1
|
Farhan M, Faisal M. The Potential Role of Polyphenol Supplementation in Preventing and Managing Depression: A Review of Current Research. Life (Basel) 2024; 14:1342. [PMID: 39459643 PMCID: PMC11509552 DOI: 10.3390/life14101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Depression is a common mental illness that affects 5% of the adult population globally. The most common symptoms of depression are low mood, lack of pleasure from different activities, poor concentration, and reduced energy levels for an extended period, and it affects the emotions, behaviors, and overall well-being of an individual. The complex pathophysiology of depression presents challenges for current therapeutic options involving a biopsychosocial treatment plan. These treatments may have a delayed onset, low remission and response rates, and undesirable side effects. Researchers in nutrition and food science are increasingly addressing depression, which is a significant public health concern due to the association of depression with the increased incidence of cardiovascular diseases and premature mortality. Polyphenols present in our diet may significantly impact the prevention and treatment of depression. The primary mechanisms include reducing inflammation and oxidative stress, regulating monoamine neurotransmitter levels, and modulating the microbiota-gut-brain axis and hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. This review summarizes recent advances in understanding the effects of dietary polyphenols on depression and explores the underlying mechanisms of these effects for the benefit of human health. It also highlights studies that are looking at clinical trials to help future researchers incorporate these substances into functional diets, nutritional supplements, or adjunctive therapy to prevent and treat depression.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Mohd Faisal
- St. Michael’s Unit, Department of Psychiatry, Mercy University Hospital, Grenville Place, T12WE28 Cork, Ireland
- Tosnú Mental Health Centre, West Village, Ballincollig, P31N400 Cork, Ireland
| |
Collapse
|
2
|
Kinra M, Ranadive N, Nampoothiri M, Arora D, Mudgal J. Involvement of NLRP3 inflammasome pathway in the protective mechanisms of ferulic acid and p-coumaric acid in LPS-induced sickness behavior and neuroinflammation in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1829-1839. [PMID: 37755515 PMCID: PMC10858824 DOI: 10.1007/s00210-023-02743-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/21/2023] [Indexed: 09/28/2023]
Abstract
Ferulic acid (FA) and p-coumaric acid (PCA) are abundantly present in commonly consumed food and beverages. Being polyphenolic compounds, they have been explored for their antioxidant and anti-inflammatory properties. Based on our previous study, we selected these two compounds to further investigate their potential in lipopolysaccharide (LPS)-induced sickness behavior and the ensuing neuroinflammation by specifically focusing on the NLRP3 inflammasome pathway. Male Swiss albino mice were divided into nine groups (n = 6) consisting of Normal Control, LPS, fluoxetine (FLX), FA40, FA160, FA640, PCA40, PCA160, and PCA640 respectively. Each group received respective FA or PCA treatment except Normal Control and LPS, which received the vehicle, carboxymethylcellulose 0.25% w/v. All groups were challenged with LPS 1.5 mg/kg, intraperitoneally except the Normal Control group, which received saline. Behavioral assessments were performed between 1-2 h, and the whole brains were collected at 3 h post-LPS administration. LPS-induced sickness behavior was characterized by significantly reduced spontaneous activity and high immobility time. The expression of NLRP3, ASC, caspase-1 and IL-1β was significantly increased, along with the levels of brain IL-1β suggesting the assembly and activation of NLRP3 inflammasome pathway. Furthermore, the major cytokines involved in sickness behavior, IL-6 and TNF-α were also significantly elevated with the accompanied lipid peroxidation. The results of this study emphasize that within the employed dose ranges of both FA and PCA, both the compounds were effective at blocking the activation of the NLRP3 inflammasome pathway and thereby reducing the release of IL-1β and the sickness behavior symptoms. There was a prominent effect on cytokine levels and lipid peroxidation as well.
Collapse
Affiliation(s)
- Manas Kinra
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Niraja Ranadive
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Devinder Arora
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast Campus, Gold Coast, QLD, 4222, Australia.
