1
|
Zhou Z, Yan Y, Li H, Feng Y, Huang C, Fan S. Nomilin and Its Analogues in Citrus Fruits: A Review of Its Health Promotion Effects and Potential Application in Medicine. Molecules 2022; 28:molecules28010269. [PMID: 36615463 PMCID: PMC9822165 DOI: 10.3390/molecules28010269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Nomilin is one of the major limonoids, which are plant secondary metabolites also known as tetranortriterpenoids. Nomilin is found mostly in common edible citrus fruits including lemons, limes, oranges, grapefruits, mandarins, along with traditional Chinese medicines derived from citrus fruits, such as tangerine seed, tangerine peel, fructus aurantii immaturus, etc. A number of studies have demonstrated that nomilin and its analogues exhibit a variety of biological and pharmacological activities. These include anti-cancer, immune-modulatory, anti-inflammatory, anti-obesity, anti-viral, anti-osteoclastogenic, anti-oxidant, and neuro-protective effects. Thus, nomilin and its analogues have emerged as a potential therapy for human diseases. The purpose of this review is to chronicle the evolution of nomilin research from examining its history, structure, occurrence, to its pharmacological and disease-preventing properties as well as its potential utilization in medicine and food science.
Collapse
Affiliation(s)
| | | | | | | | - Cheng Huang
- Correspondence: (C.H.); (S.F.); Tel.: +86-21-51323194 (C.H.); Fax: 86-21-51322192 (C.H.)
| | - Shengjie Fan
- Correspondence: (C.H.); (S.F.); Tel.: +86-21-51323194 (C.H.); Fax: 86-21-51322192 (C.H.)
| |
Collapse
|
2
|
Shanmugam H, Rengarajan C, Nataraj S, Sharma A. Interactions of plant food bioactives‐loaded nano delivery systems at the nano‐bio interface and its pharmacokinetics: An overview. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Haripriya Shanmugam
- Department of Nano Science and Technology Tamil Nadu Agricultural University Tamil Nadu India
| | - Chitra Rengarajan
- Department of Nano Science and Technology Tamil Nadu Agricultural University Tamil Nadu India
| | - Swathika Nataraj
- Department of Nano Science and Technology Tamil Nadu Agricultural University Tamil Nadu India
| | - Aashima Sharma
- Department of Chemistry Panjab University Chandigarh India
| |
Collapse
|
3
|
Acharya P, Jayaprakasha GK, Semper J, Patil BS. 1H Nuclear Magnetic Resonance and Liquid Chromatography Coupled with Mass Spectrometry-Based Metabolomics Reveal Enhancement of Growth-Promoting Metabolites in Onion Seedlings Treated with Green-Synthesized Nanomaterials. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13206-13220. [PMID: 32233481 DOI: 10.1021/acs.jafc.0c00817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Seed priming is a promising approach to improve germination, emergence, and seedling growth by triggering pre-germinative metabolism and enhancing seedling vigor. Recently, nanopriming gained importance in seed improvement as a result of the small size and unique physicochemical characteristics of nanomaterials. In the present study, silver and gold nanoparticles were synthesized using onion extracts as the reducing agent. Similarly, the agro-food industrial byproducts citrus seed oil and curcumin-removed turmeric oleoresin were used for the preparation of nanoemulsions. For seed priming, these green-synthesized nanomaterials were incubated with seeds of two onion (Allium cepa L.) cultivars (Legend and 50147) for 72 h, and then the plants were grown in a greenhouse for 3 weeks. Seed priming with these nanomaterials increased seed germination and seedling emergence. One-dimensional 1H nuclear magnetic resonance and liquid chromatography coupled with mass spectrometry metabolomics studies showed that different nanopriming treatments distinctly altered the metabolome of onion seedlings. Seed priming treatments significantly inhibited plant hormones and growth regulators, such as abscisic acid and cis-(+)-12-oxo-phytodienoic acid, and enhanced germination stimulators, such as γ-aminobutyric acid and zeatin, in onion seeds and seedlings. Therefore, these priming treatments have positive impact on improving seed performance and plant growth.
