1
|
Ullah Z, Yue P, Mao G, Zhang M, Liu P, Wu X, Zhao T, Yang L. A comprehensive review on recent xanthine oxidase inhibitors of dietary based bioactive substances for the treatment of hyperuricemia and gout: Molecular mechanisms and perspective. Int J Biol Macromol 2024; 278:134832. [PMID: 39168219 DOI: 10.1016/j.ijbiomac.2024.134832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
Hyperuricemia (HUA) has attained a considerable global health concern, related to the development of other metabolic syndromes. Xanthine oxidase (XO), the main enzyme that catalyzes xanthine and hypoxanthine into uric acid (UA), is a key target for drug development against HUA and gout. Available XO inhibitors are effective, but they come with side effects. Recent, research has identified new XO inhibitors from dietary sources such as flavonoids, phenolic acids, stilbenes, alkaloids, polysaccharides, and polypeptides, effectively reducing UA levels. Structural activity studies revealed that -OH groups and their substitutions on the benzene ring of flavonoids, polyphenols, and stilbenes, cyclic rings in alkaloids, and the helical structure of polysaccharides are crucial for XO inhibition. Polypeptide molecular weight, amino acid sequence, hydrophobicity, and binding mode, also play a significant role in XO inhibition. Molecular docking studies show these bioactive components prevent UA formation by interacting with XO substrates via hydrophobic, hydrogen bonds, and π-π interactions. This review explores the potential bioactive substances from dietary resources with XO inhibitory, and UA lowering potentials detailing the molecular mechanisms involved. It also discusses strategies for designing XO inhibitors and assisting pharmaceutical companies in developing safe and effective treatments for HUA and gout.
Collapse
Affiliation(s)
- Zain Ullah
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China
| | - Panpan Yue
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China
| | - Guanghua Mao
- School of the Environment and Safety Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Min Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China
| | - Peng Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China
| | - Xiangyang Wu
- School of the Environment and Safety Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China.
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Yao Y, Wu T, Zhang M, Fu D, Yang H, Chen S. An Improved Test Method for Assaying the Inhibition of Bioflavonoids on Xanthine Oxidase Activity in vitro. ChemistryOpen 2024:e202400127. [PMID: 39246250 DOI: 10.1002/open.202400127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/27/2024] [Indexed: 09/10/2024] Open
Abstract
The difference on inhibitory effects of bioflavonoids inhibiting XOD activity assayed by varying test methods cause of us to be further in consideration. The reported test method creating a micro-environment surrounding XOD in the absence of ⋅O2 -, which is seemly different from the assay in vivo. So, the vitro test method for assaying XOD activity is necessary to be improved for selection of potential inhibitors in the presence of ⋅O2 -. The inhibitory results demonstrated that bioflavonoids of MY, DMY, QUE and LUT are capable to be on effective IC50 values, but others are not. As well, their resulting inhibitions determined by the improved test method are much less than that reported in the literature, indicating that their chemical affinities with XOD become weaker. Moreover, DMY assayed on the inhibitions of XOD in the improved test method performs to be a better inhibitor, as compared to the assay of the reported test methods. Abasing on the transformation of DMY into MY in the presence of ⋅O2 -, the good inhibition of DMY on XOD activity can be explained by the synergistic effect of MY.
Collapse
Affiliation(s)
- Yuanyong Yao
- State Ethnic Affairs Commission Key Development Laboratory of Chinese Veterinary Medicine & National and Local Joint Engineering Center of Chinese Veterinary Medicine Separation and Purification Technology, Tongren Vocational and Technical University, Tongren, 554300, China
- Institute of Material and Chemical Engineering, Tongren University, Tongren, 554300, China
| | - Tao Wu
- Institute of Material and Chemical Engineering, Tongren University, Tongren, 554300, China
| | - Meng Zhang
- Institute of Material and Chemical Engineering, Tongren University, Tongren, 554300, China
| | - Daihua Fu
- Institute of Material and Chemical Engineering, Tongren University, Tongren, 554300, China
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan University, Kunming, 650091, China
| | - Hai Yang
- Institute of Material and Chemical Engineering, Tongren University, Tongren, 554300, China
| | - Shixue Chen
- Institute of Material and Chemical Engineering, Tongren University, Tongren, 554300, China
| |
Collapse
|
3
|
Elangovan B. A review on pharmacological studies of natural flavanone: pinobanksin. 3 Biotech 2024; 14:111. [PMID: 38496708 PMCID: PMC10937894 DOI: 10.1007/s13205-023-03904-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/18/2023] [Indexed: 03/19/2024] Open
Abstract
Herbal medicinal drugs, or phytotherapy, have historically played a pivotal role in treating human ailments. In the contemporary medical landscape, there is a burgeoning interest in natural products owing to their diverse and health-beneficial components. Among these, bioactive phytochemicals represent a dynamic area of global research. This study focuses on pinobanksin, a potential polyphenolic component identified through meticulous scientific research and purified using advanced chromatographic techniques from various sources, including plants, propolis, and honey. Pinobanksin has emerged as a compelling subject of investigation, exhibiting a spectrum of pharmacological effects. Scientific studies have unveiled its prowess as an anti-oxidant, anti-bacterial, anti-inflammatory, anti-parasitic, anti-mutagenic, anti-proliferative, and anti-angiogenic agent. This literature review systematically synthesizes the existing body of research on pinobanksin, providing a comprehensive overview of its diverse pharmacological activities. In light of its multifaceted pharmacological profile, pinobanksin stands out as a promising scaffold for future drug discovery endeavors. This review not only consolidates the current understanding of pinobanksin's bioactivities but also underscores its potential as a valuable candidate for advancing therapeutic interventions.
Collapse
Affiliation(s)
- Brindha Elangovan
- St. Justin Arts and Science College for Women, NH-226, Masathiyar Nagar, Sholavaram, Sivaganga, Tamil Nadu 630 557 India
| |
Collapse
|
4
|
Gong P, Long H, Guo Y, Wang Z, Yao W, Wang J, Yang W, Li N, Xie J, Chen F. Chinese herbal medicines: The modulator of nonalcoholic fatty liver disease targeting oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116927. [PMID: 37532073 DOI: 10.1016/j.jep.2023.116927] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plants are a natural treasure trove; their secondary metabolites participate in several pharmacological processes, making them a crucial component in the synthesis of novel pharmaceuticals and serving as a reserve resource foundation in this process. Nonalcoholic fatty liver disease (NAFLD) is associated with the risk of progression to hepatitis and liver cancer. The "Treatise on Febrile Diseases," "Compendium of Materia Medica," and "Thousand Golden Prescriptions" have listed herbal remedies to treat liver diseases. AIM OF THE REVIEW Chinese herbal medicines have been widely used for the prevention and treatment of NAFLD owing to their efficacy and low side effects. The production of reactive oxygen species (ROS) during NAFLD, and the impact and potential mechanism of ROS on the pathogenesis of NAFLD are discussed in this review. Furthermore, common foods and herbs that can be used to prevent NAFLD, as well as the structure-activity relationships and potential mechanisms, are discussed. METHODS Web of Science, PubMed, CNKI database, Google Scholar, and WanFang database were searched for natural products that have been used to treat or prevent NAFLD in the past five years. The primary search was performed using the following keywords in different combinations in full articles: NAFLD, herb, natural products, medicine, and ROS. More than 400 research papers and review articles were found and analyzed in this review. RESULTS By classifying and discussing the literature, we obtained 86 herbaceous plants, 28 of which were derived from food and 58 from Chinese herbal medicines. The mechanism of NAFLD was proposed through experimental studies on thirteen natural compounds (quercetin, hesperidin, rutin, curcumin, resveratrol, epigallocatechin-3-gallate, salvianolic acid B, paeoniflorin, ginsenoside Rg1, ursolic acid, berberine, honokiol, emodin). The occurrence and progression of NAFLD could be prevented by natural antioxidants through several pathways to prevent ROS accumulation and reduce hepatic cell injuries caused by excessive ROS. CONCLUSION This review summarizes the natural products and routinely used herbs (prescription) in the prevention and treatment of NAFLD. Firstly, the mechanisms by which natural products improve NAFLD through antioxidant pathways are elucidated. Secondly, the potential of traditional Chinese medicine theory in improving NAFLD is discussed, highlighting the safety of food-medicine homology and the broader clinical potential of multi-component formulations in improving NAFLD. Aiming to provide theoretical basis for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Pin Gong
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Hui Long
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yuxi Guo
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Zhineng Wang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenbo Yao
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jing Wang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenjuan Yang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Nan Li
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jianwu Xie
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China.
