1
|
Zheng X, Fu Z, Qu H, Lu H, Jiang N, Liu N, Li M, Wang Z. Hybrid hydrolysates of soy protein and lactoferrin exerts synergistic antioxidant and anti-fatigue effect by modulating Keap1/Nrf2/HO-1 pathways. Int J Biol Macromol 2025; 307:142151. [PMID: 40101822 DOI: 10.1016/j.ijbiomac.2025.142151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/01/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
Oxidative stress is an important cause of exercise fatigue formation. Nutritional intervention is an important way to modulate exercise fatigue. Lactoferrin (LF) and soybean protein (SP) are potential antioxidant bioactive components. Our findings demonstrate that SP-LF hybrid hydrolysates had effective 2,2-diphenylpicrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) radical scavenging activity and iron ion reducing ability. The synergistic effect between these hybrid hydrolysates were found to be superior to the single hydrolysate in terms of antioxidant level by the joint index analysis. These hybrid hydrolysates are characterized by high levels of amino acids with potential anti-fatigue effect: tyrosine (Tyr), phenylalanine (Phe), hydrophobic amino acid (HAAs) and branched-chain amino acids (BCAAs). In murine models, hybrid hydrolysates significantly prolonged weight-bearing swimming time, increased muscle/liver glycogen levels, decreased lactate, urea nitrogen, and malondialdehyde levels, and increased glutathione peroxidase, superoxide dismutase, catalase and ATPase activities. Pearson's correlation analysis established significant associations between antioxidant capacity and anti-fatigue efficacy. It alleviated fatigue through activating the Keap1/Nrf2/HO-1 signaling pathway, while increasing the expression levels of PGC-1α. These results collectively suggest that SP-LF hybrid hydrolysates demonstrate significant synergistic antioxidant and anti-fatigue activity and could be incorporated into functional foods as a dietary supplement to reduce fatigue.
Collapse
Affiliation(s)
- Xiaoyan Zheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030,China
| | - Zeshi Fu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030,China
| | - Haowen Qu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030,China
| | - Hongliang Lu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030,China
| | - Nanyue Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030,China
| | - Ning Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030,China
| | - Meng Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030,China.
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Xu K, Lv AJ, Dong RL, Li YC, Zeng LT, Wang Y, Li HS, Qi J, Wang HH, Zhang CH, Xiong GY, Zhang QY. The research on the synergistic improvement of water retention capacity and eating quality of marinated pork meat by the combination of basic arginine and acidic aspartic acid. Food Chem 2025; 470:142649. [PMID: 39733615 DOI: 10.1016/j.foodchem.2024.142649] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/28/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
Effects of varying levels of arginine (Arg) and aspartic acid (Asp) on the water-holding capacity (WHC) and eating quality of marinated pork meat were investigated. The addition of Arg significantly enhanced the WHC of marinated pork meat (P < 0.05) due to the increased pH levels of the meat. Besides, when the pH values of the meat were consistent, the combined use of Arg and Asp significantly decreased the cooking loss (CL) from 9.0 % to 6.4 % (P < 0.05) and increased the hardness and springiness (P < 0.05). These outcomes could be attributed to the combined effects of Arg and Asp, which promoted the dissociation of actomyosin and enhanced the antioxidant capacity of proteins, leading to a significant increase in the ordered structure. Moreover, Asp affected the extensibility of the perimysium, improving the tightness between fiber bundles. These modifications in muscle structures improved the WHC and texture of the meat.
Collapse
Affiliation(s)
- Kuo Xu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China
| | - Ao-Jing Lv
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China
| | - Rui-Ling Dong
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China
| | - Yu-Cong Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China
| | - Li-Ting Zeng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China
| | - Yang Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China
| | - He-Shuai Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China
| | - Jun Qi
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China.
| | - Hu-Hu Wang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 210095, China
| | - Chun-Hui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guo-Yuan Xiong
- School of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Qing-Yong Zhang
- Shandong Province Grilled Chicken Co., Ltd., Dezhou 253000, China
| |
Collapse
|
3
|
Kang N, Kim EA, Heo SY, Heo JH, Ahn G, Heo SJ. Moisturizing Effects of Alcalase Hydrolysate Fractions from Haliotis discus Viscera, a Marine Organism, on Human Dermal Fibroblasts, HaCaT Keratinocytes, and Reconstructed Human Skin Tissues. Mar Drugs 2024; 22:503. [PMID: 39590783 PMCID: PMC11595860 DOI: 10.3390/md22110503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Haliotis discus, an abalone, is a marine gastropod mollusk that has been cultivated globally owing to its nutritional value and high market demand. However, the visceral parts of H. discus are typically discarded as by-products, highlighting the need to explore their potential value in developing cosmeceuticals and pharmaceuticals. This study investigated the potential moisturizing effects of H. discus visceral tissues. Various hydrolysates from H. discus viscera tissue were evaluated for proximate composition, radical scavenging, and hyaluronidase inhibition activities. Alcalase hydrolysate was isolated using gel filtration chromatography (GFC), and its moisturizing effects were tested on human dermal fibroblasts (HDF), HaCaT keratinocytes, and reconstructed human skin tissue. The Alcalase hydrolysate showed the highest extraction yield, radical scavenging, and hyaluronidase inhibition activities. The Alcalase hydrolysate GFC fraction 1 increased collagen synthesis-related molecules, including procollagen type 1 in HDF and hyaluronic acid-related molecules in HaCaT cells. These moisturizing effects were confirmed in reconstructed human skin tissues by increased levels of aquaporin 3 and filaggrin. Fraction 1 consisted of two main peptides: DNPLLPGPPF and SADNPLLPGPPF. In conclusion, H. discus Alcalase hydrolysate and its fractions have potential moisturizing properties and can be used as cosmeceuticals.
Collapse
Affiliation(s)
- Nalae Kang
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (N.K.); (E.-A.K.); (S.-Y.H.); (J.-H.H.)
| | - Eun-A Kim
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (N.K.); (E.-A.K.); (S.-Y.H.); (J.-H.H.)
| | - Seong-Yeong Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (N.K.); (E.-A.K.); (S.-Y.H.); (J.-H.H.)
| | - Jun-Ho Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (N.K.); (E.-A.K.); (S.-Y.H.); (J.-H.H.)
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Republic of Korea;
| | - Soo-Jin Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (N.K.); (E.-A.K.); (S.-Y.H.); (J.-H.H.)
- Department of Biology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
4
|
Heo JH, Kim EA, Kang N, Heo SY, Ahn G, Heo SJ. The Antioxidant Effects of Trypsin-Hydrolysate Derived from Abalone Viscera and Fishery By-Products, and the Angiotensin-I Converting Enzyme (ACE) Inhibitory Activity of Its Purified Bioactive Peptides. Mar Drugs 2024; 22:461. [PMID: 39452868 PMCID: PMC11509546 DOI: 10.3390/md22100461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
Abalone is a rich source of nutrition, the viscera of which are discarded as by-product during processing. This study explored the biological activities of peptides derived from abalone viscera (AV). Trypsin-hydrolysate of AV (TAV) was purified into three fractions using a Sephadex G-10 column. Nine bioactive peptides (VAR, NYER, LGPY, VTPGLQY, QFPVGR, LGEW, QLQFPVGR, LDW, and NLGEW) derived from TAV-F2 were sequenced. LGPY, VTPGLQY, LGEW, LDW, and NLGEW exhibited antioxidant properties, with IC50 values of 0.213, 0.297, 0.289, 0.363, and 0.303 mg/mL, respectively. In vitro analysis determined that the peptides VAR, NYER, VTPGLQY, QFPVGR, LGEW, QLQFPVGR, and NLGEW inhibited ACE, with IC50 values of 0.104, 0.107, 0.023, 0.023, 0.165, 0.004, and 0.146 mg/mL, respectively. The binding interactions of ACE-bioactive peptide complexes were investigated using docking analysis with the ZDCOK server. VTPGLQT interacted with HIS513 and TYR523, and QLQFPVGR interacted with HIS353, ALA354, GLU384, HIS513, and TYR523, contributing to the inhibition of ACE activity. They also interacted with amino acids that contribute to stability by binding to zinc ions. QFPVGR may form complexes with ACE surface sites, suggesting indirect inhibition. These results indicate that AV is a potential source of bioactive peptides with dual antioxidant and anti-hypertensive dual effects.
Collapse
Affiliation(s)
- Jun-Ho Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (J.-H.H.); (E.-A.K.); (N.K.); (S.-Y.H.)
| | - Eun-A Kim
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (J.-H.H.); (E.-A.K.); (N.K.); (S.-Y.H.)
| | - Nalae Kang
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (J.-H.H.); (E.-A.K.); (N.K.); (S.-Y.H.)
| | - Seong-Yeong Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (J.-H.H.); (E.-A.K.); (N.K.); (S.-Y.H.)
- Department of Marine Biology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Republic of Korea;
| | - Soo-Jin Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (J.-H.H.); (E.-A.K.); (N.K.); (S.-Y.H.)
