of gum arabic. The effects of processing conditions such as inlet air temperature (130-150 °C) and gum arabic concentration (0-10%) on the encapsulation efficiency, physical properties, and morphology were studied. For all the tested formulae, the moisture content, water activity, encapsulation efficiency, hygroscopicity, and wettability obtained were in the range of 4.59-9.05% (w.b.), 0.33-0.52, 65-89.15%, 12 to 21.15 g H2O per 100 g dry weight, and 116 s to 353 s, respectively. The Fourier transform infrared (FTIR) results have shown that gum arabic and maltodextrin show structural stability during spray drying. The encapsulated probiotic cells exhibited better viability of 4.03, 4.68, and 5.34 log CFU g-1 after 3 h of exposure to a simulated gastric fluid (SGF) solution at pH levels of 1, 1.5, and 2, respectively, compared to free cells. The viability of encapsulated cells stored for 12 weeks under refrigerated conditions (4 °C) and at room temperature (25 °C) was found to be 6.05 log CFU g-1 and 1.24 log CFU g-1, respectively.
Collapse
Affiliation(s)
- Divyasree Arepally
- Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur, West Bengal - 721 302, India.
| | - Ravula Sudharshan Reddy
- Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur, West Bengal - 721 302, India.
| | - Tridib Kumar Goswami
- Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur, West Bengal - 721 302, India.
| |
Collapse
|
33
|
Gheorghita Puscaselu R, Lobiuc A, Dimian M, Covasa M. Alginate: From Food Industry to Biomedical Applications and Management of Metabolic Disorders. Polymers (Basel) 2020; 12:E2417. [PMID: 33092194 PMCID: PMC7589871 DOI: 10.3390/polym12102417] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022] Open
Abstract
Initially used extensively as an additive and ingredient in the food industry, alginate has become an important compound for a wide range of industries and applications, such as the medical, pharmaceutical and cosmetics sectors. In the food industry, alginate has been used to coat fruits and vegetables, as a microbial and viral protection product, and as a gelling, thickening, stabilizing or emulsifying agent. Its biocompatibility, biodegradability, nontoxicity and the possibility of it being used in quantum satis doses prompted scientists to explore new properties for alginate usage. Thus, the use of alginate has been expanded so as to be directed towards the pharmaceutical and biomedical industries, where studies have shown that it can be used successfully as biomaterial for wound, hydrogel, and aerogel dressings, among others. Furthermore, the ability to encapsulate natural substances has led to the possibility of using alginate as a drug coating and drug delivery agent, including the encapsulation of probiotics. This is important considering the fact that, until recently, encapsulation and coating agents used in the pharmaceutical industry were limited to the use of lactose, a potentially allergenic agent or gelatin. Obtained at a relatively low cost from marine brown algae, this hydrocolloid can also be used as a potential tool in the management of diabetes, not only as an insulin delivery agent but also due to its ability to improve insulin resistance, attenuate chronic inflammation and decrease oxidative stress. In addition, alginate has been recognized as a potential weight loss treatment, as alginate supplementation has been used as an adjunct treatment to energy restriction, to enhance satiety and improve weight loss in obese individuals. Thus, alginate holds the promise of an effective product used in the food industry as well as in the management of metabolic disorders such as diabetes and obesity. This review highlights recent research advances on the characteristics of alginate and brings to the forefront the beneficial aspects of using alginate, from the food industry to the biomedical field.
Collapse
Affiliation(s)
- Roxana Gheorghita Puscaselu
- Department of Health and Human Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.G.P.); (A.L.)
| | - Andrei Lobiuc
- Department of Health and Human Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.G.P.); (A.L.)
| | - Mihai Dimian
- Department of Computers, Electronics and Automation, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Mihai Covasa
- Department of Health and Human Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.G.P.); (A.L.)