| |
Collapse
|
5
|
Chen J, Yu S, He Z, Zhu D, Cai X, Ruan Z, Jin N. Inhibition of Xanthine Oxidase by 4-nitrocinnamic Acid: In Vitro and In Vivo Investigations and Docking Simulations. Curr Pharm Biotechnol 2024; 25:477-487. [PMID: 37345239 DOI: 10.2174/1389201024666230621141014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/23/2023]
Abstract
Background: Cinnamic acid and its derivatives have gained significant attention in recent medicinal research due to their broad spectrum of pharmacological properties. However, the effects of these compounds on xanthine oxidase (XO) have not been systematically investigated, and the inhibitory mechanism remains unclear. Objectives: The objective of this study was to screen 18 compounds and identify the XO inhibitor with the strongest inhibitory effect. Furthermore, we aimed to study the inhibitory mechanism of the identified compound. Methods: The effects of the inhibitors on XO were evaluated using kinetic analysis, docking simulations, and in vivo study. Among the compounds tested, 4-NA was discovered as the first XO inhibitor and exhibited the most potent inhibitory effects, with an IC50 value of 23.02 ± 0.12 μmol/L. The presence of the nitro group in 4-NA was found to be essential for enhancing XO inhibition. The kinetic study revealed that 4-NA inhibited XO in a reversible and noncompetitive manner. Moreover, fluorescence spectra analysis demonstrated that 4-NA could spontaneously form complexes with XO, referred to as 4-NA-XO complexes, with the negative values of △H and ΔS. Results: This suggests that hydrogen bonds and van der Waals forces play crucial roles in the binding process. Molecular docking studies further supported the kinetic analysis and provided insight into the optimal binding conformation, indicating that 4-NA is located at the bottom outside the catalytic center through the formation of three hydrogen bonds. Furthermore, animal studies confirmed that the inhibitory effects of 4-NA on XO resulted in a significant reduction of serum uric acid level in hyperuricemia mice. Conclusion: This work elucidates the mechanism of 4-NA inhibiting XO, paving the way for the development of new XO inhibitors. .
Collapse
Affiliation(s)
- Jianmin Chen
- School of Pharmacy and Medical Technology, Putian University, Fujian, China
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Fujian, China
| | - Sijin Yu
- School of Pharmacy and Medical Technology, Putian University, Fujian, China
| | - Zemin He
- School of Pharmacy and Medical Technology, Putian University, Fujian, China
| | - Danhong Zhu
- School of Pharmacy and Medical Technology, Putian University, Fujian, China
| | - Xiaozhen Cai
- School of Pharmacy and Medical Technology, Putian University, Fujian, China
| | - Zhipeng Ruan
- School of Pharmacy and Medical Technology, Putian University, Fujian, China
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Fujian, China
| | - Nan Jin
- School of Pharmacy and Medical Technology, Putian University, Fujian, China
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Fujian, China
| |
Collapse
|
6
|
Medjahed Z, Chaher-Bazizi N, Atmani-Kilani D, Ahmane N, Ruiz-Larrea MB, Sanz JIR, Charid I, Amant F, Fonayet JV, Saidene N, Atmani D, Richard T. A novel flavonol glycoside and six derivatives of quercetin and kaempferol from Clematis flammula with antioxidant and anticancer potentials. Fitoterapia 2023; 170:105642. [PMID: 37567483 DOI: 10.1016/j.fitote.2023.105642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Clematis flammula leaves are traditionally used in Algeria to treat rheumatoid arthritis. Our aim was to identify the main compounds in this plant in order to characterize its antioxidant and anticancer activities. A new flavonol compound, kaempferol 3-O-[(6-O- caffeoyl)- glucosyl(1 → 2)]-(6-Ocaffeoyl) glucoside-7-O-rhamnoside (6) along with six known flavonol molecules were isolated from an ethanolic extract of Clematis flammula leaves. The chemical structures of these flavonols were elucidated using NMR and high resolution-MS spectroscopies. Antioxidant activities of the extract were revealed through its elimination of superoxide radical (O2.-) produced enzymatically (49.7 ± 1.52% at 50 μg/ml) and non-enzymatically (34 ± 1.2% at 100 μg/ml), probably related to its inhibition of the xanthine oxidase form of the xanthine oxidoreductase (XOR) enzyme (25.05 ± 2.33 μg/mL at 100 μg/mL), but mostly to that of the NADH oxidase form of the enzyme (69.16 ± 4.0%). Cytotoxicity tests of the extract on human hepatoma cell line HepG2 and ovarian cancer cell lines A2780 and OVCAR3 were promising especially regarding A2780 cell line (IC50: 77.0 μg/mL), which was comparable to taxol (IC50:76.9 μg/mL).
Collapse
Affiliation(s)
- Zineb Medjahed
- Laboratoire de Toxicologie Moléculaire, Faculté des Sciences de la Nature et de la Vie, Université de Jijel, 18000 Jijel, Algérie
| | - Nassima Chaher-Bazizi
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algérie
| | - Dina Atmani-Kilani
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algérie.
| | - Nadjia Ahmane
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algérie
| | - Marie Begoña Ruiz-Larrea
- Department of Physiology, Medicine and Nursery School, University of the Basque Country, Leioa, Spain
| | - José Ignacio Ruiz Sanz
- Department of Physiology, Medicine and Nursery School, University of the Basque Country, Leioa, Spain
| | - Imane Charid
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algérie
| | - Frédéric Amant
- Department of Oncology, Gynecologic Oncology, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Josep Valls Fonayet
- Univ. Bordeaux, Bordeaux INP, INRAE, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France
| | - Naima Saidene
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algérie
| | - Djebbar Atmani
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algérie
| | - Tristan Richard
- Univ. Bordeaux, Bordeaux INP, INRAE, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France
| |
Collapse
|
7
|
Hu Q, Ji J, Xu D, Ye Y, Sun J, Sheng L, Zhang Y, Sun X. Isolation and characterization of uric acid-lowering functional components from Polygonum cuspidatum. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2022.102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
8
|
Li G, Zhao Y, Qin Z, Wei S, Liang D, Liang Y, Song W, Ding B. Mechanistic Understanding of Tyrosinase Inhibition by Polymeric Proanthocyanidins from Acacia confusa Stem Bark and Their Effect on the Browning Resistance of Fresh-Cut Asparagus Lettuce. Molecules 2023; 28:3435. [PMID: 37110667 PMCID: PMC10143530 DOI: 10.3390/molecules28083435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Tyrosinase inhibitors are capable of preventing unfavorable enzymatic browning of fruits and vegetables. In this study, the capacity of Acacia confusa stem bark proanthocyanidins (ASBPs) to inhibit tyrosinase activity was evaluated. ASBPs were shown to be a high-potential inhibitor of tyrosinase with IC50 values of 92.49 ± 4.70 and 61.74 ± 8.93 μg/mL when using L-tyrosine and L-DOPA as the substrate, respectively. The structural elucidation performed with UV-vis, FT-IR spectroscopy, ESI-MS and thiolysis coupled to HPLC-ESI-MS suggested that ASBPs had structural heterogeneity in monomer units and interflavan linkages and consisted mainly of procyanidins dominant with B-type linkages. To gain insights into the inhibitory mechanisms of ASBPs against tyrosinase, different spectroscopic and molecular docking methods were further conducted. Results validated that ASBPs possessed the ability to chelate copper ions and could prevent the oxidation process of substrates by tyrosinase. The hydrogen bond formed with Lys-376 residue played a key role in the binding force of ASBPs with tyrosinase that induced a certain alteration in the microenvironment and secondary structure of tyrosinase, resulting in the enzymatic activity being ultimately restricted. It was also observed that ASBPs treatment effectively inhibited the activities of PPO and POD to retard the surface browning of fresh-cut asparagus lettuce and thus extended their shelf-life. The results provided preliminary evidence supporting the exploitation of ASBPs into potential antibrowning agents for the fresh-cut food industry.
