1
|
Hu K, Huang H, Li H, Wei Y, Yao C. Legume-Derived Bioactive Peptides in Type 2 Diabetes: Opportunities and Challenges. Nutrients 2023; 15:nu15051096. [PMID: 36904097 PMCID: PMC10005352 DOI: 10.3390/nu15051096] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Diabetes mellitus is a complex disorder characterized by insufficient insulin production or insulin resistance, which results in a lifelong dependence on glucose-lowering drugs for almost all patients. During the fight with diabetes, researchers are always thinking about what characteristics the ideal hypoglycemic drugs should have. From the point of view of the drugs, they should maintain effective control of blood sugar, have a very low risk of hypoglycemia, not increase or decrease body weight, improve β-cell function, and delay disease progression. Recently, the advent of oral peptide drugs, such as semaglutide, brings exciting hope to patients with chronic diabetes. Legumes, as an excellent source of protein, peptides, and phytochemicals, have played significant roles in human health throughout human history. Some legume-derived peptides with encouraging anti-diabetic potential have been gradually reported over the last two decades. Their hypoglycemic mechanisms have also been clarified at some classic diabetes treatment targets, such as the insulin receptor signaling pathway or other related pathways involved in the progress of diabetes, and key enzymes including α-amylase, α-glucosidase, and dipeptidyl peptidase-IV (DPP-4). This review summarizes the anti-diabetic activities and mechanisms of peptides from legumes and discusses the prospects of these peptide-based drugs in type 2 diabetes (T2D) management.
Collapse
|
2
|
Göksu AG, Çakır B, Gülseren İ. Sequence alterations affect the antidiabetic attributes of hazelnut peptide fractions during the industrial manufacture and simulated digestion of hazelnut paste. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:171-180. [PMID: 36618060 PMCID: PMC9813299 DOI: 10.1007/s13197-022-05601-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 02/01/2023]
Abstract
Press cakes are by-products of cold press oil manufacture and are characterized by significant protein concentrations. Our group has previously demonstrated potential bioactive attributes of hazelnut protein hydrolysates including their antidiabetic activities. Here, an effort was made to utilize DPP-IV (Dipeptidyl peptidase-IV)-inhibitory hazelnut peptides in industrial food manufacture. Hazelnut protein isolates (approx. 95% protein) were obtained via an alkali extraction-isoelectric precipitation method. Papain, bromelain and pepsin were used in the enzymatic hydrolysis and hydrolysates were fractionated via Fast Protein Liquid Chromatography. As a general observation, although fractionation lead to dilution of the samples, fractions were observed to be more bioactive than the total hydrolysates. In vitro antidiabetic activities of the fractions were tested and 3 antidiabetic fractions were added to hazelnut paste. Afterwards simulated gastrointestinal digestion and antidiabetic activity assays were performed. DPP-IV inhibition was the major antidiabetic mechanism in the fractions and digested paste, while some fractions were characterized by comparable IC50 values as the positive controls. Alpha-glucosidase inhibition was limited by digestion trials, whereas alpha-amylase inhibition was only slight in the digested paste (< %6). In silico analyses predicted partial degradation of the peptides, whereas the interactions between DPP-IV or alpha-glucosidase and hazelnut peptides were predicted to be significant (p < 0.05). Consequently hazelnut press cakes were regarded as a potential source of antidiabetic peptides that can be used in industrial manufacture of functional foods, while food processing conditions or gastrointestinal digestion could largely affect peptide bioactivity. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05601-2.