Collapse
Affiliation(s)
- Pratibha Acharya
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, Suite A120, College Station, Texas 77845-2119, United States
| | - Guddadarangavvanahally K Jayaprakasha
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, Suite A120, College Station, Texas 77845-2119, United States
| | - James Semper
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, Suite A120, College Station, Texas 77845-2119, United States
| | - Bhimanagouda S Patil
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, Suite A120, College Station, Texas 77845-2119, United States
| |
Collapse
|
4
|
Nanoparticle-Mediated Seed Priming Improves Germination, Growth, Yield, and Quality of Watermelons (Citrullus lanatus) at multi-locations in Texas. Sci Rep 2020; 10:5037. [PMID: 32193449 PMCID: PMC7081193 DOI: 10.1038/s41598-020-61696-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/18/2020] [Indexed: 11/19/2022] Open
Abstract
Seed priming uses treatments to improve seed germination and thus potentially increase growth and yield. Low-cost, environmentally friendly, effective seed treatment remain to be optimized and tested for high-value specialty crop like watermelon (Citrullus lanatus) in multi-locations. This remains a particularly acute problem for triploids, which produce desirable seedless watermelons, but show low germination rates. In the present study, turmeric oil nanoemulsions (TNE) and silver nanoparticles (AgNPs) synthesized from agro-industrial byproducts were used as nanopriming agents for diploid (Riverside) and triploid (Maxima) watermelon seeds. Internalization of nanomaterials was confirmed by neutron activation analysis, transmission electron microscopy, and gas chromatography-mass spectrometry. The seedling emergence rate at 14 days after sowing was significantly higher in AgNP-treated triploid seeds compared to other treatments. Soluble sugar (glucose and fructose) contents were enhanced during germination in the AgNP-treated seeds at 96 h. Seedlings grown in the greenhouse were transplanted at four locations in Texas: Edinburg, Pecos, Grapeland, and Snook in 2017. At Snook, higher yield 31.6% and 35.6% compared to control were observed in AgNP-treated Riverside and Maxima watermelons, respectively. To validate the first-year results, treated and untreated seeds of both cultivars were sown in Weslaco, Texas in 2018. While seed emegence and stand establishments were enhanced by seed priming, total phenolics radical-scavenging activities, and macro- and microelements in the watermelon fruits were not significantly different from the control. The results of the present study demonstracted that seed priming with AgNPs can enhance seed germination, growth, and yield while maintaining fruit quality through an eco-friendly and sustainable nanotechnological approach.
Collapse
|
5
|
Bautista GFM, Vidallon MLP, Salamanez KC, Rodriguez EB. Nanodelivery system based on zein-alginate complexes enhances in vitro chemopreventive activity and bioavailability of pomelo [Citrus maxima (Burm.) Merr.] seed limonoids. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101296] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
6
|
In vitro and in silico elucidation of antidiabetic and anti-inflammatory activities of bioactive compounds from Momordica charantia L. Bioorg Med Chem 2019; 27:3097-3109. [PMID: 31196754 DOI: 10.1016/j.bmc.2019.05.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
Abstract
Bitter melon (Momordica charantia) has been used to manage diabetes and related conditions in various parts of the world. In the present study, ten compounds were isolated from acetone and methanol extracts of bitter melon. The chemical structures of compounds were unambiguously elucidated by 1D, 2D NMR, and high-resolution mass spectra. Identified compounds 1-7 exhibited significant inhibition of α-amylase and moderate inhibition of α-glucosidase activities. Momordicoside G and gentisic acid 5-O-β-d-xyloside showed the highest inhibition of α-amylase (70.5%), and α-glucosidase (56.4%), respectively. Furthermore, molecular docking studies of isolated compounds 1-7 were able to bind to the active sites of both enzymes. Additionally, the isolated compounds 1-7 significantly attenuated lipopolysaccharide (LPS)-induced inflammation, downregulating the expression of pro-inflammatory markers NF-κB, INOS, IL-6, IL-1β, TNF-α, and Cox-2 in murine macrophage RAW 264.7 cells. One phenolic derivative, gentisic acid 5-O-β-d-xyloside, was isolated and identified for the first time from bitter melon, and significantly suppressed the expression of Cox-2 and IL-6 compared to the LPS-treated group. α-Amylase and α-glucosidase are targets of anti-diabetes drugs, our findings suggest that compounds purified from bitter melon may have potential to use as functional food ingredients for the prevention of type 2 diabetes and related inflammatory conditions.
Collapse
|
7
|
Perez JL, Jayaprakasha GK, Patil BS. Metabolite profiling and in vitro biological activities of two commercial bitter melon (Momordica charantia Linn.) cultivars. Food Chem 2019; 288:178-186. [PMID: 30902279 DOI: 10.1016/j.foodchem.2019.02.120] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 01/25/2019] [Accepted: 02/26/2019] [Indexed: 12/18/2022]
Abstract
The current study was designed to characterize the metabolite profile and bioactivity of two commercial bitter melon (Momordica charantia Linn.) genotypes. UPLC-high resolution mass spectrometry (HRMS) was used to identify 15 phenolic and 46 triterpenoids in various bitter melon extracts. Total phenolic levels were the highest (57.28 ± 1.02) in methanolic extract of the inner tissue of Indian Green cultivar, which also correlated to the highest DPPH radical scavenging activity (30.48 ± 2.49 ascorbic acid equivalents (mg of AAE)/g of FD). In addition, highest levels of total saponins were observed in chloroform extract of the Chinese bitter melon pericarp (75.73 mg ± 4.67 diosgenin equivalents (DE)/g of FD). Differential inhibition of α-amylase and α-glucosidase activity was observed in response to polarity of extract, cultivar and tissue type. These results suggest that consumption of whole bitter melon may have potential health benefits to manage diabetes.