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
34
|
Storage stability and in vitro digestion of microencapsulated powder containing fermented noni juice and probiotics. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Frakolaki G, Katsouli M, Giannou V, Tzia C. Novel encapsulation approach for Bifidobacterium subsp. lactis (BB-12) viability enhancement through its incorporation into a double emulsion prior to the extrusion process. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109671] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Hellebois T, Tsevdou M, Soukoulis C. Functionalizing and bio-preserving processed food products via probiotic and synbiotic edible films and coatings. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 94:161-221. [PMID: 32892833 DOI: 10.1016/bs.afnr.2020.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Edible films and coatings constitute an appealing concept of innovative, cost-effective, sustainable and eco-friendly packaging solution for food industry applications. Edible packaging needs to comply with several technological pre-requisites such as mechanical durability, low permeability to water vapor and gases, good optical properties, low susceptibility to chemical or microbiological alterations and neutral sensory profile. Over the past few years, functionalization of edible films and coatings via the inclusion of bioactive compounds (antioxidants, micronutrients, antimicrobials, natural coloring and pigmentation agents) and beneficial living microorganisms has received much attention. As for living microorganisms, probiotic bacterial cells, primarily belonging to the Lactobacilli or Bifidobacteria genera, have been exploited to impart bespoke health and biopreservation benefits to processed food. Given that the health benefit conferring and biopreservation potential of probiotics is dependent on several extrinsic and intrinsic parameters, the development of probiotic and synbiotic edible packaging concepts is a quite challenging task. In the present chapter, we aimed at a timely overview of the technological advances in the field of probiotic, symbiotic and synbiotic edible films and coatings. The individual or combined effects of intrinsic (matrix composition and physical state, pH, dissolved oxygen, water activity, presence of growth stimulants or inhibitors) and extrinsic (film forming method, food processing, storage time and conditions, exposure to gastrointestinal conditions) factors on maintaining the biological activity of probiotic cells were addressed. Moreover, the impact of living cells inclusion on the mechanical, physicochemical and barrier properties of the edible packaging material as well as on the shelf-life and quality of the coated or wrapped food products, were duly discussed.
Collapse
Affiliation(s)
- Thierry Hellebois
- Environmental Research and Innovation (ERIN) Department, Systems and Bioprocessing Engineering Group, Luxembourg Institute of Science and Technology (LIST), Esch-sur-Alzette, Luxembourg; Université de Lorraine, LIBio, Nancy, France
| | - Maria Tsevdou
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Christos Soukoulis
- Environmental Research and Innovation (ERIN) Department, Systems and Bioprocessing Engineering Group, Luxembourg Institute of Science and Technology (LIST), Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
37
|
Development of a bioactive synbiotic edible film based on cassava starch, inulin, and Lactobacillus casei. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105754] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
38
|
Richards L, Jarrold A, Bowser T, Stevens GW, Gras SL. Cytochrome P450-mediated N-demethylation of noscapine by whole-cell biotransformation: process limitations and strategies for optimisation. J Ind Microbiol Biotechnol 2020; 47:449-464. [PMID: 32507955 DOI: 10.1007/s10295-020-02283-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/29/2020] [Indexed: 01/16/2023]
Abstract
Cytochrome P450 enzymes catalyse reactions of significant industrial interest but are underutilised in large-scale bioprocesses due to enzyme stability, cofactor requirements and the poor aqueous solubility and microbial toxicity of typical substrates and products. In this work, we investigate the potential for preparative-scale N-demethylation of the opium poppy alkaloid noscapine by a P450BM3 (CYP102A1) mutant enzyme in a whole-cell biotransformation system. We identify and address several common limitations of whole-cell P450 biotransformations using this model N-demethylation process. Mass transfer into Escherichia coli cells was found to be a major limitation of biotransformation rate and an alternative Gram-positive expression host Bacillus megaterium provided a 25-fold improvement in specific initial rate. Two methods were investigated to address poor substrate solubility. First, a biphasic biotransformation system was developed by systematic selection of potentially biocompatible solvents and in silico solubility modelling using Hansen solubility parameters. The best-performing biphasic system gave a 2.3-fold improvement in final product titre compared to a single-phase system but had slower initial rates of biotransformation due to low substrate concentration in the aqueous phase. The second strategy aimed to improve aqueous substrate solubility using cyclodextrin and hydrophilic polymers. This approach provided a fivefold improvement in initial biotransformation rate and allowed a sixfold increase in final product concentration. Enzyme stability and cell viability were identified as the next parameters requiring optimisation to improve productivity. The approaches used are also applicable to the development of other pharmaceutical P450-mediated biotransformations.
Collapse
Affiliation(s)
- Luke Richards
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
- The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Rd, Parkville, VIC, 3010, Australia
| | - Ailsa Jarrold
- Sun Pharmaceutical Industries Ltd, Princes Highway, Port Fairy, VIC, 3281, Australia
| | - Tim Bowser
- Impact Science Consulting, Unit 2/52 Swanston St, Heidelberg Heights, VIC, 2081, Australia
| | - Geoffrey W Stevens
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Sally L Gras
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia.
