1
|
Elhrech H, Aguerd O, El Kourchi C, Gallo M, Naviglio D, Chamkhi I, Bouyahya A. Comprehensive Review of Olea europaea: A Holistic Exploration into Its Botanical Marvels, Phytochemical Riches, Therapeutic Potentials, and Safety Profile. Biomolecules 2024; 14:722. [PMID: 38927125 PMCID: PMC11201932 DOI: 10.3390/biom14060722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Human health is now inextricably linked to lifestyle choices, which can either protect or predispose people to serious illnesses. The Mediterranean diet, characterized by the consumption of various medicinal plants and their byproducts, plays a significant role in protecting against ailments such as oxidative stress, cancer, and diabetes. To uncover the secrets of this natural treasure, this review seeks to consolidate diverse data concerning the pharmacology, toxicology, phytochemistry, and botany of Olea europaea L. (O. europaea). Its aim is to explore the potential therapeutic applications and propose avenues for future research. Through web literature searches (using Google Scholar, PubMed, Web of Science, and Scopus), all information currently available on O. europaea was acquired. Worldwide, ethnomedical usage of O. europaea has been reported, indicating its effectiveness in treating a range of illnesses. Phytochemical studies have identified a range of compounds, including flavanones, iridoids, secoiridoids, flavonoids, triterpenes, biophenols, benzoic acid derivatives, among others. These components exhibit diverse pharmacological activities both in vitro and in vivo, such as antidiabetic, antibacterial, antifungal, antioxidant, anticancer, and wound-healing properties. O. europaea serves as a valuable source of conventional medicine for treating various conditions. The findings from pharmacological and phytochemical investigations presented in this review enhance our understanding of its therapeutic potential and support its potential future use in modern medicine.
Collapse
Affiliation(s)
- Hamza Elhrech
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (H.E.); (O.A.)
| | - Oumayma Aguerd
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (H.E.); (O.A.)
| | - Chaimae El Kourchi
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco;
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Daniele Naviglio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 4, 80126 Naples, Italy;
| | - Imane Chamkhi
- Geo-Biodiversity and Natural Patrimony Laboratory (GeoBio), Geophysics, Natural Patrimony, Research Center (GEOPAC), Scientific Institute, Mohammed V University in Rabat, Rabat 10106, Morocco;
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (H.E.); (O.A.)
| |
Collapse
|
2
|
Benčić Đ, Barbarić M, Mornar A, Klarić DA, Brozovic A, Dabelić S, Fadljević M, Marković AK. Oleuropein in olive leaf, branch, and stem extracts: stability and biological activity in human cervical carcinoma and melanoma cells. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:601-616. [PMID: 38147483 DOI: 10.2478/acph-2023-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 12/28/2023]
Abstract
Olive leaves as a main byproduct of olive oil and fruit industry are a valuable source of phytochemicals such as polyphenols, with multiple biomedical effects. Apart from leaves, olive branches and stems make up a significant amount of olive waste. It is well known that the drying process and long-term storage affect the stability and concentration of polyphenols present in raw materials. For that matter, two different means of storing olive waste, at room temperature and +4 °C, were compared by determining the content of the polyphenol oleuropein (OLE) in olive leaf, branch, and stem extracts (LE, BE, and SE) by HPLC-DAD method. Total phenols (TPC), o-diphenols (o-DPC), and total flavonoids (TFC) content in extracts were assessed by UV-Vis measurements. LE prepared from leaves stored at +4 °C had the highest OLE content, 30.7 mg g-1 of dry extract (DE). SE from stems stored at +4 °C was the richest in TPC and TFC (193 mg GAE/g DE and 82.9 mg CE/g DE, respectively), due to the higher purity of the extract. The biological activity of extracts was determined on cervical cancer (HeLa), melanoma (A375), metastatic melanoma (A375M) tumor cell lines, and on spontaneously immortalized cell line of keratinocytes (HaCaT), using the MTT assay. The data show that all extracts had a similar dose-dependent effect on cell viability in HeLa cells, while the effect of LE on melanoma A375 and A375M, and HaCaT cells was cell-line dependent.