Collapse
Affiliation(s)
- Ayşe Gülden Göksu
- Department of Food Engineering, Sabri Ülker R&D Center Bldg., İstanbul S. Zaim University (İZÜ), Halkalı, Küçükçekmece, İstanbul, Turkey
| | - Bilal Çakır
- Halal Food R&D Center, Sabri Ülker R&D Center Bldg., İstanbul S. Zaim University (İZÜ), Halkalı, Küçükçekmece, İstanbul, Turkey
- Sabri Ülker R&D Center Bldg., İZÜ Food and Agricultural Research Center (GTAUM), Halkalı, Küçükçekmece, İstanbul, Turkey
| | - İbrahim Gülseren
- Department of Food Engineering, Sabri Ülker R&D Center Bldg., İstanbul S. Zaim University (İZÜ), Halkalı, Küçükçekmece, İstanbul, Turkey
- Sabri Ülker R&D Center Bldg., İZÜ Food and Agricultural Research Center (GTAUM), Halkalı, Küçükçekmece, İstanbul, Turkey
| |
Collapse
|
3
|
Pedroni L, Perugino F, Galaverna G, Dall’Asta C, Dellafiora L. An In Silico Framework to Mine Bioactive Peptides from Annotated Proteomes: A Case Study on Pancreatic Alpha Amylase Inhibitory Peptides from Algae and Cyanobacteria. Nutrients 2022; 14:nu14214680. [PMID: 36364940 PMCID: PMC9658718 DOI: 10.3390/nu14214680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Bioactive peptides may exert beneficial activities in living organisms such as the regulation of glucose metabolism through the inhibition of alpha amylases. Algae and cyanobacteria are gaining a growing interest for their health-promoting properties, and possible effects on glucose metabolism have been described, although the underlying mechanisms need clarification. This study proposes a computer-driven workflow for a proteome-wide mining of alpha amylase inhibitory peptides from the proteome of Chlorella vulgaris, Auxenochlorella protothecoides and Aphanizomenon flos-aquae. Overall, this work presents an innovative and versatile approach to support the identification of bioactive peptides in annotated proteomes. The study: (i) highlighted the presence of alpha amylase inhibitory peptides within the proteomes under investigation (including ELS, which is among the most potent inhibitory tripeptides identified so far); (ii) mechanistically investigated the possible mechanisms of action; and (iii) prioritized further dedicated investigation on the proteome of C. vulgaris and A. flos-aquae, and on CSSL and PGG sequences.
Collapse
|
4
|
Kiersnowska K, Jakubczyk A. Bioactive Peptides Obtained from Legume Seeds as New Compounds in Metabolic Syndrome Prevention and Diet Therapy. Foods 2022; 11:3300. [PMCID: PMC9602117 DOI: 10.3390/foods11203300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Currently, food is regarded not only as a source of nutrients, vitamins, and minerals but also as a source of bioactive compounds that can play a significant role in the prevention and diet therapy of many diseases. Metabolic syndrome (MS) is a complex disorder defined as a set of interrelated factors that increase the risk of cardiovascular disease, atherosclerosis, type 2 diabetes, or dyslipidemia. MS affects not only adults but also children. Peptides are one of the compounds that exhibit a variety of bioactive properties. They are derived from food proteins, which are usually obtained through enzymatic hydrolysis or digestion in the digestive system. Legume seeds are a good source of bioactive peptides. In addition to their high protein content, they contain high levels of dietary fiber, vitamins, and minerals. The aim of this review is to present new bioactive peptides derived from legume seeds and showing inhibitory properties against MS. These compounds may find application in MS diet therapy or functional food production.
Collapse
|
5
|
Wu Q, Guo Z, Zhou Z, Jin M, Li Q, Zhou X. Recent advances in bioactive peptides from cereal-derived Foodstuffs. Int J Food Sci Nutr 2022; 73:875-888. [PMID: 35896503 DOI: 10.1080/09637486.2022.2104226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Cereal-derived proteins account for a major part of human dietary protein consumption. Natural bioactive peptides (NBPs) from these proteins involve a variety of physiological activities and play an important role in the promotion of human health. This review focuses on the characteristics of NBPs obtained from cereals, and the commonly used methods for preparation, separation, purification, and identification. We also discussed the biological functions of cereal-derived NBPs (CNBPs), including the activities of antioxidant, immunomodulatory, antimicrobial, and regulation of hyperglycaemia and hypertension. The paper summarised the latest progress in the research and application of CNBPs and analysed the prospects for the development and application of several protein by-products, providing an important way to improve the added value of protein by-products in cereal processing.