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
3
|
Rajesh KM, Kinra M, Ranadive N, Pawaskar GM, Mudgal J, Raval R. Effect of chronic low-dose treatment with chitooligosaccharides on microbial dysbiosis and inflammation associated chronic ulcerative colitis in Balb/c mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1611-1622. [PMID: 37695333 PMCID: PMC10858833 DOI: 10.1007/s00210-023-02710-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
The study aimed to investigate the potential of low dose chitooligosaccharide (COS) in ameliorating dextran sodium sulfate (DSS) induced chronic colitis by regulating microbial dysbiosis and pro-inflammatory responses. Chronic colitis was induced in BALB/c mice by DSS (4% w/v, 3 cycles of 5 days) administration. The mice were divided into four groups: vehicle, DSS, DSS + mesalamine and DSS+COS. COS and mesalamine were administered orally, daily once, from day 1 to day 30 at a dose of 20 mg/kg and 50 mg/kg respectively. The disease activity index (DAI), colon length, histopathological score, microbial composition, and pro-inflammatory cytokine expression were evaluated. COS (20 mg/kg, COSLow) administration reduced the disease activity index, and colon shortening, caused by DSS significantly. Furthermore, COSLow restored the altered microbiome in the gut and inhibited the elevated pro-inflammatory cytokines (IL-1 and IL-6) in the colon against DSS-induced chronic colitis in mice. Moreover, COSLow treatment improved the probiotic microflora thereby restoring the gut homeostasis. In conclusion, this is the first study where microbial dysbiosis and pro-inflammatory responses were modulated by chronic COSLow treatment against DSS-induced chronic colitis in Balb/c mice. Therefore, COS supplementation at a relatively low dose could be efficacious for chronic inflammatory bowel disease.
Collapse
Affiliation(s)
- K M Rajesh
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Manas Kinra
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Niraja Ranadive
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Goutam Mohan Pawaskar
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Ritu Raval
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
4
|
Cao M, Zhan M, Jing H, Wang Z, Wang Y, Li X, Miao M. Network pharmacology and experimental evidence: MAPK signaling pathway is involved in the anti-asthma roles of Perilla frutescens leaf. Heliyon 2024; 10:e22971. [PMID: 38163225 PMCID: PMC10755271 DOI: 10.1016/j.heliyon.2023.e22971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024] Open
Abstract
Perilla frutescens (PF) leaf is a traditional Chinese medicine and food with beneficial effects on allergic asthma. We sought to elucidate the active compounds, the targets, and underlying mechanisms of PF leaf in the treatment of allergic asthma by using experimental pharmacology and network pharmacology. An OVA-allergic asthma murine model was constructed to evaluate the effect of PF leaf on allergic asthma. And the network pharmacology and western blotting were performed to evaluate its underlying mechanisms in allergic asthma. PF leaf treatment significantly improved the lung function of OVA model mice and mitigated lung injury by significantly reducing of OVA-specific immunoglobulin E in serum, and interleukin 4, interleukin 5 and tumor necrosis factor alpha in the bronchoalveolar lavage fluid. 50 core targets were screened based on 8 compounds (determined by high performance liquid chromatography) through compound-target- disease network. Furthermore, MAPK signaling pathway was identified as the pathway mediated by PF leaf with the most potential against allergic asthma. And the WB results showed that PF leaf could down-regulate the expression of p-ERK, p-JNK and p-p38, which was highly consistent with the predicted targets and pathway network. In conclusion, this study provides the evidence to support the molecular mechanisms of PF leaf on the treatment of allergic asthma using network pharmacology and in vivo experiments.
