1
|
Baali F, Boudjelal A, Smeriglio A, Righi N, Djemouai N, Deghima A, Bouafia Z, Trombetta D. Phlomis crinita Cav. From Algeria: A source of bioactive compounds possessing antioxidant and wound healing activities. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118295. [PMID: 38710460 DOI: 10.1016/j.jep.2024.118295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phlomis crinita Cav. (Lamiaceae), locally known as "El Khayata" or "Kayat El Adjarah", is traditionally used in Algeria for its wound-healing properties. AIM OF THE STUDY Investigate, for the first time, the phytochemical profile, safety, antioxidant and wound-healing activities of the flowering tops methanolic extract of P. crinita (PCME) collected from Bouira Province in the North of Algeria. MATERIALS AND METHODS Preliminary phytochemical assays were carried out on PCME to quantify the main classes of bioactive compounds, such as total phenols, flavonoids, and tannins. An in-depth LC-DAD-ESI-MS analysis was carried out to elucidate the phytochemical profile of this plant species. Antioxidant activity was investigated by several colorimetric and fluorimetric assays (DPPH, TEAC, FRAP, ORAC, β-carotene bleaching and ferrozine assay). The acute oral toxicity of PCME (2000 mg/kg b.w.) was tested in vivo on Swiss albino mice, whereas the acute dermal toxicity and wound-healing properties of the PCME ointment (1-5% PCMO) were tested in vivo on Wistar albino rats. Biochemical and histological analyses were carried out on biological samples. RESULTS The phytochemical screening highlighted a high content of phenolic compounds (175.49 ± 0.8 mg of gallic acid equivalents/g of dry extract), mainly flavonoids (82.28 ± 0.44 mg of quercetin equivalents/g of dry extract). Fifty-seven compounds were identified by LC-DAD-ESI-MS analysis, belonging mainly to the class of flavones (32.27%), with luteolin 7-(6″-acetylglucoside) as the most abundant compound and phenolic acids (32.54%), with salvianolic acid C as the most abundant compound. A conspicuous presence of phenylethanoids (15.26%) was also found, of which the major constituent is forsythoside B. PCME showed a strong antioxidant activity with half-inhibitory activity (IC50) ranging from 1.88 to 37.88 μg/mL and a moderate iron chelating activity (IC50 327.44 μg/mL). PCME appears to be safe with Lethal Dose 50 (LD50) ≥ 2000 mg/kg b.w. No mortality or toxicity signs, including any statistically significant changes in body weight gain and relative organs' weight with respect to the control group, were recorded. A significant (p < 0.001) wound contraction was observed in the 5% PCMO-treated group with respect to the untreated and petroleum jelly groups between 8 and 20 days, whereas no statistically significant results were observed at the two lower doses (1 and 2% PCMO). In addition, the 5% PCMO-treated group showed a statistically significant (p < 0.05) wound healing activity with respect to the reference drug-treated group, showing, at the end of the study, the highest wound contraction percentage (88.00 ± 0.16%). CONCLUSION PCME was safe and showed strong antioxidant and wound-healing properties, suggesting new interesting pharmaceutical applications for P. crinita based on its traditional use.
Collapse
Affiliation(s)
- Faiza Baali
- Department of Biology, Faculty of Nature and Life Sciences and Earth Sciences, University of Ghardaia, BP 455, Ghardaïa, 47000, Algeria.
| | - Amel Boudjelal
- Department of Microbiology and Biochemistry, Faculty of Sciences, University Mohamed Boudiaf of M'Sila, 28000, Algeria; Laboratory of Biology: Applications in Health and Environment, University Mohamed Boudiaf of M'Sila, 28000, Algeria.
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy.
| | - Nadjat Righi
- Laboratory of Applied Biochemistry, Faculty of Nature and Life Sciences, University of Ferhat Abbas Setif 1, 19000, Algeria.
| | - Nadjette Djemouai
- Department of Biology, Faculty of Nature and Life Sciences and Earth Sciences, University of Ghardaia, BP 455, Ghardaïa, 47000, Algeria; Microbial Systems Biology Laboratory (LBSM), Higher Normal School of Kouba, B.P. 92, 16050, Kouba, Algiers, Algeria.
| | - Amirouche Deghima
- Department of Nature and Life Sciences, Faculty of Exact Nature and Life Sciences, University of Biskra, 7000, Algeria.
| | - Zineb Bouafia
- Department of Microbiology and Biochemistry, Faculty of Sciences, University Mohamed Boudiaf of M'Sila, 28000, Algeria; Laboratory of Biology: Applications in Health and Environment, University Mohamed Boudiaf of M'Sila, 28000, Algeria.
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy.
| |
Collapse
|
2
|
Yang Y, Zhou H, Du Z. Effect of drying methods on aroma, taste and antioxidant activity of Dendrobium officinale flower tea: A sensomic and metabolomic study. Food Res Int 2024; 187:114455. [PMID: 38763691 DOI: 10.1016/j.foodres.2024.114455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024]
Abstract
Dendrobium officinale flower tea (DFT) is a traditional health product of geographical identity known for its unique aroma and taste. The effects of different drying methods on sensory properties, metabolic profiles and antioxidant activity of DFT were compared using sensomics and metabolomics approaches. Twenty-seven aroma-active compounds were identified and more than half of the volatiles responsible for the "green" and "floral" scent lost after drying. Sensory evaluations revealed that vacuum freeze-dried DFT showed a significant preference in taste and fifty-eight metabolites with higher levels of glutamine were observed, possibly contributing to a "fresh" taste and increased preference. Among the three drying methods, natural air drying retained the fresh flower scent better, while freeze drying preserved the color and shape of the flowers better and enhanced the taste and antioxidant activity of DFT. The research results may provide a foundation for the selection of DFT processing method and quality detection.
Collapse
Affiliation(s)
- YuHan Yang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - HuiWei Zhou
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - ZhiZhi Du
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Bio-Innovation Center of DR PLANT, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| |
Collapse
|
3
|
Smeriglio A, Ingegneri M, Germanò MP, Miori L, Battistini G, Betuzzi F, Malaspina P, Trombetta D, Cornara L. Pharmacognostic Evaluation of Monarda didyma L. Growing in Trentino (Northern Italy) for Cosmeceutical Applications. PLANTS (BASEL, SWITZERLAND) 2023; 13:112. [PMID: 38202420 PMCID: PMC10780350 DOI: 10.3390/plants13010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
Monarda didyma L. (Lamiaceae) is a medicinal and aromatic herb native to eastern North America and now is also cultivated in Northern Italy, which shows terminal heads of bright scarlet-red flowers, subtended by a whorl of red-tinged leafy bracts. Starting from 2018, M. didyma flowering tops have been included in the Belfrit List of botanicals. However, to date studies on the crude extract of this plant are still lacking. The aim of the present study was to investigate the morphological and anatomical features of the flowering tops and the phytochemical profile of their ethanolic and hydroglyceric extracts (EE and HGE, respectively). HGE was the richest in total phenols (105.75 ± 5.91 vs. 64.22 ± 3.45 mg/100 mL) and especially in flavonoids (71.60 ± 5.09 vs. 47.70 ± 1.27 mg/100 mL), as confirmed also by LC-DAD-ESI-MS. Fifty-three polyphenols were identified and quantified. Even if they showed a common polyphenolic profile, EE and HGE showed quantitative differences. Flavan-3-ols and anthocyanins were the most expressed metabolites in HGE, whereas flavonols were the most expressed metabolites in EE. These features confer to HGE the highest antioxidant, anti-inflammatory, and anti-angiogenic properties, detected by several in vitro and in vivo assays, highlighting a promising use of this plant extract for skincare applications.
Collapse
Affiliation(s)
- Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (M.I.); (M.P.G.)
| | - Mariarosaria Ingegneri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (M.I.); (M.P.G.)
| | - Maria Paola Germanò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (M.I.); (M.P.G.)
| | - Luigi Miori
- Areaderma S.r.l., Via per Trento 16, 38042 Baselga di Pinè, Italy; (L.M.); (G.B.)
| | - Giulia Battistini
- Areaderma S.r.l., Via per Trento 16, 38042 Baselga di Pinè, Italy; (L.M.); (G.B.)
| | - Federica Betuzzi
- Department of Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132 Genova, Italy; (F.B.); (L.C.)
| | - Paola Malaspina
- Department of Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132 Genova, Italy; (F.B.); (L.C.)
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (M.I.); (M.P.G.)
| | - Laura Cornara
- Department of Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132 Genova, Italy; (F.B.); (L.C.)
| |
Collapse
|
4
|
Ijinu TP, De Lellis LF, Shanmugarama S, Pérez-Gregorio R, Sasikumar P, Ullah H, Buccato DG, Di Minno A, Baldi A, Daglia M. Anthocyanins as Immunomodulatory Dietary Supplements: A Nutraceutical Perspective and Micro-/Nano-Strategies for Enhanced Bioavailability. Nutrients 2023; 15:4152. [PMID: 37836436 PMCID: PMC10574533 DOI: 10.3390/nu15194152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Anthocyanins (ACNs) have attracted considerable attention for their potential to modulate the immune system. Research has revealed their antioxidant and anti-inflammatory properties, which play a crucial role in immune regulation by influencing key immune cells, such as lymphocytes, macrophages, and dendritic cells. Moreover, ACNs contribute towards maintaining a balance between proinflammatory and anti-inflammatory cytokines, thus promoting immune health. Beyond their direct effects on immune cells, ACNs significantly impact gut health and the microbiota, essential factors in immune regulation. Emerging evidence suggests that they positively influence the composition of the gut microbiome, enhancing their immunomodulatory effects. Furthermore, these compounds synergize with other bioactive substances, such as vitamins and minerals, further enhancing their potential as immune-supporting dietary supplements. However, detailed clinical studies must fully validate these findings and determine safe dosages across varied populations. Incorporating these natural compounds into functional foods or supplements could revolutionize the management of immune-related conditions. Personalized nutrition and healthcare strategies may be developed to enhance overall well-being and immune resilience by fully understanding the mechanisms underlying the actions of their components. Recent advancements in delivery methods have focused on improving the bioavailability and effectiveness of ACNs, providing promising avenues for future applications.
