1
|
Feng P, Zhou X, Yu W. Study of starch molecular structure-property relations provides new insight into slowly digested rice development. Food Res Int 2024; 194:114887. [PMID: 39232521 DOI: 10.1016/j.foodres.2024.114887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
White rice consumption has been regarded as a potential risk factor for non-communicable diseases including obesity and type 2 diabetes. Thus, increasing attention has been paid to develop slowly digested rices with acceptable palatability. As the most abundant component of rice kernels, the fine molecular structure of starch controls not only the texture & aroma, but also the digestion properties of cooked rice. A large number of studies have been conducted to see what molecular structural features control the digestibility and palatability of cooked rice, which further could be connected to starch biosynthesis to enable rices with targeted functionalities to be chosen in non-empirical ways. Nonetheless, little progress has been made because of improper experimental designs. For example, the effects of starch fine molecular structure on cooked rice digestibility and palatability has been rarely studied within one study, resulting to various digestion results. Even for the same sample, it is hard to obtain consistent conclusions and sometimes, the results/coclusions are even controversy. In this review paper, starch fine molecular structural effects on the texture, aroma and starch digestion properties of cooked white rice were summarized followed by a detailed discussion of the relations between the fine molecular structures of amylopectin and amylose to deduce a more general conclusion of starch molecular structure-cooked rice property relations. It is expected that this review paper could provide useful information in terms of how to develop slowly digested rices with acceptable palatability.
Collapse
Affiliation(s)
- Puxu Feng
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, China
| | - Xianglong Zhou
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, China
| | - Wenwen Yu
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, China.
| |
Collapse
|
2
|
Xiao M, Jia X, Kang J, Liu Y, Zhang J, Jiang Y, Liu G, Cui SW, Guo Q. Unveiling the breadmaking transformation: Structural and functional insights into Arabinoxylan. Carbohydr Polym 2024; 330:121845. [PMID: 38368117 DOI: 10.1016/j.carbpol.2024.121845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/19/2024]
Abstract
To understand the changes in arabinoxylan (AX) during breadmaking, multi-step enzyme digestion was conducted to re-extract arabinoxylan (AX-B) from AX-fortified bread. Their structural changes were compared using HPSEC, HPAEC, FT-IR, methylation analysis, and 1H NMR analysis; their properties changes in terms of enzymatic inhibition activities and in vitro fermentability against gut microbiota were also compared. Results showed that AX-B contained a higher portion of covalently linked protein while the molecular weight was reduced significantly after breadmaking process (from 677.1 kDa to 15.6 kDa); the structural complexity of AX-B in terms of the degree of branching was increased; the inhibition activity against α-amylase (76.81 % vs 73.89 % at 4 mg/mL) and α-glucosidase (64.43 % vs 58.08 % at 4 mg/mL) was improved; the AX-B group produced a higher short-chain fatty acids concentration than AX (54.68 ± 7.86 mmol/L vs 44.03 ± 4.10 mmol/L). This study provides novel knowledge regarding the structural and properties changes of arabinoxylan throughout breadmaking, which help to predict the health benefits of fibre-fortified bread and achieve precision nutrition.
Collapse
Affiliation(s)
- Meng Xiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xing Jia
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Ji Kang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yan Liu
- College of Food and Health, Zhejiang Agriculture and Forestry University, No. 666, Wusu Road, Linan District, 311300 Hangzhou, Zhejiang Province, China.
| | - Jixiang Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yueru Jiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Guorong Liu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Steve W Cui
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
3
|
Huang Q, Hong T, Zheng M, Yang Y, Zhu Y, Jiang Z, Ni H, Li Q. High-pressure homogenization treatment of red seaweed Bangia fusco-purpurea affects the physicochemical, functional properties and enhances in vitro anti-glycation activity of its dietary fibers. INNOV FOOD SCI EMERG 2023; 86:103369. [DOI: 10.1016/j.ifset.2023.103369] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Wu Q, Guo Z, Zhou Z, Jin M, Li Q, Zhou X. Recent advances in bioactive peptides from cereal-derived Foodstuffs. Int J Food Sci Nutr 2022; 73:875-888. [PMID: 35896503 DOI: 10.1080/09637486.2022.2104226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Cereal-derived proteins account for a major part of human dietary protein consumption. Natural bioactive peptides (NBPs) from these proteins involve a variety of physiological activities and play an important role in the promotion of human health. This review focuses on the characteristics of NBPs obtained from cereals, and the commonly used methods for preparation, separation, purification, and identification. We also discussed the biological functions of cereal-derived NBPs (CNBPs), including the activities of antioxidant, immunomodulatory, antimicrobial, and regulation of hyperglycaemia and hypertension. The paper summarised the latest progress in the research and application of CNBPs and analysed the prospects for the development and application of several protein by-products, providing an important way to improve the added value of protein by-products in cereal processing.