Collapse
Affiliation(s)
- Mingzhuo Cao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450058, China
| | - Mengling Zhan
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450058, China
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450058, China
| | - Heyun Jing
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450058, China
| | - Zeqian Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450058, China
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450058, China
| | - Yuan Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450058, China
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450058, China
| | - Xiumin Li
- Department of Microbiology and Immunology, and Otolaryngology, New York Medical College, Valhalla, NY, 10595, USA
| | - Mingsan Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450058, China
| |
Collapse
|
5
|
Chowdari Gurram P, Satarker S, Kumar G, Begum F, Mehta C, Nayak U, Mudgal J, Arora D, Nampoothiri M. Avanafil mediated dual inhibition of IKKβ and TNFR1 in an experimental paradigm of Alzheimer's disease: in silico and in vivo approach. J Biomol Struct Dyn 2023; 41:10659-10677. [PMID: 36533331 DOI: 10.1080/07391102.2022.2156924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
In Alzheimer's disease pathology, inhibitors of nuclear factor kappa-β kinase subunit β (IKKB) and Tumor necrosis factor receptor 1 (TNFR1) signaling are linked to neuroinflammation-mediated cognitive decline. We explored the role of a phosphodiesterase 5 inhibitor (PDE5I) with dual antagonistic action on IKKB and TNFR1 to inhibit nuclear factor kappa B (NF-kB) and curb neuroinflammation. In the in silico approach, the FDA-approved Zinc 15 library was docked with IKKB and TNFR1. The top compound with dual antagonistic action on IKKB and TNFR1 was selected based on bonding and non-bonding interactions. Further, induced fit docking (IFD), molecular mechanics-generalized Born and surface area (MMGBSA), and molecular dynamic studies were carried out and evaluated. Lipopolysaccharide (LPS) administration caused a neuroinflammation-mediated cognitive decline in mice. Two doses of avanafil were administered for 28 days while LPS was administered for 10 days. Morris water maze (MWM) along with the passive avoidance test (PAT) were carried out. Concurrently brain levels of inflammatory markers, oxidative parameters, amyloid beta (Aβ), IKKB and NF-kB levels were estimated. Avanafil produced good IKKB and TNFR1 binding ability. It interacted with crucial inhibitory amino acids of IKKB and TNFR1. MD analysis predicted good stability of avanafil with TNFR1 and IKKB. Avanafil 6 mg/kg could significantly improve performance in MWM, PAT and oxidative parameters and reduce Aβ levels and inflammatory markers. As compared to avanafil 3 mg/kg, 6 mg/kg dose was found to exert better efficacy against elevated Aβ , neuroinflammatory cytokines and oxidative markers while improving behavioural parameters.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Prasada Chowdari Gurram
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Gautam Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Farmiza Begum
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Chetan Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Usha Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Devinder Arora
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
6
|
Mallik SB, Mudgal J, Kinra M, Hall S, Grant GD, Anoopkumar-Dukie S, Nampoothiri M, Zhang Y, Arora D. Involvement of indoleamine 2, 3-dioxygenase (IDO) and brain-derived neurotrophic factor (BDNF) in the neuroprotective mechanisms of ferulic acid against depressive-like behaviour. Metab Brain Dis 2023; 38:2243-2254. [PMID: 37490224 PMCID: PMC10504153 DOI: 10.1007/s11011-023-01267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
OBJECTIVE Ferulic acid (FA) is a common food ingredient that is abundantly present in various routinely consumed food and beverages. Like many cinnamic acid derivatives, FA produces wide-ranging effects in a dose-dependent manner and various studies link FA consumption with reduced risk of depressive disorders. The aim of this study was to exploit the neuroprotective mechanisms of FA including indoleamine 2,3-dioxygenase (IDO), brain-derived neurotrophic factor (BDNF), and other pro-inflammatory cytokines by employing lipopolysaccharide (LPS)-induced depressive-like behaviour model. METHODS C57BL/6J male mice were divided into 4 groups consisting of saline (SAL), LPS, FA and Imipramine (IMI). Animals were pretreated orally with FA (10 mg/kg) and IMI (10 mg/kg) for 21 days once daily and all groups except SAL were challenged with LPS (0.83 mg/kg) intraperitoneally on day 21. RESULTS LPS administration produced a biphasic change in the behaviour of the animals where the animals lost a significant weight and express high immobility time at 24 h. Proinflammatory cytokines including, TNF-α, IL-6, IL-1β, and IFN-γ were significantly increased along with increased lipid peroxidation and reduced BDNF. Furthermore, the increased kynurenine to tryptophan ratio was indicative of elevated IDO activity. CONCLUSION The results of this study emphasise that low dose of FA is effective in attenuating depressive-like behaviour by modulating IDO, BDNF and reducing neuroinflammation.
Collapse
Affiliation(s)
- Sanchari Basu Mallik
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast campus, Queensland, 4222, Australia
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Manas Kinra
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Susan Hall
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast campus, Queensland, 4222, Australia
| | - Gary D Grant
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast campus, Queensland, 4222, Australia
| | - Shailendra Anoopkumar-Dukie
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast campus, Queensland, 4222, Australia
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Yuqing Zhang
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast campus, Queensland, 4222, Australia
| | - Devinder Arora
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast campus, Queensland, 4222, Australia.