Collapse
Affiliation(s)
- Thadiyan Parambil Ijinu
- Naturæ Scientific, Kerala University-Business Innovation and Incubation Centre, Kariavattom Campus, University of Kerala, Thiruvananthapuram 695581, India;
- The National Society of Ethnopharmacology, VRA-179, Mannamoola, Peroorkada P.O., Thiruvananthapuram 695005, India
| | - Lorenza Francesca De Lellis
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
| | - Santny Shanmugarama
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Rosa Pérez-Gregorio
- Food and Health Omics Group, Institute of Agroecology and Food, Faculty of Sciences, University of Vigo, 32004 Ourense, Spain;
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Department of Analytical and Food Chemistry, Galicia Sur Health Research Institute (IISGS), SERGAS-UVIGO, 32002 Ourense, Spain
| | | | - Hammad Ullah
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
| | - Daniele Giuseppe Buccato
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Alessandra Baldi
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
5
|
Higbee J, Brownmiller C, Solverson P, Howard L, Carbonero F. Polyphenolic profiles of a variety of wild berries from the Pacific Northwest region of North America. Curr Res Food Sci 2023; 7:100564. [PMID: 37664004 PMCID: PMC10474376 DOI: 10.1016/j.crfs.2023.100564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/29/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023] Open
Abstract
Polyphenols have been extensively profiled and quantified in commercially grown berries, but similar information is sparsely available for wild berries. Because polyphenolic contents are inherently associated with berries health benefits, determining phenolic profiles is an important step for strategizing potential uses by the industry and for health and nutrition outcomes. Here, we profiled phenolic compounds in wild berries commonly encountered and harvested in the Pacific Northwest region of North America. Huckleberries (Vaccinium membranaceum) of varying phenotypes were found to be comparable to related blueberries in terms of general phenolic classes composition. However, all huckleberries exhibited markedly high levels of cyanidins, and delphinidins or peonidins were also higher in specific phenotypes. Wild black elderberries (Sambucus nigra spp. Canadensis) were found to have remarkably high phenolic, especially anthocyanins, in line with reports from cultivated elderberries. Saskatoon serviceberries (Amelanchier alnifolia) were found to exhibit high polyphenol content, but with a less diverse profile dominated by quercetin. The most intriguing berry may be the Oregon grape (Mahonia Aquifolium) being the only one exhibiting more than one g of polyphenols per 100 g; as well as a remarkably even distribution of the different anthocyanin classes. All colored wild berries were found to have at minimum comparable total phenolic contents when compared to cultivated and other wild berries, suggesting they should exhibit comparable human health benefits such as antioxidant and metabolic syndrome preventative potential described for these other berries. Overall, our data represents a valuable resource to explore the potential to valorize wild berry species for their specific phenolic profiles and predicted nutritional and health properties. With repeated phenolic profiling to better understand the impact of the environment, the wild berries described here hold promises both as food ingredient applications as well as valuable complement for healthy dietary patterns.
Collapse
Affiliation(s)
- Jerome Higbee
- Department of Nutrition and Exercise Physiology, Washington State University, Spokane, WA, USA
| | - Cindi Brownmiller
- Department of Food Science, University of Arkansas, Fayetteville, AR, USA
| | - Patrick Solverson
- Department of Nutrition and Exercise Physiology, Washington State University, Spokane, WA, USA
| | - Luke Howard
- Department of Food Science, University of Arkansas, Fayetteville, AR, USA
| | - Franck Carbonero
- Department of Nutrition and Exercise Physiology, Washington State University, Spokane, WA, USA
- School of Food Science, Washington State University, Pullman, WA, USA
| |
Collapse
|
6
|
Mzoughi M, Demircan E, Turan OY, Firatligil E, Ozcelik B. Valorization of plum (Prunus domestica) peels: microwave-assisted extraction, encapsulation and storage stability of its phenolic extract. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01893-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
7
|
Chen G, Netzel ME, Mantilla SMO, Phan ADT, Netzel G, Sivakumar D, Sultanbawa Y. Quality Assessment of Burdekin Plum ( Pleiogynium timoriense) during Ambient Storage. Molecules 2023; 28:1608. [PMID: 36838596 PMCID: PMC9958931 DOI: 10.3390/molecules28041608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/11/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Pleiogynium timoriense, commonly known as Burdekin plum (BP), is among many Australian native plants traditionally used by Indigenous people. However, only limited information is available on the nutritional and sensory quality of BP grown in Australia as well as its changes during storage. Therefore, this study evaluated the quality of BP during one week of ambient storage (temperature 21 °C, humidity 69%). Proximate analysis revealed a relatively high dietary fiber content in BP (7-10 g/100 g FW). A significant reduction in fruit weight and firmness (15-30% and 60-90%, respectively) with distinguishable changes in flesh color (ΔE > 3) and an increase in total soluble solids (from 11 to 21 °Brix) could be observed during storage. The vitamin C and folate contents in BP ranged from 29 to 59 mg/100g FW and 0.3 to 5.9 μg/100g FW, respectively, after harvesting. A total phenolic content of up to 20 mg GAE/g FW and ferric reducing antioxidant power of up to 400 μmol Fe2+/g FW in BP indicate a strong antioxidant capacity. In total, 34 individual phenolic compounds were tentatively identified in BP including cyanidin 3-galactoside, ellagic acid and gallotannins as the main phenolics. Principle component analysis (PCA) of the quantified phenolics indicated that tree to tree variation had a bigger impact on the phenolic composition of BP than ambient storage. Sensory evaluation also revealed the diversity in aroma, appearance, texture, flavor and aftertaste of BP. The results of this study provide crucial information for consumers, growers and food processors.
Collapse
Affiliation(s)
- Gengning Chen
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4068, Australia
| | - Michael E. Netzel
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4068, Australia
| | - Sandra Milena Olarte Mantilla
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4068, Australia
| | - Anh Dao Thi Phan
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4068, Australia
| | - Gabriele Netzel
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4068, Australia
| | - Dharini Sivakumar
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4068, Australia
- Department of Horticulture, Tshwane University of Technology, 0001 Pretoria West, South Africa
| | - Yasmina Sultanbawa
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4068, Australia
| |
Collapse
|
8
|
Cornara L, Sgrò F, Raimondo FM, Ingegneri M, Mastracci L, D’Angelo V, Germanò MP, Trombetta D, Smeriglio A. Pedoclimatic Conditions Influence the Morphological, Phytochemical and Biological Features of Mentha pulegium L. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010024. [PMID: 36616155 PMCID: PMC9824027 DOI: 10.3390/plants12010024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 06/01/2023]
Abstract
In this study, Mentha pulegium leaves and flowers harvested in three different Sicilian areas were investigated from a micromorphological, phytochemical and biological point of view. Light and scanning electron microscopy showed the presence of spherocrystalline masses of diosmin both in the leaf epidermal cells and in thin flower petals. Two different chemotypes were identified (I, kaempferide/rosmarinic acid; II, jaceidin isomer A). Phytochemical screening identified plant from collection site II as the richest in total phenolics (16.74 g GAE/100 g DE) and that from collection site I as the richest in flavonoids (46.56 g RE/100 g DE). Seventy-seven metabolites were identified both in flower and leaf extracts. Plant from site II showed the best antioxidant (0.90-83.72 µg/mL) and anti-inflammatory (27.44-196.31 µg/mL) activity expressed as half-maximal inhibitory concentration (IC50) evaluated by DPPH, TEAC, FRAP, ORAC, BSA denaturation and protease inhibition assays. These data were also corroborated by in vitro cell-based assays on lymphocytes and erythrocytes. Moreover, plant of site II showed the best antiangiogenic properties (IC50 33.43-33.60 µg/mL) in vivo on a chick chorioallantoic membrane. In conclusion, pedoclimatic conditions influence the chemotype and the biological activity of M. pulegium, with chemotype I showing the most promising biological properties.
Collapse
Affiliation(s)
- Laura Cornara
- Department of Earth, Environment and Life Sciences, University of Genova, C.so Europa 26, 16132 Genova, Italy
| | - Federica Sgrò
- Foundation Prof. Antonio Imbesi, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Francesco Maria Raimondo
- PLANTA/Autonomous Center for Research, Documentation and Training, Via Serraglio Vecchio 28, 90123 Palermo, Italy
| | - Mariarosaria Ingegneri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Luca Mastracci
- Pathology Unit, Department of Surgical and Diagnostic Sciences (DISC), University of Genova, 16132 Genova, Italy
- Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16125 Genova, Italy
| | - Valeria D’Angelo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Maria Paola Germanò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
9
|
Dietary supplementation with anthocyanin attenuates lipopolysaccharide-induced intestinal damage through antioxidant effects in yellow-feathered broiler chicks. Poult Sci 2022; 102:102325. [PMID: 36566655 PMCID: PMC9801212 DOI: 10.1016/j.psj.2022.102325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022] Open
Abstract
This study investigated the protective effects of anthocyanin (AC) supplementation on lipopolysaccharide (LPS)-challenged yellow-feathered broiler chicks. A total of 480 1-d female broiler chicks were randomly assigned to 4 treatment groups: basal diet (CON), basal diet + LPS-challenge (LPS), supplementation with 100 or 400 mg/kg AC + LPS-challenge (AC100, AC400). On d 17 and d 19, birds in LPS, AC100 and AC400 received an intramuscular dose of LPS, while birds in CON received saline. The result showed that (1) LPS injection significantly decreased (P < 0.05) body weight on d 21 and average daily gain of broiler chicks from 1 to 21 days of age, and supplementation with 100 mg/kg AC increased (P < 0.05) those of LPS-challenged broilers. (2) There were no differences among the treatments (P > 0.05) in relative weights of immune organs. (3) Supplementation with AC (AC100 and AC400) increased (P < 0.05) the jejunal villus height and villus height/crypt depth ratio (AC100) of LPS-challenged birds. Challenge with LPS decreased the relative expression of OCLN (Occludin), ZO-1, JAM2, and MUC2 in jejunal mucosa of broilers, and supplementation with AC offset the relative expression of ZO-1, JAM2 (AC100 and AC400), and OCLN (AC400) in LPS-injected broilers. (4) LPS-induced increase in the malondialdehyde (MDA) concentration and decreases in activity of total superoxide dismutase (T-SOD), and expression of SOD1, CAT and GPX in jejunal mucosa, were attenuated by dietary AC supplementation. In conclusion, in yellow-feathered broiler chicks, dietary supplementation with AC alleviated LPS-induced declined growth performance and mucosal damage of the intestine through antioxidant effects.