Collapse
Affiliation(s)
- Guanghui Li
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Yaying Zhao
- College of Life Science, Yangtze University, Jingzhou 434025, China
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Zeya Qin
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Shudong Wei
- College of Life Science, Yangtze University, Jingzhou 434025, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Dandan Liang
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Yun Liang
- College of Life Science, Yangtze University, Jingzhou 434025, China
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Wei Song
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Baomiao Ding
- College of Life Science, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
9
|
Li X, Liu S, Jin W, Zhang W, Zheng G. Identification of the Constituents of Ethyl Acetate Fraction from Smilax china L. and Determination of Xanthine Oxidase Inhibitory Properties. Int J Mol Sci 2023; 24:ijms24065158. [PMID: 36982233 PMCID: PMC10049564 DOI: 10.3390/ijms24065158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/30/2023] Open
Abstract
The aim of this work was to investigate the xanthine oxidase (XO)-inhibitory activity of ethanol extracts from Smilax china L. and to identify the active compounds in the ethyl acetate (EtOAc) fraction. Extraction of ethanol extracts from Smilax china L. and then ethanol extracts were concentrated, and the polyphenolic compounds were extracted with petroleum ether (PE), chloroform, EtOAc, n-butanol (n-BuOH), and residual ethanol fractions. Their effects on XO activity were then compared separately. The polyphenolic components of the EtOAc fraction were identified by HPLC and HPLC-mass spectrometry (HPLC-MS) analysis. Kinetic analysis demonstrated that all these extracts showed XO-inhibitory properties, and among them the EtOAc fraction had the strongest inhibitory effect (IC50 = 101.04 μg/mL). The inhibitory constant (Ki) of the EtOAc fraction on XO activity was 65.20 μg/mL, showing excellent inhibition on XO in the competitive mode. Sixteen compounds were identified from the EtOAc fraction. The study demonstrates that the EtOAc fraction of Smilax china L. may be a potential functional food to inhibit XO activity.
Collapse
Affiliation(s)
- Xin Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shanshan Liu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Weili Jin
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenkai Zhang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
10
|
Haguet Q, Le Joubioux F, Chavanelle V, Groult H, Schoonjans N, Langhi C, Michaux A, Otero YF, Boisseau N, Peltier SL, Sirvent P, Maugard T. Inhibitory Potential of α-Amylase, α-Glucosidase, and Pancreatic Lipase by a Formulation of Five Plant Extracts: TOTUM-63. Int J Mol Sci 2023; 24:3652. [PMID: 36835060 PMCID: PMC9966338 DOI: 10.3390/ijms24043652] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Controlling post-prandial hyperglycemia and hyperlipidemia, particularly by regulating the activity of digestive enzymes, allows managing type 2 diabetes and obesity. The aim of this study was to assess the effects of TOTUM-63, a formulation of five plant extracts (Olea europaea L., Cynara scolymus L., Chrysanthellum indicum subsp. afroamericanum B.L.Turner, Vaccinium myrtillus L., and Piper nigrum L.), on enzymes involved in carbohydrate and lipid absorption. First, in vitro inhibition assays were performed by targeting three enzymes: α-glucosidase, α-amylase, and lipase. Then, kinetic studies and binding affinity determinations by fluorescence spectrum changes and microscale thermophoresis were performed. The in vitro assays showed that TOTUM-63 inhibited all three digestive enzymes, particularly α-glucosidase (IC50 of 13.1 µg/mL). Mechanistic studies on α-glucosidase inhibition by TOTUM-63 and molecular interaction experiments indicated a mixed (full) inhibition mechanism, and higher affinity for α-glucosidase than acarbose, the reference α-glucosidase inhibitor. Lastly, in vivo data using leptin receptor-deficient (db/db) mice, a model of obesity and type 2 diabetes, indicated that TOTUM-63 might prevent the increase in fasting glycemia and glycated hemoglobin (HbA1c) levels over time, compared with the untreated group. These results show that TOTUM-63 is a promising new approach for type 2 diabetes management via α-glucosidase inhibition.
Collapse
Affiliation(s)
- Quentin Haguet
- UMR 7266 CNRS-ULR, LIENSs, Equipe BCBS, La Rochelle Université, Avenue Michel Crépeau, 17042 La Rochelle, France
| | | | - Vivien Chavanelle
- Valbiotis, R&D Center, 20-22 Rue Henri et Gilberte Goudier, 63200 Riom, France
| | - Hugo Groult
- UMR 7266 CNRS-ULR, LIENSs, Equipe BCBS, La Rochelle Université, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Nathan Schoonjans
- Valbiotis, R&D Center, 23 Avenue Albert Einstein, 17000 La Rochelle, France
| | - Cédric Langhi
- Valbiotis, R&D Center, 20-22 Rue Henri et Gilberte Goudier, 63200 Riom, France
| | - Arnaud Michaux
- Valbiotis, R&D Center, 20-22 Rue Henri et Gilberte Goudier, 63200 Riom, France
| | - Yolanda F. Otero
- Valbiotis, R&D Center, 20-22 Rue Henri et Gilberte Goudier, 63200 Riom, France
| | - Nathalie Boisseau
- AME2P, STAPS, Université Clermont Auvergne, 5 Impasse Amélie Murat, 63001 Clermont-Ferrand, France
| | | | - Pascal Sirvent
- Valbiotis, R&D Center, 20-22 Rue Henri et Gilberte Goudier, 63200 Riom, France
| | - Thierry Maugard
- UMR 7266 CNRS-ULR, LIENSs, Equipe BCBS, La Rochelle Université, Avenue Michel Crépeau, 17042 La Rochelle, France
| |
Collapse
|
11
|
Sui Y, Xu D, Sun X. Identification of anti-hyperuricemic components from Coix seed. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
12
|
Wan H, Zhou L, Wu B, Han W, Sui C, Wei J. Integrated metabolomics and transcriptomics analysis of roots of Bupleurum chinense and B. scorzonerifolium, two sources of medicinal Chaihu. Sci Rep 2022; 12:22335. [PMID: 36572795 PMCID: PMC9792521 DOI: 10.1038/s41598-022-27019-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Radix Bupleuri (Chaihu in Chinese) is a traditional Chinese medicine commonly used to treat colds and fevers. The root metabolome and transcriptome of two cultivars of B. chinense (BCYC and BCZC) and one of B. scorzonerifolium (BSHC) were determined and analyzed. Compared with BSHC, 135 and 194 differential metabolites were identified in BCYC and BCZC, respectively, which were mainly fatty acyls, organooxygen metabolites. A total of 163 differential metabolites were obtained between BCYC and BCZC, including phenolic acids and lipids. Compared with BSHC, 6557 and 5621 differential expression genes (DEGs) were found in BCYC and BSHC, respectively, which were annotated into biosynthesis of unsaturated fatty acid and fatty acid metabolism. A total of 4,880 DEGs existed between the two cultivars of B. chinense. The abundance of flavonoids in B. scorzonerifolium was higher than that of B. chinense, with the latter having higher saikosaponin A and saikosaponin D than the former. Pinobanksin was the most major flavonoid which differ between the two cultivars of B. chinense. The expression of chalcone synthase gene was dramatically differential, which had a positive correlation with the biosynthesis of pinobanksin. The present study laid a foundation for further research on biosynthesis of flavonoids and terpenoids of Bupleurum L.
Collapse
Affiliation(s)
- Hefang Wan
- grid.506261.60000 0001 0706 7839Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials), Beijing, 100193 China
| | - Lei Zhou
- grid.506261.60000 0001 0706 7839Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials), Beijing, 100193 China
| | - Bin Wu
- grid.506261.60000 0001 0706 7839Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials), Beijing, 100193 China
| | - Wenjing Han
- grid.506261.60000 0001 0706 7839Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials), Beijing, 100193 China
| | - Chun Sui
- grid.506261.60000 0001 0706 7839Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials), Beijing, 100193 China
| | - Jianhe Wei
- grid.506261.60000 0001 0706 7839Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials), Beijing, 100193 China
| |
Collapse
|
13
|
Crosstalk between xanthine oxidase (XO) inhibiting and cancer chemotherapeutic properties of comestible flavonoids- a comprehensive update. J Nutr Biochem 2022; 110:109147. [PMID: 36049673 DOI: 10.1016/j.jnutbio.2022.109147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/17/2021] [Accepted: 08/10/2022] [Indexed: 01/13/2023]
Abstract
Gout is an inflammatory disease caused by metabolic disorder or genetic inheritance. People throughout the world are strongly dependent on ethnomedicine for the treatment of gout and some receive satisfactory curative treatment. The natural remedies as well as established drugs derived from natural sources or synthetically made exert their action by mechanisms that are closely associated with anticancer treatment mechanisms regarding inhibition of xanthine oxidase, feedback inhibition of de novo purine synthesis, depolymerization and disappearance of microtubule, inhibition of NF-ĸB activation, induction of TRAIL, promotion of apoptosis, and caspase activation and proteasome inhibition. Some anti-gout and anticancer novel compounds interact with same receptors for their action, e.g., colchicine and colchicine analogues. Dietary flavonoids, i.e., chrysin, kaempferol, quercetin, fisetin, pelargonidin, apigenin, luteolin, myricetin, isorhamnetin, phloretinetc etc. have comparable IC50 values with established anti-gout drug and effective against both cancer and gout. Moreover, a noticeable number of newer anticancer compounds have already been isolated from plants that have been using by local traditional healers and herbal practitioners to treat gout. Therefore, the anti-gout plants might have greater potentiality to become selective candidates for screening of newer anticancer leads.