Collapse
Affiliation(s)
- Qin Wu
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhijian Guo
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zerong Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, P. R. China
| | - Mengyuan Jin
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Qizhang Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, P. R. China
| | - Xuanwei Zhou
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
6
|
Patil PJ, Usman M, Zhang C, Mehmood A, Zhou M, Teng C, Li X. An updated review on food-derived bioactive peptides: Focus on the regulatory requirements, safety, and bioavailability. Compr Rev Food Sci Food Saf 2022; 21:1732-1776. [PMID: 35142435 DOI: 10.1111/1541-4337.12911] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/07/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023]
Abstract
Food-derived bioactive peptides (BAPs) are recently utilized as functional food raw materials owing to their potential health benefits. Although there is a huge amount of scientific research about BAPs' identification, purification, characterization, and physiological functions, and subsequently, many BAPs have been marketed, there is a paucity of review on the regulatory requirements, bioavailability, and safety of BAPs. Thus, this review focuses on the toxic peptides that could arise from their primary proteins throughout protein extraction, protein pretreatment, and BAPs' formulation. Also, the influences of BAPs' length and administration dosage on safety are summarized. Lastly, the challenges and possibilities in BAPs' bioavailability and regulatory requirements in different countries were also presented. Results revealed that the human studies of BAPs are essential for approvals as healthy food and to prevent the consumers from misinformation and false promises. The BAPs that escape the gastrointestinal tract epithelium and move to the stomach are considered good peptides and get circulated into the blood using different pathways. In addition, the hydrophobicity, net charge, molecular size, length, amino acids composition/sequences, and structural characteristics of BAPs are critical for bioavailability, and appropriate food-grade carriers can enhance it. The abovementioned features are also vital to optimize the solubility, water holding capacity, emulsifying ability, and foaming property of BAPs in food products. In the case of safety, the possible allergenic and toxic peptides often exhibit physiological functions and could be produced during the hydrolysis of food proteins. It was also noted that the production of iso-peptides bonds and undesirable Maillard reaction might occur during protein extraction, sample pretreatments, and peptide synthesis.
Collapse
Affiliation(s)
- Prasanna J Patil
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Muhammad Usman
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Chengnan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Arshad Mehmood
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Mingchun Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Chao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
7
|
Rahimi R, Ahmadi Gavlighi H, Amini Sarteshnizi R, Barzegar M, Udenigwe CC. In vitro antioxidant activity and antidiabetic effect of fractionated potato protein hydrolysate via ultrafiltration and adsorption chromatography. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112765] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Balkrishna A, Gohel V, Pathak N, Tomer M, Rawat M, Dev R, Varshney A. Anti-hyperglycemic contours of Madhugrit are robustly translated in the Caenorhabditis elegans model of lipid accumulation by regulating oxidative stress and inflammatory response. Front Endocrinol (Lausanne) 2022; 13:1064532. [PMID: 36545334 PMCID: PMC9762483 DOI: 10.3389/fendo.2022.1064532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/18/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The prevalence of diabetes has considerably increased in recent years. In the long run, use of dual therapy of anti-diabetic agents becomes mandatory to attain euglycemia. Also, the incidences of diabetes-related co-morbidities have warranted the search for new therapeutic approaches for the management of the disease. Traditional herbo-mineral, anti-diabetic agents like Madhugrit are often prescribed to mitigate diabetes and related complications. The present study aimed to thoroughly characterize the pharmacological applications of Madhugrit. METHODS Phytometabolite characterization of Madhugrit