1
|
Zeng S, Wang K, Liu X, Hu Z, Zhao L. Potential of longan (Dimocarpus longan Lour.) in functional food: A review of molecular mechanism-directing health benefit properties. Food Chem 2024; 437:137812. [PMID: 37897820 DOI: 10.1016/j.foodchem.2023.137812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Longan (Dimocarpus longan Lour.) has received widespread attention worldwide as a therapeutic food with nutritional, economic, and medicinal value. Its fruit, seed, pericarp, and flower becoming dietary tools for health maintenance when it comes to targeting chronic diseases or sub-health conditions. In recent years, research focusing on longan and human health has intensified, and the high-value products of the whole fruit, including polyphenols, polysaccharides, angiotensin-I-converting enzyme (ACE)-inhibiting peptides, gamma-aminobutyric acid (GABA), and Maillard reaction products etc., may have beneficial effects on human health by preventing the onset of chronic diseases and cancer, maintaining intestinal homeostasis and skin health. Here, we review and summarize the new available evidence on the bioactive role of phytochemicals in longan and explore the relationship between longan bioactive compounds and health benefits, with a focus on the molecular mechanisms of the health effects.
Collapse
Affiliation(s)
- Shiai Zeng
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China; College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China; College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China; College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China; College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Ke Z, Tan S, Shi S. Physicochemical characteristics, polyphenols and antioxidant activities of Dimocarpus longan grown in different geographical locations. ANAL SCI 2023:10.1007/s44211-023-00352-2. [PMID: 37106280 DOI: 10.1007/s44211-023-00352-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/19/2023] [Indexed: 04/29/2023]
Abstract
Longan is widely consumed due to its high nutritional value. The growing area has substantial effect on nutrient component and secondary metabolism of fruits. The aim of this study was to analyze the differences in physicochemical characteristics, polyphenol profiles, and antioxidant activity of longan fruits grown in four regions of China. Two representative cultivars 'Shixia' and 'Chuliang' located in Chongqing, Guanxi, Zhanjiang and Hainan were collected and analyzed. The results showed that the fruit weights, edible rates, and total soluble solids were 5.63-12.57 g, 52.7-68.7% and 17.54-23.68%, respectively. The titratable acids, reducing sugars, vitamin C contents were 0.22-0.62%, 2.27-5.55% and 68.29-157.34 mg/100 g, respectively. Interestingly, contents of total polyphenols and antioxidant activities in longan pericarps from Chongqing were higher than those from low-latitude regions for two cultivars. In addition, 10 polyphenols were detected by UPLC-QqQ-MS/MS which showed that the content of polyphenols was much higher in longan pericarps than in pulps. The content of polyphenol profiles in longan was mainly influenced by its tissue distribution. Cultivar type may also affect the polyphenol profile of longan.
Collapse
Affiliation(s)
- Zunli Ke
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550025, China
| | - Si Tan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China.
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, China.
| | - Shengyou Shi
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China.
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, China.
| |
Collapse
|
3
|
Tan S, Ke Z, Zhou C, Luo Y, Ding X, Luo G, Li W, Shi S. Polyphenol Profile, Antioxidant Activity, and Hypolipidemic Effect of Longan Byproducts. Molecules 2023; 28:molecules28052083. [PMID: 36903329 PMCID: PMC10004001 DOI: 10.3390/molecules28052083] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Longan, a popular fruit in Asia, has been used in traditional Chinese medicine to treat several diseases for centuries. Recent studies have indicated that longan byproducts are rich in polyphenols. The aim of this study was to analyze the phenolic composition of longan byproduct polyphenol extracts (LPPE), evaluate their antioxidant activity in vitro, and investigate their regulating effect on lipid metabolism in vivo. The results indicated that the antioxidant activity of LPPE was 231.350 ± 21.640, 252.380 ± 31.150, and 558.220 ± 59.810 (mg Vc/g) as determined by DPPH, ABTS, and FRAP, respectively. UPLC-QqQ-MS/MS analysis indicated that the main compounds in LPPE were gallic acid, proanthocyanidin, epicatechin, and phlorizin. LPPE supplementation prevented the body weight gain and decreased serum and liver lipids in high-fat diet-induced-obese mice. Furthermore, RT-PCR and Western blot analysis indicated that LPPE upregulated the expression of PPARα and LXRα and then regulated their target genes, including FAS, CYP7A1, and CYP27A1, which are involved in lipid homeostasis. Taken together, this study supports the concept that LPPE can be used as a dietary supplement in regulating lipid metabolism.
Collapse
Affiliation(s)
- Si Tan
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, China
- South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Correspondence: (S.T.); (S.S.)
| | - Zunli Ke
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Chongbing Zhou
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, China
| | - Yuping Luo
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, China
| | - Xiaobo Ding
- Luzhou Academy of Agricultural Sciences, Luzhou 646000, China
| | - Gangjun Luo
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, China
| | - Wenfeng Li
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, China
| | - Shengyou Shi
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, China
- South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Correspondence: (S.T.); (S.S.)
| |
Collapse
|
4
|
Lin Y, Tang D, Liu X, Cheng J, Wang X, Guo D, Zou J, Yang H. Phenolic profile and antioxidant activity of longan pulp of different cultivars from South China. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
5
|
Li D, Xu Z, Li Y, Gan L, Wu P, Wu R, Jin J, Zheng X, Zhang K, Ma H, Li L. Polysaccharides from Callerya speciosa alleviate metabolic disorders and gut microbiota dysbiosis in diet-induced obese C57BL/6 mice. Food Funct 2022; 13:8662-8675. [PMID: 35904346 DOI: 10.1039/d2fo00337f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Callerya speciosa ("Niu Dali" in Chinese) is a well-known edible plant in Southeast China. C. speciosa roots contain a high level of polysaccharides, which have been reported to show multiple health-promoting effects. In the current study, the anti-obesity effects of a crude extract of C. speciosa polysaccharides (NP) and its underlying mechanisms of action are investigated. C57BL/6 mice were divided into three groups and fed either a standard diet or a high-fat diet (HFD). The HFD + NP group mice received oral administration of NP (100 mg per kg per day) every other day for 10 weeks. NP supplementation alleviated HFD-induced diabetic biomarkers including body weight gain, hyperlipidemia, liver steatosis, and adipocyte hypertrophy. Western blot and RT-PCR analyses revealed that NP inhibited hepatic de novo lipogenesis and adipogenesis (i.e. decreased expression of Srebp1c, Fas, Cebpα, and Pparγ), stimulated adipocyte lipolysis (enhanced mRNA expression of Hsl and Mgl), and attenuated HFD-induced hepatic inflammation (decreased expression of TNF-α and NF-κB p65). Furthermore, 16S rDNA and GC-MS analyses showed that NP supplementation restored the Firmicutes/Bacteroidetes proportion, elevated colon-derived SCFAs, especially acetic acid content, and increased the relative abundance of genera associated with SCFA production in HFD-fed mice. Findings from this study suggest that NP alleviated HFD-induced obesity in a mouse model, which was possibly due to its ameliorative effects on diet-induced gut dysbiosis. Polysaccharides from C. speciosa are promising prebiotics and they may be further developed as functional foods for the management of obesity.