Collapse
|
14
|
Rong W, Shen X, Adu-Frimpong M, He Q, Zhang J, Li X, Xia X, Shi F, Cao X, Ji H, Toreniyazov E, Wang Q, Yu J, Xu X. Pinocembrin polymeric micellar drug delivery system: preparation, characterisation and anti-hyperuricemic activity evaluation. J Microencapsul 2022; 39:419-432. [PMID: 35766329 DOI: 10.1080/02652048.2022.2096138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Aim: Hydrophobic pinocembrin (PCB) was incorporated into a new nano-drug delivery system to enhance solubility, bioavailability and anti-hyperuricemic activity of the drug.Methods: We fabricated PCB loaded polymeric micelles (PCB-FPM) by thin film dispersion method and appropriately determined their physical characteristics. The oral relative bioavailability and anti-hyperuricemic activity of PCB-FPM and free PCB were observed.Results: The optimum particle size of the micelles was 19.90 ± 0.93 nm. PCB-FPM exhibited great stability within 18 days, coupled with lower cytotoxicity and higher biocompatibility. Moreover, the percent cumulative release of PCB-FPM was much higher than free PCB in the dissolution media. The oral bioavailability of PCB-FPM was increased by 2.61 times compared with free PCB. Uric acid (UA) level of rats was reduced in PCB-FPM group (200 mg/kg) by 78.82% comparable to the model control.Conclusion: PCB-FPM may become an ideal strategy to increase oral in-vivo availability and anti-hyperuricemic activity of PCB.
Collapse
Affiliation(s)
- Wanjing Rong
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, China
| | - Xinyi Shen
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Science, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Qing He
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, China
| | - Jian Zhang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, China
| | - Xiaoxiao Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, China
| | - Xiaoli Xia
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, China
| | - Feng Shi
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, China
| | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, China
| | - Hao Ji
- Jiangsu Tian Sheng Pharmaceutical Co., Ltd, Zhenjiang, China
| | | | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, China
| |
Collapse
|
15
|
Sun Y, Zhou L, Liao T, Liu J, Yu K, Zou L, Zhou W, Liu W. Comparing the effect of benzoic acid and cinnamic acid hydroxyl derivatives on polyphenol oxidase: activity, action mechanism, and molecular docking. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3771-3780. [PMID: 34921410 DOI: 10.1002/jsfa.11725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Polyphenol oxidase (PPO) is considered to have a key role in the food industry because it initiates enzymatic browning in the processing and storage of fruit and vegetables. Increasing numbers of benzoic and cinnamic acid derivatives have been found to be efficient inhibitors of polyphenol oxidase, but a comparison study on activity and action mechanism is lacking. In this study, 18 benzoic acid and cinnamic acid hydroxy derivatives were selected and investigated. RESULTS Three substrates, four activators and 11 inhibitors were identified from benzoic and cinnamic acid derivatives. 2,4-Dihydroxycinnamic acid and benzoic acid showed the strongest inhibitory effect on PPO, with IC50 of 0.092 and1.425 mmol L-1 , respectively. Benzoic acid reversibly inhibited PPO in a competitive manner, while 2,4-dihydroxycinnamic acid showed a mixed-type inhibition. Both of them showed that static-type fluorescence quenching and electrostatic interaction were the main driving force in the bonding process. Compared with benzoic acid, 2,4-dihydroxycinnamic acid more easily formed hydrogen bonds in the active site of PPO, making the interaction more stable. CONCLUSION Comparative analysis showed that the inhibition effect of cinnamic acid hydroxyl derivatives on PPO was stronger than that of benzoic acid derivatives. Benzoic acid and 2,4-dihydroxycinnamic acid were the strongest inhibitors. PPO inhibitors identified from benzoic and cinnamic acid derivatives are expected to be promising inhibitors for controlling fruit and vegetable browning. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuefang Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Lei Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Tao Liao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Junping Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Kaibo Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Wei Zhou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
16
|
Ren Y, Liu T, Liu H, Zhu Y, Qi X, Liu X, Zhao Y, Wu Y, Zhang N, Liu M. Functional improvement of (−)-epicatechin gallate and piceatannol through combined binding to β-lactoglobulin: Enhanced effect of heat treatment and nanoencapsulation. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
17
|
Slika H, Mansour H, Wehbe N, Nasser SA, Iratni R, Nasrallah G, Shaito A, Ghaddar T, Kobeissy F, Eid AH. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. Biomed Pharmacother 2022; 146:112442. [PMID: 35062053 DOI: 10.1016/j.biopha.2021.112442] [Citation(s) in RCA: 146] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is a leading cause of morbidity and mortality around the globe. Reactive oxygen species (ROS) play contradicting roles in cancer incidence and progression. Antioxidants have attracted attention as emerging therapeutic agents. Among these are flavonoids, which are natural polyphenols with established anticancer and antioxidant capacities. Increasing evidence shows that flavonoids can inhibit carcinogenesis via suppressing ROS levels. Surprisingly, flavonoids can also trigger excessive oxidative stress, but this can also induce death of malignant cells. In this review, we explore the inherent characteristics that contribute to the antioxidant capacity of flavonoids, and we dissect the scenarios in which they play the contrasting role as pro-oxidants. Furthermore, we elaborate on the pathways that link flavonoid-mediated modulation of ROS to the prevention and treatment of cancer. Special attention is given to the ROS-mediated anticancer functions that (-)-epigallocatechin gallate (EGCG), hesperetin, naringenin, quercetin, luteolin, and apigenin evoke in various cancers. We also delve into the structure-function relations that make flavonoids potent antioxidants. This review provides a detailed perspective that can be utilized in future experiments or trials that aim at utilizing flavonoids or verifying their efficacy for developing new pharmacologic agents. We support the argument that flavonoids are attractive candidates for cancer therapy.
Collapse
Affiliation(s)
- Hasan Slika
- Department of Pharmacology and Toxicology, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | - Hadi Mansour
- Department of Pharmacology and Toxicology, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | - Nadine Wehbe
- Department of Biology, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | - Suzanne A Nasser
- Department of Pharmacology and Therapeutics, Beirut Arab University, P.O. Box 11-5020, Beirut, Lebanon.
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, P.O. Box 15551, Al-Ain, United Arab Emirates.
| | - Gheyath Nasrallah
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - Abdullah Shaito
- Biomedical Research Center, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - Tarek Ghaddar
- Department of Chemistry, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, P.O. Box: 11-0236, Beirut, Lebanon.
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
18
|
Ghallab DS, Shawky E, Metwally AM, Celik I, Ibrahim RS, Mohyeldin MM. Integrated in silico - in vitro strategy for the discovery of potential xanthine oxidase inhibitors from Egyptian propolis and their synergistic effect with allopurinol and febuxostat. RSC Adv 2022; 12:2843-2872. [PMID: 35425287 PMCID: PMC8979054 DOI: 10.1039/d1ra08011c] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/04/2022] [Indexed: 01/19/2023] Open
Abstract
Xanthine oxidase (XO) has been well-recognized as a validated target for the treatment of hyperuricemia and gout. Currently, there are two drugs in clinical use that shut down XO overactivity, allopurinol and febuxostat; however, detrimental side effects restrict their applications. Propolis is a unique natural adhesive biomass of structurally variable and biologically active metabolites that exert remarkable health benefits. Moreover, combination drug therapy has become a promising pharmacotherapeutic strategy directed for reformulating existing drugs into new combination entities with potentiating therapeutic impacts. In this study, computer-aided molecular docking and MD simulations accompanied by biochemical testing were used for mining novel pharmacologically active chemical entities from Egyptian propolis to combat hyperuricemia. Further, with a view to decrease the potential toxicity of synthetic drugs and enhance efficacy, propolis hits were subjected to combination analysis with each of allopurinol and febuxostat. More specifically, Glide docking was utilized for a structure-based virtual screening of in-house datasets comprising various Egyptian propolis metabolites. Rosmarinic acid, luteolin, techtochrysin and isoferulic acid were the most promising virtual hits. In vitro XO inhibitory assays demonstrated the ability of these hits to significantly inhibit XO in a dose-dependent manner. Molecular docking and MD simulations revealed a cooperative binding mode between the discovered hits and standard XO inhibitors within the active site. Subsequently, the most promising hits were tested in a fixed-ratio combination setting with allopurinol and febuxostat separately to assess their combined effects on XO catalytic inhibition. The binary combination of each techtochrysin and rosmarinic acid with febuxostat displayed maximal synergy at lower effect levels. In contrast, individually, techtochrysin and rosmarinic acid with allopurinol cooperated synergistically at high dose levels. Taken together, the suggested strategy seems imperative to ensure a steady supply of new therapeutic options sourced from Egyptian propolis to regress the development of hyperuricemia.