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
7
|
Nassar A, Satarker S, Gurram PC, Upadhya D, Fayaz SM, Nampoothiri M. Repressor Element-1 Binding Transcription Factor (REST) as a Possible Epigenetic Regulator of Neurodegeneration and MicroRNA-Based Therapeutic Strategies. Mol Neurobiol 2023; 60:5557-5577. [PMID: 37326903 PMCID: PMC10471693 DOI: 10.1007/s12035-023-03437-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Neurodegenerative disorders (NDD) have grabbed significant scientific consideration due to their fast increase in prevalence worldwide. The specific pathophysiology of the disease and the amazing changes in the brain that take place as it advances are still the top issues of contemporary research. Transcription factors play a decisive role in integrating various signal transduction pathways to ensure homeostasis. Disruptions in the regulation of transcription can result in various pathologies, including NDD. Numerous microRNAs and epigenetic transcription factors have emerged as candidates for determining the precise etiology of NDD. Consequently, understanding by what means transcription factors are regulated and how the deregulation of transcription factors contributes to neurological dysfunction is important to the therapeutic targeting of pathways that they modulate. RE1-silencing transcription factor (REST) also named neuron-restrictive silencer factor (NRSF) has been studied in the pathophysiology of NDD. REST was realized to be a part of a neuroprotective element with the ability to be tuned and influenced by numerous microRNAs, such as microRNAs 124, 132, and 9 implicated in NDD. This article looks at the role of REST and the influence of various microRNAs in controlling REST function in the progression of Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD) disease. Furthermore, to therapeutically exploit the possibility of targeting various microRNAs, we bring forth an overview of drug-delivery systems to modulate the microRNAs regulating REST in NDD.
Collapse
Affiliation(s)
- Ajmal Nassar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Prasada Chowdari Gurram
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - S M Fayaz
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
8
|
Cortés-Ferré HE, Martínez-Avila M, Antunes-Ricardo M, Guerrero-Analco JA, Monribot-Villanueva JL, Gutiérrez-Uribe JA. In vitro Evaluation of Anti-Inflammatory Activity of "Habanero" Chili Pepper (Capsicum chinense) Seeds Extracts Pretreated with Cellulase. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:109-116. [PMID: 36350416 DOI: 10.1007/s11130-022-01026-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was to explore the effect of capsaicin and particular phenolic compounds profile from cellulase assisted extracts of Habanero (Capsicum chinense) chili pepper seeds (CPS) on the concentration of cytokines (IL-2, IL-6, TNF-α, IL-1β) in murine macrophages (RAW 264.7) stimulated with lipopolysaccharides (LPS). Capsaicin was quantified by HPLC-DAD, and the phenolic profile was determined by UPLC-MS-QqQ. Anti-inflammatory activity was evaluated by Mouse Cytokine/Chemokine Magnetic Bead Panel 96-well plate assay. Among the 15 different phenolics found in CPS extracts obtained at 120 or 150 min of maceration with 2,500 UI/L at 30 ºC or 45 ºC in a 1:15 (w:v) proportion, the most abundant was vanillic acid (7.97-12.66 µg/g). The extract obtained at 30 ºC and 120 min, showed similar effects than the observed for synthetic anti-inflammatory drugs indomethacin and dexamethasone, and capsaicin standard. Beyond capsaicin, salicylic, protocatechuic and trans-cinnamic acids as well as vanillin in CPS extracts were correlated with the anti-inflammatory effect. On the other hand, capsaicin and chlorogenic acid contents were potential immunostimulants whose concentration varied depending on the cellulase treatment time.