- Department of Marine Biology, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
5
|
Chung WH, Zhong L, Takechi R, Coorey R, Howieson J. Elemental content and safety evaluation of wild-harvested Australian abalone (Haliotis spp.) viscera: Addressing safety concerns in food waste upcycling. Lebensm Wiss Technol 2024; 207:116658. [DOI: 10.1016/j.lwt.2024.116658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Zapata JE, Gómez-Sampedro LJ. Antioxidant and antiproliferative activity of enzymatic hydrolysates from red tilapia ( Oreochromis spp.) viscera. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 42:e00832. [PMID: 38948352 PMCID: PMC11211095 DOI: 10.1016/j.btre.2024.e00832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/11/2024] [Accepted: 02/27/2024] [Indexed: 07/02/2024]
Abstract
The antioxidant and antiproliferative activity of red tilapia (Oreochromis spp.) viscera hydrolysates (RTVH) was evaluated. For that, the hydrolysates was applied to three cancer cell lines (HepG2, Huh7 and SW480) and the control (CCD-18Co). Finally, the line on which the hydrolysate had the greatest effect (SW480) and the control (CCD-18Co) were subjected to the ApoTox-Glo Triplex Assay to determine apoptosis, toxicity, and cell viability. The result showed that hydrolysate had a dose-dependent cytotoxic effect selective on the three cancer cell lines, compared to the control cells. There is a relationship between the antioxidant capacity of RTVHs and their antiproliferative capacity on cancer cells evaluated, which achieved cell viability by action of RTVH of 34.68 and 41.58 and 25.41 %, to HepG2, Huh7 and SW480, respectively. The action of RTVH on cancer cell line SW480 is not due to the induction of apoptosis but to the rupture of the cell membrane.
Collapse
Affiliation(s)
- José E. Zapata
- Nutrition and Food Technology Group, Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellín 050010, Colombia
| | - Leidy J. Gómez-Sampedro
- Giepronal Group, School of Basic Sciences, Technology and Engineering, National Open and Distance University, Medellín 050023, Colombia
| |
Collapse
|
7
|
Wang Y, Hernández-Alvarez AJ, Goycoolea FM, Martínez-Villaluenga C. A comparative study of the digestion behavior and functionality of protein from chia ( Salvia hispanica L.) ingredients and protein fractions. Curr Res Food Sci 2024; 8:100684. [PMID: 38323027 PMCID: PMC10845256 DOI: 10.1016/j.crfs.2024.100684] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
Protein derived from chia (Salvia hispanica L.), characterized by a balanced amino acid composition, represents a potentially healthier and environmentally friendly alternative poised for innovation within the plant-based food sector. It was hypothesized that the growing location of chia seeds and processing techniques used might influence protein digestion patterns, which in turn could affect the biological functions of the digestion products. To examine this hypothesis, we assessed the gastrointestinal fate of degummed-defatted flour (DDF), protein concentrate (PC), and isolated albumin (Alb) and globulin (Glo) fractions. Furthermore, we compared the antioxidant and anti-inflammatory activities of the resulting digesta by means of in vitro and cellular assays. Post-gastrointestinal digestion, the PC exhibited elevated levels of soluble protein (7.6 and 6.3 % for Mexican and British PC, respectively) and peptides (24.8 and 27.9 %, respectively) of larger molecular sizes compared to DDF, Alb, and Glo. This can be attributed to differences in the extraction/fractionation processes. Leucine was found to be the most prevalent amino acids in all chia digesta. Such variations in the digestive outcomes of chia protein components significantly influenced the bioactivity of the intestinal digestates. During gastrointestinal transit, British Glo exhibited the best reactive oxygen species (ROS) inhibition activity in oxidative-stressed RAW264.7 macrophages, while Mexican digesta outperformed British samples in terms of ROS inhibition within the oxidative-stressed Caco-2 cells. Additionally, both Mexican and British Alb showed effectively anti-inflammatory potential, with keratinocyte chemoattractant (KC) inhibition rate of 82 and 91 %, respectively. Additionally, Mexican PC and Alb generally demonstrated an enhanced capacity to mitigate oxidative stress and inflammatory conditions in vitro. These findings highlight the substantial potential of chia seeds as functional food ingredients, resonating with the shifting preferences of health-conscious consumers.
Collapse
Affiliation(s)
- Yan Wang
- School of Food Science & Nutrition, University of Leeds, LS2 9JT, Leeds, UK
| | | | | | - Cristina Martínez-Villaluenga
- Department of Technological Processes and Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais 6, 28040, Madrid, Spain
| |
Collapse
|
8
|
Jeong S, Jung JH, Jung KW, Ryu S, Lim S. From microbes to molecules: a review of microbial-driven antioxidant peptide generation. World J Microbiol Biotechnol 2023; 40:29. [PMID: 38057638 DOI: 10.1007/s11274-023-03826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/01/2023] [Indexed: 12/08/2023]
Abstract
Oxidative stress, arising from excess reactive oxygen species (ROS) or insufficient antioxidant defenses, can damage cellular components, such as lipids, proteins, and nucleic acids, resulting in cellular dysfunction. The relationship between oxidative stress and various health disorders has prompted investigations into potent antioxidants that counteract ROS's detrimental impacts. In this context, antioxidant peptides, composed of two to twenty amino acids, have emerged as a unique group of antioxidants and have found applications in food, nutraceuticals, and pharmaceuticals. Antioxidant peptides are sourced from natural ingredients, mainly proteins derived from foods like milk, eggs, meat, fish, and plants. These peptides can be freed from their precursor proteins through enzymatic hydrolysis, fermentation, or gastrointestinal digestion. Previously published studies focused on the origin and production methods of antioxidant peptides, describing their structure-activity relationship and the mechanisms of food-derived antioxidant peptides. Yet, the role of microorganisms hasn't been sufficiently explored, even though the production of antioxidant peptides frequently employs a variety of microorganisms, such as bacteria, fungi, and yeasts, which are recognized for producing specific proteases. This review aims to provide a comprehensive overview of microorganisms and their proteases participating in enzymatic hydrolysis and microbial fermentation to produce antioxidant peptides. This review also covers endogenous peptides originating from microorganisms. The information obtained from this review might guide the discovery of novel organisms adept at generating antioxidant peptides.
Collapse
Affiliation(s)
- Soyoung Jeong
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jong-Hyun Jung
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Kwang-Woo Jung
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangyong Lim
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea.
- Department of Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
9
|
Lee YJ, Kim EA, Kang N, Park A, Heo SJ. Antioxidant Effects of Turbo cornutus By-Products Visceral Extract against Hydrogen Peroxide-Induced Oxidative Stress by Regulating MAPK and Akt Signaling Pathways in Vero Cells. Foods 2023; 12:3660. [PMID: 37835313 PMCID: PMC10572179 DOI: 10.3390/foods12193660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Turbo cornutus, a marine gastropod mollusk commonly called sea snail, is found along the southern coast of Korea and holds considerable importance as a marine food resource, particularly on Jeju Island, Korea. Data are scarce on the antioxidant activity of hot water extracts from T. cornutus visceral tissue. Therefore, this study was performed to evaluate the antioxidant activities of T. cornutus visceral tissue hot water extract (TVE) and the underlying mechanisms against hydrogen peroxide-induced oxidative stress in Vero cells. The amino acid composition and antioxidant effects of TVE were evaluated. Furthermore, the impact of TVE on the expression of proteins within the mitogen-activated protein kinase (MAPK) pathway is investigated. TVE showed a concentration-dependent enhancement in its scavenging activities against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals (IC50 = 1.07 ± 0.06 mg/mL) and hydrogen peroxide (IC50 = 0.33 ± 0.03 mg/mL). TVE reduced intracellular reactive oxygen species (ROS) production and maintained cell viability under H2O2-induced oxidative stress by suppressing apoptosis in Vero cells. Additionally, TVE demonstrated regulatory effects on the MAPK and protein kinase B (Akt) signaling pathways activated by H2O2. In conclusion, the findings from our study propose that TVE holds potential as a bioactive component in the formulation of functional foods.
Collapse
Affiliation(s)
- Yeon-Ji Lee
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (Y.-J.L.); (E.-A.K.); (N.K.); (A.P.)
| | - Eun-A Kim
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (Y.-J.L.); (E.-A.K.); (N.K.); (A.P.)
| | - Nalae Kang
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (Y.-J.L.); (E.-A.K.); (N.K.); (A.P.)
| | - Areumi Park
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (Y.-J.L.); (E.-A.K.); (N.K.); (A.P.)
| | - Soo-Jin Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (Y.-J.L.); (E.-A.K.); (N.K.); (A.P.)
- Department of Marine Technology & Convergence Engineering (Marine Biotechnology), University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
10
|
Rivera-Pérez C, Ponce González XP, Hernández-Savedra NY. Antimicrobial and anticarcinogenic activity of bioactive peptides derived from abalone viscera (Haliotis fulgens and Haliotis corrugata). Sci Rep 2023; 13:15185. [PMID: 37704667 PMCID: PMC10499822 DOI: 10.1038/s41598-023-41491-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023] Open
Abstract
Bioactive peptides have been studied in several sources due to their valuable potential in the pharmaceutical and food industries. Abalone viscera, which are normally discarded as byproducts, are a rich source of protein. Thus, the aim of this study was to explore the potential bioactivity of peptides derived from abalone viscera (Haliotis fulgens and Haliotis corrugata) after hydrolysis with a commercial mixture of enzymes. The hydrolysates obtained were fractionated using gel filtration chromatography. The resulting hydrolysate fractions were investigated for their antimicrobial and cytotoxic activities, including the expression of gelatinases mmp-2 and mmp-9 in human prostate cancer cell lines (PC3). Results showed antimicrobial activity for protein fractions of H. corrugata against Proteus mirabilis and Pseudomona aeuroginosa (66.2-116.25 kDa), Bacillus subtilis (6.5-21.5 kDa), and Aspergillus niger (97.4-116.25 kDa), while H. fulgens peptide fractions (200-31 kDa) displayed activity against six bacterial strains, and fractions from 116.25 to 21.5 kDa had effects on the fungus A. niger, Alternaria alternata, and Aspergillus flavus. Additionally, protein fractions displayed cytotoxic activity, inhibiting 30.4-53.8% of PC3 cellular growth. Selected fractions decreased the PMA-induced and not-induced expressions of mmp-2 and mmp-9 in PC3 cells. Abalone viscera, as byproducts, can be used as a potential source of antimicrobial and anticancer peptides.