Collapse
Affiliation(s)
- Dina S Ghallab
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt +20-1223821098
| | - Eman Shawky
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt +20-1223821098
| | - Ali M Metwally
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt +20-1223821098
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University Kayseri 38039 Turkey
| | - Reham S Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt +20-1223821098
| | - Mohamed M Mohyeldin
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt +20-1223821098
| |
Collapse
|
19
|
Sun R, Kan J, Cai H, Hong J, Jin C, Zhang M. In vitro and in vivo ameliorative effects of polyphenols from purple potato leaves on renal injury and associated inflammation induced by hyperuricemia. J Food Biochem 2022; 46:e14049. [PMID: 34981522 DOI: 10.1111/jfbc.14049] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/07/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022]
Abstract
In the present study, the ameliorative effects of polyphenols from purple potato leaves (PSPLP) on hyperuricemia were investigated. HPLC-MS analysis showed that PSPLP was mainly composed of caffeoylquinic acid derivatives (84%). PSPLP inhibited the levels of cytokines (IL-1β, IL-6, and TNF-α) in monosodium urate-induced RAW264.7 cells. In vivo, PSPLP significantly inhibited the level of uric acid in hyperuricemia mice from 209.6 to 166.6 μM, and significantly interfered with the activities of xanthine oxidase (XOD) and adenosine deaminase in liver, the activity of XOD decreased from 13.5 to 11.6 U/gprot. PSPLP can decrease serum creatinine level from 105 to 59 μM, and urea nitrogen level from 21.9 to 14.1 mM, which can effectively protect kidney. These results provide a reference for future research and application of PSPLP as a functional food to intervene hyperuricemia and associated inflammation. PRACTICAL APPLICATIONS: This study evaluated the effect of polyphenols from purple potato leaves (PSPLP) on hyperuricemia. The results suggested that PSPLP has an important role in the intervention of hyperuricemia and hyperuricemic-related inflammation or renal injury, and can be used in the application of functional foods. These results provided a basis for further study on the biological activities of polyphenols from purple sweet potato leaves.
Collapse
Affiliation(s)
- Rui Sun
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Huahao Cai
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Jinhai Hong
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Man Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| |
Collapse
|
20
|
Wei L, Ji H, Song W, Peng S, Zhan S, Qu Y, Chen M, Zhang D, Liu S. Hypouricemic, hepatoprotective and nephroprotective roles of oligopeptides derived from Auxis thazard protein in hyperuricemic mice. Food Funct 2021; 12:11838-11848. [PMID: 34746942 DOI: 10.1039/d1fo02539b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The oligopeptides derived from Auxis thazard protein (ATO) are a class of small peptides with molecular weight <1 kDa and good bioactivity. This paper aimed to explore the hypouricemic, hepatoprotective, and nephroprotective effects of ATO and its potential mechanisms in hyperuricemia in mice induced by potassium oxonate. The results showed that ATO significantly reduced serum UA, serum creatinine levels, inhibited XOD and ADA activities in the liver (p < 0.05), and accelerated UA excretion by downregulating the gene expression of renal mURAT1 and mGLUT9 and upregulating the gene expression of mABCG2 and mOAT1. ATO could also reduce the levels of liver MDA, increase the activities of SOD and CAT, and reduce the levels of IL-1β, MCP-1 and TNF-α. Histological analysis also showed that ATO possessed hepatoprotective and nephroprotective activities in hyperuricemic mice. Thus, ATO could reduce the serum UA level in hyperuricemic mice by decreasing UA production and promoting UA excretion from the kidney, suggesting that ATO could be developed as a dietary supplement for hyperuricemia treatment.
Collapse
Affiliation(s)
- Liuyi Wei
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, P.R. China.
| | - Hongwu Ji
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, P.R. China. .,Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, P.R. China.,Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, P.R. China.,Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, P.R. China.,Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, P.R. China
| | - Wenkui Song
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, P.R. China.
| | - Shuo Peng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, P.R. China.
| | - Suhong Zhan
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, P.R. China.
| | - Yushan Qu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, P.R. China.
| | - Ming Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, P.R. China.
| | - Di Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, P.R. China.
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, P.R. China. .,Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, P.R. China.,Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, P.R. China.,Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, P.R. China.,Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, P.R. China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P.R. China
| |
Collapse
|
21
|
Vaezi M. Evaluation of quercetin omega-6 and -9 esters on activity and structure of mushroom tyrosinase: Spectroscopic and molecular docking studies. J Food Biochem 2021; 45:e13953. [PMID: 34585423 DOI: 10.1111/jfbc.13953] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022]
Abstract
Quercetin is one of the most ubiquitous dietary flavonoids widely distributed in plants and foods of plant origin, and is a potent tyrosinase inhibitor. Quercetin fatty esters could lead to an improve in quercetin lipophilicity which could positively affect its pharmacological activity. In this study, the inhibitory effect of two novel esters of quercetin-linoleic acid (ligand A) and quercetin-oleic acid (ligand B) has been investigated on structure and diphenolase activity of mushroom tyrosinase (MT) by experimental and molecular docking techniques. The inhibitory kinetics study using UV-visible spectrophotometry in the presence of its substrate 3,4-dihydroxyphenylalanine (L-dopa), revealed that both esters successfully inhibit the activity of tyrosinase and reduce the formation of dopaquinone. Results showed that the binding of ligands to MT induced rearrangement and conformational changes of the enzyme. Thermodynamic parameters of these interactions (Ka , ∆G°, ∆H° and ∆S°) were obtained at pH = 6.8 and temperatures of 298 and 310 K. Molecular docking studies further was applied to calculation of binding energies (ΔGbA = -21.84 kJ/mol, ΔGbB = -20.92 kJ/mol), inhibition constant values (KIA = 160 µM, KIB = 220 µM) and the special binding site. It can be deduced that ligands act as a potential tyrosinase inhibitor and it was found that the best possible interaction condition with binding modes visualize was achieved by ligand A and exhibited the potent tyrosinase inhibitory activity. These findings may be helpful to understand the inhibition mechanism of quercetin fatty acids esters on tyrosinase and provide a convenient screening method to differentiate phenolic tyrosinase inhibitors. PRACTICAL APPLICATIONS: Bioavailability and antioxidant activity of conjugated fatty acids with their bioequivalence in several biological effects and metabolic processes such as beta-oxidation from various forms has been reported to be highly variable and useful. Quercetin shows beneficial role in human health, but its biological effects in vivo is limited by poor bioavailability, low skin permeability and solubility. This study design new tyrosinase inhibitors which helpful to functional research of unsaturated fatty acid esters in the treatment of inflammatory diseases and hyperpigmentation disorders. In addition, undesirable enzymatic browning of plant derived-foods by tyrosinase causes a decrease in market value and economic loss of food products. The results suggest that the conjugation of quercetin with linoleic and oleic acids resulted in novel stronger tyrosinase inhibitors which may have therapeutic applications and replacement of toxic tyrosinase inhibitors and contribute as anti- browning agents in food, cosmetic and pharmaceutical industry.
Collapse
Affiliation(s)
- Morteza Vaezi
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
22
|
Zhu M, Pan J, Hu X, Zhang G. Epicatechin Gallate as Xanthine Oxidase Inhibitor: Inhibitory Kinetics, Binding Characteristics, Synergistic Inhibition, and Action Mechanism. Foods 2021; 10:2191. [PMID: 34574301 PMCID: PMC8464939 DOI: 10.3390/foods10092191] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 01/03/2023] Open
Abstract
Epicatechin gallate (ECG) is one of the main components of catechins and has multiple bioactivities. In this work, the inhibitory ability and molecular mechanism of ECG on XO were investigated systematically. ECG was determined as a mixed xanthine oxidase (XO) inhibitor with an IC50 value of 19.33 ± 0.45 μM. The promotion of reduced XO and the inhibition of the formation of uric acid by ECG led to a decrease in O2- radical. The stable ECG-XO complex was formed by hydrogen bonds and van der Waals forces, with the binding constant of the magnitude of 104 L mol-1, and ECG influenced the stability of the polypeptide skeleton and resulted in a more compact conformation of XO. Computational simulations further characterized the binding characteristics and revealed that the inhibitory mechanism of ECG on XO was likely that ECG bound to the vicinity of flavin adenine dinucleotide (FAD) and altered the conformation of XO, hindering the entry of substrate and the diffusion of catalytic products. ECG and allopurinol bound to different active sites of XO and exerted a synergistic inhibitory effect through enhancing their binding stability with XO and changing the target amino acid residues of XO. These findings may provide a theoretical basis for the further application of ECG in the fields of food nutrition and functional foods.