Collapse
Affiliation(s)
- Héctor Emmanuel Cortés-Ferré
- Tecnologico de Monterrey, Centro de Biotecnología-FEMSA, Av. Eugenio Garza Sada 2501 Sur, C. P. 64849, Monterrey, Nuevo Leon, Mexico
| | - Mariana Martínez-Avila
- Tecnologico de Monterrey, Centro de Biotecnología-FEMSA, Av. Eugenio Garza Sada 2501 Sur, C. P. 64849, Monterrey, Nuevo Leon, Mexico
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Centro de Biotecnología-FEMSA, Av. Eugenio Garza Sada 2501 Sur, C. P. 64849, Monterrey, Nuevo Leon, Mexico
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C. P. 64849, Monterrey, Nuevo Leon, Mexico
| | - José A Guerrero-Analco
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Clúster BioMimic®, Carretera Antigua a Coatepec 351, Col. El Haya, C.P. 91073, Xalapa, Veracruz, Mexico
| | - Juan Luis Monribot-Villanueva
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Clúster BioMimic®, Carretera Antigua a Coatepec 351, Col. El Haya, C.P. 91073, Xalapa, Veracruz, Mexico
| | - Janet Alejandra Gutiérrez-Uribe
- Tecnologico de Monterrey, Centro de Biotecnología-FEMSA, Av. Eugenio Garza Sada 2501 Sur, C. P. 64849, Monterrey, Nuevo Leon, Mexico.
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C. P. 64849, Monterrey, Nuevo Leon, Mexico.
- Tecnologico de Monterrey, Campus Puebla, Vía Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, C.P. 72453, Puebla, Puebla, Mexico.
| |
Collapse
|
9
|
Quan W, Zhao X, Zhao C, Duan H, Ding G. Characterization of 35 Masson pine (Pinus massoniana) half-sib families from two provinces based on metabolite properties. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1107597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Plant metabolism is an important functional trait, and its metabolites have physiological and ecological functions to adapt to the growth environment. However, the physiological and ecological functions of metabolites from different provinces of the same plant species are still unclear. Therefore, this study aimed to determine whether metabolites from different provinces of Masson pine (Pinus massoniana Lamb.) have the corresponding metabolic traits. The gas chromatography–mass spectrometry technique and metabonomic analysis methods were used to characterize 35 Masson pine half-sib families from two provinces. A total of 116 metabolites were putatively identified in 35 families of Masson pine, among which the average content of organic acids was the highest, followed by saccharides and alcohols, and phosphoric acids. Comparative analysis of metabolite groups showed that organic acids, amines, and others were significantly different between the Masson pine families from Guangxi and Guizhou provinces. Six differential metabolites were found between the provinces from Guizhou and Guangxi, namely caffeic acid, L-ascorbic acid, gentiobiose, xylitol, d-pinitol, and β-sitosterol. The most significantly enriched pathways among differentially expressed metabolites between the two provinces were steroid biosynthesis, phenylpropanoid biosynthesis, glutathione metabolism, pentose and glucuronate interconversions. Overall, the results showed that Masson pine half-sib families from different geographical provinces have different metabolite profiles and their metabolites are affected by geographical provenance and growth environment adaptability. This study revealed that the breeding of Masson pine families from different provinces changed the metabolite profiles, providing a reference for the multipurpose breeding of Masson pine.
Collapse
|
10
|
Nassar A, Kodi T, Satarker S, Chowdari Gurram P, Upadhya D, SM F, Mudgal J, Nampoothiri M. Astrocytic MicroRNAs and Transcription Factors in Alzheimer's Disease and Therapeutic Interventions. Cells 2022; 11:cells11244111. [PMID: 36552875 PMCID: PMC9776935 DOI: 10.3390/cells11244111] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Astrocytes are important for maintaining cholesterol metabolism, glutamate uptake, and neurotransmission. Indeed, inflammatory processes and neurodegeneration contribute to the altered morphology, gene expression, and function of astrocytes. Astrocytes, in collaboration with numerous microRNAs, regulate brain cholesterol levels as well as glutamatergic and inflammatory signaling, all of which contribute to general brain homeostasis. Neural electrical activity, synaptic plasticity processes, learning, and memory are dependent on the astrocyte-neuron crosstalk. Here, we review the involvement of astrocytic microRNAs that potentially regulate cholesterol metabolism, glutamate uptake, and inflammation in Alzheimer's disease (AD). The interaction between astrocytic microRNAs and long non-coding RNA and transcription factors specific to astrocytes also contributes to the pathogenesis of AD. Thus, astrocytic microRNAs arise as a promising target, as AD conditions are a worldwide public health problem. This review examines novel therapeutic strategies to target astrocyte dysfunction in AD, such as lipid nanodiscs, engineered G protein-coupled receptors, extracellular vesicles, and nanoparticles.