Collapse
Affiliation(s)
- Crisalejandra Rivera-Pérez
- Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, C.P. 23096, La Paz, BCS, México
| | - Xolotl Paloma Ponce González
- Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, C.P. 23096, La Paz, BCS, México
| | - Norma Yolanda Hernández-Savedra
- Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, C.P. 23096, La Paz, BCS, México.
| |
Collapse
|
11
|
Heo SY, Kang N, Kim EA, Kim J, Lee SH, Ahn G, Oh JH, Shin AY, Kim D, Heo SJ. Purification and Molecular Docking Study on the Angiotensin I-Converting Enzyme (ACE)-Inhibitory Peptide Isolated from Hydrolysates of the Deep-Sea Mussel Gigantidas vrijenhoeki. Mar Drugs 2023; 21:458. [PMID: 37623739 PMCID: PMC10456528 DOI: 10.3390/md21080458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/15/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023] Open
Abstract
The objective of this study was to prepare an angiotensin I-converting enzyme (ACE)-inhibitory peptide from the hydrothermal vent mussel, Gigantidas vrijenhoeki. The G. vrijenhoeki protein was hydrolyzed by various hydrolytic enzymes. The peptic hydrolysate exhibited the highest ACE-inhibitory activity and was fractionated into four molecular weight ranges by ultrafiltration. The <1 kDa fraction exhibited the highest ACE inhibitory activity and was found to have 11 peptide sequences. Among the analyzed peptides, KLLWNGKM exhibited stronger ACE inhibitory activity and an IC50 value of 0.007 μM. To investigate the ACE-inhibitory activity of the analyzed peptides, a molecular docking study was performed. KLLWNGKM exhibited the highest binding energy (-1317.01 kcal/mol), which was mainly attributed to the formation of hydrogen bonds with the ACE active pockets, zinc-binding motif, and zinc ion. These results indicate that G. vrijenhoeki-derived peptides can serve as nutritional and pharmacological candidates for controlling blood pressure.
Collapse
Affiliation(s)
- Seong-Yeong Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-Y.H.); (N.K.); (E.-A.K.); (J.K.)
- Department of Marine Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Nalae Kang
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-Y.H.); (N.K.); (E.-A.K.); (J.K.)
| | - Eun-A Kim
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-Y.H.); (N.K.); (E.-A.K.); (J.K.)
| | - Junseong Kim
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-Y.H.); (N.K.); (E.-A.K.); (J.K.)
| | - Seung-Hong Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea;
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Republic of Korea;
| | - Je Hyeok Oh
- Marine Ecosystem and Biological Research Center, Korea Institute of Ocean Science and Technology (KIOST), Busan 49111, Republic of Korea; (J.H.O.); (A.Y.S.); (D.K.)
| | - A Young Shin
- Marine Ecosystem and Biological Research Center, Korea Institute of Ocean Science and Technology (KIOST), Busan 49111, Republic of Korea; (J.H.O.); (A.Y.S.); (D.K.)
| | - Dongsung Kim
- Marine Ecosystem and Biological Research Center, Korea Institute of Ocean Science and Technology (KIOST), Busan 49111, Republic of Korea; (J.H.O.); (A.Y.S.); (D.K.)
| | - Soo-Jin Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-Y.H.); (N.K.); (E.-A.K.); (J.K.)
- Department of Marine Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
12
|
Iwamoto N, Sasaki A, Maizawa T, Hamada-Sato N. Abalone Viscera Fermented with Aspergillus oryzae 001 Prevents Pressure Elevation by Inhibiting Angiotensin Converting Enzyme. Nutrients 2023; 15:nu15040947. [PMID: 36839305 PMCID: PMC9967480 DOI: 10.3390/nu15040947] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Abalone viscera, which accounts for more than 20% of the total weight of abalone, is generally regarded as waste in the food industry, and effective methods are required to utilize it productively. In this study, the viscera were fermented with Aspergillus oryzae 001 to add functionality. Fermented abalone viscera exhibited increased angiotensin I-converting enzyme (ACE) inhibitory activity and enhanced inhibition of blood pressure elevation in spontaneously hypertensive rats (SHRs). Abalone viscera administration had no significant effect on body weight, food intake, liver and kidney weights, or serum components in SHRs. ACE inhibitors specific to fermented abalone viscera were identified through extraction, fractionation, purification, and analysis. The identified substance was L-m-tyrosine, which non-competitively inhibited ACE and, in a single oral administration, significantly reduced blood pressure in SHRs compared to that in the control. This study identified that abalone viscera fermented by A. oryzae 001 has an inhibitory effect on blood pressure elevation, suggesting its potential use as a functional food. In addition, L-m-tyrosine, a unique substance in fermented abalone viscera, was isolated for the first time as a single ACE-inhibitory amino acid.
Collapse
Affiliation(s)
- Natsumi Iwamoto
- Course of Safety Management in Food Supply Chain, Tokyo University of Marine Science and Technology, Konan-4, Minato-ku, Tokyo 108-8477, Japan
| | - Asahi Sasaki
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Konan-4, Minato-ku, Tokyo 108-8477, Japan
| | - Tomoaki Maizawa
- Research and Development Department, Bull-Dog Sauce Co., Ltd., 3-6-1, Mitsuwa, Kawaguchi-shi, Saitama 334-0011, Japan
| | - Naoko Hamada-Sato
- Course of Safety Management in Food Supply Chain, Tokyo University of Marine Science and Technology, Konan-4, Minato-ku, Tokyo 108-8477, Japan
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Konan-4, Minato-ku, Tokyo 108-8477, Japan
- Correspondence: ; Tel./Fax: +81-3-5463-0389
| |
Collapse
|
13
|
Kongsompong S, E-kobon T, Taengphan W, Sangkhawasi M, Khongkow M, Chumnanpuen P. Computer-Aided Virtual Screening and In Vitro Validation of Biomimetic Tyrosinase Inhibitory Peptides from Abalone Peptidome. Int J Mol Sci 2023; 24:ijms24043154. [PMID: 36834568 PMCID: PMC9965614 DOI: 10.3390/ijms24043154] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Hyperpigmentation is a medical and cosmetic problem caused by an excess accumulation of melanin or the overexpression of the enzyme tyrosinase, leading to several skin disorders, i.e., freckles, melasma, and skin cancer. Tyrosinase is a key enzyme in melanogenesis and thus a target for reducing melanin production. Although abalone is a good source of bioactive peptides that have been used for several properties including depigmentation, the available information on the anti-tyrosinase property of abalone peptides remains insufficient. This study investigated the anti-tyrosinase properties of Haliotis diversicolor tyrosinase inhibitory peptides (hdTIPs) based on mushroom tyrosinase, cellular tyrosinase, and melanin content assays. The binding conformation between peptides and tyrosinase was also examined by molecular docking and dynamics study. KNN1 showed a high potent inhibitory effect on mushroom tyrosinase with an IC50 of 70.83 μM. Moreover, our selected hdTIPs could inhibit melanin production through the reductions in tyrosinase activity and reactive oxygen species (ROS) levels by enhancing the antioxidative enzymes. RF1 showed the highest activity on both cellular tyrosinase inhibition and ROS reduction. leading to the lower melanin content in B16F10 murine melanoma cells. Accordingly, it can be assumed that our selected peptides exhibited high potential in medical cosmetology applications.
Collapse
Affiliation(s)
- Sasikarn Kongsompong
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Teerasak E-kobon
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| | - Weerasak Taengphan
- Expert Centre of Innovative Herbal Products (InnoHerb), Thailand Institute of Scientific and Technological Research, Techno Polis, Khlong Luang District, Pathum Thani 12120, Thailand
| | - Mattanun Sangkhawasi
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mattaka Khongkow
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Pramote Chumnanpuen
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Correspondence:
| |
Collapse
|
14
|
SEPÚLVEDA RINCÓN C, VÁSQUEZ P, ZAPATA MONTOYA J. Effect of spray-drying conditions on the physical and antioxidant properties of a hydrolysate from red tilapia (Oreochromis spp.) viscera. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.101522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
15
|
Xu Z, Han S, Chen H, Han L, Dong X, Tu M, Tan Z, Du M, Li T. Nutritional properties and osteogenic activity of simulated digestion components and peptides from Larimichthys crocea. Food Res Int 2023; 163:112238. [PMID: 36596160 DOI: 10.1016/j.foodres.2022.112238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
Fish provides a range of health benefits due to its nutritional and bioactive components. However, the bioactive peptides derived from Larimichthys crocea proteins were not fully investigated, especially the beneficial effects related to bone growth in vitro. In this study, the water extract protein was subjected to the simulated in vitro digestion process, and the osteogenic effect of enzymatic hydrolysate at different digestion stages was evaluated by the proliferation of osteoblast. The protein hydrolyzates of group pepsin treatment for 1 h and pepsin treatment for 2 h showed higher osteogenic activity in vitro. Two peptides including IERGDVVVQDSPSD from pepsin treatment for 1 h and RGDLGIEIPTEK from pepsin treatment for 2 h were identified, which revealed eminent effects in terms of promoting osteoblast proliferation and enhancing ALP activity. Moreover, the available nutrients in the proteins were determined by the molecular weight distribution and free amino acid composition. Those peptides also showed stronger interaction with RGD than integrins. Therefore, the peptides from Larimichthys crocea can be used as an effective ingredient for promoting bone growth in the future.