Collapse
Affiliation(s)
| | | | | | - Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (M.Z.); (J.P.); (X.H.)
| |
Collapse
|
23
|
Wan Y, Qian J, Li Y, Shen Y, Chen Y, Fu G, Xie M. Inhibitory mechanism of xanthine oxidase activity by caffeoylquinic acids in vitro. Int J Biol Macromol 2021; 184:843-856. [PMID: 34146563 DOI: 10.1016/j.ijbiomac.2021.06.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/14/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
In this study, the inhibitory activities of eight caffeoylquinic acids (CQAs) against xanthine oxidase (XOD) in vitro were investigated, and the interaction mechanisms between each compound and XOD were studied. HPLC and fluorescence spectra showed that the inhibitory activities of dicaffeoylquinic acids (diCQAs) were higher than that of monocaffeoylquinic acids (monoCQAs), due to the main roles of hydrophobic interaction and hydrogen bond between XOD and diCQAs. Both the binding constant and the lowest binding energy data indicated that the affinities of diCQAs to XOD were stronger than that of monoCQAs. Circular dichroism showed that the structure of XOD was compacted with the increased of α-helix content, resulting in decreased enzyme catalytic activity. Molecular docking revealed that CQAs preferentially bind to the flavin adenine dinucleotide region in XOD. These results provided the mechanisms of CQAs on inhibiting XOD and the further utilization of CQAs as XOD inhibitors to prevent hyperuricemia.
Collapse
Affiliation(s)
- Yin Wan
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Jin Qian
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yizhen Li
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yuefeng Shen
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yanru Chen
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Guiming Fu
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| |
Collapse
|
24
|
Yu S, He M, Zhai Y, Xie Z, Xu S, Yu S, Xiao H, Song Y. Inhibitory activity and mechanism of trilobatin on tyrosinase: kinetics, interaction mechanism and molecular docking. Food Funct 2021; 12:2569-2579. [PMID: 33625428 DOI: 10.1039/d0fo03264f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tyrosinase is the rate-limiting enzyme controlling the production of melanin, and tyrosinase inhibitors can regulate the overproduction of melanin by inhibiting tyrosinase activity, which is an effective method to treat pigmentation disorders. In this study, kinetic analysis, multispectroscopic methods and molecular simulation were used to investigate the inhibitory activity and mechanism of trilobatin on tyrosinase. The kinetic analysis showed that trilobatin had significant inhibitory activity on tyrosinase in a reversible and mixed-type manner with IC50 values of (2.24 ± 0.35) × 10-5 mol L-1. The intrinsic fluorescence of tyrosinase was quenched by trilobatin through a static quenching mechanism. Different spectroscopic measurements demonstrated that trilobatin could change the microenvironments and conformation of tyrosinase and molecular docking determined the binding site of quercetin on tyrosinase.
Collapse
Affiliation(s)
- Shuyan Yu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, China.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Dong X, Wang B, Cao J, Zheng H, Ye LH. Ligand fishing based on bioaffinity ultrafiltration for screening xanthine oxidase inhibitors from citrus plants. J Sep Sci 2021; 44:1353-1360. [PMID: 33496069 DOI: 10.1002/jssc.202000708] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 12/26/2022]
Abstract
Citrus plants are valuable medicinal plants with abundant flavonoids content in the parts of fruits and peels, which exhibit potential hypouricemic effect. In the present study, a ligand fishing assay was performed based on bio-affinity ultrafiltration for rapidly screening and identifying xanthine oxidase inhibitors from citrus plants. Under the optimal experimental conditions, five potential ligands were fished out when xanthine oxidase acted as the targeted protein. Subsequently, the chemical structures of all five compounds were identified by quadrupole time-of-flight mass spectrometry. Among them, hesperidin and naringin were confirmed as high-efficiency xanthine oxidase inhibitors. The half maximal inhibitory concentration values of hesperidin and naringin were 0.15 and 1.82 μM, respectively. Compared with the clinical antigout drug, allopurinol (half maximal inhibitory concentration = 8.03 μM), lower half maximal inhibitory concentration values indicated higher enzyme inhibitory activity. The Lineweaver-Burk plots indicated that the two compounds inhibited xanthine oxidase in a noncompetitive manner. The results demonstrate that the bioaffinity ultrafiltration method is a powerful tool for screening out xanthine oxidase inhibitors from natural products.
Collapse
Affiliation(s)
- Xin Dong
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, P. R. China
| | - Bin Wang
- Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, P. R. China
| | - Jun Cao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, P. R. China
| | - Hui Zheng
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, P. R. China
| | - Li-Hong Ye
- Department of Traditional Chinese Medicine, Hangzhou Red Cross Hospital, Hangzhou, P. R. China
| |
Collapse
|
26
|
Ghallab DS, Mohyeldin MM, Shawky E, Metwally AM, Ibrahim RS. Chemical profiling of Egyptian propolis and determination of its xanthine oxidase inhibitory properties using UPLC–MS/MS and chemometrics. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110298] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Effect of phenolic compounds on the activity of proteolytic enzymes during rennet induced coagulation of milk and ripening of miniature cheese. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
28
|
Action mechanisms and interaction of two key xanthine oxidase inhibitors in galangal: Combination of in vitro and in silico molecular docking studies. Int J Biol Macromol 2020; 162:1526-1535. [DOI: 10.1016/j.ijbiomac.2020.07.297] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/09/2020] [Accepted: 07/27/2020] [Indexed: 11/18/2022]
|
29
|
Chen J, Li Q, Ye Y, Ran M, Ruan Z, Jin N. Inhibition of xanthine oxidase by theaflavin: Possible mechanism for anti-hyperuricaemia effect in mice. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Xiong Y, Lu H, Xu H. Galangin Reverses Hepatic Fibrosis by Inducing HSCs Apoptosis via the PI3K/Akt, Bax/Bcl-2, and Wnt/β-Catenin Pathway in LX-2 Cells. Biol Pharm Bull 2020; 43:1634-1642. [PMID: 32893252 DOI: 10.1248/bpb.b20-00258] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hepatic fibrosis (HF) is a common disease, with currently no available treatment. Galangin, a natural flavonoid extracted from Alpinia officinaruim Hance, has multiple effects demonstrated in previous studies. The aim of the present study was to explore the anti-fibrogenic effect of galangin in vitro, and research its potential molecular mechanisms. LX-2 cells were chosen as an in vitro HF model, and were treated with galangin in different concentrations. Cell viability was analyzed using Cell Counting Kit-8 (CCK-8) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell apoptosis was measured using flow cytometry, and the anti-fibrogenic effect of galangin was determined using RT-quantitative (q)PCR, immunofluorescence, and Western blotting. The results show that the proliferation of LX-2 cells was efficiently inhibited by galangin, and apoptosis was induced in a dose-dependent manner. Both the mRNA and protein expression of alpha-smooth muscle actin (α-SMA) and collagen I were markedly downregulated. Galangin also inhibited the phosphatidylinositol 3-kinase (PI3K)/Akt and Wnt/β-catenin signaling pathways and increased the Bax/Bcl-2 ratio. The results of this study suggest that galangin has an anti-fibrogenic effect and may represent a promising agent in the treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Yuanguo Xiong
- School of Pharmaceuticals, Hubei University of Chinese Medicine
| | - Hao Lu
- School of Pharmaceuticals, Hubei University of Chinese Medicine
| | - Hanlin Xu
- School of Pharmaceuticals, Hubei University of Chinese Medicine
| |
Collapse
|
31
|
Sciú ML, Santi MD, Cantero J, Colomer JP, Paulino-Zunini M, Ortega MG, Moyano EL. Identification of pyrazolotriazinones as potential agents for hyperuricemia treatment by using in vitro and in silico studies. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2756-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
32
|
Liu L, Zhang L, Ren L, Xie Y. Advances in structures required of polyphenols for xanthine oxidase inhibition. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.27] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Liangliang Liu
- Institute of Bast Fiber Crops Chinese Academy of Agricultural Sciences Changsha 410205 China
| | - Li Zhang
- College of Chemistry and Materials Engineering Huaihua University Huaihua 418000 China
| | - Licheng Ren
- Institute of Bast Fiber Crops Chinese Academy of Agricultural Sciences Changsha 410205 China
- Department of Plastic and Cosmetic Surgery Shenzhen University General Hospital Shenzhen 518055 China
| | - Yixi Xie
- Institute of Bast Fiber Crops Chinese Academy of Agricultural Sciences Changsha 410205 China
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Xiangtan University Xiangtan 411105 China
| |
Collapse
|
33
|
Gong C, Hou C, Yao M, Ren J. New Discoveries in Hybrid Orbitals to Characterize Molecules and Predict Biomolecular Interactions. J Chem Inf Model 2020; 60:17-21. [PMID: 31851496 DOI: 10.1021/acs.jcim.9b01078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Taking hydrogen bonds as a basis to explore biomolecular properties and interactions, we constructed the lone-pair electron (LPE) index and a molecular orbital fingerprint based on molecular hybrid orbitals to represent the ability of molecules to form hydrogen bonds. Then, a computational model was constructed to predict molecular interactions. The LPE and orbital fingerprint could effectively predict the biological properties and bioactivities of molecules. This study revealed the significance of hybrid orbitals for understanding cell biochemistry.