Collapse
Affiliation(s)
- Đani Benčić
- 1University of Zagreb Faculty of Agriculture, 10000 Zagreb, Croatia
| | - Monika Barbarić
- 2University of Zagreb, Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | - Ana Mornar
- 2University of Zagreb, Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | | | | | - Sanja Dabelić
- 2University of Zagreb, Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | - Mihaela Fadljević
- 2University of Zagreb, Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | | |
Collapse
|
3
|
Juszczak AM, Wöelfle U, Končić MZ, Tomczyk M. Skin cancer, including related pathways and therapy and the role of luteolin derivatives as potential therapeutics. Med Res Rev 2022; 42:1423-1462. [PMID: 35187675 PMCID: PMC9303584 DOI: 10.1002/med.21880] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/16/2021] [Accepted: 01/23/2022] [Indexed: 12/12/2022]
Abstract
Cutaneous malignant melanoma is the fastest growing and the most aggressive form of skin cancer that is diagnosed. However, its incidence is relatively scarce compared to the highest mortality rate of all skin cancers. The much more common skin cancers include nonmelanoma malignant skin cancers. Moreover, over the past several decades, the frequency of all skin cancers has increased much more dynamically than that of almost any other type of cancer. Among the available therapeutic options for skin cancers, chemotherapy used immediately after the surgical intervention has been an essential element. Unfortunately, the main problem with conventional chemopreventive regimens involves the lack of response to treatment and the associated side effects. Hence, there is a need for much more effective anticancer drugs. Correspondingly, the targeted alternatives have involved phytochemicals, which are safer chemotherapeutic agents and exhibit competitive anticancer activity with high therapeutic efficacy. Among polyphenolic compounds, some flavonoids and their derivatives, which are mostly found in medicinal plants, have been demonstrated to influence the modulation of signaling pathways at each stage of the carcinogenesis process, which is also important in the context of skin cancers. Hence, this review focuses on an exhaustive overview of the therapeutic effects of luteolin and its derivatives in the treatment and prevention of skin cancers. The bioavailability and structure–activity relationships of luteolin derivatives are also discussed. This review is the first such complete account of all of the scientific reports concerning this particular group of natural compounds that target a specific area of neoplastic diseases.
Collapse
Affiliation(s)
- Aleksandra M. Juszczak
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine Medical University of Białystok Białystok Poland
| | - Ute Wöelfle
- Department of Dermatology and Venereology, Research Center Skinitial, Medical Center, Faculty of Medicine University of Freiburg Freiburg Germany
| | - Marijana Zovko Končić
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry University of Zagreb Zagreb Croatia
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine Medical University of Białystok Białystok Poland
| |
Collapse
|
4
|
Abi-Khattar AM, Boussetta N, Rajha HN, Abdel-Massih RM, Louka N, Maroun RG, Vorobiev E, Debs E. Mechanical damage and thermal effect induced by ultrasonic treatment in olive leaf tissue. Impact on polyphenols recovery. ULTRASONICS SONOCHEMISTRY 2022; 82:105895. [PMID: 34972073 PMCID: PMC8799614 DOI: 10.1016/j.ultsonch.2021.105895] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/12/2021] [Accepted: 12/24/2021] [Indexed: 05/05/2023]
Abstract
The influence of ultrasound treatment (US) on cellular damage of olive leaf tissue was studied. Mechanical damage and thermal effect of US were characterized. The level of tissue damage was defined by the diffusivity disintegration index ZD based on the diffusivity of solutes extracted from olive leaves differently treated. The Arrhenius form using the temperature dependences of the thermal treatment time within the temperature interval 20-90 °C was observed for the thermal process. The corresponding activation energy ΔUT was estimated as 57 kJ/mol. The temperature dependences of electrical conductivity were measured for extracts of intact and maximally treated olive leaves. Then the diffusivity disintegration index ZD and total phenolic compounds recovery for three studied US powers were calculated (100, 200, and 400 W). The results evidenced that the mechanically stimulated damage in olive leaf tissue can occur even at a low US power of 100 W if treatment time is long enough (t = 3.5 h). The US treatment noticeably accelerated the diffusion process mechanically in addition to its thermal effect. Trials in aqueous solution revealed the dependence of polyphenols extraction on damage level with respect to the US power applied.
