1
|
Wang M, Wang Y, Li X, Yin Y, Zhang X, Wu S, Wang H, Zhao Y. Effects of Dietary Ursolic Acid on Growth Performance and Intestinal Health of Largemouth Bass ( Micropterus salmoides). Animals (Basel) 2024; 14:2492. [PMID: 39272277 PMCID: PMC11394043 DOI: 10.3390/ani14172492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
This study aimed to investigate the effects of ursolic acid (UA) on the growth performance and intestinal health of largemouth bass (Micropterus salmoides). Four diets were formulated with UA supplementation at 0, 250, 500, and 1000 mg/kg, defined as the control (CON), UA250, UA500, and UA1000, respectively. After an 8-week feeding experiment, the results showed that, in the UA500 group, the final body weight (FBW), weight gain rate (WGR), and specific growth rate (SGR) increased, and the feed conversion ratio (FCR) and hepatosomatic index decreased. Total superoxide dismutase (T-SOD) activity exhibited a significant increase, and malondialdehyde (MDA) content decreased. An intestinal histological analysis revealed an improvement in the intestinal structural integrity of the UA500 group. The mRNA relative expression levels of physical barrier-related genes [occludin, claudin-1, and zonula occluden-1 (zo-1)] were upregulated. The mRNA relative expression of interlenkin 10 (il-10) increased, and the mRNA relative expression of interlenkin 1β (il-1β) and tumor necrosis factor-α (tnf-α) significantly decreased. The abundance of Firmicutes and Proteobacteria decreased, and the abundance of Tenericutes increased. The abundance of Mycoplasma, Cyanobium, and Staphylococcus decreased, while the abundance of Clostridium increased. In conclusion, dietary supplementation of UA significantly enhanced the growth performance and antioxidant capacity of largemouth bass while improving intestinal barrier function through its influence on the abundance of intestinal flora, such as Tenericutes, Firmicutes, and Mycoplasma. Optimal dietary UA levels for largemouth bass were determined to be between 498 and 520 mg/kg based on quadratic regression analyses of WGR, SGR, and FCR or T-SOD and MDA content.
Collapse
Affiliation(s)
- Min Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yongfang Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xiang Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yue Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xiwen Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Shuang Wu
- Fisheries College, Hunan Agricultural University, Changsha 410128, China
| | - Hongquan Wang
- Fisheries College, Hunan Agricultural University, Changsha 410128, China
| | - Yurong Zhao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
2
|
Pitaloka DAE, Syaputri Y, Nurlilasari P, Khairunnisa SF, Saallah S. Promising Ursolic Acid as a Novel Antituberculosis Agent: Current Progress and Challenges. Drug Des Devel Ther 2024; 18:1969-1979. [PMID: 38836115 PMCID: PMC11149632 DOI: 10.2147/dddt.s454399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/20/2024] [Indexed: 06/06/2024] Open
Abstract
Tuberculosis (TB) stands as the second most prevalent cause of global human mortality from infectious diseases. In 2022, the World Health Organization documented an estimated number of global TB cases reaching 7.5 million, which causes death for 1.13 million patients. The continuous growth of drug-resistant TB cases due to various mutations in the Mycobacterium tuberculosis (MTB) strain, raises the urgency of the exploration of novel anti-TB treatments. Ursolic acid (UA) is a natural pentacyclic triterpene found in various plants that has shown potential as a novel anti-TB agent. This review aims to provide an overview of the therapeutic prospects of UA against MTB, with a particular emphasis on in silico, in vitro, and in vivo studies. Various mechanisms of action of UA against MTB are briefly recapped from in silico studies, such as enoyl acyl carrier protein reductase inhibitors, FadA5 (Acetyl-CoA acetyltransferase) inhibitors, tuberculosinyl adenosine transferase inhibitors, and small heat shock protein 16.3 inhibitor. The potential of UA to overcome drug resistance and its synergistic effects with existing antituberculosis drugs are briefly explained from in vitro studies using a variety of methods, such as Microplate Alamar Blue Assay, Mycobacteria Growth Indicator Tube 960 and Resazurin Assays, morphological change evaluation using transmission electron microscopy, and in vivo studies using BALB/C infected with multi drug resistant clinical isolates. Besides its promising mechanism as an antituberculosis drug, its complex chemical composition, limited availability and supply, and lack of intellectual property are also reviewed as those are the most frequently occurring challenges that need to be addressed for the successful development of UA as novel anti-TB agent.