Collapse
Affiliation(s)
- Congcong Gong
- School of Food Science and Technology , South China University of Technology , Guangzhou 510641 , Guangdong , China
| | - Chuanli Hou
- School of Food Science and Technology , South China University of Technology , Guangzhou 510641 , Guangdong , China
| | - Maojin Yao
- State Key Laboratory of Oncology In South China , SUN YAT-SEN University Cancer Center , Guangzhou 510641 , Guangdong , China
| | - Jiaoyan Ren
- School of Food Science and Technology , South China University of Technology , Guangzhou 510641 , Guangdong , China
| |
Collapse
|
34
|
Ishaq M, Mehmood A, Ur Rehman A, Dounya Zad O, Li J, Zhao L, Wang C, Hossen I, Naveed M, Lian Y. Antihyperuricemic effect of dietary polyphenol sinapic acid commonly present in various edible food plants. J Food Biochem 2019; 44:e13111. [PMID: 31849075 DOI: 10.1111/jfbc.13111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 11/28/2022]
Abstract
The present study was conducted to evaluate the antihyperuricemic effect of sinapic acid (SA). The results showed that SA potently inhibited xanthine oxidase (XOD) in a dose-dependent manner by entering the enzyme active site and thwarting the entrance of the substrate. These results were further confirmed by the quantum chemical descriptors analysis and 1 H NMR titration analysis. The in vivo results indicated that SA not only has the potential to inhibit serum and hepatic XOD (p < .05), but also remarkably lowered serum and urine uric acid levels at 50 and 100 mg/kg bw. Furthermore, SA regulated serum creatinine and blood urea nitrogen levels to normal and lowered inflammation in the renal tubules. Thus, the utilization of SA as an antihyperuricemic agent may have considerable potential for the development of functional foods for the possible treatment of hyperuricemia. PRACTICAL APPLICATIONS: Plant-derived bioactive compounds have multiple health benefits. The present study assesses the effects of sinapic acid against hyperuricemia. The results suggested that sinapic acid may have a strong protective effect against uric acid-related complications and may be used for the formulation of functional foods. However, further mechanistic studies are required to verify this hypothesis.
Collapse
Affiliation(s)
- Muhammad Ishaq
- Beijing Advance Innovation center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Arshad Mehmood
- Beijing Advance Innovation center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Ashfaq Ur Rehman
- Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Science and Biotechnology, College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Oumeddour Dounya Zad
- Beijing Advance Innovation center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Jiayi Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Zhao
- Beijing Advance Innovation center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Chengtao Wang
- Beijing Advance Innovation center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Imam Hossen
- Beijing Advance Innovation center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Muhammad Naveed
- Beijing Advance Innovation center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Yunhe Lian
- Chenguang Biotech Group Co., Ltd., Quzhou, China
| |
Collapse
|
35
|
Kim JH, Jin CH. Xanthine oxidase inhibitory activity of isoflavonoids from Apios americana. Comput Biol Chem 2019; 83:107137. [DOI: 10.1016/j.compbiolchem.2019.107137] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/26/2019] [Accepted: 09/29/2019] [Indexed: 11/27/2022]
|
36
|
|
37
|
Wan Y, Wang F, Zou B, Shen Y, Li Y, Zhang A, Fu G. Molecular mechanism underlying the ability of caffeic acid to decrease uric acid levels in hyperuricemia rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
38
|
Malik N, Dhiman P, Khatkar A. In Silico and 3D QSAR Studies of Natural Based Derivatives as Xanthine Oxidase Inhibitors. Curr Top Med Chem 2019; 19:123-138. [PMID: 30727896 DOI: 10.2174/1568026619666190206122640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/23/2018] [Accepted: 01/27/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND A large number of disorders and their symptoms emerge from deficiency or overproduction of specific metabolites has drawn the attention for the discovery of new therapeutic agents for the treatment of disorders. Various approaches such as computational drug design have provided the new methodology for the selection and evaluation of target protein and the lead compound mechanistically. For instance, the overproduction of xanthine oxidase causes the accumulation of uric acid which can prompt gout. OBJECTIVE In the present study we critically discussed the various techniques such as 3-D QSAR and molecular docking for the study of the natural based xanthine oxidase inhibitors with their mechanistic insight into the interaction of xanthine oxidase and various natural leads. CONCLUSION The computational studies of deferent natural compounds were discussed as a result the flavonoids, anthraquinones, xanthones shown the remarkable inhibitory potential for xanthine oxidase inhibition moreover the flavonoids such as hesperidin and rutin were found as promising candidates for further exploration.
Collapse
Affiliation(s)
- Neelam Malik
- Department of Pharmaceutical sciences, Maharshi Dayanand University Rohtak, Haryana, India
| | - Priyanka Dhiman
- Department of Pharmaceutical sciences, Maharshi Dayanand University Rohtak, Haryana, India
| | - Anurag Khatkar
- Laboratory for Preservation Technology and Enzyme Inhibition Studies, Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
39
|
The Effect of Manuka Honey on dHL-60 Cytokine, Chemokine, and Matrix-Degrading Enzyme Release under Inflammatory Conditions. ACTA ACUST UNITED AC 2019; 4. [PMID: 31245627 PMCID: PMC6594701 DOI: 10.20900/mo.20190005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A large body of in vivo and in vitro evidence indicates that Manuka honey resolves inflammation and promotes healing when applied topically to a wound. In this study, the effect of two different concentrations (0.5% and 3% v/v) of Manuka honey on the release of cytokines, chemokines, and matrix-degrading enzymes from neutrophils was examined using a differentiated HL-60 cell line model in the presence of inflammatory stimuli. The results indicate that 0.5% honey decreased TNF-α, IL-1β, MIP-1α, MIP-1β, IL-12 p70, MMP-9, MMP-1, FGF-13, IL-1ra, and IL-4 release, but increased MIP-3α, Proteinase 3, VEGF, and IL-8 levels. In contrast, 3% honey reduced the release of all analytes except TNF-α, whose release was increased. Together, these results demonstrate a dose-dependent ability of Manuka honey to modify the release of cytokines, chemokines, and matrix-degrading enzymes that promote or inhibit inflammation and/or healing within a wound. The findings of this study provide further guidance for the future use of Manuka honey in wounds or tissue engineering templates. Future in vivo investigation is warranted to validate the in vitro results and translate these results to physiologically relevant environments.
Collapse
|
40
|
Yuan M, Liu Y, Xiao A, Leng J, Liao L, Ma L, Liu L. The interaction of dietary flavonoids with xanthine oxidase in vitro: molecular property-binding affinity relationship aspects. RSC Adv 2019; 9:10781-10788. [PMID: 35515322 PMCID: PMC9062502 DOI: 10.1039/c8ra09926j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/25/2019] [Indexed: 11/21/2022] Open
Abstract
The molecular property-affinity relationships of dietary flavonoids binding to xanthine oxidase were investigated in vitro by comparing the binding constants obtained from a fluorescence-quenching method. The inhibitions of dietary flavonoids on xanthine oxidase were also investigated and analyzed, revealing that the binding process was influenced by the structural differences of the flavonoids under investigation. For example, methylation and hydroxylation at the 7- and 5-positions weakened the binding affinities, while hydroxylation at the 3- and 3'-positions mostly improved binding affinities. Glycosylation and hydrogenation of the C2[double bond, length as m-dash]C3 double bond also increased affinities for xanthine oxidase. In addition, galloylated catechins showed higher binding affinities than non-galloylated catechins. Trends in the binding affinities and inhibition of flavonoids during structure modifications were summarized. Affinities for xanthine oxidase and inhibition on xanthine oxidase changed in the opposite direction during the methylation and hydroxylation of flavonoids in the A ring, and the glycosylation and hydrogenation of C2[double bond, length as m-dash]C3. However, affinities and inhibition for xanthine oxidase changed in the same direction during the methylation and hydroxylation of flavonoids in the B ring.