Collapse
Affiliation(s)
- Ajmal Nassar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Triveni Kodi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Prasada Chowdari Gurram
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Fayaz SM
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
- Correspondence:
| |
Collapse
|
11
|
Gurram PC, Satarker S, Nassar A, Mudgal J, Nampoothiri M. Virtual structure-based docking and molecular dynamics of FDA-approved drugs for the identification of potential IKKB inhibitors possessing dopaminergic activity in Alzheimer’s disease. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02598-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractIn Alzheimer's disease (AD), neuroinflammation is detrimental in causing neurodegeneration. In the central nervous system, inhibitor of nuclear factor kappa B kinase subunit beta (IKK2/IKKβ/IKKB/IKBKB) signaling is linked to neuroinflammation-mediated learning and memory deficits through canonical pathway, while dopamine agonists have been known to reverse such effects. Our in silico analysis predicted if dopaminergic agonists could have IKKB inhibitory actions, to ameliorate neuroinflammation-associated learning and memory deficits. Here, the FDA-approved Zinc 15 database was screened with IKKB (PDB ID 4KIK). Potential molecules with IKKB inhibition were identified through docking, which also possessed dopaminergic activity. Molecular mechanics—generalized Born and surface area (MMGBSA), induced fit docking (IFD) and molecular dynamic (MD) studies of 100 ns simulation time were done. Apomorphine and rotigotine showed greater non-bonding and bonding interactions with amino acids of IKKB as compared to Aripiprazole in docking studies. The IFD studies predicted improved interactions with IKKB. MMGBSA scores indicated that the complex binding free energies were favorable, and MD studies showed an acceptable root mean square deviation between protein and ligands. The protein–ligand interactions showed hydrogen bonds, water and salt bridges necessary for IKKB inhibition, as well as solvent system stability. On the protein–ligand contact map, the varying color band intensities represented the ligand’s ability to bind with amino acids. Dopamine agonists apomorphine, rotigotine, and aripiprazole were predicted to bind and inhibit IKKB in in silico system.
Graphical Abstract
Collapse
|
12
|
Immunomodulatory, Anticancer, and Antimicrobial Effects of Rice Bran Grown in Iraq: An In Vitro and In Vivo Study. Pharmaceuticals (Basel) 2022; 15:ph15121502. [PMID: 36558953 PMCID: PMC9782048 DOI: 10.3390/ph15121502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Emerging evidence supports the role of rice bran in cancer prevention. Studies were conducted on multiple rice cultivars. However, limited studies were conducted on rice cultivars in the Middle East. In this study, rice bran growing in Iraq (O. sativa ssp. Japonica, cultivars: Amber Barka) was evaluated for its effect on preventing cancer and stimulating the immune system. Rice bran was collected from local mills in Al-Najaf (south of Iraq). Several solvent extracts (ethanol, methanol, n-hexane, and water) were prepared by maceration. MTT assay was used to measure the antiproliferative effects of extracts against a panel of cancer cell lines. The ability of each extract to induce apoptosis and inhibit angiogenesis was measured using standard ELISA kits. The effect of extracts on the immune system was evaluated using a lymphocyte proliferation assay, a pinocytic activity assay, a phagocytic activity assay, and a Th1/Th2 cytokine detection kit. A microbroth dilution method was used to detect the antimicrobial activity of each extract against different microbial strains. LC-MS analysis was used to detect the phytochemical composition of extracts, while DPPH assay was used to determine the antioxidant activity. For the in vivo study, rice bran was added to mouse fodder at 10% and 20%. Mice were treated for two weeks using mouse fodder supplemented with rice bran. In the third week of the experiment, EMT6/P breast cancer cells (1 × 10⁶ cells/mL) were injected subcutaneously into the abdominal area of each mouse. The dimensions of the grown tumors were measured after 14 days of tumor inoculation. A microbroth dilution method was used to evaluate the antimicrobial activity of rice bran extracts against three bacterial strains. The highest antiproliferative activity was observed in ethanol and n-hexane extracts. Ethanol and methanol extract showed the highest activity to induce apoptosis and inhibit angiogenesis. Both extracts were also effective to enhance immunity by activating lymphocytes and phagocytes proliferation with modulations of cytokine levels. The incorporation of rice bran in mice food caused a 20% regression in tumor development and growth compared with the negative control. All extracts exhibited limited antimicrobial activity against tested microorganisms. Methanol extract showed antioxidant activity with an IC50 value of 114 µg/mL. LC-MS analysis revealed the presence of multiple phytochemicals in rice bran including apiin, ferulic acid, and succinic acid. Rice bran is a rich source of active phytochemicals that may inhibit cancer and stimulate the immune system. Rice bran's biological activities could be due to the presence of multiple synergistically active phytochemicals. Further studies are needed to understand the exact mechanisms of action of rice bran.