Collapse
Affiliation(s)
- Zhe Xu
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116029, China; Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Shiying Han
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116029, China
| | - Hui Chen
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lingyu Han
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116029, China
| | - Xiufang Dong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Maolin Tu
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Zhijian Tan
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Tingting Li
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116029, China.
| |
Collapse
|
16
|
Response surface optimization of selenium-enriched Moringa oleifera seed peptides with antioxidant, ACEI and XOI activities. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Jiang P, Liu N, Xiu Y, Wang W, Wang C, Zhang D, Li Z. Identification and analysis of antioxidant peptides from sorghum ( Sorghum bicolor L. Moench) on the basis of in vitro simulated gastrointestinal digestion. Food Funct 2022; 13:9635-9644. [PMID: 36017637 DOI: 10.1039/d2fo01399a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sorghum (Sorghum bicolor L. Moench) antioxidant peptides in vitro simulated through continuous gastrointestinal (GI) digestion in comparison with rice (Oryza sativa L.) were identified and functionally analysed. It was demonstrated that the protein digestibility of sorghum and rice increased by 11.27% and 14.10% after GI digestion, respectively. The concentrations of the rice peptides GG14, GG12, SF11, and LQ9 and the sorghum peptide KP9 in the gastrointestinal tract were 0.018, 0.712, 0.548, 0.188, and 0.265 μg mL-1, respectively. An assay of the scavenging ability showed that the sorghum peptide KP9 had the strongest ABTS-scavenging ability, with an IC50 value of 44.44 mg mL-1. The rice peptide LQ9 had the strongest DPPH and OH radical scavenging activity, with IC50 values of 10.41 and 25.78 mg mL-1, respectively. These five selectively synthesized peptides were predicted to be nontoxic and to have good ADMET absorption properties. The results indicated that the sorghum and rice peptides obtained by in vitro digestion were separated and purified with certain antioxidant activities and could be consumed as functional foods to modulate certain chronic diseases.
Collapse
Affiliation(s)
- Peng Jiang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China. .,Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality Safety, Daqing 163319, Heilongjiang, China
| | - Nian Liu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China.
| | - Yuyang Xiu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China.
| | - Wenhao Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China.
| | - Changyuan Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China. .,National Coarse Cereals Engineering Research Center, Daqing 163319, Heilongjiang, China
| | - Dongjie Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China. .,Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality Safety, Daqing 163319, Heilongjiang, China.,National Coarse Cereals Engineering Research Center, Daqing 163319, Heilongjiang, China
| | - Zhijiang Li
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China. .,Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality Safety, Daqing 163319, Heilongjiang, China.,National Coarse Cereals Engineering Research Center, Daqing 163319, Heilongjiang, China
| |
Collapse
|
18
|
Purification, identification, and antioxidative mechanism of three novel selenium-enriched oyster antioxidant peptides. Food Res Int 2022; 157:111359. [DOI: 10.1016/j.foodres.2022.111359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/01/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022]
|
19
|
Anti-Inflammatory Effect of Turbo cornutus Viscera Ethanolic Extract against Lipopolysaccharide-Stimulated Inflammatory Response via the Regulation of the JNK/NF-kB Signaling Pathway in Murine Macrophage RAW 264.7 Cells and a Zebrafish Model: A Preliminary Study. Foods 2022; 11:foods11030364. [PMID: 35159514 PMCID: PMC8834147 DOI: 10.3390/foods11030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022] Open
Abstract
Turbo cornutus, the horned turban sea snail, is found along the intertidal and basaltic shorelines and is an important fishery resource of Jeju Island. In this study, we performed a preliminary study on anti-inflammatory effect of 70% ethanol extract obtained from T. cornutus viscera (TVE) on lipopolysaccharide (LPS)-stimulated RAW264.7 cells in vitro and zebrafish embryos in vivo. TVE reduced the production of LPS-stimulated nitric oxide (NO) and prostaglandin E2 (PGE2) without any toxic effects. TVE also decreased the protein expression of LPS-induced inducible NO synthase and cyclooxygenase-2 and suppressed the production of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-6, and IL-1β. Furthermore, mechanistic studies indicated that TVE suppressed c-Jun N-terminal kinase phosphorylation and nuclear factor-kB activation. In zebrafish embryos, TVE did not show developmental toxicity based on the survival rate and cell death findings. In LPS-stimulated zebrafish embryos, TVE suppressed NO production and cell death. In conclusion, the result from this preliminary study showed TVE has a potential anti-inflammatory property that can be exploited as a functional food ingredient.
Collapse
|
20
|
qu Y, Ji H, song W, Peng S, Zhan S, Wei LY, Chen M, Zhang D, Liu S. Anti-fatigue effect of Auxis thazard oligopeptide via modulation of AMPK/ PGC-1α pathway in mice. Food Funct 2022; 13:1641-1650. [DOI: 10.1039/d1fo03320d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, the anti-fatigue effect and mechanism of Auxis thazard oligopeptide (ATO) were studied by exhaustive swimming in mice. The results showed that ATO could significantly prolong the exhaustive...
Collapse
|
21
|
Hu Y, Yang J, He C, Wei H, Wu G, Xiong H, Ma Y. Fractionation and purification of antioxidant peptides from abalone viscera by a combination of Sephadex G‐15 and Toyopearl HW‐40F chromatography. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yaqin Hu
- College of Ocean Food and Biological Engineering Fujian Provincial Engineering Technology Research Center of Marine Functional Food Jimei University Xiamen 361021 China
| | - Jiahong Yang
- College of Ocean Food and Biological Engineering Fujian Provincial Engineering Technology Research Center of Marine Functional Food Jimei University Xiamen 361021 China
| | - Chuanbo He
- College of Ocean Food and Biological Engineering Fujian Provincial Engineering Technology Research Center of Marine Functional Food Jimei University Xiamen 361021 China
| | - Haocheng Wei
- College of Ocean Food and Biological Engineering Fujian Provincial Engineering Technology Research Center of Marine Functional Food Jimei University Xiamen 361021 China
| | - Guohong Wu
- College of Ocean Food and Biological Engineering Fujian Provincial Engineering Technology Research Center of Marine Functional Food Jimei University Xiamen 361021 China
| | - Hejian Xiong
- College of Ocean Food and Biological Engineering Fujian Provincial Engineering Technology Research Center of Marine Functional Food Jimei University Xiamen 361021 China
| | - Ying Ma
- Fisheries College of Jimei University Xiamen 361021 China
| |
Collapse
|
22
|
Anti-Allergic Effect of Low Molecular Weight Digest from Abalone Viscera on Atopic Dermatitis-Induced NC/Nga. Mar Drugs 2021; 19:md19110634. [PMID: 34822505 PMCID: PMC8618959 DOI: 10.3390/md19110634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Abalone viscera (AV) is one of the byproducts of the seafood processing industry. The low molecular weight (<5 kDa) peptides (LMW-AV) obtained from gastrointestinal digestion of AV could suppress allergenic responses on activated HMC-1 human mast cells in our previous study. Regarding the allergenic response of LMW-AV, in the present study, we further investigated the potential of oral administration of LMW-AV against atopic dermatitis (AD) in a dermatitis-induced model stimulated with Dermatophagoides farinae. The results demonstrated that the LMW-AV reduced a number of clinical symptoms, such as the severity of the dermatitis and serum immunoglobulin E levels. Moreover, LMW-AV could inhibit the expression of chemokines and cytokines. The histological analysis indicated that the LMW-AV has suppressed the eosinophil count and the mast cell infiltration into the upper dermis. The results suggest that LMW-AV can be considered as a promising candidate for AD treatment.
Collapse
|
23
|
Cytoprotective Peptides from Blue Mussel Protein Hydrolysates: Identification and Mechanism Investigation in Human Umbilical Vein Endothelial Cells Injury. Mar Drugs 2021; 19:md19110609. [PMID: 34822480 PMCID: PMC8620150 DOI: 10.3390/md19110609] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular disease represents a leading cause of mortality and is often characterized by the emergence of endothelial dysfunction (ED), a physiologic condition that takes place in the early progress of atherosclerosis. In this study, two cytoprotective peptides derived from blue mussel chymotrypsin hydrolysates with the sequence of EPTF and FTVN were purified and identified. Molecular mechanisms underlying the cytoprotective effects against oxidative stress which lead to human umbilical vein endothelial cells (HUVEC) injury were investigated. The results showed that pretreatment of EPTF, FTVN and their combination (1:1) in 0.1 mg/mL significantly reduced HUVEC death due to H2O2 exposure. The cytoprotective mechanism of these peptides involves an improvement in the cellular antioxidant defense system, as indicated by the suppression of the intracellular ROS generation through upregulation of the cytoprotective enzyme heme oxygenase-1. In addition, H2O2 exposure triggers HUVEC damage through the apoptosis process, as evidenced by increased cytochrome C release, Bax protein expression, and the elevated amount of activated caspase-3, however in HUVEC pretreated with peptides and their combination, the presence of those apoptotic stimuli was significantly decreased. Each peptide showed similar cytoprotective effect but no synergistic effect. Taken together, these peptides may be especially important in protecting against oxidative stress-mediated ED.