Collapse
Affiliation(s)
- Anna-Maria Abi-Khattar
- Centre d'Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Faculté des Sciences, Saint-Joseph University, P. O. Box 17-5208 Riad El Solh, Beirut 1104 2020, Lebanon
| | - Nadia Boussetta
- Université de Technologie de Compiègne, Génie des Procédés Industriels, EA 4297, Unité Transformations Intégrées de la Matière Renouvelable, 60205 Compiègne Cedex, France
| | - Hiba N Rajha
- Centre d'Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Faculté des Sciences, Saint-Joseph University, P. O. Box 17-5208 Riad El Solh, Beirut 1104 2020, Lebanon; Ecole Supérieure d'Ingénieurs de Beyrouth (ESIB), Saint-Joseph University, CST Mkalles Mar Roukos, P. O. Box 11-514, Riad El Solh, Beirut 1107 2050, Lebanon
| | - Roula M Abdel-Massih
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, P. O. Box 100, Tripoli, Lebanon
| | - Nicolas Louka
- Centre d'Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Faculté des Sciences, Saint-Joseph University, P. O. Box 17-5208 Riad El Solh, Beirut 1104 2020, Lebanon
| | - Richard G Maroun
- Centre d'Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-Alimentaire, Faculté des Sciences, Saint-Joseph University, P. O. Box 17-5208 Riad El Solh, Beirut 1104 2020, Lebanon
| | - Eugene Vorobiev
- Université de Technologie de Compiègne, Génie des Procédés Industriels, EA 4297, Unité Transformations Intégrées de la Matière Renouvelable, 60205 Compiègne Cedex, France
| | - Espérance Debs
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, P. O. Box 100, Tripoli, Lebanon.
| |
Collapse
|
5
|
Majumder D, Debnath R, Nath P, Libin Kumar KV, Debnath M, Tribedi P, Maiti D. Bromelain and Olea europaea (L.) leaf extract mediated alleviation of benzo(a)pyrene induced lung cancer through Nrf2 and NFκB pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47306-47326. [PMID: 33893581 DOI: 10.1007/s11356-021-13803-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Lung cancer is the most aggressive as well as deadly form of cancer and most of the lung cancer cases are involved in direct smoking or passive smoking. Oxidative stress and pulmonary inflammation regulated by some transcription factors like Nrf2, NF-κB etc. play important roles in lung cancer. Various combinations of therapies are currently attributed to lung cancer treatment. A plethora of evidence supports that the consumption of plant-derived foods can prevent chronic diseases like cancer. Leaves of olive (Olea europaea L.) are rich in phenolic compounds which are having antioxidant and anti-inflammatory property. Also, bromelain from pineapple juice and from pineapple stem is a potent anti-inflammatory agent. We took a pragmatic approach to prevent carcinogenesis by supplementing the combination of these two extracts. In this study, we have tried to evaluate the amelioration of various hallmarks associated with benzo(a)pyrene-induced lung carcinogenesis upon the combinatorial treatment of ethanolic olive leaf extract (EOLE) and bromelain. We have studied the role of EOLE in amelioration of BaP-induced oxidative stress in the lung. As several reports of anticancer activity of bromelain are available, we have combined EOLE with bromelain to study their protective role against BaP-mediated lung damage. Changes in DNA integrity, LPO level in lung after EOLE-treated animal were examined. Then, we have evaluated the synergistic role of EOLE and bromelain. We have found that EOLE in combination with bromelain was able to increase the translocation of Nrf2 from cytoplasm to nucleus and decrease the translocation of NF-κB from cytoplasm to nucleus. Combination of treatment also reduced the expression of TNFα, IL-6, and some matrix metalloproteinases in lung tissue. Our findings suggest that EOLE and bromelain can synergistically reduce the BaP-induced lung carcinogenesis associated with inflammation and oxidative stress via regulating the expression of various inflammatory markers and also modulating the activity of pulmonary antioxidant armories.
Collapse
Affiliation(s)
- Debabrata Majumder
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Suryamaninagar Tripura, 799022, India
| | - Rahul Debnath
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Suryamaninagar Tripura, 799022, India
| | - Priyatosh Nath
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Suryamaninagar Tripura, 799022, India
| | | | - Mousumi Debnath
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, 303007, India
| | - Prosun Tribedi
- Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Debasish Maiti
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Suryamaninagar Tripura, 799022, India.