Collapse
|
10
|
Hassan SA, Abbas M, Zia S, Maan AA, Khan MKI, Hassoun A, Shehzad A, Gattin R, Aadil RM. An appealing review of industrial and nutraceutical applications of pistachio waste. Crit Rev Food Sci Nutr 2022; 64:3103-3121. [PMID: 36200872 DOI: 10.1080/10408398.2022.2130158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Pistachio (Pistacia vera L.) is consumed in almost every part of the world enclosed in shells that are thrown out in baskets. Similarly, hulls separated from pistachio are discarded as waste in food processing industries. These waste materials contain functional constituents having immense industrial and nutraceutical applications. This review article summarizes the scientific investigations regarding the functional constituents and bioactive compounds in pistachio shells (PSs) and pistachio hulls (PHs). It also highlights the nutraceutical potential exhibited by functionally active compounds as well as their potential applications in various industries including nutraceutical, medicinal, and feed industries together with biosynthetic development of useful products and wastewater treatment. Pistachio waste (PW) comprising PS and PH is a rich source of various bioactive compounds. PS is full of lignin, cellulose, and hemicellulose. PH is an excellent source of carbohydrates (80.64 ± 0.98%) (including glucose, galactose, rhamnose, arabinose, xylose, mannose, galacturonic acid) as well as ash (6.32 ± 0.26%) and proteins (1.80 ± 0.28%) with small amounts of fats (0.04 ± 0.005%). Owing to its composition, PW can be beneficial in many nutraceuticals, including antioxidation, cytoprotection, anti-obesity, anti-diabetic, anti-melanogenesis, neuroprotection, anti-cancer, anti-mutagenesis, anti-inflammation, and anti-microbial. The waste materials have vast applications in the food industry, such as bio-preservation of oils and meat products, prevention of enzymatic browning in fruits, vegetables, and mushrooms, development of functional cereal and dairy products, production of food enzymes, emulsions, and manufacturing of biodegradable films for food packaging. The use of these waste products to develop and design novel functional foods with improved quality is important for both food industries and food sustainability.
Collapse
Affiliation(s)
- Syed Ali Hassan
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Mueen Abbas
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sania Zia
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Abid Aslam Maan
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
- Department of Food Engineering, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Kashif Iqbal Khan
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
- Department of Food Engineering, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Abdo Hassoun
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège Junia, Boulogne-sur-Mer, France
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
| | - Aamir Shehzad
- UniLaSalle, Univ. Artois, EA7519 - Transformations & Agro-ressources, Normandie Université, Mont-Saint-Aignan, France
| | - Richard Gattin
- UniLaSalle, Univ. Artois, EA7519 - Transformations & Agro-ressources, Normandie Université, Mont-Saint-Aignan, France
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
11
|
Cui Y, Zhao J, Chen J, Kong Y, Wang M, Ma Y, Meng X. Cyanidin-3-galactoside from Aronia melanocarpa ameliorates silica-induced pulmonary fibrosis by modulating the TGF-β/mTOR and NRF2/HO-1 pathways. Food Sci Nutr 2022; 10:2558-2567. [PMID: 35959254 PMCID: PMC9361441 DOI: 10.1002/fsn3.2861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/13/2022] [Accepted: 03/17/2022] [Indexed: 11/20/2022] Open
Abstract
Cyanidin-3-galactoside (C3G), the most abundant anthocyanin in Aronia melanocarpa, has many beneficial health effects, such as antioxidation. C3G was extracted from A. melanocarpa and applied (100, 200, and 400 mg/kg body weight) to 50-μl silica particles (SP) solution-exposed mice to research its antifibrotic properties using histological analysis, hydroxyproline assay, quantitative real-time polymerase chain reaction, and western blot analysis. The results showed that C3G treatment significantly ameliorated pulmonary fibrosis and cell infiltration into the lungs of mice. It also relieved SP-induced epithelial-mesenchymal transition (EMT), 400 mg/kg C3G treatment increasing epithelial-cadherin mRNA expression and decreasing α-smooth muscle actin mRNA expression to the level of that in the control group. Western blot analysis showed that exposure to SP increased the production of transforming growth factor-β1 (TGF-β1) and phosphorylated mammalian target of rapamycin (mTOR) by 4.71- and 4.15-fold, respectively, in the lungs of mice, which were significantly inhibited by C3G treatment. Moreover, 400 mg/kg C3G treatment up-regulated two important antioxidant mediators, nuclear factor erythroid-2-related factor 2 (NRF2; 4.91-fold) and heme oxygenase-1 (HO-1; 4.81-fold). The mechanism study indicated that C3G might inhibit the TGF-β/mTOR signaling via the NRF2/HO-1 pathway and that SP-induced pulmonary EMT was ameliorated by inhibiting the TGF-β/mTOR signaling pathway. Our findings could provide new avenues for C3G as a functional food for preventing or mediating the progression of SP-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Yanmin Cui
- College of Food ScienceShenyang Agricultural UniversityShenyangPR China
| | - Jin Zhao
- College of Food ScienceShenyang Agricultural UniversityShenyangPR China
| | - Jing Chen
- College of Food ScienceShenyang Agricultural UniversityShenyangPR China
| | - Yanwen Kong
- College of Food ScienceShenyang Agricultural UniversityShenyangPR China
| | - Mingyue Wang
- College of Food ScienceShenyang Agricultural UniversityShenyangPR China
| | - Yan Ma
- Center of Experiment TeachingShenyang Normal UniversityShenyangPR China
| | - Xianjun Meng
- College of Food ScienceShenyang Agricultural UniversityShenyangPR China
| |
Collapse
|
12
|
The Antimicrobial Potential of Hexane Oils and Polyphenols-Rich Extracts from Pistacia vera L. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pistachio (Pistacia vera L.) nuts contain nutrients and phytochemicals which have been linked to several positive outcomes. The aim of this research was to examine the antimicrobial effect of natural raw and roasted unsalted polyphenols-rich pistachio extracts (NRRE and RURE) and hexane oil fractions. American Type Culture Collection (ATCC), food and clinical isolates of Gram-positive bacteria (Listeria monocytogenes and Staphylococcus aureus), Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli and Enterococcus faecium) and yeasts (Candida albicans) were used. In addition, the influence of the extraction method was evaluated. Generally, NRRE extracts were richer in polyphenolic compounds compared with RURE extracts. NRRE extracted with n-hexane was the most effective on Listeria monocytogenes food isolates strains (MIC values between 0.25 and 2.0 mg mL−1). All extracts, except for RURE extracted with n-hexane, were active against Listeria monocytogenes ATCC 13932. Both hexane oil fractions were active against Listeria monocytogenes ATCC 13932 and Enterococcus faecium DSZM 17050. The oil obtained from natural pistachio was active against three food isolates of Listeria monocytogenes. In conclusion, the present study indicates an inhibitory effect of pistachio polyphenols against Listeria monocytogenes, one of the most serious pathogens causing foodborne disease.
Collapse
|
13
|
Abdalla MA, Li F, Wenzel-Storjohann A, Sulieman S, Tasdemir D, Mühling KH. Comparative Metabolite Profile, Biological Activity and Overall Quality of Three Lettuce ( Lactuca sativa L., Asteraceae) Cultivars in Response to Sulfur Nutrition. Pharmaceutics 2021; 13:pharmaceutics13050713. [PMID: 34068285 PMCID: PMC8153342 DOI: 10.3390/pharmaceutics13050713] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022] Open
Abstract
The main objective of the present study was to assess the effects of sulfur (S) nutrition on plant growth, overall quality, secondary metabolites, and antibacterial and radical scavenging activities of hydroponically grown lettuce cultivars. Three lettuce cultivars, namely, Pazmanea RZ (green butterhead, V1), Hawking RZ (green multi-leaf lettuce, V2), and Barlach RZ (red multi-leaf, V3) were subjected to two S-treatments in the form of magnesium sulfate (+S) or magnesium chloride (-S). Significant differences were observed under -S treatments, especially among V1 and V2 lettuce cultivars. These responses were reflected in the yield, levels of macro- and micro-nutrients, water-soluble sugars, and free inorganic anions. In comparison with the green cultivars (V1 and V2), the red-V3 cultivar revealed a greater acclimation to S starvation, as evidenced by relative higher plant growth. In contrast, the green cultivars showed higher capabilities in production and superior quality attributes under +S condition. As for secondary metabolites, sixteen compounds (e.g., sesquiterpene lactones, caffeoyl derivatives, caffeic acid hexose, 5-caffeoylquinic acid (5-OCQA), quercetin and luteolin glucoside derivatives) were annotated in all three cultivars with the aid of HPLC-DAD-MS-based untargeted metabolomics. Sesquiterpene lactone lactucin and anthocyanin cyanidin 3-O-galactoside were only detected in V1 and V3 cultivars, respectively. Based on the analyses, the V3 cultivar was the most potent radical scavenger, while V1 and V2 cultivars exhibited antibacterial activity against Staphylococcus aureus in response to S provision. Our study emphasizes the critical role of S nutrition in plant growth, acclimation, and nutritional quality. The judicious-S application can be adopted as a promising antimicrobial prototype for medical applications.
Collapse
Affiliation(s)
- Muna Ali Abdalla
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Str. 2, 24118 Kiel, Germany;
- Correspondence: (M.A.A.); (K.H.M.); Tel.: +49-431-880-6471 (M.A.A.); +49-431-880-3189 (K.H.M.)
| | - Fengjie Li
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; (F.L.); (A.W.-S.); (D.T.)
| | - Arlette Wenzel-Storjohann
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; (F.L.); (A.W.-S.); (D.T.)
| | - Saad Sulieman
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Str. 2, 24118 Kiel, Germany;
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; (F.L.); (A.W.-S.); (D.T.)