was performed by ultra-high performance liquid chromatography. Evaluation of cell viability, α-amylase inhibition, glucose uptake, inflammation, and wound healing was performed by in vitro model systems using AR42J, L6, THP1, HaCaT cells, and reporter cell lines namely NF-κB, TNF-α, and IL-1β. The formation of advanced glycation end products was determined by cell-free assay. In addition, the therapeutic potential of Madhugrit was also analyzed in the in vivo Caenorhabditis elegans model system. Parameters like brood size, % curling, glucose and triglyceride accumulation, lipid deposition, ROS generation, and lipid peroxidation were determined under hyperglycemic conditions induced by the addition of supraphysiological glucose levels. RESULTS Madhugrit treatment significantly reduced the α-amylase release, enhanced glucose uptake, decreased AGEs formation, reduced differentiation of monocyte to macrophage, lowered the pro-inflammatory cytokine release, and enhanced wound healing in the in vitro hyperglycemic (glucose; 25 mM) conditions. In C. elegans stimulated with 100 mM glucose, Madhugrit (30 µg/ml) treatment normalized brood size, reduced curling behavior, decreased accumulation of glucose, triglycerides, and lowered oxidative stress. CONCLUSIONS Madhugrit showed multimodal approaches in combating hyperglycemia and related complications due to the presence of anti-diabetic, anti-inflammatory, anti-oxidant, wound healing, and lipid-lowering phytoconstituents in its arsenal. The study warrants the translational use of Madhugrit as an effective medicine for diabetes and associated co-morbidities.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, Haridwar, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, Uttarakhand, India
- Patanjali Yog Peeth (UK) Trust, Glasgow, United Kingdom
| | - Vivek Gohel
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, Haridwar, Uttarakhand, India
| | - Nishit Pathak
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, Haridwar, Uttarakhand, India
| | - Meenu Tomer
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, Haridwar, Uttarakhand, India
| | - Malini Rawat
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, Haridwar, Uttarakhand, India
| | - Rishabh Dev
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, Haridwar, Uttarakhand, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, Haridwar, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, Uttarakhand, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
- *Correspondence: Anurag Varshney,
| |
Collapse
|
9
|
Samtiya M, Acharya S, Pandey KK, Aluko RE, Udenigwe CC, Dhewa T. Production, Purification, and Potential Health Applications of Edible Seeds' Bioactive Peptides: A Concise Review. Foods 2021; 10:foods10112696. [PMID: 34828976 PMCID: PMC8621896 DOI: 10.3390/foods10112696] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
Edible seeds play a significant role in contributing essential nutritional needs and impart several health benefits to improve the quality of human life. Previous literature evidence has confirmed that edible seed proteins, their enzymatic hydrolysates, and bioactive peptides (BAPs) have proven and potential attributes to ameliorate numerous chronic disorders through the modulation of activities of several molecular markers. Edible seed-derived proteins and peptides have gained much interest from researchers worldwide as ingredients to formulate therapeutic functional foods and nutraceuticals. In this review, four main methods are discussed (enzymatic hydrolysis, gastrointestinal digestion, fermentation, and genetic engineering) that are used for the production of BAPs, including their purification and characterization. This article’s main aim is to provide current knowledge regarding several health-promoting properties of edible seed BAPs in terms of antihypertensive, anti-cancer, antioxidative, anti-inflammatory, and hypoglycemic activities.
Collapse
Affiliation(s)
- Mrinal Samtiya
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, India;
| | - Sovon Acharya
- Research and Development Unit, Abiocis Bio-Science Pvt. Ltd., Hyderabad 500026, India; (S.A.); (K.K.P.)
| | - Kush Kumar Pandey
- Research and Development Unit, Abiocis Bio-Science Pvt. Ltd., Hyderabad 500026, India; (S.A.); (K.K.P.)
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Correspondence: (R.E.A.); (T.D.)
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Tejpal Dhewa
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, India;
- Correspondence: (R.E.A.); (T.D.)