Collapse
Affiliation(s)
- Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Zhaonan Xu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Yuanyuan Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Lishe Gan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Panpan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Rihui Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Jingwei Jin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Xi Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Hang Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China.,Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA.
| | - Liya Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
6
|
Sarkar T, Salauddin M, Roy A, Sharma N, Sharma A, Yadav S, Jha V, Rebezov M, Khayrullin M, Thiruvengadam M, Chung IM, Shariati MA, Simal-Gandara J. Minor tropical fruits as a potential source of bioactive and functional foods. Crit Rev Food Sci Nutr 2022; 63:6491-6535. [PMID: 35164626 DOI: 10.1080/10408398.2022.2033953] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tropical fruits are defined as fruits that are grown in hot and humid regions within the Tropic of Cancer and Tropic of Capricorn, covering most of the tropical and subtropical areas of Asia, Africa, Central America, South America, the Caribbean and Oceania. Depending on the cultivation area covered, economic value and popularity these tropical fruits are divided into major and minor tropical fruits. There is an annual increment of 3.8% in terms of commercialization of the tropical fruits. In total 26 minor tropical fruits (Kiwifruit, Lutqua, Carambola, Tree Tomato, Elephant apple, Rambutan, Bay berry, Mangosteen, Bhawa, Loquat, Silver berry, Durian, Persimon, Longan, Passion fruit, Water apple, Pulasan, Indian gooseberry, Guava, Lychee, Annona, Pitaya, Sapodilla, Pepino, Jaboticaba, Jackfruit) have been covered in this work. The nutritional composition, phytochemical composition, health benefits, traditional use of these minor tropical fruits and their role in food fortification have been portrayed.
Collapse
Affiliation(s)
- Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Malda, India
| | - Molla Salauddin
- Department of Food Processing Technology, Mir Madan Mohanlal Govt. Polytechnic, West Bengal State Council of Technical Education, Nadia, India
| | - Arpita Roy
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Nikita Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Apoorva Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Saanya Yadav
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Vaishnavi Jha
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Maksim Rebezov
- Liaocheng University, Liaocheng, Shandong, China
- V. M. Gorbatov Federal Research Center for Food Systems, Moscow, Russian Federation
- K.G. Razumovsky Moscow State University of Technologies, and Management (The First Cossack University), Moscow, Russian Federation
| | - Mars Khayrullin
- K.G. Razumovsky Moscow State University of Technologies, and Management (The First Cossack University), Moscow, Russian Federation
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Mohammad Ali Shariati
- Liaocheng University, Liaocheng, Shandong, China
- K.G. Razumovsky Moscow State University of Technologies, and Management (The First Cossack University), Moscow, Russian Federation
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| |
Collapse
|
7
|
Exhaustive Plant Profile of “Dimocarpus longan Lour” with Significant Phytomedicinal Properties: A Literature Based-Review. Processes (Basel) 2021. [DOI: 10.3390/pr9101803] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: “Dimocarpus longan Lour” is a tropical and subtropical evergreen tree species mainly found in China, India, and Thailand; this plant, found naturally in Bangladesh, even locally, is used as “kaviraj” medication for treating different diseases, such as gastrointestinal disorders, wounds, fever, snake bites, menstrual problem, chickenpox, bone fractures, neurological disorders, and reproductive health. Different parts of this plant, especially juice pulp, pericarp, seeds, leaves, and flowers, contain a diverse group of botanical phytocompounds, and nutrient components which are directly related to alleviating numerous diseases. This literature-based review provides the most up-to-date data on the ethnomedicinal usages, phytochemical profiling, and bio-pharmacological effects of D. longan Lour based on published scientific articles. Methodology: A literature-based review was conducted by collecting information from various published papers in reputable journals and cited organizations. ChemDraw, a commercial software package, used to draw the chemical structure of the phytochemicals. Results: Various phytochemicals such as flavonoids, tannins, and polyphenols were collected from the various sections of the plant, and other compounds like vitamins and minerals were also obtained from this plant. As a treating agent, this plant displayed many biologicals activities, such as anti-proliferative, antioxidant, anti-cancer, anti-tyrosinase, radical scavenging activity, anti-inflammatory activity, anti-microbial, activation of osteoblast differentiation, anti-fungal, immunomodulatory, probiotic, anti-aging, anti-diabetic, obesity, neurological issues, and suppressive effect on macrophages cells. Different plant parts have displayed better activity in different disease conditions. Still, the compounds, such as gallic acid, ellagic acid, corilagin acid, quercetin, 4-O-methyl gallic acid, and (-)-epicatechin showed better activity in the biological system. Gallic acid, corilagin, and ellagic acid strongly exhibited anti-cancer activity in the HepG2, A549, and SGC 7901 cancer cell lines. Additionally, 4-O-methyl gallic acid and (-)-epicatechin have displayed outstanding antioxidant activity as well as anti-cancer activity. Conclusion: This plant species can be considered an alternative source of medication for some diseases as it contains a potential group of chemical constituents.