| |
Collapse
|
6
|
Juszczak AM, Czarnomysy R, Strawa JW, Zovko Končić M, Bielawski K, Tomczyk M. In Vitro Anticancer Potential of Jasione montana and Its Main Components against Human Amelanotic Melanoma Cells. Int J Mol Sci 2021; 22:3345. [PMID: 33805898 PMCID: PMC8036727 DOI: 10.3390/ijms22073345] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
Jasione montana L. (Campanulaceae) is used in traditional Belarusian herbal medicine for sleep disorders in children, but the chemical composition and biological activity have not been investigated. In this study, the activities of J. montana extracts, their fractions and main compounds were evaluated in amelanotic melanoma C32 (CRL-1585) cells and normal fibroblasts (PCS-201-012). The extracts and fractions were analyzed using liquid chromatography-photodiode array detection-electrospray ionization-mass spectrometry (LC-PDA-ESI-MS/TOF) to characterize 25 compounds. Further, three major and known constituents, luteolin (22) and its derivatives such as 7-O-glucoside (12) and 7-O-sambubioside (9) were isolated and identified. The cytotoxic activities against fibroblasts and the amelanotic melanoma cell line were determined using the fixable viability stain (FVS) assay. The influence of diethyl ether (Et2O) fraction (JM4) and 22 on apoptosis induction was investigated using an annexin V binding assay. The obtained results showed significant cytotoxicity of JM4 and 22 with IC50 values of 119.7 ± 3.2 and 95.1 ± 7.2 μg/mL, respectively. The proapoptotic potential after 22 treatment in the C32 human amelanotic melanoma cell line was comparable to that of vinblastine sulfate (VLB), detecting 29.2 ± 3.0% apoptotic cells. Moreover, 22 displayed less necrotic potential against melanoma cells than VLB. In addition, the influences of JM4 and 22 on the dysfunction of the mitochondrial membrane potential (MMP), cell cycle and activity of caspases 3, 8, 9, and 10 were established. The effects of JM4 on MMP change (74.5 ± 3.0% of the cells showed a reduced MMP) corresponded to the results obtained from the annexin V binding assay and activation of caspase-9. JM4 and 22 displayed a significant impact on caspase-9 (40.9 ± 2.4% of the cells contained active caspase-9 after JM4 treatment and 16.6 ± 0.8% after incubation with 22) and the intrinsic (mitochondrial) apoptotic pathway. Moreover, studies have shown that JM4 and 22 affect the activation of external apoptosis pathways by inducing the caspase-8 and caspase-10 cascades. Thus, activation of caspase-3 and DNA damage via external and internal apoptotic pathways were observed after treatment with JM4 and 22. The obtained results suggest that J. montana extracts could be developed as new topical preparations with potential anticancer properties due to their promising cytotoxic and proapoptotic potential.
Collapse
Affiliation(s)
- Aleksandra Maria Juszczak
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland; (A.M.J.); (J.W.S.)
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Kilińskiego 1, 15-089 Białystok, Poland; (R.C.); (K.B.)
| | - Jakub Władysław Strawa
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland; (A.M.J.); (J.W.S.)
| | - Marijana Zovko Končić
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, Marulićev trg 20/II, 10000 Zagreb, Croatia;
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Kilińskiego 1, 15-089 Białystok, Poland; (R.C.); (K.B.)
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland; (A.M.J.); (J.W.S.)
| |
Collapse
|
7
|
Li J, Ma Y, Kong L, Liu Y. Comprehensive profiling of phytochemical compounds, antioxidant activities, anti-HepG2 cell proliferation, and cholinesterase inhibitory potential of Elaeagnus mollis leaf extracts. PLoS One 2020; 15:e0239497. [PMID: 32966304 PMCID: PMC7510975 DOI: 10.1371/journal.pone.0239497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/08/2020] [Indexed: 02/04/2023] Open
Abstract
The aim of this work was to enrich the knowledge on the potential applications of Elaeagnus mollis leaf extracts. For this purpose, the bioactive compounds (phenolic, flavonoid, alkaloid, proanthocyanidin, chlorophyll and carotene content), antioxidant activity, anti-HepG2 cell proliferation, and cholinesterase inhibitory potential (AChE and BChE) of E. mollis leaves which obtained from different habitats were quantitatively analyzed using various solvents (water, methanol, ethanol, and n-hexane). The results showed that the methanol extracts exhibited the strongest 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity and the water extracts showed the best antioxidant activity in the 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) free radical scavenging activity, ferric reducing antioxidant power (FRAP), and reducing power (RP) assays. Moreover, the methanol extracts showed the best inhibitory activity against cholinesterase and HepG2 cancer cells. Correlation analysis revealed that the high antioxidant and anti-HepG2 cell proliferation activities were mainly attributed to the total phenolics, flavonoids, and proanthocyanidins while AChE inhibition was attributed to the total alkaloid and carotene content. The statistical results showed that the effect of habitats was lower than that of different solvents used. Additionally, the metabolic profiles of E. mollis leaves were evaluated using HPLC-ESI-Q TRAP-MS/MS, and a total of 1,017 chemical components were detected and classified into 23 classes. The organic acids and derivatives ranked the first, followed by flavone, amino acid and derivatives, and so on. In conclusion, the effects of different solvents were more significant than the effects of different habitats and the methanol extracts of E. mollis leaves could be used as an effective source of functional active components, provide benefits to physical health care and be applied to the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Jingmiao Li
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Yao Ma
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Lijuan Kong
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Yulin Liu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|