Collapse
|
24
|
Wu W, Jia J, Wen C, Yu C, Zhao Q, Hu J. Optimization of ultrasound assisted extraction of abalone viscera protein and its effect on the iron-chelating activity. ULTRASONICS SONOCHEMISTRY 2021; 77:105670. [PMID: 34304120 PMCID: PMC8327653 DOI: 10.1016/j.ultsonch.2021.105670] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/07/2021] [Accepted: 07/11/2021] [Indexed: 05/08/2023]
Abstract
This study aims to investigate effects of ultrasound assisted extraction on the abalone viscera protein extraction rate and iron-chelating activity of peptides. The optimal conditions for ultrasound assisted extraction by response surface methodology was at sodium hydroxide concentration 14 g/kg, ultrasonic power 428 W and extraction time 52 min. Under the optimal conditions, protein extraction rate was 64.89%, compared with alkaline extraction of 55.67%. The iron-chelating activity of peptides affected by ultrasound technology was further evaluated by iron-chelating rate, FTIR spectroscopy and LC-HRMS/MS. Alcalase was the suitable enzyme for the preparation of iron-chelating peptides from two abalone viscera proteins, showing no significant difference between their iron-chelating rate of 16.24% (ultrasound assisted extraction) and 16.60% (alkaline extraction). Iron binding sites from the two hydrolysates include amino and carboxylate terminal groups and peptide bond of the peptide backbone as well as amino, imine and carboxylate from side chain groups. Moreover, 24 iron-chelating peptides were identified from hydrolysate (alcalase, ultrasound assisted extraction), which were different from the 27 iron-chelating peptides from hydrolysate (alcalase, alkaline extraction). This study suggests the application of ultrasound technology in the generation of abalone viscera-derived iron-chelating peptides which have the ability to combat iron deficiency.
Collapse
Affiliation(s)
- Wenfei Wu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Jiao Jia
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chengrong Wen
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Cuiping Yu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Qi Zhao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiangning Hu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
25
|
Carranza-Saavedra D, Zapata-Montoya JE, Váquiro-Herrera HA, Solanilla-Duque JF. Study of biological activities and physicochemical properties of Yamú (Brycon siebenthalae) viscera hydrolysates in sodium alginate-based edible coating solutions. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2021. [DOI: 10.1515/ijfe-2021-0036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The fishing industry produces waste such as viscera, which is an environmental problem for many countries. Obtaining protein from these wastes are useful for the food industry. In this study, the chemical composition, amino acid profile, solubility, digestibility and thermal properties of Yamú protein isolate (PI) and its hydrolysates obtained by enzymatic hydrolysis were characterized. The hydrolysates (0.05, 0.1, 0.5, 1 and 2% w/v) were mixed with a sodium alginate-based solution to form an edible coating solution (ECS). Antioxidant capacity antimicrobial activity, Zeta potential (ζ) and adsorption kinetics properties were determined. PI contains 88% (w/w) protein showing better solubility, digestibility and thermal stability properties. The hydrolysate concentrations with DPPH inhibitory ECS were 0.1 and 0.5% (w/v). The kinetic properties of ECS showed good stability and excellent adsorption. These results suggest that this Yamú protein has high nutritional potential as an ingredient for the production of functional foods.
Collapse
Affiliation(s)
- Darwin Carranza-Saavedra
- Grupo de investigación Centro de desarrollo agroindustrial del Tolima (CEDAGRITOL), Universidad Del Tolima , Ibagué 730006299 , Colombia
- Grupo de investigación en Nutrición y Tecnología de Alimentos (Nutec), Universidad de Antioquia , Medellín 050010 , Colombia
| | - José Edgar Zapata-Montoya
- Grupo de investigación en Nutrición y Tecnología de Alimentos (Nutec), Universidad de Antioquia , Medellín 050010 , Colombia
| | - Henry Alexander Váquiro-Herrera
- Grupo de investigación Centro de desarrollo agroindustrial del Tolima (CEDAGRITOL), Universidad Del Tolima , Ibagué 730006299 , Colombia
| | - José Fernando Solanilla-Duque
- Grupo de investigación Centro de desarrollo agroindustrial del Tolima (CEDAGRITOL), Universidad Del Tolima , Ibagué 730006299 , Colombia
- Departamento de Agroindustria , Facultad de Ciencias Agrarias, Universidad del Cauca , Popayán 190001 , Colombia
| |
Collapse
|
26
|
Sierra L, Fan H, Zapata J, Wu J. Antioxidant peptides derived from hydrolysates of red tilapia (Oreochromis sp.) scale. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111631] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
27
|
Sierra-Lopera LM, Zapata-Montoya JE. Optimization of enzymatic hydrolysis of red tilapia scales ( Oreochromis sp.) to obtain bioactive peptides. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 30:e00611. [PMID: 33912403 PMCID: PMC8063752 DOI: 10.1016/j.btre.2021.e00611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 02/06/2021] [Accepted: 03/19/2021] [Indexed: 01/09/2023]
Abstract
The objective of this study was to optimize the conditions of enzymatic hydrolysis (type of enzyme, pH, temperature (T), substrate (S) and enzyme concentration (E)) to increase content of soluble peptides (P), antioxidant activities and degree of hydrolysis DH (%), in hydrolysates. Also, the effect of scaling up from a 0.5 L to a 7.5 L reactor, was evaluated. Hydrolysis was carried out for 3 h in a 500 mL reactor, with Alcalase® 2.4 L and Flavourzyme® 500 L enzymes. A second experimental design was then developed with S and E as factors, where DH, P and antioxidant activity, were response variables. The Alcalase® 2.4 L was the most productive enzyme, with optimal S and E of 45 g/L and 4.4 g/L, respectively. Its hydrolysates showed antioxidant activities with IC50 of 0.76 g/L, 12 g/L and 8 g/L for ABTS, FRAP and ICA, respectively. The scale up didn't showed negative effect on the hydrolysis.
Collapse
Affiliation(s)
- Leidy Maritza Sierra-Lopera
- University of Antioquia, Nutrition and Food Technology Group, 70th Street No. 52 - 21, 050010, Medellin, Antioquia, Colombia
| | - Jose Edgar Zapata-Montoya
- University of Antioquia, Nutrition and Food Technology Group, 70th Street No. 52 - 21, 050010, Medellin, Antioquia, Colombia
| |
Collapse
|
28
|
Sepúlveda CT, Zapata JE, Martínez-Álvarez O, Alemán A, Montero MP, Gómez-Guillén MC. The preferential use of a soy-rapeseed lecithin blend for the liposomal encapsulation of a tilapia viscera hydrolysate. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Physicochemical properties and antioxidant activities of tree peony (Paeonia suffruticosa Andr.) seed protein hydrolysates obtained with different proteases. Food Chem 2020; 345:128765. [PMID: 33340892 DOI: 10.1016/j.foodchem.2020.128765] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 11/23/2020] [Accepted: 11/28/2020] [Indexed: 11/22/2022]
Abstract
The physicochemical and antioxidant properties of tree peony seed protein (TPSP) hydrolysates by Alcalase, Neutrase, Papain, Protamex, and Flavourzyme were investigated in this study. The physicochemical properties were characterized by SDS-PAGE, particle size distribution, fourier transform infrared and fluorescence spectroscopy etc. The antioxidant activities were determined by DPPH radical, ABTS radical, Fe2+ chelating, and reducing power. The results showed five proteases produced hydrolysates with a significantly reduced average particle size, α-helices, and surface hydrophobicity compared to TPSP. Alcalase and Neutrase hydrolysis enhanced the nutritional value of the hydrolysates. Alcalase hydrolysates possessed the highest degree of hydrolysis (27.97%) and lowest molecular weight (<13 kDa) with average particle size (231.33 nm). Alcalase hydrolysate displayed the highest radical scavenging (DPPH IC50 = 0.18 mg/mL, ABTS IC50 = 1.57 mg/mL), Fe2+ chelating activity (IC50 = 0.99 mg/mL), and reducing power (0.594). These results provide the fundamentals for TPSP hydrolysates as antioxidants to be employed in food industry or pharmaceutical industry.