- Faculty of Mathematics and Natural Sciences, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Karl H. Mühling
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Str. 2, 24118 Kiel, Germany;
- Correspondence: (M.A.A.); (K.H.M.); Tel.: +49-431-880-6471 (M.A.A.); +49-431-880-3189 (K.H.M.)
| |
Collapse
|
14
|
Pascoalino LA, Reis FS, Prieto MA, Barreira JCM, Ferreira ICFR, Barros L. Valorization of Bio-Residues from the Processing of Main Portuguese Fruit Crops: From Discarded Waste to Health Promoting Compounds. Molecules 2021; 26:molecules26092624. [PMID: 33946249 PMCID: PMC8124571 DOI: 10.3390/molecules26092624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 11/25/2022] Open
Abstract
Food processing generates a large amount of bio-residues, which have become the focus of different studies aimed at valorizing this low-cost source of bioactive compounds. High fruit consumption is associated with beneficial health effects and, therefore, bio-waste and its constituents arouse therapeutic interest. The present work focuses on the main Portuguese fruit crops and revises (i) the chemical constituents of apple, orange, and pear pomace as potential sources of functional/bioactive compounds; (ii) the bioactive evidence and potential therapeutic use of bio-waste generated in the processing of the main Portuguese fruit crops; and (iii) potential applications in the food, nutraceutical, pharmaceutical, and cosmetics industries. The current evidence of the effect of these bio-residues as antioxidant, anti-inflammatory, and antimicrobial agents is also summarized. Conclusions of the revised data are that these bio-wastes hold great potential to be employed in specific nutritional and pharmaceutical applications.
Collapse
Affiliation(s)
- Liege A. Pascoalino
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.A.P.); (F.S.R.); (I.C.F.R.F.)
| | - Filipa S. Reis
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.A.P.); (F.S.R.); (I.C.F.R.F.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain;
| | - João C. M. Barreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.A.P.); (F.S.R.); (I.C.F.R.F.)
- Correspondence: (J.C.M.B.); (L.B.); Tel.: +351-2733-30903 (J.C.M.B.); +351-2733-03532 (L.B.)
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.A.P.); (F.S.R.); (I.C.F.R.F.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.A.P.); (F.S.R.); (I.C.F.R.F.)
- Correspondence: (J.C.M.B.); (L.B.); Tel.: +351-2733-30903 (J.C.M.B.); +351-2733-03532 (L.B.)
| |
Collapse
|
15
|
Smeriglio A, D'Angelo V, Denaro M, Trombetta D, Germanò MP. The Hull of Ripe Pistachio Nuts (Pistacia vera L.) as a Source of New Promising Melanogenesis Inhibitors. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2021; 76:111-117. [PMID: 33635514 DOI: 10.1007/s11130-021-00883-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
In the present study an acidified methanol pistachio hull extract was investigated for antioxidant and inhibitory effects on melanin biosynthesis by in vitro and in vivo assays. The chromatographic analysis revealed that cyanidin-3-O-galactoside represents the main compound (98.37%). The pistachio hull extract efficiently inhibits the mono and diphenolase activity of mushroom tyrosinase (IC50= 141.07 and 116.08 μg/mL, respectively) and it was able, thanks to its strong antioxidant and free-radical scavenging activities, to hinder the L-DOPA auto-oxidation in a concentration-dependent manner (125-500 μg/mL). Results of in vivo assay showed that the treatment with pistachio hull extract (10 μg/mL) reduced pigmentation in zebrafish embryos at early stages of development (60.01% of inhibition vs control). In conclusion, these findings suggest that the ripe pistachio hull may be considered as a promising source of antioxidant and skin whitening agents for the development of new products useful in preventing the pigmentation disorders in humans and/or to improve the food quality.
Collapse
Affiliation(s)
- Antonella Smeriglio
- Foundation Prof. Antonio Imbesi, University of Messina, Piazza Pugliatti 1, 98122, Messina, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Giovanni Palatucci, 98168, Messina, Italy
| | - Valeria D'Angelo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Giovanni Palatucci, 98168, Messina, Italy
| | - Marcella Denaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Giovanni Palatucci, 98168, Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Giovanni Palatucci, 98168, Messina, Italy.
| | - Maria Paola Germanò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Giovanni Palatucci, 98168, Messina, Italy
| |
Collapse
|
16
|
Liang Z, Liang H, Guo Y, Yang D. Cyanidin 3- O-galactoside: A Natural Compound with Multiple Health Benefits. Int J Mol Sci 2021; 22:ijms22052261. [PMID: 33668383 PMCID: PMC7956414 DOI: 10.3390/ijms22052261] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 12/16/2022] Open
Abstract
Cyanidin 3-O-galactoside (Cy3Gal) is one of the most widespread anthocyanins that positively impacts the health of animals and humans. Since it is available from a wide range of natural sources, such as fruits (apples and berries in particular), substantial studies were performed to investigate its biosynthesis, chemical stability, natural occurrences and content, extraction methods, physiological functions, as well as potential applications. In this review, we focus on presenting the previous studies on the abovementioned aspects of Cy3Gal. As a conclusion, Cy3Gal shares a common biosynthesis pathway and analogous stability with other anthocyanins. Galactosyltransferase utilizing uridine diphosphate galactose (UDP-galactose) and cyanidin as substrates is unique for Cy3Gal biosynthesis. Extraction employing different methods reveals chokeberry as the most practical natural source for mass-production of this compound. The antioxidant properties and other health effects, including anti-inflammatory, anticancer, antidiabetic, anti-toxicity, cardiovascular, and nervous protective capacities, are highlighted in purified Cy3Gal and in its combination with other polyphenols. These unique properties of Cy3Gal are discussed and compared with other anthocyanins with related structure for an in-depth evaluation of its potential value as food additives or health supplement. Emphasis is laid on the description of its physiological functions confirmed via various approaches.
Collapse
Affiliation(s)
- Zhongxin Liang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.L.); (H.L.); (Y.G.)
| | - Hongrui Liang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.L.); (H.L.); (Y.G.)
| | - Yizhan Guo
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.L.); (H.L.); (Y.G.)
| | - Dong Yang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.L.); (H.L.); (Y.G.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China
- Correspondence: ; Tel.: +86-10-6273-7129
| |
Collapse
|
17
|
Mechanisms of Plant Antioxidants Action. PLANTS 2020; 10:plants10010035. [PMID: 33375600 PMCID: PMC7823753 DOI: 10.3390/plants10010035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 01/10/2023]
Abstract
The plant kingdom is a rich source of health-promoting compounds and has always played a fundamental role in the isolation, identification, and modification of compounds able to perform several properties on live organisms. Among them, the so-called “antioxidants” have a major potentiality to increase human wellness. Antioxidants are important components in the signaling and defense mechanisms in some plants, where they are precursors of compounds of greater complexity, the modulator of plant growth, and the defensive system against pathogenic organisms and predators. The extraordinary variety of chemical structure and substitution present in the different plant antioxidants make them an inestimable source of interesting compounds, with the ability to counter reactive oxygen/nitrogen species (ROS/RNS) and to stimulate the activation of signal cascade inside the cells. The mechanisms by which antioxidants detoxify these dangerous compounds are complex and involve either direct or indirect interaction with radicals. Antioxidants inhibit or quench free radical reactions mainly based on their reducing capacity or hydrogen atom-donating capacity, their solubility, and chelating properties. Moreover, their ability to modulate key metabolic enzymes and activate/block gene transcription also has remarkable importance.
Collapse
|
18
|
Izzo L, Rodríguez-Carrasco Y, Pacifico S, Castaldo L, Narváez A, Ritieni A. Colon Bioaccessibility under In Vitro Gastrointestinal Digestion of a Red Cabbage Extract Chemically Profiled through UHPLC-Q-Orbitrap HRMS. Antioxidants (Basel) 2020; 9:E955. [PMID: 33036251 PMCID: PMC7601900 DOI: 10.3390/antiox9100955] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/27/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
Red cabbage is a native vegetable of the Mediterranean region that represents one of the major sources of anthocyanins. The aim of this research is to evaluate the antioxidant capability and total polyphenol content (TPC) of a red cabbage extract and to compare acquired data with those from the same extract encapsulated in an acid-resistant capsule. The extract, which was qualitatively and quantitatively profiled by UHPLC-Q-Orbitrap HRMS analysis, contained a high content of anthocyanins and phenolic acids, whereas non-anthocyanin flavonoids were the less abundant compounds. An in vitro gastrointestinal digestion system was utilized to follow the extract's metabolism in humans and to evaluate its colon bioaccessibility. Data obtained showed that during gastrointestinal digestion, the total polyphenol content of the extract digested in the acid-resistant capsule in the Pronase E stage resulted in a higher concentration value compared to the extract digested without the capsule. Reasonably, these results could be attributed to the metabolization process by human colonic microflora and to the genesis of metabolites with greater bioactivity and more beneficial effects. The use of red cabbage extract encapsulated in an acid-resistant capsule could improve the polyphenols' bioaccessibility and be proposed as a red cabbage-based nutraceutical formulation for counteracting stress oxidative diseases.
Collapse
Affiliation(s)
- Luana Izzo
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy; (L.C.); (A.N.); (A.R.)
| | - Yelko Rodríguez-Carrasco
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain;
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy;
| | - Luigi Castaldo
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy; (L.C.); (A.N.); (A.R.)
| | - Alfonso Narváez
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy; (L.C.); (A.N.); (A.R.)
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy; (L.C.); (A.N.); (A.R.)
- Health Education and Sustainable Development, Federico II University, 80131 Naples, Italy
| |
Collapse
|
19
|
Denaro M, Smeriglio A, De Francesco C, Xiao J, Cornara L, Trombetta D. In vitro intestinal transport and anti-inflammatory properties of ideain across Caco-2 transwell model. Fitoterapia 2020; 146:104723. [PMID: 32949649 DOI: 10.1016/j.fitote.2020.104723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/09/2020] [Accepted: 09/12/2020] [Indexed: 02/08/2023]
Abstract
The aim of the study was to investigate the absorption and transport mechanisms as well as the anti-inflammatory properties of ideain on Caco-2 transwell model. A concentration and time-dependent bidirectional transport was highlighted; despite this, a clear saturation of the transepithelial absorption in the A-B direction was observed at ideain concentration > 10 μM, suggesting an involvement of membrane transporters. Comparing Papp and PDR values of ideain (10 μM) to reference drugs with a low to a high apparent permeability, it is possible to predict a low in vivo absorption, with a transport efficiency of 1.03%. Co-treatments with several EDTA-Na2 concentrations (1-5 mM) and P-gp inhibition studies with verapamil 100 μM ruled out a passive diffusion of this molecule as well the possibility that P-gp could affect ideain absorption. Inhibition studies using 2 mM phloridzin (SGLT1 inhibitor) and 2 mM phloretin (GLUT2 inhibitor), showed a clear SGLT1 and GLUT2 involvement in the ideain absorption, with SGLT1, which plays the pivotal role. Finally, preliminary anti-inflammatory studies showed that ideain is able to modulate, at a pharmanutritional dose, and with a comparable activity in respect to the reference drug dexamethasone (10 μM), the LPS-induced inflammation in Caco-2 transwell model, which makes it a potentially useful molecule for nutraceutical purpose.