Collapse
Affiliation(s)
- Qin Wu
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhijian Guo
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zerong Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, P. R. China
| | - Mengyuan Jin
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Qizhang Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, P. R. China
| | - Xuanwei Zhou
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Ninomiya K, Yamaguchi Y, Shinmachi F, Kumagai H, Kumagai H. Suppression of postprandial blood glucose elevation by buckwheat (Fagpopyrum esculentum) albumin hydrolysate and identification of the peptide responsible to the function. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Ninomiya K, Ina S, Nakamura H, Yamaguchi Y, Kumagai H, Kumagai H. Evaluation of the amount of glucose adsorbed on water-soluble dietary fibres by the analysis of its diffusion rate through a dialysis membrane. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Kawakami K, Moritani C, Hatanaka T, Tsuboi S. Isolation of the hemeoxygenase-1 inducer from rice-derived peptide. J Clin Biochem Nutr 2022; 71:41-47. [PMID: 35903607 PMCID: PMC9309089 DOI: 10.3164/jcbn.21-125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/17/2021] [Indexed: 11/22/2022] Open
Abstract
Bioactive peptides with various health benefits have been reported from rice protein hydrolysates. We previously showed that rice-derived peptides (RP) increased intracellular glutathione levels and induced the expression of γ-glutamylcysteine synthetase, which is regulated by nuclear transcription factor-erythroid 2-related factor 2 (Nrf2). Heme oxygenase-1 (HO-1) is an important Nrf2 downstream antioxidant enzyme that protects against oxidative stress. This study aimed to investigate the protective effects of RP on hydrogen peroxide (H2O2)-induced oxidative stress in human hepatoblastoma cell line HepG2 and identified HO-1 induced peptides from RP. Pretreatment of cells with RP reduced the cytotoxicity caused by H2O2 in a dose-dependent manner. Moreover, RP induced HO-1 expression in a concentration- and time-dependent manner. Next, we attempted to isolate the HO-1 inducer from RP by bioactivity-guided fractionation. Purification of the active peptides using a Sep-Pak C18 cartridge and reversed-phase HPLC, followed by sequence analysis by mass spectrometry, led to the identification of the three peptides. These peptides effectively reduced H2O2-induced oxidative stress. Among them, only P3 (peptide sequence: RSAVLLSH) increased HO-1 protein expression. Additionally, the knockdown of Nrf2 suppressed the induction of HO-1 expression by P3. Our results indicated that P3 identified from RP induced HO-1 by activating the Nrf2 signaling pathway.
Collapse
Affiliation(s)
| | | | - Tadashi Hatanaka
- Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries, Research Institute for Biological Sciences (RIBS)
| | | |
Collapse
|
8
|
Rice Compounds with Impact on Diabetes Control. Foods 2021; 10:foods10091992. [PMID: 34574099 PMCID: PMC8467539 DOI: 10.3390/foods10091992] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 01/20/2023] Open
Abstract
Rice is one of the most cultivated and consumed cereals worldwide. It is composed of starch, which is an important source of diet energy, hypoallergenic proteins, and other bioactive compounds with known nutritional functionalities. Noteworthy is that the rice bran (outer layer of rice grains), a side-stream product of the rice milling process, has a higher content of bioactive compounds than white rice (polished rice grains). Bran functional ingredients such as γ-oryzanol, phytic acid, ferulic acid, γ-aminobutyric acid, tocopherols, and tocotrienols (vitamin E) have been linked to several health benefits. In this study, we reviewed the effects of rice glycemic index, macronutrients, and bioactive compounds on the pathological mechanisms associated with diabetes, identifying the rice compounds potentially exerting protective activities towards disease control. The effects of starch, proteins, and bran bioactive compounds for diabetic control were reviewed and provide important insights about the nutritional quality of rice-based foods.