Collapse
|
8
|
Lai T, Shuai L, Han D, Lai Z, Du X, Guo X, Hu W, Wu Z, Luo T. Comparative metabolomics reveals differences in primary and secondary metabolites between "Shixia" and "Chuliang" longan ( Dimocarpus longan Lour.) pulp. Food Sci Nutr 2021; 9:5785-5799. [PMID: 34646546 PMCID: PMC8498058 DOI: 10.1002/fsn3.2552] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/09/2022] Open
Abstract
Longan was a characteristic fruit for both medicine and food in China, which was rich in primary and secondary metabolites. Comprehensive high-throughput identification and comparison of metabolites in longan pulp among different varieties were still lacked. "Shixia" (SX) and "Chuliang" (CL) were the biggest major cultivars of longan in China. In this study, the content of total soluble solid, total flavonoid, and total phenolics indicated the difference of sweetness and bioactive compound content between the SX and CL pulp. Through a widely targeted metabolome, a total of 514 metabolites were identified and categorized into 23 groups mainly including flavonoids, amino acids & derivatives, lipids, phenolic acids, nucleotides & derivatives, alkaloids, organic acids and sugars & derivatives. A total of 89 metabolites with significantly differential accumulation (variable importance in projection (VIP) value ≧1, p-value <.05) over 1.2 fold were found between SX and CL, which were mainly enriched into pathways including flavone and flavonol biosynthesis, glycolysis/gluconeogenesis, and arginine and proline metabolism. Higher leveled hexose and hexose-phosphate (i.e., β-D-glucose, D(+)-glucose, glucose-1-phosphate and glucose-6-phosphate), dominant organic acids (i.e., citric acid, succinic acid, D-malic acid, and citramalate), and essential amino acids (L-threonine, L-valine, L-isoleucine, L-leucine, L-phenylalanine and L-lysine) in SX pulp might be contributed to the taste and flavor difference between SX and CL. Moreover, the greatly differential accumulated secondary metabolites especially flavonoids and phenolic acids might result in different medicinal and nutritional characteristic between SX and CL. In conclusion, this study provided a systemic metabolic basis for understanding the nutritional differences between SX and CL and would help deepen the molecular biology and pharmacology research on characteristic metabolites in longan pulp.
Collapse
Affiliation(s)
- Tingting Lai
- College of HorticultureSouth China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products PreservationMinistry of EducationGuangzhouChina
| | - Liang Shuai
- College of Food and Biological Engineering/Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouChina
| | - Dongmei Han
- Institute of Fruit Tree ResearchGuangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource UtilizationMinistry of AgricultureGuangzhouChina
| | - Ziying Lai
- College of HorticultureSouth China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products PreservationMinistry of EducationGuangzhouChina
| | - Xinxin Du
- College of HorticultureSouth China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products PreservationMinistry of EducationGuangzhouChina
| | - Xiaomeng Guo
- College of HorticultureSouth China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products PreservationMinistry of EducationGuangzhouChina
| | - Wenshun Hu
- Fruit Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
| | - Zhenxian Wu
- College of HorticultureSouth China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products PreservationMinistry of EducationGuangzhouChina
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China)Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research CenterGuangzhouChina
| | - Tao Luo
- College of HorticultureSouth China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products PreservationMinistry of EducationGuangzhouChina
| |
Collapse
|
9
|
Cheng SM, Kumar VB, Wu LY, Chang HC, Kuo CH, Wei LS, Lin YM, Padma VV, Lee SD, Huang CY. Anti-apoptotic and pro-survival effects of longan flower extracts on rat hearts with fructose-induced metabolic syndrome. ENVIRONMENTAL TOXICOLOGY 2021; 36:1021-1030. [PMID: 33475235 DOI: 10.1002/tox.23101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 01/02/2021] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
The aim of this study was to investigate the effects of longan flower (LF) water extract on cardiac apoptotic and survival pathways in rat models of fructose-induced metabolic syndrome. The study findings revealed that the levels of glucose, insulin, triglyceride, and cholesterol and TUNEL-positive apoptotic cells were significantly increased in the HF group compared with the control group; whereas, the levels were decreased in the HFLF group. The expressions of Fas, FADD, and activated caspases 8 and 3, as well as the expressions of Bax, Bak, Bax/Bcl-2, Bak/Bcl-xL, cytosolic cytochrome c, and activated caspases 9 and 3 were increased in the HF group were significantly reversed in HFLF administrated group. Furthermore, LF extract increased IGF-1R, p-PI3K, p-Akt, Bcl-2, and Bcl-xL expression compared to HF group. Taken together, the present findings help identify LF as a potential cardioprotective agent that can be effectively used in treating fructose-induced metabolic syndrome.
Collapse
Affiliation(s)
- Shiu-Min Cheng
- Department of Long Term Care, National Quemoy University, Kinmen County, Taiwan
| | - V Bharath Kumar
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Liang-Yi Wu
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Hsiao-Chuan Chang
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, Taipei Physical Education College, Taipei, Taiwan
| | - Li-Shan Wei
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Yueh-Min Lin
- Department of pathology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Shin-Da Lee
- Department of Physical Therapy, Asia University, Taichung, Taiwan
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Cardiovascular and Mitochondria Related Diseases Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
10
|
Anti-inflammatory Effects of S. cumini Seed Extract on Gelatinase-B (MMP-9) Regulation against Hyperglycemic Cardiomyocyte Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8839479. [PMID: 33747350 PMCID: PMC7953863 DOI: 10.1155/2021/8839479] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/04/2020] [Accepted: 02/16/2021] [Indexed: 01/15/2023]
Abstract
Black berry (Syzygium cumini) fruit is useful in curing diabetic complications; however, its role in diabetes-induced cardiomyopathy is not yet known. In this study, we investigated the regulation of gelatinase-B (MMP-9) by S. cumini methanol seed extract (MSE) in diabetic cardiomyopathy using real-time PCR, RT-PCR, immunocytochemistry, gel diffusion assay, and substrate zymography. The regulatory effects of MSE on NF-κB, TNF-α, and IL-6 were also examined. Identification and estimation of polyphenol constituents present in S. cumini extract were carried out using reverse-phase HPLC. Further, in silico docking studies of identified polyphenols with gelatinase-B were performed to elucidate molecular level interaction in the active site of gelatinase-B. Docking studies showed strong interaction of S. cumini polyphenols with gelatinase-B. Our findings indicate that MSE significantly suppresses gelatinase-B expression and activity in high-glucose- (HG-) stimulated cardiomyopathy. Further, HG-induced activation of NF-κB, TNF-α, and IL-6 was also remarkably reduced by MSE. Our results suggest that S. cumini MSE may be useful as an effective functional food and dietary supplement to regulate HG-induced cardiac stress through gelatinase.