Collapse
Affiliation(s)
- Marcella Denaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; Foundation Prof. Antonio Imbesi, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy.
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; Foundation Prof. Antonio Imbesi, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy.
| | - Clara De Francesco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy; Foundation Prof. Antonio Imbesi, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau, SAR 999078, China
| | - Laura Cornara
- Department of Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132 Genova, Italy.
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via Giovanni Palatucci, 98168 Messina, Italy.
| |
Collapse
|
20
|
Sanches Silva A, Reboredo-Rodríguez P, Sanchez-Machado DI, López-Cervantes J, Barreca D, Pittala V, Samec D, Orhan IE, Gulcan HO, Forbes-Hernandez TY, Battino M, Nabavi SF, Devi KP, Nabavi SM. Evaluation of the status quo of polyphenols analysis: Part II-Analysis methods and food processing effects. Compr Rev Food Sci Food Saf 2020; 19:3219-3240. [PMID: 33337047 DOI: 10.1111/1541-4337.12626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 12/27/2022]
Abstract
Nowadays due to the concern with the environmental impact of analytical techniques and in order to reduce the ecological footprint there is a tendency to use more efficient and faster procedures that use a smaller amount of organic solvents. Polyphenols have been widely studied in plant-based matrices due to their wide and potent biological properties; however there are no standardized procedures both for sample preparation and analysis of these compounds. The second of a two-part review will carry out a critical review of the extraction procedures and analytical methods applied to polyphenols and their selection criteria over a wide range of factors in relation to commerce-associated, environmental, and economic factors. It is foreseen that in the future the analysis of polyphenols in plant-based matrices includes the use of techniques that allow the simultaneous determination of different subclasses of polyphenols using fast, sophisticated, and automated techniques that allow the minimal consumption of solvents.
Collapse
Affiliation(s)
- Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Vairão, Vila do Conde, Portugal.,Center for Study in Animal Science (CECA), University of Oporto, Oporto, Portugal
| | - Patricia Reboredo-Rodríguez
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, CITACA, Faculty of Science, University of Vigo - Ourense Campus, Ourense, E32004, Spain
| | | | | | - Davide Barreca
- Dipartimento di Scienze chimiche, biologiche, farmaceutiche ed ambientali, Università di Messina, Messina, Italy
| | - Valeria Pittala
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Catania, Italy
| | - Dunja Samec
- Department of Molecular Biology, Institute 'Ruđer Bošković', Zagreb, Croatia
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - H Ozan Gulcan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Eastern Mediterranean University, Gazimagusa, The Northern Cyprus via Mersin, Turkey
| | - Tamara Y Forbes-Hernandez
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo, Spain
| | - Maurizio Battino
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo, Spain.,College of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Laganà G, Barreca D, Smeriglio A, Germanò MP, D’Angelo V, Calderaro A, Bellocco E, Trombetta D. Evaluation of Anthocyanin Profile, Antioxidant, Cytoprotective, and Anti-Angiogenic Properties of Callistemon citrinus Flowers. PLANTS 2020; 9:plants9081045. [PMID: 32824448 PMCID: PMC7465370 DOI: 10.3390/plants9081045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/10/2020] [Accepted: 08/16/2020] [Indexed: 12/11/2022]
Abstract
Lemon bottlebrush (Callistemon citrinus (Curtis) Skeels) is one of the most common ornamental plants, diffused worldwide, and characterized by the presence of flowers with an intense red/purple coloration. There is increasing interest in the use and application of anthocyanins for their unique structural/chemical features in both food and pharmaceutical applications. RP-HPLC-DAD-ESI-MS/MS analysis of an enriched fraction of acidified methanolic extract of C. citrinus flowers allow the possibility of identifying, for the first time, the presence of four anthocyanins: cyanidin-3,5-O-diglucoside (cyanin), peonidin-3,5-O-diglucoside (peonin), cyanidin-3-O-glucoside, and cyanidin-coumaroylglucoside-pyruvic acid. Moreover, the evaluation of antioxidant and biological potential showed a remarkable activity of this fraction, able to actively scavenge DPPH, AAPH, and ABTS radicals, and to counteract the β-carotene-bleaching. In addition, it protects human mononuclear cells from oxidative injuries and prevents angiogenesis (acting in the range of few μg/ml); furthermore, it does not show significant iron-chelating ability (up to 200 µg/mL). The easy way of cultivation, robustness, and adaptability to different environments make the flowers of this plant a useful source of anthocyanins, with remarkable health promoting properties.
Collapse
Affiliation(s)
| | - Davide Barreca
- Correspondence: ; Tel.: +39-090-676-5187; Fax: +39-090-676-5186
| | | | | | | | | | | | | |
Collapse
|
22
|
Lashgari SS, Noorolahi Z, Sahari MA, Ahmadi Gavlighi H. Improvement of oxidative stability and textural properties of fermented sausage via addition of pistachio hull extract. Food Sci Nutr 2020; 8:2920-2928. [PMID: 32566210 PMCID: PMC7300040 DOI: 10.1002/fsn3.1594] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/22/2020] [Accepted: 03/27/2020] [Indexed: 11/29/2022] Open
Abstract
The purpose of this study was to evaluate the effectiveness of pistachio hull extract (PHE) as an antioxidant and antimicrobial agent for preservation of dry fermented sausages during fermentation and storage period. Sausages were prepared using starter culture (Biobak K) and treated with three levels of PHE (500, 750 and 1,000 ppm). The results showed that PHE at concentrations of 500 ppm and 750 ppm decreased significantly (p < .05) the TBARS content of the sausage samples compared to control (without PHE). Moreover, PHE increased L* and a* value of samples during fermentation period but did not affect the color of samples during storage period. The PHE was also able to improve the chewiness and gumminess of the fermented sausage. Evaluation of microbial properties (total viable count, yeast and molds, lactic acid bacteria, staphylococci and Enterobacteriaceae) also showed that antimicrobial activity of PHE in fermented sausage.
Collapse
Affiliation(s)
- Seyede Saba Lashgari
- Department of Food Science and TechnologyFaculty of AgricultureTarbiat Modares UniversityTehranIran
| | - Zohre Noorolahi
- Department of Food Science and TechnologyFaculty of AgricultureTarbiat Modares UniversityTehranIran
| | - Mohamad Ali Sahari
- Department of Food Science and TechnologyFaculty of AgricultureTarbiat Modares UniversityTehranIran
| | - Hassan Ahmadi Gavlighi
- Department of Food Science and TechnologyFaculty of AgricultureTarbiat Modares UniversityTehranIran
| |
Collapse
|
23
|
de Mejia EG, Zhang Q, Penta K, Eroglu A, Lila MA. The Colors of Health: Chemistry, Bioactivity, and Market Demand for Colorful Foods and Natural Food Sources of Colorants. Annu Rev Food Sci Technol 2020; 11:145-182. [PMID: 32126181 DOI: 10.1146/annurev-food-032519-051729] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is an increasing consumer demand for natural colors in foods. However, there is a limited number of available natural food sources for use by the food industry because of technical and regulatory limitations. Natural colors are less stable and have less vibrant hues compared to their synthetic color counterparts. Natural pigments also have known health benefits that are seldom leveraged by the food industry. Betalains, carotenoids, phycocyanins, and anthocyanins are major food colorants used in the food industry that have documented biological effects, particularly in the prevention and management of chronic diseases such as diabetes, obesity, and cardiovascular disease. The color industry needs new sources of stable, functional, and safe natural food colorants. New opportunities include sourcing new colors from microbial sources and via the use of genetic biotechnology. In all cases, there is an imperative need for toxicological evaluation to pave the way for their regulatory approval.
Collapse
Affiliation(s)
- Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Illinois 61801, USA;
| | - Qiaozhi Zhang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Kayla Penta
- Department of Molecular and Structural Biochemistry and Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, North Carolina 28081, USA
| | - Abdulkerim Eroglu
- Department of Molecular and Structural Biochemistry and Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, North Carolina 28081, USA
| | - Mary Ann Lila
- Department of Food, Bioprocessing & Nutrition Sciences and Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, North Carolina 28081, USA
| |
Collapse
|
24
|
Noorolahi Z, Sahari MA, Barzegar M, Ahmadi Gavlighi H. Tannin fraction of pistachio green hull extract with pancreatic lipase inhibitory and antioxidant activity. J Food Biochem 2020; 44:e13208. [PMID: 32189358 DOI: 10.1111/jfbc.13208] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 11/26/2022]
Abstract
Polyphenolic compounds (present in different parts of the plant) have beneficial properties such as antioxidant and inhibition of key enzymes. In this research, antioxidant and anti-lipase activity of pistachio green hull (PGH) extract was investigated. Fractionation of PGH on Sephadex LH-20 furnished a tannin enriched fraction with higher antioxidant activity respect to that of the extract and of the non-tannin fraction. UHPL/MS2 analyses showed the presence of phenolic compounds including galloyl-O-hexoside, galloyl-shikimic acid, galloylquinic acid, and gallic acid in tannin fraction. PGH-extract was an un-competitive inhibitor against porcine pancreatic lipase so that its IC50 value was 2.26 mg/ml. In the same phenol amount (490 µg), anti-lipase activity of the tannin fraction was also more than non-tannin fraction and crude PGH-extract. This is probably due to the presence of some active polyphenolic compounds such as gallic acid. PRACTICAL APPLICATIONS: Pistachio is native to the arid regions of Central and West Asia including Iran. The green hull is main by-product of pistachio industry that has numerous phenolic compounds. Our results showed that the pistachio green hull extract has antioxidant and anti-lipase activity and these activities in its tannin fraction were higher than non-tannin fraction. Therefore, the PGH extract and its tannin fraction can be used as potential substitutes of anti-obesity drugs. This allows the use of pistachio processing waste and reduces the amount of waste.