- The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Rd, Parkville, VIC, 3010, Australia.
| |
Collapse
|
39
|
Zoghi A, Khosravi-Darani K, Mohammadi R. Application of edible films containing probiotics in food products. J Verbrauch Lebensm 2020. [DOI: 10.1007/s00003-020-01286-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
Betoret E, Betoret N, Calabuig-Jiménez L, Barrera C, Dalla Rosa M. Effect of Drying Process, Encapsulation, and Storage on the Survival Rates and Gastrointestinal Resistance of L. salivarius spp. salivarius Included into a Fruit Matrix. Microorganisms 2020; 8:microorganisms8050654. [PMID: 32365887 PMCID: PMC7285284 DOI: 10.3390/microorganisms8050654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 11/30/2022] Open
Abstract
In a new probiotic food, besides adequate physicochemical properties, it is necessary to ensure a minimum probiotic content after processing, storage, and throughout gastrointestinal (GI) digestion. The aim of this work was to study the effect of hot air drying/freeze drying processes, encapsulation, and storage on the probiotic survival and in vitro digestion resistance of Lactobacillus salivarius spp. salivarius included into an apple matrix. The physicochemical properties of the food products developed were also evaluated. Although freeze drying processing provided samples with better texture and color, the probiotic content and its resistance to gastrointestinal digestion and storage were higher in hot air dried samples. Non-encapsulated microorganisms in hot air dried apples showed a 79.7% of survival rate versus 40% of the other samples after 28 days of storage. The resistance of encapsulated microorganisms to in vitro digestion was significantly higher (p ≤ 0.05) in hot air dried samples, showing survival rates of 50–89% at the last stage of digestion depending on storage time. In freeze dried samples, encapsulated microorganisms showed a survival rate of 16–47% at the end of digestion. The different characteristics of the food matrix after both processes had a significant effect on the probiotic survival after the GI digestion. Documented physiological and molecular mechanisms involved in the stress response of probiotic cells would explain these results.
Collapse
Affiliation(s)
- Ester Betoret
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, 46980 Paterna, Spain
- Correspondence:
| | - Noelia Betoret
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, 46022 Valencia, Spain; (N.B.); (L.C.-J.); (C.B.)
| | - Laura Calabuig-Jiménez
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, 46022 Valencia, Spain; (N.B.); (L.C.-J.); (C.B.)
| | - Cristina Barrera
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, 46022 Valencia, Spain; (N.B.); (L.C.-J.); (C.B.)
| | - Marco Dalla Rosa
- Department of Agriculture and Food Sciences, University of Bologna, 74521 Cesena, Italy;
- Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, 47521 Cesena, Italy
| |
Collapse
|
41
|
The Inoculation of Probiotics In Vivo Is a Challenge: Strategies to Improve Their Survival, to Avoid Unpleasant Changes, or to Enhance Their Performances in Beverages. BEVERAGES 2020. [DOI: 10.3390/beverages6020020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The inoculation of probiotics in beverages (probiotication) requires special technologies, as probiotic microorganisms can experience stress during food processing (acid, cold, drying, starvation, oxidative, and osmotic stresses) and gastrointestinal transit. Survival to harsh conditions is an essential prerequisite for probiotic bacteria before reaching the target site where they can exert their health promoting effects, but several probiotics show a poor resistance to technological processes, limiting their use to a restricted number of food products. Therefore, this paper offers a short overview of the ways to improve bacterial resistance: by inducing a phenotypic modification (adaptation) or by surrounding bacteria through a physical protection (microencapsulation). A second topic briefly addressed is genetic manipulation, while the last section addresses the control of metabolism by attenuation through physical treatments to design new kinds of food.
Collapse
|
42
|
Vanden Braber N, Díaz Vergara L, Rossi Y, Aminahuel C, Mauri A, Cavaglieri L, Montenegro M. Effect of microencapsulation in whey protein and water-soluble chitosan derivative on the viability of the probiotic Kluyveromyces marxianus VM004 during storage and in simulated gastrointestinal conditions. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108844] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
43
|
Timilsena YP, Haque MA, Adhikari B. Encapsulation in the Food Industry: A Brief Historical Overview to Recent Developments. ACTA ACUST UNITED AC 2020. [DOI: 10.4236/fns.2020.116035] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Sun H, Hua X, Zhang M, Wang Y, Chen Y, Zhang J, Wang C, Wang Y. Whey Protein Concentrate, Pullulan, and Trehalose as Thermal Protective Agents for Increasing Viability of Lactobacillus plantarum Starter by Spray Drying. Food Sci Anim Resour 2020; 40:118-131. [PMID: 31970336 PMCID: PMC6957444 DOI: 10.5851/kosfa.2019.e94] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/10/2019] [Accepted: 12/02/2019] [Indexed: 01/26/2023] Open
Abstract
It is necessary to add protective agents for protecting the probiotic viability in the preparation process of probiotics starter. In this study, we used whey protein concentrate (WPC), pullulan, trehalose, and sodium glutamate as the protective agent and optimized the proportion of protective agent and spray-drying parameters to achieve the best protective effect on Lactobacillus plantarum. Moreover, the viable counts of L. plantarum in starter stored at different temperatures (-20°C, 4°C, and 25°C) for 360 days were determined. According to response surface method (RSM), the optimal proportion of protective agent was 24.6 g/L WPC, 18.8 g/L pullulan, 16.7 g/L trehalose and 39.3 g/L sodium glutamate. The optimum spray-drying parameters were the ratio of bacteria to protective agents 3:1 (v: v), the feed flow rate 240 mL/h, and the inlet air temperature 115°C through orthogonal test. Based on the above results, the viable counts of L. plantarum was 12.22±0.27 Log CFU/g and the survival rate arrived at 85.12%. The viable counts of L. plantarum stored at -20°C was more than 1010 CFU/g after 200 days.