| |
Collapse
|
10
|
Phenotypic and probiotic characterization of isolated LAB from Himalayan cheese (Kradi/Kalari) and effect of simulated gastrointestinal digestion on its bioactivity. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Antony P, Vijayan R. Bioactive Peptides as Potential Nutraceuticals for Diabetes Therapy: A Comprehensive Review. Int J Mol Sci 2021; 22:9059. [PMID: 34445765 PMCID: PMC8396489 DOI: 10.3390/ijms22169059] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022] Open
Abstract
Diabetes mellitus is a major public health concern associated with high mortality and reduced life expectancy. The alarming rise in the prevalence of diabetes is linked to several factors including sedentary lifestyle and unhealthy diet. Nutritional intervention and increased physical activity could significantly contribute to bringing this under control. Food-derived bioactive peptides and protein hydrolysates have been associated with a number health benefits. Several peptides with antidiabetic potential have been identified that could decrease blood glucose level, improve insulin uptake and inhibit key enzymes involved in the development and progression of diabetes. Dietary proteins, from a wide range of food, are rich sources of antidiabetic peptides. Thus, there are a number of benefits in studying peptides obtained from food sources to develop nutraceuticals. A deeper understanding of the underlying molecular mechanisms of these peptides will assist in the development of new peptide-based therapeutics. Despite this, a comprehensive analysis of the antidiabetic properties of bioactive peptides derived from various food sources is still lacking. Here, we review the recent literature on food-derived bioactive peptides possessing antidiabetic activity. The focus is on the effectiveness of these peptides as evidenced by in vitro and in vivo studies. Finally, we discuss future prospects of peptide-based drugs for the treatment of diabetes.
Collapse
Affiliation(s)
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| |
Collapse
|
12
|
Chai TT, Ee KY, Kumar DT, Manan FA, Wong FC. Plant Bioactive Peptides: Current Status and Prospects Towards Use on Human Health. Protein Pept Lett 2021; 28:623-642. [PMID: 33319654 DOI: 10.2174/0929866527999201211195936] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/28/2022]
Abstract
Large numbers of bioactive peptides with potential applications in protecting against human diseases have been identified from plant sources. In this review, we summarized recent progress in the research of plant-derived bioactive peptides, encompassing their production, biological effects, and mechanisms. This review focuses on antioxidant, antimicrobial, antidiabetic, and anticancer peptides, giving special attention to evidence derived from cellular and animal models. Studies investigating peptides with known sequences and well-characterized peptidic fractions or protein hydrolysates will be discussed. The use of molecular docking tools to elucidate inter-molecular interactions between bioactive peptides and target proteins is highlighted. In conclusion, the accumulating evidence from in silico, in vitro and in vivo studies to date supports the envisioned applications of plant peptides as natural antioxidants as well as health-promoting agents. Notwithstanding, much work is still required before the envisioned applications of plant peptides can be realized. To this end, future researches for addressing current gaps were proposed.
Collapse
Affiliation(s)
- Tsun-Thai Chai
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - Kah-Yaw Ee
- Center for Biodiversity Research, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - D Thirumal Kumar
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602 105, India
| | - Fazilah Abd Manan
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Fai-Chu Wong
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| |
Collapse
|
13
|
Mudgil P, Kamal H, Priya Kilari B, Mohd Salim MAS, Gan CY, Maqsood S. Simulated gastrointestinal digestion of camel and bovine casein hydrolysates: Identification and characterization of novel anti-diabetic bioactive peptides. Food Chem 2021; 353:129374. [PMID: 33740505 DOI: 10.1016/j.foodchem.2021.129374] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 01/07/2023]
Abstract
Camel milk proteins are an important substrate for bioactive peptides generation. This study investigates in-vitro antidiabetic effect (via inhibition of α-amylase (AA), α-glucosidase (AG) and dipeptidyl peptidase IV (DPP-IV)) of bovine (BC) and camel casein (CC) hydrolysates. Further, effect of simulated gastrointestinal digestion (SGID) on inhibitory potential of generated hydrolysates was also explored. Both BC and CC hydrolysates displayed potent inhibitory properties against AA (IC50 value- 0.58 & 0.59 mg/mL), AG (IC50 value- 1.04 & 0.59 mg/mL) and DPP-IV (IC50 value- 0.62 & 0.66 mg/mL), respectively. Among different peptides identified in BC and CC hydrolysates, it was observed that FLWPEYGAL was predicted to be most potent inhibitory peptide against AA. While LPTGWLM, MFE and GPAHCLL as most active inhibitor of AG and HLPGRG, QNVLPLH and PLMLP were predicted to be active against DPP-IV. Overall, BC and CC hydrolysates can be proposed to be used in different food formulations as functional antidiabetic agents.