Collapse
|
11
|
Separation, UPLC-QTOF-MS/MS analysis, and antioxidant activity of hydrolyzable tannins from water caltrop (Trapa quadrispinosa) pericarps. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Yang M, Yan T, Yu M, Kang J, Gao R, Wang P, Zhang Y, Zhang H, Shi L. Advances in understanding of health‐promoting benefits of medicine and food homology using analysis of gut microbiota and metabolomics. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.49] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Minmin Yang
- College of Life Sciences Shaanxi Normal University Xi'an China
| | - Tao Yan
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Meng Yu
- The Institute of Medicinal Plant Development Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Jie Kang
- Physical Education Institute Shaanxi Normal University Xi'an China
| | - Ruoxi Gao
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Peng Wang
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Yuhuan Zhang
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Huafeng Zhang
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
- Internatinal Joint Research Center of Shaanxi Province for Food and Health Science Shaanxi Normal University Xi'an China
| | - Lin Shi
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
- Internatinal Joint Research Center of Shaanxi Province for Food and Health Science Shaanxi Normal University Xi'an China
- Department of Biology and Biological Engineering Chalmers University of Technology Gothenburg Sweden
| |
Collapse
|
13
|
Phytochemical constituents and biological activities of longan (Dimocarpus longan Lour.) fruit: a review. FOOD SCIENCE AND HUMAN WELLNESS 2020. [DOI: 10.1016/j.fshw.2020.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Rakariyatham K, Zhou D, Rakariyatham N, Shahidi F. Sapindaceae (Dimocarpus longan and Nephelium lappaceum) seed and peel by-products: Potential sources for phenolic compounds and use as functional ingredients in food and health applications. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103846] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
15
|
Phenolic content, antioxidant capacity, and α-amylase and α-glucosidase inhibitory activities of Dimocarpus longan Lour. Food Sci Biotechnol 2019; 29:683-692. [PMID: 32419967 DOI: 10.1007/s10068-019-00708-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 10/25/2022] Open
Abstract
The aim of this study was to compare the phenolic compound profiles and antioxidant capacities of eight varieties of longan (Dimocarpus longan Lour.) planted in the middle and upper Yangtze River area. The total polyphenols content (TPC) and total flavonoids content (TFC) of dried longan pulp ranged from 1.07 ± 0.05 to 1.22 ± 0.05 mg gallic acid equivalents/g and 0.25 ± 0.07 to 0.87 ± 0.14 mg rutin equivalents/g. UHPLC-QqQ-MS/MS analysis revealed 12 individual polyphenol compounds in longan. The Fuwan8, Dongliang and FD97 varieties showed the strongest DPPH scavenging activity (IC50 of 1.03 g/mL). The highest ABTS+ scavenging activity was found in the Dongliang. In the enzyme assays, the Fuwan8 and Dongliang varieties demonstrated maximum α-amylase and α-glucosidase inhibition activities, with values of 97.56 and 88.58%, respectively. The principal component analysis indicated that the Rongyu8 and Songfengben cultivars have nearly analogous polyphenol compounds.
Collapse
|
16
|
Polyphenols and Alkaloids in Byproducts of Longan Fruits ( Dimocarpus Longan Lour.) and Their Bioactivities. Molecules 2019; 24:molecules24061186. [PMID: 30917573 PMCID: PMC6471414 DOI: 10.3390/molecules24061186] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/30/2022] Open
Abstract
The longan industry produces a large amount of byproducts such as pericarp and seed, resulting in environmental pollution and resource wastage. The present study was performed to systematically evaluate functional components, i.e., polyphenols (phenolics and flavonoids) and alkaloids, in longan byproducts and their bioactivities, including antioxidant activities, nitrite scavenging activities in simulated gastric fluid and anti-hyperglycemic activities in vitro. Total phenolic and total flavonoid contents in pericarp were slightly higher than those in seeds, but seeds possessed higher alkaloid content than pericarp. Four polyphenolic substances, i.e., gallic acid, ethyl gallate, corilagin and ellagic acid, were identified and quantified using high-performance liquid chromatography. Among these polyphenolic components, corilagin was the major one in both pericarp and seed. Alkaloid extract in seed showed the highest DPPH radical scavenging activity and oxygen radical absorbance capacity. Nitrite scavenging activities were improved with extract concentration and reaction time increasing. Flavonoids in seed and alkaloids in pericarp had potential to be developed as anti-hyperglycemic agents. The research result was a good reference for exploring longan byproducts into various valuable health-care products.
Collapse
|
17
|
Bai X, Pan R, Li M, Li X, Zhang H. HPLC Profile of Longan (cv. Shixia) Pericarp-Sourced Phenolics and Their Antioxidant and Cytotoxic Effects. Molecules 2019; 24:molecules24030619. [PMID: 30754614 PMCID: PMC6384674 DOI: 10.3390/molecules24030619] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 12/15/2022] Open
Abstract
Longan (Dimocarpus longan Lour.) pericarp, the main by-product of aril and pulp processing, is abundant in phenolic compounds and worthy of further utilization. The present work firstly reported HPLC analysis and in vitro antioxidant evaluation of longan (cv. Shixia) pericarp-derived phenolics (LPPs), the purified longan pericarp extract (LPE), as well as their cytotoxic effect on lung cancer cell line, A549. The results indicated that the purified LPE had significant amounts of phenolics, with content of 57.8 ± 0.6 mg of gallic acid equivalents per gram of dry longan pericarp (mg GAE·g-1 DLP), which consisted of six phenolic compounds (A⁻F), including protocatechuic acid (A), isoscopoletin (B), quercetin (C), ellagic acid (D), corilagin (E), and proanthocyanidins C1 (F). Antioxidant assays showed that LPPs (10 μM) and LPE (1.0 mg·mL-1) had certain antioxidant activities, in which corilagin (E) possessed the best DPPH radical scavenging rate 71.8 ± 0.5% and •OH inhibition rate 75.9 ± 0.3%, and protocatechuic acid (A) exhibited the strongest Fe2+ chelating ability 36.4 ± 0.7%. In vitro cytotoxic tests suggested that LPPs had different effect on A549 cell line, in which corilagin (E) exhibited potent cytotoxicity with an IC50 value of 28.8 ± 1.2 μM. These findings were further confirmed by cell staining experiments.