Collapse
Affiliation(s)
- Dian Ayu Eka Pitaloka
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Yolani Syaputri
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Center for Bioprospection of Natural Fibers and Biological Resources, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Puspita Nurlilasari
- Department of Agro-Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Shafa Fitri Khairunnisa
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Suryani Saallah
- Biotechnology Research Institute, Universiti Malaysia Sabah, Sabah, 88400, Malaysia
| |
Collapse
|
3
|
Oleanolic Acid: Extraction, Characterization and Biological Activity. Nutrients 2022; 14:nu14030623. [PMID: 35276982 PMCID: PMC8838233 DOI: 10.3390/nu14030623] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/28/2022] Open
Abstract
Oleanolic acid, a pentacyclic triterpenoid ubiquitously present in the plant kingdom, is receiving outstanding attention from the scientific community due to its biological activity against multiple diseases. Oleanolic acid is endowed with a wide range of biological activities with therapeutic potential by means of complex and multifactorial mechanisms. There is evidence suggesting that oleanolic acid might be effective against dyslipidemia, diabetes and metabolic syndrome, through enhancing insulin response, preserving the functionality and survival of β-cells and protecting against diabetes complications. In addition, several other functions have been proposed, including antiviral, anti-HIV, antibacterial, antifungal, anticarcinogenic, anti-inflammatory, hepatoprotective, gastroprotective, hypolipidemic and anti-atherosclerotic activities, as well as interfering in several stages of the development of different types of cancer; however, due to its hydrophobic nature, oleanolic acid is almost insoluble in water, which has led to a number of approaches to enhance its biopharmaceutical properties. In this scenario, the present review aimed to summarize the current knowledge and the research progress made in the last years on the extraction and characterization of oleanolic acid and its biological activities and the underlying mechanisms of action.
Collapse
|
4
|
Shi Y, Leng Y, Liu D, Liu X, Ren Y, Zhang J, Chen F. Research Advances in Protective Effects of Ursolic Acid and Oleanolic Acid Against Gastrointestinal Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:413-435. [PMID: 33622215 DOI: 10.1142/s0192415x21500191] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The intestinal tract plays an essential role in protecting tissues from the invasion of external harmful substances due to impaired barrier function. Furthermore, it participates in immunomodulation by intestinal microorganisms, which is important in health. When the intestinal tract is destroyed, it can lose its protective function, resulting in multiple systemic complications. In severe cases, it may lead to systemic inflammatory response syndrome (SIRS) and multiple organ dysfunction syndrome (MODS). Thus far, there are no curative therapies for intestinal mucosal barrier injury, other than a few drugs that can relieve symptoms. Thus, the development of novel curative agents for gastrointestinal diseases remains a challenge. Ursolic acid (UA) and its isomer, Oleanolic acid (OA), are pentacyclic triterpene acid compounds. Both their aglycone and glycoside forms have anti-oxidative, anti-inflammatory, anti-ulcer, antibacterial, antiviral, antihypertensive, anti-obesity, anticancer, antidiabetic, cardio protective, hepatoprotective, and anti-neurodegenerative properties in living organisms. In recent years, several studies have shown that UA and OA can reduce the risk of intestinal pathological injury, alleviate intestinal dysfunction, and restore intestinal barrier function. The present study evaluated the beneficial effects of UA and OA on intestinal damage and diseases, including inflammatory bowel disease (IBD) and colorectal cancer (CRC).
Collapse
Affiliation(s)
- Yajing Shi
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, P. R. China
| | - Yufang Leng
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, P. R. China
- The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - Disheng Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, P. R. China
- The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - Xin Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, P. R. China
- The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - Yixing Ren
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, P. R. China
| | - Jianmin Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, P. R. China
| | - Feng Chen
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
5
|
Sun Q, He M, Zhang M, Zeng S, Chen L, Zhou L, Xu H. Ursolic acid: A systematic review of its pharmacology, toxicity and rethink on its pharmacokinetics based on PK-PD model. Fitoterapia 2020; 147:104735. [PMID: 33010369 DOI: 10.1016/j.fitote.2020.104735] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/29/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
Ursolic acid (UA) is a natural pentacyclic triterpenoid compound existing in various traditional Chinese medicinal herbs, and it possesses diverse pharmacological actions and some undesirable adverse effects, even toxicological activities. Due to UA's low solubility and poor bioavailability, and its interaction with gut microbiota after oral administration, the pharmacokinetics of UA remain elusive, leading to obscurity in the pharmacokinetics-pharmacodynamics (PK-PD) profile and relationship for UA. Based on literatures from PubMed, Google Scholar, ResearchGate, Web of Science and Wiley Online Library, with keywords of "pharmacology", "toxicology", "pharmacokinetics", "PK-PD" and "ursolic acid", herein we systematically review the pharmacology and toxicity of UA, and rethink on its pharmacokinetics on the basis of PK-PD model, and seek to delineate the underlying mechanisms for the characteristics of pharmacology and toxicology of UA, and for the pharmacokinetic features of UA particularly from the organ tropism and the interactions between UA and gut microbiota, and lay a solid foundation for development of UA-derived therapeutic agents in clinical settings.