Collapse
|
30
|
Wang Z, Liu X, Xie H, Liu Z, Rakariyatham K, Yu C, Shahidi F, Zhou D. Antioxidant activity and functional properties of Alcalase-hydrolyzed scallop protein hydrolysate and its role in the inhibition of cytotoxicity in vitro. Food Chem 2020; 344:128566. [PMID: 33191007 DOI: 10.1016/j.foodchem.2020.128566] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 10/21/2020] [Accepted: 11/02/2020] [Indexed: 12/26/2022]
Abstract
Three scallop protein hydrolysates (SPH) were obtained by enzymatic hydrolysis of scallop meal by Pepsin, Dispase and Alcalase, respectively. The antioxidant activities of the SPHs were characterized for their free radical scavenging activities through 1,1-diphenyl-2-picrylhydrazyl (DPPH)/hydroxyl/2,2' azino-bis-3-(ethylbenzthiazoline-6-sulphonic acid) (ABTS) assays, showing at least 60% radicals scavenging activities in samples (10 mg/mL). Moreover, the Alcalase-hydrolyzed SPH (ASPH) was shown to have the highest free radical scavenging activity determined by Electron Spin Resonance (ESR), due to the high proportion of antioxidant amino acids (35.25%) and better solubility. In addition, the ASPH also exhibited promising inhibitory effects (30-40%) against lipid oxidation in emulsifying system and excellent emulsifying and foaming properties. In vitro, the ASPH exhibited protective effects (nearly 20%) against H2O2-induced cytotoxicity probably due to the inhibition of mitochondria-associated generation of reactive oxygen species (ROS). The ASPH may potentially serve as a high-valued scallop-based food additive with great health benefits.
Collapse
Affiliation(s)
- Zixu Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoyang Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, Dalian 116034, PR China.
| | - Hongkai Xie
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, Dalian 116034, PR China
| | - Ziqiang Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, Dalian 116034, PR China
| | - Kanyasiri Rakariyatham
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, Dalian 116034, PR China
| | - Chenxu Yu
- National Engineering Research Center of Seafood, Dalian 116034, PR China; Department of Agricultural and Biosystems Engineering, Iowa State University, IA 50011, USA
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Dayong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, Dalian 116034, PR China
| |
Collapse
|
31
|
Kim JM, Yoon KY. Functional properties and biological activities of perilla seed meal protein hydrolysates obtained by using different proteolytic enzymes. Food Sci Biotechnol 2020; 29:1553-1562. [PMID: 33088604 DOI: 10.1007/s10068-020-00810-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/13/2020] [Accepted: 08/18/2020] [Indexed: 12/17/2022] Open
Abstract
In this study, we aimed to determine the potential functional properties and biological activities of the hydrolysates of perilla seed meal (PSM), which is a by-product of perilla seed oil extraction. PSM protein was hydrolyzed independently by using five proteases, and their functional and biological properties were analyzed. PSM protein hydrolysate exhibited high solubility at most of the tested pH values, and the trypsin-treated hydrolysate exhibited the highest water and oil absorption capacity. The neutrase-treated hydrolysate was most effective in scavenging the 1,1-diphenyl-2-picrylhydrazine radicals, whereas the pepsin-treated hydrolysate showed the highest angiotensin I-converting enzyme inhibitory effect, and anti-inflammatory activity. Trypsin-treated hydrolysate exhibited the highest scavenging activity against of 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid radicals with the IC50 of 109.72 µg/mL. The results of the present study suggest that the type of protease used for the treatment significantly influences the functional properties and biological activities of the resulting PSM protein hydrolysates.
Collapse
Affiliation(s)
- Ja Min Kim
- Department of Food and Nutrition, Yeungnam University, Gyeongsan, 38541 South Korea
| | - Kyung Young Yoon
- Department of Food and Nutrition, Yeungnam University, Gyeongsan, 38541 South Korea
| |
Collapse
|
32
|
Tacias-Pascacio VG, Morellon-Sterling R, Siar EH, Tavano O, Berenguer-Murcia Á, Fernandez-Lafuente R. Use of Alcalase in the production of bioactive peptides: A review. Int J Biol Macromol 2020; 165:2143-2196. [PMID: 33091472 DOI: 10.1016/j.ijbiomac.2020.10.060] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
This review aims to cover the uses of the commercially available protease Alcalase in the production of biologically active peptides since 2010. Immobilization of Alcalase has also been reviewed, as immobilization of the enzyme may improve the final reaction design enabling the use of more drastic conditions and the reuse of the biocatalyst. That way, this review presents the production, via Alcalase hydrolysis of different proteins, of peptides with antioxidant, angiotensin I-converting enzyme inhibitory, metal binding, antidiabetic, anti-inflammatory and antimicrobial activities (among other bioactivities) and peptides that improve the functional, sensory and nutritional properties of foods. Alcalase has proved to be among the most efficient proteases for this goal, using different protein sources, being especially interesting the use of the protein residues from food industry as feedstock, as this also solves nature pollution problems. Very interestingly, the bioactivities of the protein hydrolysates further improved when Alcalase is used in a combined way with other proteases both in a sequential way or in a simultaneous hydrolysis (something that could be related to the concept of combi-enzymes), as the combination of proteases with different selectivities and specificities enable the production of a larger amount of peptides and of a smaller size.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico; Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico.
| | | | - El-Hocine Siar
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Equipe TEPA, Laboratoire LNTA, INATAA, Université des Frères Mentouri Constantine 1, Constantine 25000, Algeria
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Center of Excellence in Bionanoscience Research, Member of the External Scientific Advisory Board, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
33
|
Dong H, Liu J, Zeng X, Bai W, Yu L. Enzymatic hydrolysis pretreatment for enhancing the protein solubility and physicochemical quality of Cordyceps militaris chicken soup. Food Sci Nutr 2020; 8:2436-2444. [PMID: 32405400 PMCID: PMC7215234 DOI: 10.1002/fsn3.1533] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 01/05/2023] Open
Abstract
Chicken soup is one of the most popular Chinese-style soups due to its high nutritional value and special flavor. However, the nutrients, mainly soluble protein, in the soup are relatively low. The aim of the present work was to enhance the protein solubility and other physicochemical properties of Cordyceps militaris chicken soup by enzymatic hydrolysis pretreatment. Results indicated that the soluble protein dissolution rate and flavor nucleotides (I+G) of Cordyceps militaris chicken soup had 1.6-fold and 0.5-fold increase, respectively, after enzymatic hydrolysis pretreatment. Not only the contents of total amino acids (TAA) and essential amino acids (EAA) in Cordyceps militaris chicken soup significantly increased, the organoleptic quality was also markedly improved after the enzymatic hydrolysis pretreatment. The present work provides a potential approach, which is enzymatic hydrolysis pretreatment of chicken meat, to enhance the protein solubility and physicochemical quality of Cordyceps militaris chicken soup.
Collapse
Affiliation(s)
- Hao Dong
- College of Light Industry and Food SciencesZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Jialing Liu
- College of Light Industry and Food SciencesZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Xiaofang Zeng
- College of Light Industry and Food SciencesZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Weidong Bai
- College of Light Industry and Food SciencesZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Limei Yu
- College of Light Industry and Food SciencesZhongkai University of Agriculture and EngineeringGuangzhouChina
| |
Collapse
|
34
|
Thaweekitphathanaphakdee S, Chanvorachote P, Prateepchinda S, Khongkow M, Sucontphunt A. Abalone Collagen Extracts Potentiate Stem Cell Properties of Human Epidermal Keratinocytes. Mar Drugs 2019; 17:E424. [PMID: 31330853 PMCID: PMC6669461 DOI: 10.3390/md17070424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/11/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022] Open
Abstract
Stem cell activities in human tissues are critical for tissue integrity and function. Maintaining keratinocyte stem cells (KSCs) stemness helps sustain healthy skin by supporting keratinocyte renewal, involving the formation of epidermal barriers. In this study, abalone collagen (AC) extracts with molecular weights of 3 kDa (AC 1) and 300 kDa (AC 2) were compared to the epidermal growth factor (EGF) for their effects on cell proliferation, cell migration (wound healing), spheroid formation, and the expression level of stem cell markers on human keratinocytes (HaCaT cells). Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and cell proliferation was quantified by ATP and DNA content analysis and Sulforhodamine B (SRB) assays. Cell migration assay was determined using the scratch wound healing test. Spheroid formation was evaluated and the expression level of stem cell markers was investigated by western blot analysis. The results showed that AC 1 at the concentration of 100 µg/mL could stimulate HaCaT cell proliferation, migration, spheroid formation, and the expression level of stem cell markers (keratin 19, β-catenin, ALDH1A1) compared to the control. In conclusion, a smaller molecular weight of abalone collagen extract exhibits a better effect on keratinocytes proliferation, migration, and stemness, which could be a potential active ingredient in cosmeceutical products.
Collapse
Affiliation(s)
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sagaw Prateepchinda
- Nation Nanotechnology Center, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Mattaka Khongkow
- Nation Nanotechnology Center, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Apirada Sucontphunt
- The Herbal Medicinal Products Research and Development Center, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand.
| |
Collapse
|
35
|
Chen J, Cao W, Wei P, Li T, Weng W. Speciation transformation of arsenic in abalone viscera hydrolysate fraction: In vitro digestion and in vivo metabolism. Food Res Int 2019; 123:340-345. [PMID: 31284984 DOI: 10.1016/j.foodres.2019.04.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/18/2019] [Accepted: 04/27/2019] [Indexed: 10/26/2022]
Abstract
Speciation transformation of arsenic in the abalone viscera hydrolysate fraction (AVHF) was evaluated using in vitro and in vivo methods to determine its safety given that AVHF is rich in arsenic. The dimethylarsinic acid (DMA) proportion and some free amino acid contents increased, whereas arsenobetaine (AB) proportion decreased when AVHF was digested by pepsin. However, molecular weight distribution was unchanged, and no obvious changes were found in the intestinal medium. In the single-dose experiment, the AB concentration on the mouse plasma rapidly increased, which reached up to 12.53 ng/mL in 2 h after the administration of AVHF (10 g/kg body weight) and reduced to half of the maximum at 8 h after administration. Furthermore, alanine (Ala) content in the urine of mice increased at 8 h after AVHF administration, suggesting that Ala might be chelated with arsenic and could not be absorbed well. Long-term experiments showed that AB was not accumulated in mice tissue/organ. However, some AB could be converted into DMA, which was mainly accumulated in mice hair. The in vivo experiments also suggested that the AVHF is safe as health food.