Collapse
|
9
|
Chai TT, Ee KY, Kumar DT, Manan FA, Wong FC. Plant Bioactive Peptides: Current Status and Prospects Towards Use on Human Health. Protein Pept Lett 2021; 28:623-642. [PMID: 33319654 DOI: 10.2174/0929866527999201211195936] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/28/2022]
Abstract
Large numbers of bioactive peptides with potential applications in protecting against human diseases have been identified from plant sources. In this review, we summarized recent progress in the research of plant-derived bioactive peptides, encompassing their production, biological effects, and mechanisms. This review focuses on antioxidant, antimicrobial, antidiabetic, and anticancer peptides, giving special attention to evidence derived from cellular and animal models. Studies investigating peptides with known sequences and well-characterized peptidic fractions or protein hydrolysates will be discussed. The use of molecular docking tools to elucidate inter-molecular interactions between bioactive peptides and target proteins is highlighted. In conclusion, the accumulating evidence from in silico, in vitro and in vivo studies to date supports the envisioned applications of plant peptides as natural antioxidants as well as health-promoting agents. Notwithstanding, much work is still required before the envisioned applications of plant peptides can be realized. To this end, future researches for addressing current gaps were proposed.
Collapse
Affiliation(s)
- Tsun-Thai Chai
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - Kah-Yaw Ee
- Center for Biodiversity Research, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - D Thirumal Kumar
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602 105, India
| | - Fazilah Abd Manan
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Fai-Chu Wong
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| |
Collapse
|
10
|
Shan X, Wang X, Jiang H, Cai C, Hao J, Yu G. Fucoidan from Ascophyllum nodosum Suppresses Postprandial Hyperglycemia by Inhibiting Na +/Glucose Cotransporter 1 Activity. Mar Drugs 2020; 18:E485. [PMID: 32971911 PMCID: PMC7551602 DOI: 10.3390/md18090485] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/19/2020] [Accepted: 09/19/2020] [Indexed: 12/18/2022] Open
Abstract
We previously demonstrated that fucoidan with a type II structure inhibited postprandial hyperglycemia by suppressing glucose uptake, but the mechanism remains elusive. Here, we aimed to assess whether the effect of glucose absorption inhibition was related to the basic structure of fucoidans and preliminarily clarified the underlying mechanism. Fucoidans with type II structure and type I structure were prepared from Ascophyllumnodosum (AnF) or Laminariajaponica (LjF) and Kjellmaniellacrassifolia (KcF), respectively. The effects of various fucoidans on suppressing postprandial hyperglycemia were investigated using in vitro (Caco-2 monolayer model), semi-in vivo (everted gut sac model), and in vivo (oral glucose tolerance test, OGTT) assays. The results showed that only AnF with a type II structure, but not LjF or KcF with type I structure, could inhibit the glucose transport in the Caco-2 monolayer and everted gut sac models. A similar result was seen in the OGTT of Kunming mice and leptin receptor-deficient (db/db) mice, where only AnF could effectively inhibit glucose transport into the bloodstream. Furthermore, AnF (400 mg/kg/d) treatment decreased the fasting blood glucose, HbA1c, and fasting insulin levels, while increasing the serum glucagon-like peptide-1 (GLP-1) level in obese leptin receptor-deficient (db/db) mice. Furthermore, surface plasmon resonance (SPR) analysis revealed the specific binding of AnF to Na+/glucose cotransporter 1 (SGLT1), which indicated the effect of AnF on postprandial hyperglycemia could be due to its suppression on SGLT1 activity. Taken together, this study suggests that AnF with a type II structure can be a promising candidate for hyperglycemia treatment.