Collapse
Affiliation(s)
- Zohre Noorolahi
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Ali Sahari
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Barzegar
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Hassan Ahmadi Gavlighi
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
25
|
Smeriglio A, Toscano G, Denaro M, De Francesco C, Agozzino S, Trombetta D. Nitrogen Headspace Improves the Extra Virgin Olive Oil Shelf-Life, Preserving Its Functional Properties. Antioxidants (Basel) 2019; 8:antiox8090331. [PMID: 31443465 PMCID: PMC6769529 DOI: 10.3390/antiox8090331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022] Open
Abstract
The functional foods field has recently evolved due to new research being carried out in the food area and greater regulations; these factors have contributed to the creation of health claims, and to the increasing attention that consumers give to health-promoting food products. The aim of this research was to improve the shelf-life of a typical functional food of the Mediterranean diet, the Extra Virgin Olive Oil (EVOO). We focused our attention on the standardization and validation of a production process, starting from the cultivation and harvesting of the olives, which would guarantee a product of quality in terms of bioactive compound content. Furthermore, a methodology/procedure to preserve them in the best way over a long period of time, in order to guarantee the consumer receives a product that retains its functional and organoleptic native properties, was evaluated. The monitoring of biological cultivations, harvesting, milling process, and storage, as well as careful quality control of the analytical parameters (e.g., contents of polyphenols, α-tocopherol, fatty acids, acidity, peroxides, dienes, trienes, ΔK, and antioxidant power) showed that, under the same conditions, a nitrogen headspace is a discriminating factor for the maintenance of the functional properties of EVOO.
Collapse
Affiliation(s)
- Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy.
- Foundation Prof. Antonio Imbesi, University of Messina, P.zza Pugliatti 1, 98122 Messina, Italy.
| | - Giovanni Toscano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy
| | - Marcella Denaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy
| | - Clara De Francesco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy
- Foundation Prof. Antonio Imbesi, University of Messina, P.zza Pugliatti 1, 98122 Messina, Italy
| | - Simona Agozzino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy
| |
Collapse
|
26
|
Smeriglio A, Denaro M, De Francesco C, Cornara L, Barreca D, Bellocco E, Ginestra G, Mandalari G, Trombetta D. Feijoa Fruit Peel: Micro-morphological Features, Evaluation of Phytochemical Profile, and Biological Properties of Its Essential Oil. Antioxidants (Basel) 2019; 8:antiox8080320. [PMID: 31430937 PMCID: PMC6720543 DOI: 10.3390/antiox8080320] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022] Open
Abstract
Acca sellowiana (O. Berg) Burret (Feijoa) is an evergreen shrub, belonging to the Mirtaceae family. The aim of this study was to investigate the micromorphological features of the feijoa fruit peel and to evaluate the phytochemical profile, as well as the antioxidant, cytoprotective, and antimicrobial properties of its essential oil (EO), by several in vitro cell-free and cell-based assays. The micromorphological analysis showed several schizogenic secretory cavities, immediately below the epidermal layer. Forty compounds were identified and quantified by GC-FID and GC-MS analyses. Sesquiterpenes were the most abundant ones (76.89%), followed by monoterpene hydrocarbons (3.26%), and oxygenated monoterpenes (0.34%). The main compounds were γ-Selinene (17.39%), α-Cariophyllene (16.74%), β-Cariophyllene (10.37%), and Germacene D (5.32%). The EO showed a strong and dose-dependent antioxidant, and free-radical scavenging activity. Furthermore, it showed cytoprotective activity on the lymphocytes, that have been pre-treated with 100 μM tert-butyl-hydroperoxide (t-BOOH), as well as a decrease in intracellular reactive oxygen species (ROS), induced by t-BOOH on erythrocytes. A preliminary antimicrobial screening against GRAM+ and GRAM− bacteria, as well as on fungi highlighted that EO showed the best activity against S. aureus and C. albicans (MIC 2.7 mg/mL). In light of these results, feijoa fruit EO could find various applications, especially in the food, nutraceutical, and pharmaceutical fields.
Collapse
Affiliation(s)
- Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy.
- Foundation Prof. Antonio Imbesi, University of Messina, P.zza Pugliatti 1, 98122 Messina, Italy.
| | - Marcella Denaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy
| | - Clara De Francesco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy
- Foundation Prof. Antonio Imbesi, University of Messina, P.zza Pugliatti 1, 98122 Messina, Italy
| | - Laura Cornara
- Department of Earth, Environment and Life Sciences, University of Genoa, Corso Europa 26, 16132 Genoa, Italy
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy
| | - Ersilia Bellocco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy
| | - Giovanna Ginestra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy
| |
Collapse
|
27
|
Tellone E, Barreca D, Russo A, Galtieri A, Ficarra S. New role for an old molecule: The 2,3-diphosphoglycerate case. Biochim Biophys Acta Gen Subj 2019; 1863:1602-1607. [PMID: 31279646 DOI: 10.1016/j.bbagen.2019.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/19/2019] [Accepted: 07/02/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Aerobic organisms have to overcame the dangerous species derived from the unquestionable favorable effects due to the utilization of oxygen in the cellular respiration. 2,3-Diphosphoglycerate (DPG) could be one of the molecules able to perform different role inside the cells and (from the data obtained from our experimental work) may help cellular components, in particular hemoglobin, to scavenge reactive oxygen species (ROS) and reactive nitrogen species (RNS). METHODS Therefore, we have investigated the kinetic and antioxidant properties of this molecule against the main biological reactive species and the protective role of this molecules on hemoglobin treated with strong oxidant. RESULTS DPG, at the physiological concentration is able to scavenge hydroxyl radical, peroxyl radical, cation radicals and to chelate iron in the reduced state. Moreover it is able to avoid oxidation of iron inside the hemoglobin following treatment with nitrite and tert-butyl hydroperoxide (t-BOOH). On the other side, it is not able to protect membrane components from oxidative burning. This different behavior towards radical species is probably linked to the polarity of the molecule and also the high levels of charged groups present on the surface of DPG, that avoid the possibility to act in an environment almost completely hydrophobic, as inside the membrane, where reactive species produce the main damages during the reactions of peroxidation. CONCLUSIONS This is the first paper dealing with the potential role of DPG not only as a modulator of oxygen affinity in hemoglobin, but also as a scavenger of radicals.
Collapse
Affiliation(s)
- Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy.
| | | | - Antonio Galtieri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Silvana Ficarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| |
Collapse
|
28
|
Belwal T, Huang H, Li L, Duan Z, Zhang X, Aalim H, Luo Z. Optimization model for ultrasonic-assisted and scale-up extraction of anthocyanins from Pyrus communis 'Starkrimson' fruit peel. Food Chem 2019; 297:124993. [PMID: 31253336 DOI: 10.1016/j.foodchem.2019.124993] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/10/2019] [Accepted: 06/10/2019] [Indexed: 10/26/2022]
Abstract
Ultrasonic effect on extraction of cyanidin-3-galactoside (Cy3-gal) from pear fruit peel was investigated and compared with conventional extraction (CE) method. Different process factors were tested to determine the optimum conditions for ultrasonic-assisted extraction (UAE). Results revealed that under optimized UAE conditions (ultrasonic power = 162 W, temperature = 71 °C, trifluoroacetic acid = 3%, ethanol = 57%, ultrasonication time = 11 min, and sample to solvent ratio = 1:30 g/ml), Cy3-gal yield was significantly higher (0.34 3± 0.005 mg/g) than from CE (0.266 ± 0.004 mg/g), whereas the extract viscosity during UAE showed a negative impact. UPLC-Triple-TOF/MS analysis detected a total number of 13 anthocyanin compounds, out of which 8 were identified and that mainly consisted of cyanidin, delphinidin and petunidin compounds. Higher yield of Cy3-gal under UAE compared to CE was also justified by higher deformations in the cell structure. The possible mechanism of ultrasonication effect during the extraction process is also proposed in the present study. During scale-up UAE process, the extraction yield of Cy3-gal was recorded higher under batch scale-up compared to continuous operation. The present study is an attempt to optimize UAE of valuable anthocyanins from Pyrus communis 'Starkrimson' fruit peel and further scaled-up for higher volume extraction which can be utilized for industrial applications.
Collapse
Affiliation(s)
- Tarun Belwal
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, People's Republic of China
| | - Hao Huang
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, People's Republic of China
| | - Li Li
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, People's Republic of China
| | - Zhenhua Duan
- Institute of Food Science and Engineering, Hezhou University, Hezhou, People's Republic of China.
| | - Xuebing Zhang
- Hangzhou Wanxiang Polytechnic, Huawu Road 3, Hangzhou 310023, People's Republic of China
| | - Halah Aalim
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, People's Republic of China
| | - Zisheng Luo
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
29
|
Smeriglio A, Cornara L, Denaro M, Barreca D, Burlando B, Xiao J, Trombetta D. Antioxidant and cytoprotective activities of an ancient Mediterranean citrus (Citrus lumia Risso) albedo extract: Microscopic observations and polyphenol characterization. Food Chem 2019; 279:347-355. [PMID: 30611500 DOI: 10.1016/j.foodchem.2018.11.138] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/20/2018] [Accepted: 11/30/2018] [Indexed: 02/08/2023]
|
30
|
Smeriglio A, Bonasera S, Germanò MP, D'Angelo V, Barreca D, Denaro M, Monforte MT, Galati EM, Trombetta D. Opuntia ficus-indica (L.) Mill. fruit as source of betalains with antioxidant, cytoprotective, and anti-angiogenic properties. Phytother Res 2019; 33:1526-1537. [PMID: 30907039 DOI: 10.1002/ptr.6345] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 01/09/2023]
Abstract
The aim of this work was to investigate the phytochemical profile and biological properties of different colours of betalain cactus pear extracts, evaluating their antioxidant, cytoprotective, and anti-angiogenic properties by cell-free, cell-based, and in vivo assays. A QuEChERS extraction method followed by RP-LC-DAD-MS/MS analysis showed that indicaxanthin and betanin were the main compounds (≥94.32% and ≥96.95%, respectively). Orange cactus pear extracts exert the best antioxidant activity in all assays carried out, in particular into ORAC (17,352.55 ± 987.407 mg trolox equivalents/100 g dry weight) and β-carotene bleaching (60.35%) assays. The red ones, instead, showed the best cytoprotective activity decreasing the cell mortality, LDH, and Caspase-3 release ranging from 4.0 to 55%. According to antioxidant results, the orange cactus pear extracts showing also the highest anti-angiogenic activity (IC50 19.31 μg/ml), followed by the red (IC50 23.55 μg/ml) and the yellow ones (IC50 33.97 μg/ml). In light of the results and correlation analysis, the behaviour of these molecules varies a lot according to their structure and physicochemical features and synergistic activity between betalain classes may be postulated; so the plant complex could be of greater interest compared with the isolated molecules for potential nutraceutical and pharmaceutical uses.