Collapse
Affiliation(s)
- Priti Mudgil
- Food, Nutrition and Health Department, College of Food and Agriculture, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Hina Kamal
- Food, Nutrition and Health Department, College of Food and Agriculture, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Bhanu Priya Kilari
- Food, Nutrition and Health Department, College of Food and Agriculture, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | | | - Chee-Yuen Gan
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, 11800 USM Penang, Malaysia.
| | - Sajid Maqsood
- Food, Nutrition and Health Department, College of Food and Agriculture, United Arab Emirates University, Al-Ain 15551, United Arab Emirates.
| |
Collapse
|
14
|
Li H, Zhou H, Zhang J, Fu X, Ying Z, Liu X. Proteinaceous α-amylase inhibitors: purification, detection methods, types and mechanisms. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1876087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- He Li
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Haochun Zhou
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Jian Zhang
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Xiaohang Fu
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Zhiwei Ying
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Xinqi Liu
- National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
15
|
Dandekar P, Kotmale AS, Chavan SR, Kadlag PP, Sawant SV, Dhavale DD, RaviKumar A. Insights into the Inhibition Mechanism of Human Pancreatic α-Amylase, a Type 2 Diabetes Target, by Dehydrodieugenol B Isolated from Ocimum tenuiflorum. ACS OMEGA 2021; 6:1780-1786. [PMID: 33521419 PMCID: PMC7841778 DOI: 10.1021/acsomega.0c00617] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/24/2020] [Indexed: 06/12/2023]
Abstract
Use of human pancreatic α-amylase (HPA) inhibitors is one of the effective antidiabetic strategies to lower postprandial hyperglycemia via reduction in the dietary starch hydrolysis rate. Many natural products from plants are being studied for their HPA inhibitory activity. The present study describes isolation of dehydrodieugenol B (DDEB) from Ocimum tenuiflorum leaves using sequential solvent extraction, structure determination by one-dimensional (1D) and two-dimensional (2D) NMR analyses, and characterization as an HPA inhibitor using kinetics, binding thermodynamics, and molecular docking. DDEB uncompetitively inhibited HPA with an IC50 value of 29.6 μM for starch and apparent K i ' of 2.49 and Ki of 47.6 μM for starch and maltopentaose as substrates, respectively. The circular dichroism (CD) study indicated structural changes in HPA on inhibitor binding. Isothermal titration calorimetry (ITC) revealed thermodynamically favorable binding (ΔG of -7.79 kcal mol-1) with a dissociation constant (K d) of 1.97 μM and calculated association constant (K a) of 0.507 μM. Molecular docking showed stable HPA-inhibitor binding involving H-bonds and Pi-alkyl, alkyl-alkyl, and van der Waals (vDW) interactions. The computational docking results support the noncompetitive nature of DDEB binding. The present study could be helpful for exploration of the molecule as a potential antidiabetic drug candidate to control postprandial hyperglycemia.