Collapse
Affiliation(s)
- Jose Luis Perez
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX 77845-2119, United States
| | - G K Jayaprakasha
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX 77845-2119, United States.
| | - Bhimanagouda S Patil
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX 77845-2119, United States.
| |
Collapse
|
8
|
Shivanagoudra SR, Perera WH, Perez JL, Athrey G, Sun Y, Jayaprakasha GK, Patil BS. Cucurbitane-type compounds from Momordica charantia: Isolation, in vitro antidiabetic, anti-inflammatory activities and in silico modeling approaches. Bioorg Chem 2019; 87:31-42. [PMID: 30856374 DOI: 10.1016/j.bioorg.2019.02.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 01/03/2023]
Abstract
Momordica charantia L., commonly known as bitter melon, belongs to the Cucurbitaceae family. Various in vitro and in vivo studies have indicated that extracts of bitter melons have anti-diabetic properties. However, very little is known about the specific purified compounds responsible for these antidiabetic properties. In the present study, 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al, charantal, charantoside XI, and 25ξ-isopropenylchole-5, 6-ene-3-O-d-glucopyranoside were isolated from bitter melon fruit. The structures of the purified compounds were elucidated by HR-ESIMS, 1D, and 2D NMR experiments. All compounds exhibited significant inhibition of α-amylase and α-glucosidase comparable to acarbose. Molecular docking studies demonstrated that purified compounds were able to bind to the active sites of proteins. Additionally, the purified compounds showed significant anti-inflammatory activity, downregulating the expression of NF-κB, iNOS, IL-6, IL-1β, TNF-α, and Cox-2 in lipopolysaccharide-activated macrophage RAW 264.7 cells. Our findings suggest that the purified compounds have potential anti-diabetic and anti-inflammatory activities and therefore hold promise for the development of plant-based management for diabetic and inflammatory conditions.
Collapse
Affiliation(s)
- Siddanagouda R Shivanagoudra
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, Suite A120, College Station, TX 77845, United States
| | - Wilmer H Perera
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, Suite A120, College Station, TX 77845, United States
| | - Jose L Perez
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, Suite A120, College Station, TX 77845, United States
| | - Giridhar Athrey
- Department of Poultry Science, Texas A&M University, College Station, TX 77845, United States
| | - Yuxiang Sun
- Department of Nutrition and Food Sciences, Texas A&M University, College Station, TX 77843, United States
| | - G K Jayaprakasha
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, Suite A120, College Station, TX 77845, United States.
| | - Bhimanagouda S Patil
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, Suite A120, College Station, TX 77845, United States.
| |
Collapse
|
9
|
Barkat N, Singh J, Jayaprakasha GK, Patil BS. Effect of harvest time on the levels of phytochemicals, free radical-scavenging activity, α-amylase inhibition and bile acid-binding capacity of spinach (Spinacia oleracea). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:3468-3477. [PMID: 29282747 DOI: 10.1002/jsfa.8862] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 11/25/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Spinach is a green leafy vegetable that is rich in health-promoting compounds. The present study analyzed the levels of phytochemicals and health-promoting properties of spinach harvested at 20, 30, 40, 50 and 60 days after planting. RESULTS The time of harvest had a significant effect on nitrate levels, which increased from 1909 ± 70.6 µg g-1 (20 days) to 3668 ± 101.3 µg g-1 (40 days) and then decreased to 974 ± 164 µg g-1 (60 days). Lutein and chlorophylls a and b were found to be maximum at 60 days, whereas β-carotene was higher at 50 days. Liquid chromatography/high-resolution quadrupole time-of-flight tandem mass spectrometry (LC/HR-QTOF-MS) was used to identify 12 flavonoids, and their tentative fragmentation pathways have been proposed. Spinach harvested at 30 and 60 days exhibited significantly higher 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radical-scavenging activities and inhibition of amylase. The levels of total phenolics ranged from 885 ± 35.1 to 1162 ± 112.4 µg g-1 in the samples. In vitro bile acid-binding capacity showed that glycochenodeoxycholate and glycodeoxycholate were bound to maximum levels in all spinach samples. CONCLUSION The harvest time has a major effect on the levels of phytochemicals and health-beneficial properties, which indicates that consumption of both baby and mature spinach will provide maximum health benefits. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Noorani Barkat
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA
| | - Jashbir Singh
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA
| | | | - Bhimanagouda S Patil
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|