Collapse
Affiliation(s)
- Xuelian Bai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 10048, China.
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
| | - Rui Pan
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Mingzhu Li
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 10048, China.
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
18
|
Zhao L, Wang K, Li W, Soteyome T, Xiao H, Hu Z. Protective effects of polyphenolic extracts from longan seeds promote healing of deep second-degree burn in mice. Food Funct 2019; 10:1433-1443. [DOI: 10.1039/c8fo02330a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The objective of this study was to evaluate the ability of a polyphenolic extract from longan seeds as a wound-healing material for deep second-degree burn wounds.
Collapse
Affiliation(s)
- Lei Zhao
- College of Food Science
- South China Agricultural University
- Guangzhou 510642
- P.R. China
| | - Kai Wang
- College of Food Science
- South China Agricultural University
- Guangzhou 510642
- P.R. China
| | - Weichao Li
- Intensive Care Unit
- Sun Yat-sen Memorial Hospital
- Sun Yat-sen University
- Guangzhou 510120
- P.R. China
| | - Thanapop Soteyome
- Department of Food Science and Technology
- Faculty of Home Economics Technology
- Rajamangala University of Technology
- Bangkok
- Thailand
| | - Hang Xiao
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| | - Zhuoyan Hu
- College of Food Science
- South China Agricultural University
- Guangzhou 510642
- P.R. China
| |
Collapse
|
19
|
Liu F, Ma H, Wang G, Liu W, Seeram NP, Mu Y, Xu Y, Huang X, Li L. Phenolics from Eugenia jambolana seeds with advanced glycation endproduct formation and alpha-glucosidase inhibitory activities. Food Funct 2018; 9:4246-4254. [PMID: 30009284 DOI: 10.1039/c8fo00583d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Published data suggest that dietary-derived phenolics exert beneficial effects against hyperglycemia-mediated diseases, such as diabetes, through inhibiting the formation of advanced glycation endproducts (AGEs) and carbohydrate hydrolyzing enzyme activities. In the course of our investigation on the edible berry, Eugenia jambolana (known as Jamun), 21 phenolics (1-21) were isolated and identified from its seeds. Among these, one compound (1) is new and eleven compounds (3, 6, 9-13, 17, and 19-21) are being reported from E. jambolana for the first time. The anti-AGE activities of thirteen pure isolates (2-7, 9-12, 14, 15, and 20) were either comparable or superior to the synthetic anti-glycation agent, aminoguanidine, at three test concentrations (20, 50, and 100 μM) in the BSA-fructose assay. Most of these phenolics with anti-AGE activity exhibited potent free radical scavenging activity in the DPPH assay, and attenuated intracellular levels of LPS-induced reactive oxygen species in RAW264.7 macrophage. In addition, compounds 2-6, and 14 showed superior α-glucosidase inhibitory activity (IC50 = 5.0-21.2 μM) compared to the clinical α-glucosidase inhibitor, acarbose (IC50 = 289.9 μM). This is the first report of the anti-AGE effects of compounds 2-6 and 9-12, and α-glucosidase inhibitory activities of compounds 3-6, 9, 11 and 14. The current study supports the role of phenolics in the antidiabetic properties attributed to this edible berry, and warrants further animal studies to evaluate their potential as dietary agents for the prevention and/or therapy of hyperglycemia-mediated diseases.
Collapse
Affiliation(s)
- Feifei Liu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sadgrove NJ. The new paradigm for androgenetic alopecia and plant-based folk remedies: 5α-reductase inhibition, reversal of secondary microinflammation and improving insulin resistance. JOURNAL OF ETHNOPHARMACOLOGY 2018; 227:206-236. [PMID: 30195058 DOI: 10.1016/j.jep.2018.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 08/05/2018] [Accepted: 09/04/2018] [Indexed: 05/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Research in the past half a century has gradually sketched the biological mechanism leading to androgenetic alopecia (AGA). Until recently the aetiological paradigm has been too limited to enable intelligent commentary on the use of folk remedies to treat or reduce the expression of this condition. However, our understanding is now at a point where we can describe how some folk remedies work, predict how effective they will be or why they fail. RESULTS The new paradigm of AGA is that inheritance and androgens (dihydrotestosterone) are the primary contributors and a secondary pathology, microinflammation, reinforces the process at more advanced stages of follicular miniaturisation. The main protagonist to microinflammation is believed to be microbial or Demodex over-colonisation of the infundibulum of the pilosebaceous unit, which can be ameliorated by antimicrobial/acaricidal or anti-inflammatory therapies that are used as adjuvants to androgen dependent treatments (either synthetic or natural). Furthermore, studies reveal that suboptimal androgen metabolism occurs in both AGA and insulin resistance (low SHBG or high DHT), suggesting comorbidity. Both can be ameliorated by dietary phytochemicals, such as specific classes of phenols (isoflavones, phenolic methoxy abietanes, hydroxylated anthraquinones) or polycyclic triterpenes (sterols, lupanes), by dual inhibition of key enzymes in AGA (5α-reductase) and insulin resistance (ie., DPP-4 or PTP1B) or agonism of nuclear receptors (PPARγ). Evidence strongly indicates that some plant-based folk remedies can ameliorate both primary and secondary aetiological factors in AGA and improve insulin resistance, or act merely as successful adjuvants to mainstream androgen dependent therapies. CONCLUSION Thus, if AGA is viewed as an outcome of primary and secondary factors, then it is better that a 'multimodal' or 'umbrella' approach, to achieve cessation and/or reversal, is put into practice, using complementation of chemical species (isoflavones, anthraquinones, procyanidins, triterpenes, saponins and hydrogen sulphide prodrugs), thereby targeting multiple 'factors'.