Collapse
Affiliation(s)
- Qiang Sun
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Man He
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Meng Zhang
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sha Zeng
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Chen
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lijuan Zhou
- Sichuan Academy of Chinese Medical Sciences, Chengdu 610041, China
| | - Haibo Xu
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
6
|
Hao W, Kwek E, He Z, Zhu H, Liu J, Zhao Y, Ma KY, He WS, Chen ZY. Ursolic acid alleviates hypercholesterolemia and modulates the gut microbiota in hamsters. Food Funct 2020; 11:6091-6103. [PMID: 32568327 DOI: 10.1039/d0fo00829j] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ursolic acid (UA) is a triterpenoid acid widely abundant in fruits and vegetables such as apple, blueberry and cranberry. The present study was carried out to investigate the effect of UA supplementation in diet on blood cholesterol, intestinal cholesterol absorption and gut microbiota in hypercholesterolemic hamsters. A total of thirty-two hamsters were randomly assigned to four groups and given a non-cholesterol diet (NCD), a high-cholesterol diet containing 0.1% cholesterol (HCD), an HCD diet containing 0.2% UA (UAL), or an HCD diet containing 0.4% UA (UAH) for 6 weeks. Results showed that UA supplementation reduced plasma cholesterol by 15-16% and inhibited intestinal cholesterol absorption by 2.6-9.2%. The in vitro micellar cholesterol solubility experiment clearly demonstrated that UA could displace 40% cholesterol from micelles. In addition, UA decreased the ratio of Firmicutes to Bacteroidetes, whereas it enhanced the growth of short chain fatty acid (SCFA)-producing bacteria in the intestine. In conclusion, UA possessed a cholesterol-lowering activity and could favorably modulate the gut microbiota.
Collapse
Affiliation(s)
- Wangjun Hao
- School of Life Sciences, Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Gao W, Zhang L. Comparative analysis of the microbial community composition between Tibetan kefir grains and milks. Food Res Int 2019; 116:137-144. [DOI: 10.1016/j.foodres.2018.11.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/24/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022]
|
8
|
Ren D, Gong S, Shu J, Zhu J, Liu H, Chen P. Effects of mixed lactic acid bacteria on intestinal microbiota of mice infected with Staphylococcus aureus. BMC Microbiol 2018; 18:109. [PMID: 30189834 PMCID: PMC6127954 DOI: 10.1186/s12866-018-1245-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 08/23/2018] [Indexed: 12/22/2022] Open
Abstract
Background The stability of intestinal microorganisms plays an important role in human health, as the intestines perform important functions in the human body. Staphylococcus aureus is a Gram-positive, facultative anaerobic bacteria, it causes human infection worldwide, and is a major pathogen that causes intestinal infection. Mixed lactic acid bacteria (LAB) may have potential in the prevention and treatment of S. aureus infection. In the present study, we examined the effects of mixed LAB treatment on intestinal microbiota modulation in mice infected with S. aureus. Results High-throughput sequencing of the V3-V4 region of the bacterial 16S rRNA gene showed that the mixed LAB maintained the richness and diversity of the microbiota in the mouse intestine. By establishing operational taxonomic units and using rarefaction analysis, rank-abundance distribution curves, heat maps, Venn diagrams, bacterial community structures, and hierarchical clustering analysis, Bacteroidales, Lachnospiraceae, Bacteroides and Prevotellaceae were the most abundant taxa in the samples, we found that the composition of the intestinal microbiota was similar between the protection group administered mixed LAB and the negative control group. Conclusions Staphylococcus aureus destroys the stable intestinal microbiota structure of mice, treatment with mixed LAB could prevent S. aureus infection in mice and improve the structure of the intestinal microbiota.
Collapse
Affiliation(s)
- Dayong Ren
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Shengjie Gong
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Jingyan Shu
- Veterinary Science Department, College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Jianwei Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Hongyan Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Ping Chen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, People's Republic of China.
| |
Collapse
|
9
|
Fu S, Meng Q, Yang J, Tu J, Sun DA. Biocatalysis of ursolic acid by the fungus Gliocladium roseum CGMCC 3.3657 and resulting anti-HCV activity. RSC Adv 2018; 8:16400-16405. [PMID: 35542219 PMCID: PMC9080225 DOI: 10.1039/c8ra01217b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/21/2018] [Indexed: 01/23/2023] Open
Abstract
Biocatalysis of ursolic acid (UA 1) by Gliocladium roseum CGMCC 3.3657 was investigated.