Collapse
Affiliation(s)
- Prasad
D. Dandekar
- Institute
of Bioinformatics and Biotechnology, Garware Research Centre, Department
of Chemistry, and Bioinformatics Centre, Savitribai Phule
Pune University (Formerly University of Pune), Pune 411007 Maharashtra, India
| | - Amol S. Kotmale
- Institute
of Bioinformatics and Biotechnology, Garware Research Centre, Department
of Chemistry, and Bioinformatics Centre, Savitribai Phule
Pune University (Formerly University of Pune), Pune 411007 Maharashtra, India
| | - Shrawan R. Chavan
- Institute
of Bioinformatics and Biotechnology, Garware Research Centre, Department
of Chemistry, and Bioinformatics Centre, Savitribai Phule
Pune University (Formerly University of Pune), Pune 411007 Maharashtra, India
| | - Pranita P. Kadlag
- Institute
of Bioinformatics and Biotechnology, Garware Research Centre, Department
of Chemistry, and Bioinformatics Centre, Savitribai Phule
Pune University (Formerly University of Pune), Pune 411007 Maharashtra, India
| | - Sangeeta V. Sawant
- Institute
of Bioinformatics and Biotechnology, Garware Research Centre, Department
of Chemistry, and Bioinformatics Centre, Savitribai Phule
Pune University (Formerly University of Pune), Pune 411007 Maharashtra, India
| | - Dilip D. Dhavale
- Institute
of Bioinformatics and Biotechnology, Garware Research Centre, Department
of Chemistry, and Bioinformatics Centre, Savitribai Phule
Pune University (Formerly University of Pune), Pune 411007 Maharashtra, India
| | - Ameeta RaviKumar
- Institute
of Bioinformatics and Biotechnology, Garware Research Centre, Department
of Chemistry, and Bioinformatics Centre, Savitribai Phule
Pune University (Formerly University of Pune), Pune 411007 Maharashtra, India
| |
Collapse
|
16
|
Rivero-Pino F, Espejo-Carpio FJ, Guadix EM. Antidiabetic Food-Derived Peptides for Functional Feeding: Production, Functionality and In Vivo Evidences. Foods 2020; 9:E983. [PMID: 32718070 PMCID: PMC7466190 DOI: 10.3390/foods9080983] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
Bioactive peptides released from the enzymatic hydrolysis of food proteins are currently a trending topic in the scientific community. Their potential as antidiabetic agents, by regulating the glycemic index, and thus to be employed in food formulation, is one of the most important functions of these peptides. In this review, we aimed to summarize the whole process that must be considered when talking about including these molecules as a bioactive ingredient. In this regard, at first, the production, purification and identification of bioactive peptides is summed up. The detailed metabolic pathways described included carbohydrate hydrolases (glucosidase and amylase) and dipeptidyl-peptidase IV inhibition, due to their importance in the food-derived peptides research field. Then, their characterization, concerning bioavailability in vitro and in situ, stability and functionality in food matrices, and ultimately, the in vivo evidence (from invertebrate animals to humans), was described. The future applicability that these molecules have due to their biological potential as functional ingredients makes them an important field of research, which could help the world population avoid suffering from several diseases, such as diabetes.
Collapse
Affiliation(s)
- Fernando Rivero-Pino
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain; (F.J.E.-C.); (E.M.G.)
| | | | | |
Collapse
|
17
|
Yan J, Zhao J, Yang R, Zhao W. Bioactive peptides with antidiabetic properties: a review. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14090] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jiai Yan
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
- National Engineering Research Center for Functional Food Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
- Collaborative innovation center of food safety and quality control in Jiangsu Province Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Jianguang Zhao
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
- National Engineering Research Center for Functional Food Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
- Collaborative innovation center of food safety and quality control in Jiangsu Province Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
- National Engineering Research Center for Functional Food Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
- Collaborative innovation center of food safety and quality control in Jiangsu Province Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
- National Engineering Research Center for Functional Food Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
- Collaborative innovation center of food safety and quality control in Jiangsu Province Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
| |
Collapse
|
18
|