Collapse
Affiliation(s)
- Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- Foundation Prof. Antonio Imbesi, University of Messina, Messina, Italy
| | - Serena Bonasera
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- Foundation Prof. Antonio Imbesi, University of Messina, Messina, Italy
| | - Maria Paola Germanò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Valeria D'Angelo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marcella Denaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- Foundation Prof. Antonio Imbesi, University of Messina, Messina, Italy
| | - Maria Teresa Monforte
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Enza Maria Galati
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
31
|
D’Arrigo M, Bisignano C, Irrera P, Smeriglio A, Zagami R, Trombetta D, Romeo O, Mandalari G. In vitro evaluation of the activity of an essential oil from Pistacia vera L. variety Bronte hull against Candida sp. Altern Ther Health Med 2019; 19:6. [PMID: 30612544 PMCID: PMC6322278 DOI: 10.1186/s12906-018-2425-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/26/2018] [Indexed: 12/02/2022]
Abstract
Background Candida sp. represent the most common cause of fungal infections worldwide. In the present work, we have evaluated the activity of an essential oil extracted from pistachio hulls against a number of standard and clinical strains of Candida sp. Methods C. albicans ATCC 64550, C. parapsilosis ATCC 22019, 4 clinical strains of C. albicans, 3 clinical strains of C. parapsilosis and 3 clinical strains of C. glabrata were used. All clinical isolates were identified by species-specific PCR-based methods. Susceptibility studies were performed using pistachio hull essential oil alone or in combination with antifungal compounds. The interactions between pistachio hull essential oil and selected antifungal compounds were also evaluated using the checkerboard method and the mechanisms of interaction investigated by droplet size distribution. Results Pistachio hull essential oil was fungicidal at the concentrations between 2.50 and 5.0 mg/ml. D-limonene and 3-Carene were the components with major activity. An antagonistic effect was observed with all combinations tested. Conclusion The antifungal activity of pistachio hull essential oil could be used to help control resistance in Candida species. More studies need to be performed to elucidate the mechanisms responsible for the activity of pistachio hull essential oil.
Collapse
|
32
|
Prasanna G, Jing P. Spectroscopic and molecular modelling studies on glycation modified bovine serum albumin with cyanidin-3-O-glucoside. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 204:708-716. [PMID: 29982163 DOI: 10.1016/j.saa.2018.06.103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/16/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
In this study, we report the glycation mediated effect of bovine serum albumin (BSA) on the molecular interaction mechanism of cyanidin-3-O-glucoside (C3G) by molecular modelling, Uv-visible spectroscopy, transmission electron microscopy (TEM), fluorescence spectroscopy, and circular dichroism spectroscopy studies. The structures of advanced glycation end-products (AGEs) modified BSA were modelled, energy minimized and analyzed for binding affinity by molecular docking studies using Autodock Vina. Glycation experiments are carried out using glucose and methylglyoxal to validate the molecular modelling results on the interaction of modified BSA with C3G. The modified structures were characterized by reduction in the binding pocket volume, surface, depth, hydrophobicity, and hydrogen bond donors/acceptors. Arg-194, Arg-196, Arg-198, Arg-217, Arg-409, Lys-114, Lys-116, Lys-204, Lys 221, and Lys-439 were found to be crucial in the context of glycation of BSA. TEM images represented the formation of unique globular aggregates in the event of glycation. Uv-visible spectroscopic studies showed the formation of new chromophores between 300 and 400 nm in the event of glycation. Fluorescence quenching was observed in a differential manner in the presence of C3G on glycation modified BSA. Circular dichroism studies suggested the loss of helical structure and formation of β-sheeted structure upon glycation, but subsequent C3G binding has resulted in the increase towards helical structure. Our findings suggested that drug binding affinity has been certainly impaired due to glycation and subsequent AGE modification. Arg-p modification has more austere impact on the structure and would affect the binding properties. We conclude that C3G had differential modulation of binding properties on glycated BSA which can help to protect the stability and bioavailability that has been impaired due to glycation mediated structural changes.
Collapse
Affiliation(s)
- Govindarajan Prasanna
- Research Center for Food Safety and Nutrition, Key Lab of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pu Jing
- Research Center for Food Safety and Nutrition, Key Lab of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
33
|
Composition and antioxidant, antibacterial, and anti-HepG2 cell activities of polyphenols from seed coat of Amygdalus pedunculata Pall. Food Chem 2018; 265:111-119. [DOI: 10.1016/j.foodchem.2018.05.091] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 05/20/2018] [Accepted: 05/21/2018] [Indexed: 01/05/2023]
|
34
|
Smeriglio A, Alloisio S, Raimondo FM, Denaro M, Xiao J, Cornara L, Trombetta D. Essential oil of Citrus lumia Risso: Phytochemical profile, antioxidant properties and activity on the central nervous system. Food Chem Toxicol 2018; 119:407-416. [PMID: 29288755 DOI: 10.1016/j.fct.2017.12.053] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/11/2017] [Accepted: 12/22/2017] [Indexed: 02/08/2023]
Abstract
The use of essential oils (EOs) is known since long time in traditional medicine and aromatherapy for the management of various oxidative stress-related disorders and has been further increased recently for their neuroprotective and anti-aging potentials as well as for reducing anxiety and stress. The purpose of this work was to evaluate, for the first time, the chemical composition of Citrus lumia Risso EO and its antioxidant, anti-cholinesterase, and neuroactive properties by cell-free and cell-based assays. The EO has shown strong antioxidant and free radical scavenging properties, particularly in hydrogen atom transfer based assays (β-carotene bleaching and ORAC, IC50 22 μg/mL and 46 μg/mL, respectively), that can be attributed to the high content of monoterpenes, especially d-Limonene (48.905%), and Linalool (18.245%). Furthermore, the EO has shown an interesting anti-acetylcholinesterase activity (IC50 258.25 μg/mL). Data from MTT analysis indicate that the cytotoxicity of EO, evaluated on L929 mouse fibroblasts, is very low, with an IC50 higher than 500 μg/mL at 48 h. Rat neuronal networks subjected to EO showed a concentration-dependent inhibition of spontaneous electrical activity. Results indicate that C. lumia EO could be an important source of natural antioxidants suggesting an important preventive role in the onset of oxidative stress-related pathologies.
Collapse
Affiliation(s)
- Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | | | - Francesco Maria Raimondo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Italy
| | - Marcella Denaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of MacauTaipa, Macau
| | - Laura Cornara
- Department of Earth, Environment and Life Sciences, University of Genova, Italy.
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| |
Collapse
|
35
|
Nabavi SF, Atanasov AG, Khan H, Barreca D, Trombetta D, Testai L, Sureda A, Tejada S, Vacca RA, Pittalà V, Gulei D, Berindan-Neagoe I, Shirooie S, Nabavi SM. Targeting ubiquitin-proteasome pathway by natural, in particular polyphenols, anticancer agents: Lessons learned from clinical trials. Cancer Lett 2018; 434:101-113. [PMID: 30030139 DOI: 10.1016/j.canlet.2018.07.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/21/2018] [Accepted: 07/12/2018] [Indexed: 12/14/2022]
Abstract
The ubiquitin-proteasome pathway (UPP) is the main non-lysosomal proteolytic system responsible for degradation of most intracellular proteins, specifically damaged and regulatory proteins. The UPP is implicated in all aspects of the cellular metabolic networks including physiological or pathological conditions. Alterations in the components of the UPP can lead to stabilization of oncoproteins or augmented degradation of tumour suppressor favouring cancer appearance and progression. Polyphenols are natural compounds that can modulate proteasome activity or the expression of proteasome subunits. All together and due to the pleiotropic functions of UPP, there is a great interest in this proteasome system as a promising therapeutic target for the development of novel anti-cancer drugs. In the present review, the main features of the UPP and its implication in cancer development and progression are described, highlighting the importance of bioactive polyphenols that target the UPP as potential anti-cancer agents.
Collapse
Affiliation(s)
- Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Atanas G Atanasov
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Postępu 36A, Jastrzębiec, 05-552, Magdalenka, Poland; Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168, Messina, Italy.