Collapse
|
13
|
Comparable Benefits of Stingless Bee Honey and Caffeic Acid in Mitigating the Negative Effects of Metabolic Syndrome on the Brain. Antioxidants (Basel) 2022; 11:antiox11112154. [PMID: 36358526 PMCID: PMC9686980 DOI: 10.3390/antiox11112154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
There is mounting evidence that metabolic syndrome (MetS) contributes to the development of neurodegenerative disorders such as Alzheimer’s disease. Honey, which has been used for generations, is high in antioxidants and has been demonstrated to benefit the brain and mental health by reducing oxidative stress and boosting cognitive outcomes. Honey from the stingless bees of Heterotrigona itama has been found to have higher phenolic content compared to other types of honeys. The aim of this study is to investigate the effects of stingless bee honey (SBH) supplementation and to compare it with a pure form of antioxidant, caffeic acid (CA), on MetS parameters and inflammatory markers in the brains of MetS-induced rats. A total of 32 male Wistar rats were divided equally into groups of control, high-carbohydrate high-fructose (HCHF) diet (MetS), HCHF + SBH supplemented (1 g/kg) (SBH), and HCHF + CA supplemented (10 mg/kg) (CA) groups. The total duration for SBH and CA supplementation was eight weeks. The HCHF diet was found to promote hypertension, hyperglycemia, and hypertriglyceridemia, and to increase brain TNF-α levels. Supplementation with SBH and CA significantly reversed (p < 0.05) the hyperglycemic and hypertensive effects of the HCHF diet. Although both supplemented groups showed no significant changes to serum HDL or TG, SBH significantly reduced (p < 0.05) brain TNF-α levels and increased (p < 0.05) brain BDNF levels. Immunohistochemistry investigations of neurogenesis (EdU) and apoptosis (TUNEL) on the cornu Ammonis 1 (CA1) and dentate gyrus (DG) areas of the hippocampus showed no changes with SBH and CA supplementation compared to the control. These findings suggest that SBH and CA have the potential to mitigate HCHF-induced MetS effects and possess neuroprotective abilities.
Collapse
|
14
|
Wu SX, Li J, Zhou DD, Xiong RG, Huang SY, Saimaiti A, Shang A, Li HB. Possible Effects and Mechanisms of Dietary Natural Products and Nutrients on Depression and Anxiety: A Narrative Review. Antioxidants (Basel) 2022; 11:2132. [PMID: 36358502 PMCID: PMC9686692 DOI: 10.3390/antiox11112132] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
Depression and anxiety are severe public health problems and have attracted more and more attention from researchers of food science and nutrition. Dietary natural products and nutrients, such as fish, coffee, tea, n-3 PUFA, lycopene, and dietary fiber, could play a vital role in the prevention and management of these diseases. The potential mechanisms of action mainly include inhibiting inflammation, ameliorating oxidative stress, modulating the microbiota-gut-brain axis, suppressing hypothalamic-pituitary-adrenal axis hyperactivity, and regulating the levels of monoamine neurotransmitters. In this narrative review, we summarize the most recent advancements regarding the effects of dietary natural products and nutrients on depression and anxiety, and their underlying mechanisms are discussed. We hope that this paper can provide a better understanding of the anti-depressive and anxiolytic action of dietary natural products, and that it is also helpful for developing dietary natural products for functional food, dietary supplements, or auxiliary agents for the prevention and management of these diseases.