Vilcacundo R, Martínez-Villaluenga C, Miralles B, Hernández-Ledesma B. Release of multifunctional peptides from kiwicha (Amaranthus caudatus) protein under in vitro gastrointestinal digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1225-1232. [PMID: 30066387 DOI: 10.1002/jsfa.9294] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/03/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The multifactorial origin of many chronic diseases provides a new framework for the development of multifunctional foods. In this study, the effect of in vitro simulated gastrointestinal digestion of kiwicha (Amaranthus caudatus) proteins on the release of multifunctional peptides was evaluated. RESULTS Gastric digest showed higher angiotensin I converting enzyme (ACE) inhibitory activity while 60 min gastroduodenal digest showed the highest antioxidant, dipeptidyl peptidase IV (DPP-IV), α-amylase and Caco-2 cell viability inhibitory activities. Peptides >5 kDa were more effective in inhibiting colon cancer cell viability, whereas peptides <5 kDa were mainly responsible for the antioxidant, ACE, DPP-IV and α-amylase inhibitory activities. Thirteen peptides from amaranth sequenced proteins were identified. Structure-activity relationship analysis of the identified sequences pointed to three amaranth fragments, namely FLISCLL, SVFDEELS and DFIILE, as potential peptides able to concurrently exert antioxidant capacity and ability to inhibit both ACE and α-amylase. CONCLUSIONS Five of thirteen peptides identified in kiwicha protein digests show high potential to exert multifunctional properties. Thus kiwicha proteins might start to gain importance as ingredients for functional foods for the prevention and/or management of chronic diseases related to oxidative stress, hypertension and/or diabetes. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rubén Vilcacundo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM, CEI UAM+CSIC), Madrid, Spain
- Laboratorio de Alimentos Funcionales, Facultad de Ciencia e Ingeniería en Alimentos, Universidad Técnica de Ambato, Ambato, Ecuador
| | | | - Beatriz Miralles
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM, CEI UAM+CSIC), Madrid, Spain
| | - Blanca Hernández-Ledesma
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM, CEI UAM+CSIC), Madrid, Spain
| |
Collapse
|
19
|
González-Montoya M, Hernández-Ledesma B, Mora-Escobedo R, Martínez-Villaluenga C. Bioactive Peptides from Germinated Soybean with Anti-Diabetic Potential by Inhibition of Dipeptidyl Peptidase-IV, α-Amylase, and α-Glucosidase Enzymes. Int J Mol Sci 2018; 19:E2883. [PMID: 30249015 PMCID: PMC6213256 DOI: 10.3390/ijms19102883] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/14/2018] [Accepted: 09/19/2018] [Indexed: 01/07/2023] Open
Abstract
Functional foods containing peptides offer the possibility to modulate the absorption of sugars and insulin levels to prevent diabetes. This study investigates the potential of germinated soybean peptides to modulate postprandial glycaemic response through inhibition of dipeptidyl peptidase IV (DPP-IV), salivary α-amylase, and intestinal α-glucosidases. A protein isolate from soybean sprouts was digested by pepsin and pancreatin. Protein digest and peptide fractions obtained by ultrafiltration (<5, 5⁻10 and >10 kDa) and subsequent semipreparative reverse phase liquid chromatography (F1, F2, F3, and F4) were screened for in vitro inhibition of DPP-IV, α-amylase, maltase, and sucrase activities. Protein digest inhibited DPP-IV (IC50 = 1.49 mg/mL), α-amylase (IC50 = 1.70 mg/mL), maltase, and sucrase activities of α-glucosidases (IC50 = 3.73 and 2.90 mg/mL, respectively). Peptides of 5⁻10 and >10 kDa were more effective at inhibiting DPP-IV (IC50 = 0.91 and 1.18 mg/mL, respectively), while peptides of 5⁻10 and <5 kDa showed a higher potency to inhibit α-amylase and α-glucosidases. Peptides in F1, F2, and F3 were mainly fragments from β-conglycinin, glycinin, and P34 thiol protease. The analysis of structural features of peptides in F1⁻F3 allowed the tentative identification of potential antidiabetic peptides. Germinated soybean protein showed a promising potential to be used as a nutraceutical or functional ingredient for diabetes prevention.
Collapse
Affiliation(s)
- Marcela González-Montoya
- Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional. Campus Zacatenco, Unidad Profesional "Adolfo López Mateos", Calle Wilfrido Massieu esquina Cda. Manuel Stampa. C.P, Ciudad de México 07738, Mexico.
| | - Blanca Hernández-Ledesma
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Rosalva Mora-Escobedo
- Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional. Campus Zacatenco, Unidad Profesional "Adolfo López Mateos", Calle Wilfrido Massieu esquina Cda. Manuel Stampa. C.P, Ciudad de México 07738, Mexico.
| | | |
Collapse
|
20
|
Los FGB, Zielinski AAF, Wojeicchowski JP, Nogueira A, Demiate IM. Beans (Phaseolus vulgaris L.): whole seeds with complex chemical composition. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.01.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|