Collapse
Affiliation(s)
- Jun Chen
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen 361021, China
| | - Wenqi Cao
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Peixiao Wei
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Ting Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Wuyin Weng
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen 361021, China.
| |
Collapse
|
36
|
Synthesis, in vitro and cellular antioxidant activity evaluation of novel peptides derived from Saccharomyces cerevisiae protein hydrolysate: structure-function relationship : Antioxidant activity and synthetic peptides. Amino Acids 2019; 51:1167-1175. [PMID: 31209576 DOI: 10.1007/s00726-019-02752-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/07/2019] [Indexed: 01/29/2023]
Abstract
The relationship between structure and function of primary antioxidant peptide, YR-10 (YGKPVAVPAR) was considered by synthesizing three analogues including YHR-10 (YGKHVAVHAR), GA-8 (GKPVAVPA) and PAR-3 (PAR). Antioxidant activity was determined through in vitro and cellular assays. Substitution of Pro with His in the structure of YR-10 led to significant (P < 0.05) higher ABTS radical scavenging and ferric reducing activity. Following in silico simulated gastrointestinal digestion, Tyr and Arg were omitted, respectively, from N and C-terminal positions and resulted in decreasing DPPH, ABTS radical scavenging, and ferric reducing activities. PAR-3 showed the best inhibitory activity on linoleic acid oxidation. Pretreatment of Caco-2 cells with YR-10, YHR-10, and GA-8 (1000 µM) before exposure to H2O2 (160 µM) resulted in 34.10%, 39.66% and 29.159% reduction in malondialdehyde and 53.52%, 17.02% and 24.71% reduction in protein carbonyl levels. The peptide pretreatment reduced catalase level in cells and PAR-3 exhibited the most protective effects on the viability of cells exposed to oxidative stress.
Collapse
|
37
|
Jian W, Ma Y, Wu H, Zhu X, Wang J, Xiong H, Lin L, Wu L. Fabrication of highly stable silver nanoparticles using polysaccharide-protein complexes from abalone viscera and antibacterial activity evaluation. Int J Biol Macromol 2019; 128:839-847. [DOI: 10.1016/j.ijbiomac.2019.01.197] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 02/04/2023]
|
38
|
Hao G, Cao W, Li T, Chen J, Zhang J, Weng W, Osako K, Ren H. Effect of temperature on chemical properties and antioxidant activities of abalone viscera subcritical water extract. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Antioxidant Activities of Hydrolysates from Abalone Viscera Using Subcritical Water-Assisted Enzymatic Hydrolysis. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02270-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
40
|
Gómez LJ, Gómez NA, Zapata JE, López-García G, Cilla A, Alegría A. In-vitro antioxidant capacity and cytoprotective/cytotoxic effects upon Caco-2 cells of red tilapia (Oreochromis spp.) viscera hydrolysates. Food Res Int 2019; 120:52-61. [PMID: 31000267 DOI: 10.1016/j.foodres.2019.02.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/21/2019] [Accepted: 02/17/2019] [Indexed: 02/04/2023]
Abstract
The antioxidant capacity of red tilapia viscera hydrolysates (RTVH) with different degrees of hydrolysis (DH) as well as their ultrafiltration membrane fractions, were analyzed using different chemical assays. Their protective effects against oxidative stress were evaluated using H2O2-stressed human intestinal differentiated Caco-2. The highest antioxidant capacity was obtained with a DH of 42.5% (RTVH-A) and its <1 kDa fraction (FRTVH-V). RTVH-A and FRTVH-V did not show cytotoxic effects at a concentration of ≤0.5 mg/mL,prevented the decrease in cell viability, and suppressed intracellular reactive oxygen species (ROS) accumulation induced by H2O2. However, pretreatment with RTVH-A after adding H2O2, showed a greater decrease in glutathione levels. Moreover, FRTVH-V allowed for a recovery close to that of control levels of cell proportions in the G1 and G2/M cell cycle phases; and a decrease in the cell proportion in late apoptosis. These results suggest that RTVH-A and FRTVH-V can be beneficial ingredients with antioxidant properties and can have protective effects against ROS-mediated intestinal injuries.
Collapse
Affiliation(s)
- Leidy J Gómez
- Department of Food, Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellin 050010, Colombia.
| | - Nathalia A Gómez
- Department of Food, Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellin 050010, Colombia
| | - José E Zapata
- Department of Food, Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellin 050010, Colombia.
| | - Gabriel López-García
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, Burjassot, Valencia 46100, Spain.
| | - Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, Burjassot, Valencia 46100, Spain.
| | - Amparo Alegría
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, Burjassot, Valencia 46100, Spain.
| |
Collapse
|
41
|
Nwachukwu ID, Aluko RE. Structural and functional properties of food protein-derived antioxidant peptides. J Food Biochem 2019; 43:e12761. [PMID: 31353492 DOI: 10.1111/jfbc.12761] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 01/14/2023]
Abstract
The aim of this work is to provide a timely examination of the structure-activity relationship of antioxidative peptides. The main production approach involves enzymatic hydrolysis of animal and plant proteins to produce protein hydrolyzates, which can be further processed by membrane ultrafiltration into size-based peptide fractions. The hydrolyzates and peptide fractions can also be subjected to separation by column chromatography to obtain pure peptides. Although the structural basis for enhanced antioxidant activity varies, protein hydrolyzates and peptide fractions that contain largely low molecular weight peptides have generally been shown to be potent antioxidants. In addition to having hydrophobic amino acids such as Leu or Val in their N-terminal regions, protein hydrolyzates, and peptides containing the nucleophilic sulfur-containing amino acid residues (Cys and Met), aromatic amino acid residues (Phe, Trp, and Tyr) and/or the imidazole ring-containing His have been generally found to possess strong antioxidant properties. PRACTICAL APPLICATIONS: High levels of reactive oxygen species (ROS) in addition to the presence of metal cations can lead to oxidative stress, which promotes reactions that cause destruction of critical cellular biopolymers, such as proteins, lipids, and nucleic acids. Oxidative stress could be due to insufficient levels of natural cellular antioxidants, which enables accumulation of ROS to toxic levels. A proposed approach to ameliorating oxidative stress is the provision of exogenous peptides that can be consumed to complement cellular antioxidants. Food protein-derived peptides consist of amino acids joined by peptides bonds just like glutathione, a very powerful natural cellular antioxidant. Therefore, this review provides a timely summary of the in vitro and in vivo reactions impacted by antioxidant peptides and the postulated mechanisms of action, which could aid development of potent antioxidant agents. The review also serves as a resource material for identifying novel antioxidant peptide sources for the formulation of functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Ifeanyi D Nwachukwu
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada.,Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
42
|
Weng W, Li J, Li T, Ye Y. Antioxidant Properties and Arsenic Speciation of Ultrafiltration and Nanofiltration Derived Abalone Viscera Hydrolysate Fraction. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2019. [DOI: 10.1080/10498850.2018.1561570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Wuyin Weng
- College of Food and Biological Engineering, Jimei University, Xiamen, China
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Xiamen, China
| | - Jieyu Li
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Ting Li
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Yanjun Ye
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| |
Collapse
|
43
|
Xu Z, Zhao F, Chen H, Xu S, Fan F, Shi P, Tu M, Wang Z, Du M. Nutritional properties and osteogenic activity of enzymatic hydrolysates of proteins from the blue mussel (Mytilus edulis). Food Funct 2019; 10:7745-7754. [DOI: 10.1039/c9fo01656b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Seafood provides a range of health benefits due to its nutritional and bioactive components. The proteins and peptides from Mytilus edulis have good bone growth promoting activities.
Collapse
Affiliation(s)
- Zhe Xu
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian, 116034
- China
| | - Fujunzhu Zhao
- Food Science Department
- College of Agriculture Science
- Pennsylvania State University, Commonwealth of Pennsylvania
- PA 16802
- United States
| | - Hui Chen
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian, 116034
- China
| | - Shiqi Xu
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian, 116034
- China
| | - Fengjiao Fan
- College of Food Science and Engineering
- Nanjing University of Finance and Economics
- Nanjing
- China
| | - Pujie Shi
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian, 116034
- China
| | - Maolin Tu
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian, 116034
- China
| | - Ziye Wang
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian, 116034
- China
| | - Ming Du
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian, 116034
- China
| |
Collapse
|
44
|
Han EJ, Um JH, Kim EA, Lee W, Kang N, Oh JY, Park SY, Jeon YJ, Ahn CB, Lee SH, Ahn G. Protective Effects of An Water Extracts Prepared from Loliolus beka Gray Meat Against H 2O 2-Induced Oxidative Stress in Chang Liver Cells and Zebrafish Embryo Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 1:585-601. [PMID: 28849484 DOI: 10.1007/978-94-024-1079-2_46] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, we first evaluated protective effects of Loliolus beka in a human liver cell line and zebrafish embryo model with its anti-oxidant activity. First, we prepared the water extract from L. beka meat (LBMW) at room temperature for 24 h and revealed it consisted of a rich taurine. LBMW exhibited the scavenging effects against 2,2-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals and hydrogen peroxide (H2O2) as well as the high value of oxygen radical absorbance capacity (ORAC). Also, the hydroxyl radical-induced DNA damage was dose-dependently reduced by the treatment of LBMW. In addition, LBMW showed no cytotoxicity and reduced the production of reactive oxygen species (ROS) in H2O2-treated hepatocytes. Moreover, LBMW regulated the expression of an anti-apoptotic molecule, Bcl-2 and the expression of pro-apoptotic molecules, Bax and PARP in H2O2-treated hepatocytes as well as the increment of antioxidant mediated-HO-1 and Nrf2 protein expression. In further study, LBMW improved the survival rate and decreased the production of ROS in H2O2-treated zebrafish embryo model. Therefore, our results suggest that Loliolus beka has protective effects against H2O2-induced oxidative stress and may be used as a potential source for functional foods.