Collapse
Affiliation(s)
- Xindi Shan
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.S.); (X.W.); (H.J.); (C.C.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Xueliang Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.S.); (X.W.); (H.J.); (C.C.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Hao Jiang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.S.); (X.W.); (H.J.); (C.C.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Chao Cai
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.S.); (X.W.); (H.J.); (C.C.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Jiejie Hao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.S.); (X.W.); (H.J.); (C.C.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.S.); (X.W.); (H.J.); (C.C.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
11
|
Rivero-Pino F, Espejo-Carpio FJ, Guadix EM. Antidiabetic Food-Derived Peptides for Functional Feeding: Production, Functionality and In Vivo Evidences. Foods 2020; 9:E983. [PMID: 32718070 PMCID: PMC7466190 DOI: 10.3390/foods9080983] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
Bioactive peptides released from the enzymatic hydrolysis of food proteins are currently a trending topic in the scientific community. Their potential as antidiabetic agents, by regulating the glycemic index, and thus to be employed in food formulation, is one of the most important functions of these peptides. In this review, we aimed to summarize the whole process that must be considered when talking about including these molecules as a bioactive ingredient. In this regard, at first, the production, purification and identification of bioactive peptides is summed up. The detailed metabolic pathways described included carbohydrate hydrolases (glucosidase and amylase) and dipeptidyl-peptidase IV inhibition, due to their importance in the food-derived peptides research field. Then, their characterization, concerning bioavailability in vitro and in situ, stability and functionality in food matrices, and ultimately, the in vivo evidence (from invertebrate animals to humans), was described. The future applicability that these molecules have due to their biological potential as functional ingredients makes them an important field of research, which could help the world population avoid suffering from several diseases, such as diabetes.
Collapse
Affiliation(s)
- Fernando Rivero-Pino
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain; (F.J.E.-C.); (E.M.G.)
| | | | | |
Collapse
|
12
|
Chen T, Wu F, Guo J, Ye M, Hu H, Guo J, Liu X. Effects of glutinous rice protein components on the volatile substances and sensory properties of Chinese rice wine. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3297-3307. [PMID: 32086813 DOI: 10.1002/jsfa.10343] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/15/2020] [Accepted: 02/22/2020] [Indexed: 06/10/2023]
Abstract
The content of protein components of glutinous rice significantly affects the quality of Chinese rice wine. Therefore, the effects of protein components on the quality of Chinese rice wine were investigated by adding the exogenous proteins glutelin and albumin individually or in combination RESULTS: Compared with the control, the samples with increased glutelin components exhibited improved formation of numerous alcohol esters with alcoholic and fruity representatives. The promotion rates of glutelin to total alcohols and total esters were 18% and 99%, respectively. The amount of 4-vinylguaiacol characterized by a spicy, smoky odor was reduced to 40%. Correlation analysis between chemical composition and sensory characteristics showed a significant positive correlation between umami and amino nitrogen (r = 0.935) and total amino acid content (r = 0.729). The bitterness of Chinese rice wine was related to the change of alcohol content (r = 0.689) and total soluble solid (r = 0.904). Sensory analysis revealed that the increase of the glutelin component of Chinese rice wine increased its alcoholic, fruity, and honey-like features, as well as its umami, acidity and bitterness. The increase also reduced the caramel-like, herb-like, and smoky sensory characteristics of Chinese rice wine and its Qu aroma and sweetness CONCLUSION: The protein content of glutinous rice significantly affects the quality of rice wine. The Glutelin has a significant relationship with fruity, honey, and umami flavors; the albumin has a significant relationship with medicinal, bitter, and astringent flavors. Therefore, reasonable adjustment of the glutelin content of glutinous rice can effectively improve the sensory quality of rice wine. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tong Chen
- Laboratory of Food Quality and Safety Control, School of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Linan, China
| | - Fenghua Wu
- Laboratory of Food Quality and Safety Control, School of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Linan, China
| | - Jingjing Guo
- Laboratory of Food Quality and Safety Control, School of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Linan, China
| | - Minqian Ye
- Laboratory of Food Quality and Safety Control, School of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Linan, China
| | - Hao Hu
- Laboratory of Food Quality and Safety Control, School of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Linan, China
| | - Jian Guo
- Laboratory of Food Quality and Safety Control, School of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Linan, China
| | - Xingquan Liu
- Laboratory of Food Quality and Safety Control, School of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Linan, China
| |
Collapse
|