Collapse
Affiliation(s)
- Haiyue Sun
- College of Food Science and Engineering,
Jilin Agricultural University, Changchun,
China
- Jilin Province Innovation Center for Food
Biological Manufacture, Jilin Agricultural University,
Changchun, China
| | - Xiaoman Hua
- College of Food Science and Engineering,
Jilin Agricultural University, Changchun,
China
- Jilin Province Innovation Center for Food
Biological Manufacture, Jilin Agricultural University,
Changchun, China
| | - Minghao Zhang
- College of Food Science and Engineering,
Jilin Agricultural University, Changchun,
China
- Jilin Province Innovation Center for Food
Biological Manufacture, Jilin Agricultural University,
Changchun, China
| | - Yu Wang
- College of Food Science and Engineering,
Jilin Agricultural University, Changchun,
China
- Jilin Province Innovation Center for Food
Biological Manufacture, Jilin Agricultural University,
Changchun, China
| | - Yiying Chen
- College of Food Science and Engineering,
Jilin Agricultural University, Changchun,
China
- Jilin Province Innovation Center for Food
Biological Manufacture, Jilin Agricultural University,
Changchun, China
| | - Jing Zhang
- College of Food Science and Engineering,
Jilin Agricultural University, Changchun,
China
- Jilin Province Innovation Center for Food
Biological Manufacture, Jilin Agricultural University,
Changchun, China
| | - Chao Wang
- College of Food Science and Engineering,
Jilin Agricultural University, Changchun,
China
- Jilin Province Innovation Center for Food
Biological Manufacture, Jilin Agricultural University,
Changchun, China
| | - Yuhua Wang
- College of Food Science and Engineering,
Jilin Agricultural University, Changchun,
China
- Jilin Province Innovation Center for Food
Biological Manufacture, Jilin Agricultural University,
Changchun, China
- National Processing Laboratory for Soybean
Industry and Technology, Changchun,
China
- National Engineering Laboratory for Wheat
and Corn Deep Processing, Changchun,
China
| |
Collapse
|
45
|
Morais SGG, da Silva Campelo Borges G, dos Santos Lima M, Martín-Belloso O, Magnani M. Effects of probiotics on the content and bioaccessibility of phenolic compounds in red pitaya pulp. Food Res Int 2019; 126:108681. [DOI: 10.1016/j.foodres.2019.108681] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 12/18/2022]
|
46
|
Bradford R, Reyes V, Bonilla F, Bueno F, Dzandu B, Liu C, Chouljenko A, Sathivel S. Development of milk powder containing Lactobacillus plantarum NCIMB 8826 immobilized with prebiotic hi-maize starch and survival under simulated gastric and intestinal conditions. FOOD PRODUCTION, PROCESSING AND NUTRITION 2019. [DOI: 10.1186/s43014-019-0011-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
The objectives of this study were to develop a probiotic milk powder containing Lactobacillus plantarum NCIMB 8826 immobilized with prebiotic Hi-maize starch and to analyze cell viability after spray drying and exposure to simulated gastric and intestinal conditions. Milk powders containing free L. plantarum and cells immobilized with Hi-maize starch were assessed. Powders were evaluated during storage at 4 °C for 15 days. After spray drying, at 0 and 15 days of storage both treatments had over 8 log CFU/g of viable cells and there were higher viable counts found for immobilized cells compared to free cells after 120 min in simulated gastric fluid. At 15 days of storage, immobilized cells had higher viable counts than free cells after exposure to simulated intestinal fluid for 120 min. The combined probiotic and prebiotic milk powder had stable viable cell counts at refrigerated storage conditions and under simulated gastric and intestinal transit.