Collapse
Affiliation(s)
- Eui Jeong Han
- Deparment of Food Technology and Nutrition, Chonnam National University, Yeosu, Republic of Korea
| | - Ju Hyung Um
- Deparment of Food Technology and Nutrition, Chonnam National University, Yeosu, Republic of Korea
| | - Eun A Kim
- Jeju International Marine Science Center for Research and Education, Korea Institute of Ocean Science & Technology (KIOST), Jeju, Republic of Korea
| | - WonWoo Lee
- Department of Marine Life Science, Jeju National University, Jeju, Republic of Korea
| | - Nalae Kang
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, Republic of Korea
| | - Jae Young Oh
- Department of Marine Life Science, Jeju National University, Jeju, Republic of Korea
| | - Soo Yeon Park
- Deparment of Food Technology and Nutrition, Chonnam National University, Yeosu, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju, Republic of Korea
| | - Chang-Bum Ahn
- Deparment of Food Technology and Nutrition, Chonnam National University, Yeosu, Republic of Korea
- Division of Food and Nutrition, Chonnam National University, Gwang ju, Republic of Korea
| | - Seung Hong Lee
- Division of Food Bioscience and Korea Nokyong Research Center, Konkuk University, Chungju, Republic of Korea
| | - Ginnae Ahn
- Deparment of Food Technology and Nutrition, Chonnam National University, Yeosu, Republic of Korea.
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, Republic of Korea.
| |
Collapse
|
45
|
Zhang Q, Tong X, Sui X, Wang Z, Qi B, Li Y, Jiang L. Antioxidant activity and protective effects of Alcalase-hydrolyzed soybean hydrolysate in human intestinal epithelial Caco-2 cells. Food Res Int 2018; 111:256-264. [DOI: 10.1016/j.foodres.2018.05.046] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 01/10/2023]
|
46
|
da Rocha M, Alemán A, Romani VP, López-Caballero ME, Gómez-Guillén MC, Montero P, Prentice C. Effects of agar films incorporated with fish protein hydrolysate or clove essential oil on flounder (Paralichthys orbignyanus) fillets shelf-life. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.03.017] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Doh HS, Park HJ. Speciation of Bio-Available Iodine in Abalone (Haliotis discus hannai) by High-Performance Liquid Chromatography Hyphenated with Inductively Coupled Plasma-Mass Spectrometry Using an In Vitro Method. J Food Sci 2018; 83:1579-1587. [PMID: 29786855 DOI: 10.1111/1750-3841.14173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 04/02/2018] [Accepted: 04/04/2018] [Indexed: 11/26/2022]
Abstract
Abalone is one of the most valuable marine products found in East Asia because it is rich in nutritious substances including iodine. In this study, the in vitro dialyzability approach was used to assess the bio-available iodine species in abalone. Iodide, iodate, 3-iodo-L-tyrosine (MIT), and 3,5-diiodo-L-tyrosine (DIT) were separated by high-performance liquid chromatography hyphenated with inductively coupled plasma-mass spectrometry (HPLC-ICP-MS). To assure the consistency, reliability, and accuracy of the data, the method was validated. Comparison of the total iodine in abalone muscle and viscera indicated that abalone muscle showed greater digestion/absorption efficiency than abalone viscera (digestion efficiency: 68.13 ± 2.59% and 47.88 ± 5.76% and absorption efficiency: 59.78 ± 2.93% and 35.12 ± 1.43% for abalone viscera and muscle, respectively). However, evaluation of the sum of the analyzed iodine species targeted in this study by HPLC-ICP-MS indicated that abalone muscle showed lower digestion efficiency and similar absorption efficiency compared to that of abalone viscera (digestion efficiency: 35.52 ± 5.41% and 28.84 ± 1.83%; absorption efficiency: 23.56 ± 4.38% and 27.56 ± 1.51% for abalone viscera and muscle, respectively). The main forms of iodine detected in abalone muscle were iodide and MIT, whereas iodide was the major form in abalone viscera. PRACTICAL APPLICATION The bio-available iodine in abalone was quantified via an in vitro method employing HPLC-ICP-MS. The results of this study indicated that abalone is feasible as a new iodine source and may prospectively find application in iodine-fortified foods.
Collapse
Affiliation(s)
- Han Sol Doh
- Dept. of Biotechnology, College of Life Science and Biotechnology, Korea Univ., Anam-dong, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hyun Jin Park
- Dept. of Biotechnology, College of Life Science and Biotechnology, Korea Univ., Anam-dong, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
48
|
Ghelichi S, Shabanpour B, Pourashouri P, Hajfathalian M, Jacobsen C. Extraction of unsaturated fatty acid-rich oil from common carp (Cyprinus carpio) roe and production of defatted roe hydrolysates with functional, antioxidant, and antibacterial properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:1407-1415. [PMID: 28771748 DOI: 10.1002/jsfa.8608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/21/2017] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Common carp roe is a rich protein and oil source, which is usually discarded with no specific use. The aims of this study were to extract oil from the discarded roe and examine functional, antioxidant, and antibacterial properties of defatted roe hydrolysates (CDRHs) at various degrees of hydrolysis (DH). RESULTS Gas chromatography of fatty acid methyl esters revealed that common carp roe oil contained high levels of unsaturated fatty acids. The results of high-performance liquid chromatography-mass spectrometry indicated that enzymatic hydrolysis of defatted roe yielded higher content of essential amino acids. CDRHs displayed higher solubility than untreated defatted roe, which increased with DH. Better emulsifying and foaming properties were observed at lower DH and non-isoelectric points. Furthermore, water and oil binding capacity decreased with DH. CDRHs exhibited antioxidant activity both in vitro and in 5% roe oil-in-water emulsions and inhibited the growth of certain bacterial strains. CONCLUSION Common carp roe could be a promising source of unsaturated fatty acids and functional bioactive agents. Unsaturated fatty acid-rich oil extracted from common carp roe can be delivered into food systems by roe oil-in-water emulsions fortified by functional, antioxidant, and antibacterial hydrolysates from the defatted roe. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sakhi Ghelichi
- Department of Seafood Science and Technology, Faculty of Fisheries and Environmental Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Bahareh Shabanpour
- Department of Seafood Science and Technology, Faculty of Fisheries and Environmental Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Parastoo Pourashouri
- Department of Seafood Science and Technology, Faculty of Fisheries and Environmental Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mona Hajfathalian
- Division of Food Technology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Charlotte Jacobsen
- Division of Food Technology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
49
|
Hyung JH, Ahn CB, Je JY. Blue mussel (Mytilus edulis) protein hydrolysate promotes mouse mesenchymal stem cell differentiation into osteoblasts through up-regulation of bone morphogenetic protein. Food Chem 2018; 242:156-161. [DOI: 10.1016/j.foodchem.2017.09.043] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/29/2017] [Accepted: 09/08/2017] [Indexed: 12/11/2022]
|
50
|
In vitro anti-thrombotic and anti-coagulant properties of blacklip abalone (Haliotis rubra) viscera hydrolysate. Anal Bioanal Chem 2017; 409:4195-4205. [PMID: 28493022 DOI: 10.1007/s00216-017-0367-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/29/2017] [Accepted: 04/18/2017] [Indexed: 01/11/2023]
Abstract
Abalone viscera contain sulphated polysaccharides with anti-thrombotic and anti-coagulant activities. In this study, a hydrolysate was prepared from blacklip abalone (Haliotis rubra) viscera using papain and bromelain and fractionated using ion exchange and size exclusion chromatography. Hydrolysates and fractions were investigated for in vitro thrombin inhibition mediated through heparin cofactor II (HCII) as well as anti-coagulant activity in plasma and whole blood. On the basis of sulphated polysaccharide concentration, the hydrolysate inhibited thrombin through HCII with an inhibitor concentration at 50% (IC50) of 16.5 μg/mL compared with 2.1 μg/mL for standard heparin. Fractionation concentrated HCII-mediated thrombin inhibition down to an IC50 of 1.8 μg/mL and improved anti-coagulant activities by significantly delaying clotting time. This study confirmed the presence of anti-thrombotic and anti-coagulant molecules in blacklip abalone viscera and demonstrated that these activities can be enriched with a simple chromatography regime. Blacklip abalone viscera warrant further investigation as a source of nutraceutical or functional food ingredients. Graphical abstract Schematic showing preparation of bioactive extracts and fractions from blacklip abalone.
Collapse
|