Collapse
|
21
|
Scepankova H, Martins M, Estevinho L, Delgadillo I, Saraiva JA. Enhancement of Bioactivity of Natural Extracts by Non-Thermal High Hydrostatic Pressure Extraction. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2018; 73:253-267. [PMID: 30269189 DOI: 10.1007/s11130-018-0687-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Natural extracts, like those obtained from medicinal herbs, dietary plants and fruits are being recognized as important sources of bioactive compounds with several functionalities including antioxidant, anticancer, and antimicrobial activities. Plant extracts rich in phenolic antioxidants are currently being successfully used for several pharmaceutical applications and in the development of new foods (i.e., functional foods), in order to enhance the bioactivity of the products and to replace synthetic antioxidants. The extraction method applied in the recovery of the bioactive compounds from natural materials is a key factor to enhance the bioactivity of the extracts. However, most of the extraction techniques have to employ heat, which can easily lead to heat-sensitive compounds losing their biological activity, due to changes caused by temperature. Presently, high hydrostatic pressure (HHP) is being increasingly explored as a cold extraction method of bioactive compounds from natural sources. This non-thermal high hydrostatic pressure extraction (HHPE) technique allows one to reduce the extraction time and increase the extraction of natural beneficial ingredients, in terms of nutritional value and biological activities and thus enhance the bioactivity of the extracts. This review provides an updated and comprehensive overview on the extraction efficiency of HHPE for the production of natural extracts with enhanced bioactivity, based on the extraction yield, total content and individual composition of bioactive compounds, extraction selectivity, and biological activities of the different plant extracts, so far studied by extraction with this technique.
Collapse
Affiliation(s)
- Hana Scepankova
- QOPNA, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Margarida Martins
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Letícia Estevinho
- Agricultural College of Bragança, Polytechnic Institute of Bragança, 5301-855, Bragança, Portugal
- Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Ivonne Delgadillo
- QOPNA, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Jorge A Saraiva
- QOPNA, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
22
|
Khan SA, Liu L, Lai T, Zhang R, Wei Z, Xiao J, Deng Y, Zhang M. Phenolic profile, free amino acids composition and antioxidant potential of dried longan fermented by lactic acid bacteria. Journal of Food Science and Technology 2018; 55:4782-4791. [PMID: 30482973 DOI: 10.1007/s13197-018-3411-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 11/25/2022]
Abstract
In this study, dried longan pulp (DLP) was subjected to fermentation using selected strains of lactic acid bacteria (Lactobacillus plantarum subsp. Plantarum and Leuconostoc mesenteroides). We then studied changes in the free and bound phytochemical profile, antioxidant activity, free amino acid, and organic acid composition. Fermentation exhibited a 17.4% and 5.7% increase in the amount of free and total phenolic contents of DLP. Phenolic composition determined by HPLC revealed significant changes due to fermentation that were primarily in the contents of gallic acid, vanillic acid, 4-methylcatechol and p-coumaric acid, resulting in a 37.9% and 25.7% increase in free gallic acid and 4-methylcatechol, respectively. Fermentation was also found to enhance the ferric reducing antioxidant power of both free and total and the oxygen radical absorbance capacity of free phenolic fraction by 18.3%, 11.8%, and 37.4%, respectively. In addition, fermentation was observed to reduce the contents of free amino acids with bitter taste (phenylalanine, tyrosine and leucine), and increase amino acids (taurine, aspartic acid, cysteine, cysteine thiazoline and γ-amino-butyric acid) having antioxidant potential. Therefore, this study provides basis for the production of fermented longan-based functional products with improved antioxidant activity.
Collapse
Affiliation(s)
- Sher Ali Khan
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610 People's Republic of China
| | - Lei Liu
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610 People's Republic of China
| | - Ting Lai
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610 People's Republic of China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610 People's Republic of China
| | - Zhencheng Wei
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610 People's Republic of China
| | - Juan Xiao
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610 People's Republic of China
| | - Yuanyuan Deng
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610 People's Republic of China
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610 People's Republic of China
| |
Collapse
|
23
|
Fermentation process optimization and chemical constituent analysis on longan (Dimocarpus longan Lour.) wine. Food Chem 2018; 256:268-279. [DOI: 10.1016/j.foodchem.2018.02.064] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/12/2018] [Accepted: 02/12/2018] [Indexed: 11/30/2022]
|
24
|
Zhang R, Khan SA, Lin Y, Guo D, Pan X, Liu L, Wei Z, Zhang Y, Deng Y, Zhang M. Phenolic profiles and cellular antioxidant activity of longan pulp of 24 representative Chinese cultivars. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1425705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ruifen Zhang
- Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, PR China
| | - Sher Ali Khan
- Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, PR China
| | - Yaosheng Lin
- Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, PR China
| | - Dongliang Guo
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China
| | - Xuewen Pan
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China
| | - Lei Liu
- Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, PR China
| | - Zhencheng Wei
- Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, PR China
| | - Yan Zhang
- Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, PR China
| | - Yuanyuan Deng
- Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, PR China
| | - Mingwei Zhang
- Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, PR China
| |
Collapse
|
25
|
Savi M, Bocchi L, Mena P, Dall'Asta M, Crozier A, Brighenti F, Stilli D, Del Rio D. In vivo administration of urolithin A and B prevents the occurrence of cardiac dysfunction in streptozotocin-induced diabetic rats. Cardiovasc Diabetol 2017; 16:80. [PMID: 28683791 PMCID: PMC5501434 DOI: 10.1186/s12933-017-0561-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/15/2017] [Indexed: 12/13/2022] Open
Abstract
Background Emerging evidence suggests that specific (poly)phenols may constitute new preventative strategies to counteract cell oxidative stress and myocardial tissue inflammation, which have a key role in the patho-physiology of diabetic cardiomyopathy. In a rat model of early diabetes, we evaluated whether in vivo administration of urolithin A (UA) or urolithin B (UB), the main gut microbiota phenolic metabolites of ellagitannin-rich foods, can reduce diabetes-induced microenvironmental changes in myocardial tissue, preventing cardiac functional impairment. Methods Adult Wistar rats with streptozotocin-induced type-1 diabetes (n = 29) were studied in comparison with 10 control animals. Diabetic rats were either untreated (n = 9) or subjected to daily i.p. injection of UA (n = 10) or UB (n = 10). After 3 weeks of hyperglycaemia, hemodynamics, cardiomyocyte contractile properties and calcium transients were measured to assess cardiac performance. The myocardial expression of the pro-inflammatory cytokine fractalkine and proteins involved in calcium dynamics (sarcoplasmic reticulum calcium ATPase, phospholamban and phosphorylated phospholamban) were evaluated by immunoblotting. Plasma, urine and tissue distribution of UA, UB and their phase II metabolites were determined. Results In vivo urolithin treatment reduced by approximately 30% the myocardial expression of the pro-inflammatory cytokine fractalkine, preventing the early inflammatory response of cardiac cells to hyperglycaemia. The improvement in myocardial microenvironment had a functional counterpart, as documented by the increase in the maximal rate of ventricular pressure rise compared to diabetic group (+18% and +31% in UA and UB treated rats, respectively), and the parallel reduction in the isovolumic contraction time (−12%). In line with hemodynamic data, both urolithins induced a recovery of cardiomyocyte contractility and calcium dynamics, leading to a higher re-lengthening rate (+21%, on average), lower re-lengthening times (−56%), and a more efficient cytosolic calcium clearing (−32% in tau values). UB treatment also increased the velocity of shortening (+27%). Urolithin metabolites accumulated in the myocardium, with a higher concentration of UB and UB-sulphate, potentially explaining the slightly higher efficacy of UB administration. Conclusions In vivo urolithin administration may be able to prevent the initial inflammatory response of myocardial tissue to hyperglycaemia and the negative impact of the altered diabetic milieu on cardiac performance.