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168, Messina, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, Pisa, Italy; Interdepartmental Center of Nutrafood, University of Pisa, Pisa, Italy
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX) and CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), University of Balearic Islands, Palma de Mallorca, E-07122, Balearic Islands, Spain
| | - Silvia Tejada
- Laboratory of Neurophysiology, Department of Biology, University of Balearic Islands, Ctra. Valldemossa, Km 7,5, Ed, Guillem Colom, 07122, Balearic Islands, Spain
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Italian National Council of Research, Bari, Italy
| | - Valeria Pittalà
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Diana Gulei
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, 400337, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, 400337, Cluj-Napoca, Romania; Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Republicii 34 Street, 400015, Cluj-Napoca, Romania
| | - Samira Shirooie
- Department of Pharmacology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Response surface methodology for modelling and determination of catechin in Pistachio green hull using surfactant-based dispersive liquid–liquid microextraction followed by UV–Vis spectrophotometry. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1449-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
Wang R, Wang L, Yuan S, Li Q, Pan H, Cao J, Jiang W. Compositional modifications of bioactive compounds and changes in the edible quality and antioxidant activity of ‘Friar’ plum fruit during flesh reddening at intermediate temperatures. Food Chem 2018; 254:26-35. [DOI: 10.1016/j.foodchem.2018.01.169] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 11/29/2022]
|
38
|
Monforte MT, Smeriglio A, Germanò MP, Pergolizzi S, Circosta C, Galati EM. Evaluation of antioxidant, antiinflammatory, and gastroprotective properties of Rubus fruticosus
L. fruit juice. Phytother Res 2018; 32:1404-1414. [DOI: 10.1002/ptr.6078] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Maria Teresa Monforte
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; University of Messina; Via Stagno d'Alcontres 98166 Messina Italy
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; University of Messina; Via Stagno d'Alcontres 98166 Messina Italy
- Foundation of Prof. A. Imbesi; University of Messina; Messina Italy
| | - Maria Paola Germanò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; University of Messina; Via Stagno d'Alcontres 98166 Messina Italy
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; University of Messina; Via Stagno d'Alcontres 98166 Messina Italy
| | - Clara Circosta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; University of Messina; Via Stagno d'Alcontres 98166 Messina Italy
| | - Enza Maria Galati
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; University of Messina; Via Stagno d'Alcontres 98166 Messina Italy
| |
Collapse
|
39
|
Yang W, Kortesniemi M, Yang B, Zheng J. Enzymatic Acylation of Anthocyanins Isolated from Alpine Bearberry ( Arctostaphylos alpina) and Lipophilic Properties, Thermostability, and Antioxidant Capacity of the Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2909-2916. [PMID: 29482326 DOI: 10.1021/acs.jafc.7b05924] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Cyanidin-3- O-galactoside (cy-gal) isolated from alpine bearberry ( Arctostaphylos alpine L.) was enzymatically acylated with saturated fatty acids of different chain lengths with Candida antarctica lipase immobilized on acrylic resin (Novozyme 435). The acylation reaction was optimized by considering the reaction medium, acyl donor, substrate molar ratio, reaction temperature, and reaction time. The highest conversion yield of 73% was obtained by reacting cy-gal with lauric acid (molar ratio of 1:10) in tert-butanol at 60 °C for 72 h. A novel compound was synthesized, which was identified as cyanidin-3- O-(6″-dodecanoyl)galactoside by mass spectrometry and nuclear magnetic resonance. Introducing lauric acid into cy-gal significantly improved both the lipophilicity and thermostability and substantially preserved the ultraviolet-visible absorbance and antioxidant properties. The research provides important insight in expanding the application of natural anthocyanins in the cosmetic and food industries.
Collapse
Affiliation(s)
- Wei Yang
- Food Chemistry and Food Development, Department of Biochemistry , University of Turku , FI-20014 Turku , Finland
| | - Maaria Kortesniemi
- Food Chemistry and Food Development, Department of Biochemistry , University of Turku , FI-20014 Turku , Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry , University of Turku , FI-20014 Turku , Finland
| | - Jie Zheng
- Department of Food Science and Engineering , Jinan University , Guangzhou , Guangdong 510632 , People's Republic of China
| |
Collapse
|
40
|
Smeriglio A, Denaro M, Barreca D, D'Angelo V, Germanò MP, Trombetta D. Polyphenolic profile and biological activities of black carrot crude extract (Daucus carota L. ssp. sativus var. atrorubens Alef.). Fitoterapia 2017; 124:49-57. [PMID: 29050970 DOI: 10.1016/j.fitote.2017.10.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/06/2017] [Accepted: 10/08/2017] [Indexed: 10/18/2022]
Abstract
Black carrot (Daucus carota L. ssp. sativus var. atrorubens Alef.) is a valuable source of carbohydrates, minerals and vitamins and contains also high amounts of anthocyanins giving the characteristic deep-purple color. These latter compounds are known as natural dyes used in the food and pharmaceutical industry that have recently attracted much attention for their healthful properties. The aim of this work was to investigate for the first time the polyphenolic profile and biological properties of a black carrot crude extract (BCCE) through an in-depth analysis of the main polyphenolic classes evaluating its antioxidant, cytoprotective and anti-angiogenic properties. Twenty five polyphenols were quantified by LC-DAD-FLD-MS/MS analysis (anthocyanins 78.06%, phenolic acids 17.89% and other flavonoids 4.06%) with polyglycosylated cyanidins as major components. In addition, BCCE showed a strong antioxidant and free radical scavenging activity particularly in the hydrogen transfer-based assays (ORAC and β-carotene bleaching) and a significant increase in the cell viability. Furthermore, BCCE exhibited a strong anti-angiogenic activity at the highest concentration assayed on the chick chorioallantoic membrane (50μg/egg). In conclusion, the obtained results demonstrated the antioxidant, cytoprotective and anti-angiogenic properties of BCCE, which highlight that the higher biological activity of BCCE is probably due to the synergic effects exerted by various polyphenolic classes.
Collapse
Affiliation(s)
- A Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy
| | - M Denaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy
| | - D Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy
| | - V D'Angelo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy
| | - M P Germanò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy.
| | - D Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy
| |
Collapse
|
41
|
Determination of pistachio (Pistacia vera L.) hull (exo- and mesocarp) phenolics by HPLC-DAD-ESI/MSn and UHPLC-DAD-ELSD after ultrasound-assisted extraction. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2017.04.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
42
|
Almond Skin Extracts Abrogate HSV-1 Replication by Blocking Virus Binding to the Cell. Viruses 2017; 9:v9070178. [PMID: 28698509 PMCID: PMC5537670 DOI: 10.3390/v9070178] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 12/27/2022] Open
Abstract
The aim of the present research was to determine the effect of almond skin extracts on herpes simplex virus 1 (HSV-1) replication. Drug-resistant strains of HSV frequently develop following therapeutic treatment. Therefore, the discovery of novel anti-HSV drugs deserves great effort. Here, we tested both natural (NS) and blanched (BS) polyphenols-rich almond skin extracts against HSV-1. HPLC analysis showed that the prevalent compounds in NS and BS extracts contributing to their antioxidant activity were quercetin, epicatechin and catechin. Results of cell viability indicated that NS and BS extracts were not toxic to cultured Vero cells. Furthermore, NS extracts were more potent inhibitors of HSV-1 than BS extracts, and this trend was in agreement with different concentrations of flavonoids. The plaque forming assay, Western blot and real-time PCR were used to demonstrate that NS extracts were able to block the production of infectious HSV-1 particles. In addition, the viral binding assay demonstrated that NS extracts inhibited HSV-1 adsorption to Vero cells. Our conclusion is that natural products from almond skin extracts are an extraordinary source of antiviral agents and provide a novel treatment against HSV-1 infections.
Collapse
|
43
|
In Vitro Evaluation of the Antioxidant, Cytoprotective, and Antimicrobial Properties of Essential Oil from Pistacia vera L. Variety Bronte Hull. Int J Mol Sci 2017; 18:ijms18061212. [PMID: 28587291 PMCID: PMC5486035 DOI: 10.3390/ijms18061212] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/01/2017] [Accepted: 06/03/2017] [Indexed: 01/06/2023] Open
Abstract
Although the chemical composition and biological properties of some species of the genus Pistacia has been investigated, studies on hull essential oil of Pistacia vera L. variety Bronte (HEO) are currently lacking. In this work, we have carried out an in-depth phytochemical profile elucidation by Gas Chromatography-Mass Spectrometry (GC-MS) analysis, and an evaluation of antioxidant scavenging properties of HEO, using several different in vitro methods, checking also its cytoprotective potential on lymphocytes treated with tert-butyl hydroperoxide. Moreover, the antimicrobial activity against Gram-positive and Gram-negative strains, both American Type Culture Collection (ATCC) and clinical isolates, was also investigated. GC-MS analysis highlighted the richness of this complex matrix, with the identification of 40 derivatives. The major components identified were 4-Carene (31.743%), α-Pinene (23.584%), d-Limonene (8.002%), and 3-Carene (7.731%). The HEO showed a strong iron chelating activity and was found to be markedly active against hydroxyl radical, while scarce effects were found against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. Moreover, pre-treatment with HEO was observed to significantly increase the cell viability, decreasing the lactate dehydrogenase (LDH) release. HEO was bactericidal against all the tested strains at the concentration of 7.11 mg/mL, with the exception of Pseudomonas aeruginosa ATCC 9027. The obtained results demonstrate the strong free-radical scavenging activity of HEO along with remarkable cytoprotective and antimicrobial properties.
Collapse
|
44
|
Papalia T, Barreca D, Panuccio MR. Assessment of Antioxidant and Cytoprotective Potential of Jatropha (Jatropha curcas) Grown in Southern Italy. Int J Mol Sci 2017; 18:ijms18030660. [PMID: 28335473 PMCID: PMC5372672 DOI: 10.3390/ijms18030660] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 03/09/2017] [Accepted: 03/15/2017] [Indexed: 12/20/2022] Open
Abstract
Jatropha (Jatropha curcas L.) is a plant native of Central and South America, but widely distributed in the wild or semi-cultivated areas in Africa, India, and South East Asia. Although studies are available in literature on the polyphenolic content and bioactivity of Jatropha curcas L., no information is currently available on plants grown in pedoclimatic and soil conditions different from the autochthon regions. The aim of the present work was to characterize the antioxidant system developed by the plant under a new growing condition and to evaluate the polyphenol amount in a methanolic extract of leaves. Along with these analyses we have also tested the antioxidant and cytoprotective activities on lymphocytes. RP-HPLC-DAD analysis of flavonoids revealed a chromatographic profile dominated by the presence of flavone C-glucosydes. Vitexin is the most abundant identified compound followed by vicenin-2, stellarin-2, rhoifolin, and traces of isovitexin and isorhoifolin. Methanolic extract had high scavenging activity in all antioxidant assays tested and cytoprotective activity on lymphocytes exposed to tertz-buthylhydroperoxide. The results highlighted a well-defined mechanism of adaptation of the plant and a significant content of secondary metabolites with antioxidant properties, which are of interest for their potential uses, especially as a rich source of biologically active products.
Collapse
Affiliation(s)
- Teresa Papalia
- Department of Agricultural Science, "Mediterranea" University, Feo di Vito, 89124 Reggio Calabria, Italy.
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Maria Rosaria Panuccio
- Department of Agricultural Science, "Mediterranea" University, Feo di Vito, 89124 Reggio Calabria, Italy.
| |
Collapse
|