Collapse
Affiliation(s)
- Shaobin Fu
- Institute of Medical Plant Development
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100193
- China
| | - Qingfeng Meng
- Department of Public Health
- Zunyi Medical University
- Zunyi 563000
- China
| | - Junshan Yang
- Institute of Medical Plant Development
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100193
- China
| | - Jiajia Tu
- Pharmacy School of Zunyi Medical University
- Zunyi 563000
- China
| | - Di-An Sun
- Institute of Medical Plant Development
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100193
- China
| |
Collapse
|
10
|
Khuntamoon T, Thepouyporn A, Kaewprasert S, Prangthip P, Pooudoung S, Chaisri U, Maneesai P, Kwanbunjan K. Thai generic-brand dry canine foods: mutagenicity and the effects of feeding in vivo and in vitro. BMC Vet Res 2016; 12:17. [PMID: 26785914 PMCID: PMC4719534 DOI: 10.1186/s12917-016-0640-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/14/2016] [Indexed: 11/12/2022] Open
Abstract
Background The commercial pet-food industry and the market value of the pet industry have increased. Most owners are concerned about their pets’ health, and prefer commercial pet foods as their regular diet. This study thus aimed to determine whether a selection of local generic-brand dry canine foods had any potential to promote chronic disease. Methods Five local, generic-brand, dry canine foods were studied for potential mutagenicity; the effects of long-term consumption were also observed in rats. All canine foods were extracted with distilled water and absolute ethanol. The Ames test was used to detect short-term genetic damage, using Salmonella typhimurium tester strains TA98 and TA100. Simultaneously, the long-term effects were studied in an animal model by observing rats fed with these canine foods, compared with normal rat food, for a period of 15 weeks. Results Using the water extracts, all dry canine foods studied showed considerable mutagenic effects on the tester strains. One brand affected both tester strains, whereas 3 showed positive to TA98, and one to TA100. With the absolute ethanol extract, three of the five brands had a considerable mutagenic effect on TA98, and another affected TA100. In the long-term test, all rats remained alive until the end of the experiment, exhibited no apparent signs of toxicity or serious illness, and maintained normal bodyweight and weight gain. Serum blood biochemistry and hematological parameters in canine food-fed rats showed some negative effects. Correspondingly, histopathological investigation of their liver and kidneys showed deterioration. Conclusions Mutagenic potential and the negative potential health impacts were observed in all local-brand dry canine foods tested.
Collapse
Affiliation(s)
- Tanyalak Khuntamoon
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Apanchanid Thepouyporn
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Sarunya Kaewprasert
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Pattaneeya Prangthip
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Somchai Pooudoung
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Urai Chaisri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Phudit Maneesai
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand.
| | - Karunee Kwanbunjan
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
11
|
Woźniak Ł, Skąpska S, Marszałek K. Ursolic Acid--A Pentacyclic Triterpenoid with a Wide Spectrum of Pharmacological Activities. Molecules 2015; 20:20614-41. [PMID: 26610440 PMCID: PMC6332387 DOI: 10.3390/molecules201119721] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/21/2015] [Accepted: 09/23/2015] [Indexed: 12/12/2022] Open
Abstract
Ursolic acid (UA) is a natural terpene compound exhibiting many pharmaceutical properties. In this review the current state of knowledge about the health-promoting properties of this widespread, biologically active compound, as well as information about its occurrence and biosynthesis are presented. Particular attention has been paid to the application of ursolic acid as an anti-cancer agent; it is worth noticing that clinical tests suggesting the possibility of practical use of UA have already been conducted. Amongst other pharmacological properties of UA one can mention protective effect on lungs, kidneys, liver and brain, anti-inflammatory properties, anabolic effects on skeletal muscles and the ability to suppress bone density loss leading to osteoporosis. Ursolic acid also exhibits anti-microbial features against numerous strains of bacteria, HIV and HCV viruses and Plasmodium protozoa causing malaria.
Collapse
Affiliation(s)
- Łukasz Woźniak
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology, 36 Rakowiecka Street, 02-532 Warsaw, Poland.
| | - Sylwia Skąpska
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology, 36 Rakowiecka Street, 02-532 Warsaw, Poland.
| | - Krystian Marszałek
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology, 36 Rakowiecka Street, 02-532 Warsaw, Poland.
| |
Collapse
|
12
|
Meng F, Ning H, Sun Z, Huang F, Li Y, Chu X, Lu H, Sun C, Li S. Ursolic acid protects hepatocytes against lipotoxicity through activating autophagy via an AMPK pathway. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.05.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|