Collapse
Affiliation(s)
- Mengmeng Yuan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences Changsha 410205 China
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Yi Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences Changsha 410205 China
| | - Aiping Xiao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences Changsha 410205 China
| | - Juan Leng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences Changsha 410205 China
| | - Liping Liao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences Changsha 410205 China
| | - Lei Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University China
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences Changsha 410205 China
| |
Collapse
|
41
|
Governa P, Carullo G, Biagi M, Rago V, Aiello F. Evaluation of the In Vitro Wound-Healing Activity of Calabrian Honeys. Antioxidants (Basel) 2019; 8:antiox8020036. [PMID: 30736314 PMCID: PMC6406906 DOI: 10.3390/antiox8020036] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/24/2019] [Accepted: 02/02/2019] [Indexed: 01/13/2023] Open
Abstract
The healing of skin wounds and particularly chronic wounds, such as diabetic foot ulcers, is still a clinical emergency. Despite the many therapeutic tools that are available so far, none seems to be really effective and safe. In this context, we highlighted the renewed wound healing activity of honey, a viscous aromatic and sweet food, by way of in vitro wound-healing assays, using the HaCaT cell line. Specifically, we investigated five monofloral or multifloral honeys from different Calabrian provinces using them as such or extracted (by Amberlite® or n-hexane and ethyl acetate). The chemical composition of honeys was ascertained by 1H NMR spectroscopy and by the gas chromatography/mass spectrometry (GC/MS) method for volatile organic compounds (VOCs). Amongst the five tested honeys, BL1 and BL5 honeys showed the most promising healing properties. Pinocembrin, which was revealed in BL1 (multifloral) and BL5 (orange) honey samples, is a flavanol that is already known to possess interesting biological activities, including healing. This study aims to investigate how a traditional food such as honey, which is appreciated for its nutritional value and used in folk medicine, can be enhanced as an effective modern remedial to promote a multifaceted and safe healing activity for all skin wounds.
Collapse
Affiliation(s)
- Paolo Governa
- Department of Biotechnology, Chemistry and Pharmacy-Department of Excellence 2018-2022, University of Siena; Via Aldo Moro 2, 53100 Siena, Italy.
| | - Gabriele Carullo
- Department of Pharmacy Health and Nutritional Sciences-Department of Excellence 2018-2022; University of Calabria; Edificio Polifunzionale, 87036 Arcavacata di Rende (CS), Italy.
| | - Marco Biagi
- Department of Physical Sciences, Hearth and Environment; University of Siena; Via Laterina 8, 53100 Siena, Italy.
| | - Vittoria Rago
- Department of Pharmacy Health and Nutritional Sciences-Department of Excellence 2018-2022; University of Calabria; Edificio Polifunzionale, 87036 Arcavacata di Rende (CS), Italy.
| | - Francesca Aiello
- Department of Pharmacy Health and Nutritional Sciences-Department of Excellence 2018-2022; University of Calabria; Edificio Polifunzionale, 87036 Arcavacata di Rende (CS), Italy.
| |
Collapse
|
42
|
Mehmood A, Ishaq M, Zhao L, Safdar B, Rehman AU, Munir M, Raza A, Nadeem M, Iqbal W, Wang C. Natural compounds with xanthine oxidase inhibitory activity: A review. Chem Biol Drug Des 2019; 93:387-418. [PMID: 30403440 DOI: 10.1111/cbdd.13437] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/10/2018] [Accepted: 10/27/2018] [Indexed: 02/06/2023]
Abstract
Hyperuricemia (HUA), a disease due to an elevation of body uric acid level and responsible for various diseases such as gout, cardiovascular disorders, and renal failure, is a major ground debate for the medical science these days. Considering the risk factors linked with allopathic drugs for the treatment of this disease, the debate has now become a special issue. Previously, we critically discussed the role of dietary polyphenols in the treatment of HUA. Besides dietary food plants, many researchers figure out the tremendous effects of medicinal plants-derived phytochemicals against HUA. Keeping in mind all these aspects, we reviewed all possible managerial studies related to HUA through medicinal plants (isolated compounds). In the current review article, we comprehensively discussed various bioactive compounds, chemical structures, and structure-activity relationship with responsible key enzyme xanthine oxidase.
Collapse
Affiliation(s)
- Arshad Mehmood
- Beijing Advance Innovation center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing, China
| | - Muhammad Ishaq
- Beijing Advance Innovation center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing, China
| | - Lei Zhao
- Beijing Advance Innovation center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing, China
| | - Bushra Safdar
- Beijing Advance Innovation center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing, China
| | - Ashfaq-Ur Rehman
- Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Science and Biotechnology, College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Masooma Munir
- Food Science Research Institute, National Agricultural Research Centre, Islamabad, Pakistan.,Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | - Ali Raza
- Beijing Advance Innovation center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing, China
| | - Muhammad Nadeem
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | - Waheed Iqbal
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Chengtao Wang
- Beijing Advance Innovation center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
43
|
He W, Su G, Sun-Waterhouse D, Waterhouse GI, Zhao M, Liu Y. In vivo anti-hyperuricemic and xanthine oxidase inhibitory properties of tuna protein hydrolysates and its isolated fractions. Food Chem 2019; 272:453-461. [DOI: 10.1016/j.foodchem.2018.08.057] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/26/2018] [Accepted: 08/13/2018] [Indexed: 01/09/2023]
|
44
|
Mehmood A, Zhao L, Ishaq M, Safdar B, Wang C, Nadeem M. Optimization of total phenolic contents, antioxidant, and in-vitro xanthine oxidase inhibitory activity of sunflower head. CYTA - JOURNAL OF FOOD 2018. [DOI: 10.1080/19476337.2018.1504121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, School of Food Science and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Lei Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, School of Food Science and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Muhammad Ishaq
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, School of Food Science and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Bushra Safdar
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, School of Food Science and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Chengtao Wang
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, School of Food Science and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Muhammad Nadeem
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
45
|
Screening of xanthine oxidase inhibitor from selected edible plants and hypouricemic effect of Rhizoma Alpiniae Officinarum extract on hyperuricemic rats. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.09.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
46
|
Inhibition mechanism of baicalein and baicalin on xanthine oxidase and their synergistic effect with allopurinol. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.10.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
47
|
Wu X, Ding H, Hu X, Pan J, Liao Y, Gong D, Zhang G. Exploring inhibitory mechanism of gallocatechin gallate on a-amylase and a-glucosidase relevant to postprandial hyperglycemia. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
48
|
Identification of the free phenolic profile of Adlay bran by UPLC-QTOF-MS/MS and inhibitory mechanisms of phenolic acids against xanthine oxidase. Food Chem 2018; 253:108-118. [DOI: 10.1016/j.foodchem.2018.01.139] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/23/2017] [Accepted: 01/22/2018] [Indexed: 12/11/2022]
|
49
|
Hydroxyl-related differences for three dietary flavonoids as inhibitors of human purine nucleoside phosphorylase. Int J Biol Macromol 2018; 118:588-598. [PMID: 29894785 DOI: 10.1016/j.ijbiomac.2018.06.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/07/2018] [Accepted: 06/09/2018] [Indexed: 01/19/2023]
Abstract
In this work, the hydroxyl-related differences of binding properties and inhibitory activities of dietary flavonoids, namely chrysin, baicalein and apigenin against purine nucleoside phosphorylase (PNP) were investigated. It was found that the hydroxylation on position C4' of chrysin (→apigenin) mildly decreased the binding affinities for PNP, whereas on the position C6 of chrysin (→baicalein) significantly increased binding affinities. Comparatively, the hydroxylation on position C4' and C6 greatly improved their PNP inhibitory effects. The IC50 values of apigenin and baicalein were 6.09 × 10-5 M and 8.94 × 10-5 M, respectively, which is significantly lower than that of chrysin (2.13 × 10-4 M). Results from molecular modeling revealed that there are two binding sites, i.e. active site (major) and tryptophan site (minor) on PNP, and the binding of these flavonoids might induce a serious conformational destabilization of PNP as a result of altering the micro-environment and morphology by flavonoids.
Collapse
|
50
|
Mechanistic insights into the inhibition of quercetin on xanthine oxidase. Int J Biol Macromol 2018; 112:405-412. [DOI: 10.1016/j.ijbiomac.2018.01.190] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 11/21/2022]
|