Graphical abstract
Collapse
|
47
|
Pereira JO, Soares J, Monteiro MJP, Amaro A, Gomes A, Pintado M. Cereal bars functionalized through Bifidobacterium animalis subsp. lactis BB-12 and inulin incorporated in edible coatings of whey protein isolate or alginate. Food Funct 2019; 10:6892-6902. [PMID: 31588471 DOI: 10.1039/c9fo00370c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Currently, cereal bars are gaining interest globally because of their nutritionally balanced and convenient nature. One healthy strategy is to add probiotics to cereal bars, to make them a functional food product. So, in this study a cereal bar functionalized with edible coatings of whey protein isolate (WPI) and alginate (ALG) incorporated with Bifidobacterium animalis subsp. lactis BB-12 and inulin was developed and evaluated for its consumer acceptability and physicochemical and microbiological properties, throughout 90 days of storage. WPI-coated cereal bars were shown to be the solution that better maintained the level of the incorporated probiotic strain when compared to the ones coated with ALG, throughout storage and throughout in vitro gastrointestinal digestion. The physicochemical properties of the bars, namely aw, moisture content, color and texture, were not altered during the storage period. The sensory evaluation showed that coated bars were accepted as well as control bars. Moreover, the consumers appreciated better the odor and flavor of WPI-coated bars than those of ALG-coated bars.
Collapse
Affiliation(s)
- Joana Odila Pereira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
48
|
Lin T, Chen B, Chen C, Chen Y, Wu H. Comparative analysis of spray‐drying microencapsulation of
Bifidobacterium adolescentis
and
Lactobacillus acidophilus
cultivated in different growth media. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ta‐Chen Lin
- College of Food Engineering, Beibu Gulf University Qinzhou Guangxi China
- Guangxi Colleges and University Key Laboratory of Development and High‐value Utilization of Beibu Gulf Seafood ResourcesBeibu Gulf University Qinzhou China
- Qinzhou Key Laboratory of Characteristic Fruits and Vegetables FermentationBeibu Gulf University China
| | - Bang‐Yuan Chen
- Department of Food ScienceFu Jen Catholic University New Taipei City Taiwan
| | - Chun‐Yeh Chen
- Department of Food Science and TechnologyHungkuang University Taichung City Taiwan
| | - Yuh‐Shuen Chen
- Department of Food Science and TechnologyHungkuang University Taichung City Taiwan
| | - Haibo Wu
- College of Food Engineering, Beibu Gulf University Qinzhou Guangxi China
- Guangxi Colleges and University Key Laboratory of Development and High‐value Utilization of Beibu Gulf Seafood ResourcesBeibu Gulf University Qinzhou China
| |
Collapse
|
49
|
Probiotic survival and in vitro digestion of L. salivarius spp. salivarius encapsulated by high homogenization pressures and incorporated into a fruit matrix. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.088] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
The Effect of Eight Thermal Protectants on the Survival Rate and the Viable Counts of Lactobacillus casei After Heat Treatment in Fermented Goat Milk. ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2019. [DOI: 10.2478/aucft-2019-0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
In order to improve the survival rate of probiotics and produce probiotic goat milk from fermented goat milk of Lactobacillus casei L61 by spray drying. Spray drying has been applied to large-scale industrial production of milk powder due to its high efficiency and low cost. However, high temperatures in spray drying can result in the loss of large numbers of probiotic.The purpose of this paper is to study the effects of eight thermal protectants including skim milk, sucrose, glucose, β-cyclodextrin, gelatin, maltodextrin, glycerol, trehalose on the survival rate and viable counts of L.casei L61 after heat treatment by the single factor experiment. All protective agents have a positive effect on increasing the survival rate of L.casei L61 (p<0.05). The results indicated that the survival rates of L.casei L61 were up to the maximum of 10.94%, 1.13%, 3.04%, 0.21%, 6.97%, 0.075, 4.71% and 0.29%, while the additions of skim milk, sucrose, glucose, β-cyclodextrin, gelatin, maltodextrin, glycerol, trehalose were 20mg/L, 10%, 7%, 15%, 1.5%, 3%, 8mL/L, 10%, respectively; the viable counts after heat treatment are 19.69, 0.81, 1.78, 0.455, 12.2, 0.12, 2.75, 0.435(×106CFU/mL), respectively. This paper provides technical a reference for the development of probiotic goat milk powder.
Collapse
|