Collapse
Affiliation(s)
- Monia Savi
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy.,Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Leonardo Bocchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Pedro Mena
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Margherita Dall'Asta
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Alan Crozier
- Department of Nutrition, University of California, 3143 Meyer Hall One Shields Avenue, Davis, CA, 95616-5270, USA
| | - Furio Brighenti
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Donatella Stilli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy.
| | - Daniele Del Rio
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy.
| |
Collapse
|
26
|
Chemical composition and anti-hyperglycaemic effects of triterpenoid enriched Eugenia jambolana Lam. berry extract. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.10.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
27
|
Rathore AS, Sathiyanarayanan L, Deshpande S, Mahadik KR. Rapid and sensitive determination of major polyphenolic components inEuphoria longanaLam. seeds using matrix solid-phase dispersion extraction and UHPLC with hybrid linear ion trap triple quadrupole mass spectrometry. J Sep Sci 2016; 39:4335-4343. [DOI: 10.1002/jssc.201600685] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 09/06/2016] [Accepted: 09/11/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Atul S. Rathore
- Centre for Advanced Research in Pharmaceutical Sciences, Poona College of Pharmacy; Bharati Vidyapeeth Deemed University; Pune Maharashtra India
| | - L. Sathiyanarayanan
- Centre for Advanced Research in Pharmaceutical Sciences, Poona College of Pharmacy; Bharati Vidyapeeth Deemed University; Pune Maharashtra India
| | | | - Kakasaheb R. Mahadik
- Centre for Advanced Research in Pharmaceutical Sciences, Poona College of Pharmacy; Bharati Vidyapeeth Deemed University; Pune Maharashtra India
| |
Collapse
|
28
|
Ma Q, Han L, Bi X, Wang X, Mu Y, Guan P, Li L, Huang X. Structures and biological activities of the triterpenoids and sesquiterpenoids from Alisma orientale. PHYTOCHEMISTRY 2016; 131:150-157. [PMID: 27615692 DOI: 10.1016/j.phytochem.2016.08.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/17/2016] [Accepted: 08/31/2016] [Indexed: 06/06/2023]
Abstract
Sixteen triterpenoids and nine sesquiterpenoids were isolated from the rhizome of Alisma orientale. Structures of 16-oxo-11-anhydroalisol A 24-acetate, 13β,17β-epoxy-24,25,26,27-tetranor-alisol A 23-oic acid, 1αH,5αH-guaia-6-ene-4β,10β-diol, and alisguaiaone were elucidated by comprehensive spectroscopic data analysis. The cytotoxic, antibacterial, antifungal, anti-inflammatory, and α-glucosidase inhibitory activities of isolated terpenoids were evaluated. Triterpenoids alisol A, alisol A 24-acetate, 25-O-ethylalisol A, 11-deoxyalisol A, alisol E 24-acetate, alisol G, alisol B 23-acetate and sesquiterpenoids 1αH,5αH-guaia-6-ene-4β,10β-diol, 10-hydroxy-7,10-epoxysalvialane exhibited cytotoxicities against the three tested human cancer cell lines with IC50 values ranging from 11.5 ± 1.7 μM to 76.7 ± 1.4 μM. Triterpenoids alisol A, 25-O-ethylalisol A, 11-deoxyalisol A, alisol E 24-acetate, alisol G, and 25-anhydroalisol F showed antibacterial activities against the Gram-positive strains Bacillus subtilis and Staphylococcus aureus with MIC values of 12.5-100 μg/mL. Sesquiterpenoid 4β,10β-dihydroxy-1αH,5βH-guaia-6-ene exhibited antibacterial activity against B. subtilis with an MIC value of 50 μg/mL, and 10-hydroxy-7,10-epoxysalvialane exhibited activity against S. aureus with an MIC value of 100 μg/mL. Compounds 16-oxo-11-anhydroalisol A 24-acetate, alisol F, 25-anhydroalisol F, and alisguaiaone exhibited inhibitory effects on lipopolysaccharide-induced NO production in RAW 264.7 macrophage cells. None of the compounds showed obvious inhibitory activity against α-glucosidase.
Collapse
Affiliation(s)
- Qingjuan Ma
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Li Han
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China.
| | - Xiaoxu Bi
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Xingbo Wang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Yu Mu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Peipei Guan
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Liya Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China.
| |
Collapse
|
29
|
Hypoglycemic effect of formulation containing hydroethanolic extract of Calophyllum brasiliense in diabetic rats induced by streptozotocin. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2016. [DOI: 10.1016/j.bjp.2016.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
30
|
Wang Y, Zhu L, Jiang H, Hu F, Shen X. Application of longan shell as non-conventional low-cost adsorbent for the removal of cationic dye from aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 159:254-261. [PMID: 26878356 DOI: 10.1016/j.saa.2016.01.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 01/11/2016] [Accepted: 01/23/2016] [Indexed: 06/05/2023]
Abstract
With simple physical treatment, adsorption potential of longan shell for the methylene blue (MB) from aqueous solution was studied as a low-cost material under the conditions of adsorbent dosage (1-6 g/L), initial solution pH (2-12), contact time (5-180 min), temperature (293, 313, 313 K) and initial dye concentration (100-500 mg/L). The SEM images and FTIR spectra of longan shell before and after dye adsorption were analyzed to understand the adsorption process of MB onto longan shell. The kinetic data and the equilibrium data were simulated by different kinetic and isotherm models, respectively. The results showed that the adsorption process was well described by the pseudo-second-order kinetic model, and the experimental equilibrium data were better fit to Langmuir equation than Freundlich equation with the maximum adsorption capacity of 141.04 mg/g. In addition, main activation parameters (E(a), ΔH(#), ΔS(#) and ΔG(#)) and thermodynamic parameters (ΔG°, ΔH° and ΔS°) of the absorption process were also determined.
Collapse
Affiliation(s)
- Ya Wang
- Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Lin Zhu
- Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Haitao Jiang
- Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Fang Hu
- Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xiangqian Shen
- Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
31
|
Arya A, Al-Obaidi MMJ, Karim RB, Taha H, Khan AK, Shahid N, Sayem AS, Looi CY, Mustafa MR, Mohd MA, Ali HM. Extract of Woodfordia fruticosa flowers ameliorates hyperglycemia, oxidative stress and improves β-cell function in streptozotocin-nicotinamide induced diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2015; 175:229-240. [PMID: 26342523 DOI: 10.1016/j.jep.2015.08.057] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 08/07/2015] [Accepted: 08/31/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The art of Ayurveda and the traditional healing system in India have reflected the ethnomedicinal importance of the plant Woodfordia fruticosa Kurtz, which demonstrates its vast usage in the Ayurvedic preparations as well as in the management of diabetes by the traditional healers. AIMS OF STUDY The study aimed to ascertain the antidiabetic potential of W. fruticosa flower methanolic extract (WF) on Streptozotocin (STZ)-nicotinamide-induced diabetic rat model. MATERIALS AND METHODS Diabetes was induced in Sprague Dawley (SD) rats by STZ-nicotinamide and thereafter diabetic rats were treated with three different doses of WF (100, 200 and 400mg/kg body weight) respectively and glibenclamide as a positive control. Biochemical parameters such as blood glucose, serum insulin and C-peptide levels were measured with oxidative stress markers. Furthermore, histology of liver and pancreas was carried out to evaluate glycogen content and β-cell structures. Moreover, immunohistochemistry and western blot analysis were performed on kidney and pancreas tissues to determine renal Bcl-2, pancreatic insulin and glucose transporter (GLUT-2, 4) protein expression in all the experimental groups. RESULTS The acute toxicity study showed non-toxic nature of all the three doses of WF. Further, studies on diabetic rats exhibited anti-hyperglycemic effects by upregulating serum insulin and C-peptide levels. Similarly, WF shown to ameliorate oxidative stress by downregulating LPO levels and augmenting the antioxidant enzyme (ABTS). Furthermore, histopathological analysis demonstrate recovery in the structural degeneration of β-cells mass of pancreas tissue with increase in the liver glycogen content of the diabetic rats. Interestingly, protective nature of the extract was further revealed by the immunohistochemical study result which displayed upregulation in the insulin and renal Bcl-2 expression, the anti apoptosis protein. Moreover, western blot result have shown slight alteration in the GLUT-2 and GLUT-4 protein expression with the highest dose of WFc treatment, that might have stimulated glucose uptake in the pancreas and played an important role in attenuating the blood glucose levels. CONCLUSION The overall study result have demonstrated the potential of WF in the management of diabetes and its related complications, thus warrants further investigation on its major compounds with in depth mechanistic studies at molecular level.
Collapse
Affiliation(s)
- Aditya Arya
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Mazen M Jamil Al-Obaidi
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Rustini Binti Karim
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hairin Taha
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ataul Karim Khan
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nayiar Shahid
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Abu Sadat Sayem
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chung Yeng Looi
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mohd Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mustafa Ali Mohd
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hapipah Mohd Ali
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
32
|
Ma T, Sun X, Tian C, Luo J, Zheng C, Zhan J. Enrichment and Purification of Polyphenol Extract from Sphallerocarpus gracilis Stems and Leaves and in Vitro Evaluation of DNA Damage-Protective Activity and Inhibitory Effects of α-Amylase and α-Glucosidase. Molecules 2015; 20:21442-57. [PMID: 26633339 PMCID: PMC6332324 DOI: 10.3390/molecules201219780] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 11/30/2022] Open
Abstract
An efficient preparative separation method for Sphallerocarpus gracilis stems and leaves polyphenols (SGslP) was established in this study. An X-5 macroporous adsorption resin was selected for the purification of the SGslP, and the polyphenol content of the purified SGslP (PSGslP) was increased 5.11-fold from 8.29% to 42.38% after one treatment run. The chemical composition of the PSGslP was analyzed by HPLC-MS/MS, and the predominant compounds were found to be luteolin-7-glucoside, acacetin-7-acetyglycoside and its isomers. In addition, the PSGslP was evaluated in vitro to determine the DNA damage-protective activity and inhibitory effects of α-amylase and α-glucosidase. The results indicated that the PSGslP exhibited significant protective activities against both ROO• and •OH radical-induced DNA damage. Moreover, the PSGslP exerted a dose-dependent inhibition effect on α-glucosidase but no inhibitory effect on α-amylase. These findings indicate that the Sphallerocarpus gracilis stems and leaves are good natural sources of antioxidants and are potent inhibitors of α-glucosidase activity and are potential anti-diabetic inhibitor.
Collapse
Affiliation(s)
- Tingting Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Xiangyu Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Chengrui Tian
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Jiyang Luo
- National HACCP Center, Chinese Academy of Inspection and Quarantine, Beijing 100123, China.
| | - Cuiping Zheng
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
33
|
Urolithins at physiological concentrations affect the levels of pro-inflammatory cytokines and growth factor in cultured cardiac cells in hyperglucidic conditions. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.03.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|