Collapse
Affiliation(s)
- Si-Xia Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiahui Li
- School of Science, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ruo-Gu Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ao Shang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
15
|
Kinra M, Ranadive N, Mudgal J, Zhang Y, Govindula A, Anoopkumar-Dukie S, Davey AK, Grant GD, Nampoothiri M, Arora D. Putative involvement of sirtuin modulators in LPS-induced sickness behaviour in mice. Metab Brain Dis 2022; 37:1969-1976. [PMID: 35554791 PMCID: PMC9283131 DOI: 10.1007/s11011-022-00992-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/20/2022] [Indexed: 12/02/2022]
Abstract
NAD+-dependent histone deacetylases (sirtuins 1-7) have been shown to be involved in various pathophysiological conditions including their involvement in cardiovascular, cancerous, neurodegenerative, immune dysregulation and inflammatory conditions. This study investigates the inflammomodulatory potential of resveratrol (RES), a sirtuin activator and sirtinol (SIR), a sirtuin inhibitor in lipopolysaccharide (LPS)-induced model of sickness behaviour in mice. Male Swiss albino mice were divided into five groups (n = 6) consisting of saline (SAL), LPS, RES, SIR, and fluoxetine (FLU) respectively, each group except LPS was prepared by intraperitoneally (i.p.) administration of SAL (10 mL/kg), RES (50 mg/kg), SIR (2 mg/kg) and FLU (10 mg/kg). Thirty minutes after the treatments, all the groups, except SAL were administered LPS (2 mg/kg, i.p.). The behavioural assays including, open field test, forced swim test, and tail suspension tests were conducted 1 h after LPS challenge. LPS administration significantly reduced the locomotor activity along with inducing a state of high immobility and that was prevented by pretreatment with RES and SIR. Further, various proinflammatory cytokines (TNF-α, IL-6, and IL-1β), and oxidative stress markers (MDA and GSH) were found to be significantly elevated in the brain homogenates after LPS treatment. SIR pretreatment abrogated the LPS-induced neuroinflammatory and oxidative stress changes, whereas RES was only effective in reducing the oxidative stress and TNF-α levels. The results of this study speculate that the role of SIRT modulators in neuroinflammatory conditions could vary with their dose, regimen and chemical properties. Further studies with detailed molecular and pharmacokinetic profiling will be needed to explore their therapeutic potentials.
Collapse
Affiliation(s)
- Manas Kinra
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Niraja Ranadive
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Yuqing Zhang
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast campus, Gold Coast, Queensland, 4222, Australia
| | - Anusha Govindula
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Shailendra Anoopkumar-Dukie
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast campus, Gold Coast, Queensland, 4222, Australia
| | - Andrew K Davey
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast campus, Gold Coast, Queensland, 4222, Australia
| | - Gary D Grant
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast campus, Gold Coast, Queensland, 4222, Australia
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Devinder Arora
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India.
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast campus, Gold Coast, Queensland, 4222, Australia.
| |
Collapse
|
16
|
Park SK, Lee HL, Kang JY, Kim JM, Heo HJ. Peanut (Arachis hypogaea) sprout prevents high-fat diet-induced cognitive impairment by improving mitochondrial function. Sci Rep 2022; 12:6213. [PMID: 35418581 PMCID: PMC9008020 DOI: 10.1038/s41598-022-10520-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/06/2022] [Indexed: 11/09/2022] Open
Abstract
This study was performed to evaluate the improvement effect of the ethyl acetate fraction from peanut (Arachis hypogaea) sprout (EFPS) on high-fat diet (HFD)-induced cognitive deficits in C57BL/6 mice. Mice were randomly divided four groups (n = 13) as control (normal chow), HFD, EFPS 20 (20 mg/kg of body weight; intragastric administration) and EFPS 50 (50 mg/kg of body weight; intragastric administration) groups. HFD was provide for 15 weeks excepting control group. EFPS ameliorated cognitive dysfunction in Y-maze, passive avoidance test and Morris water maze test. EFPS significantly improved glucose tolerance and serum lipid profile, and reduced body weight. EFPS ameliorated oxidative stress by regulating MDA levels and SOD activity in liver and brain tissues. In addition, EFPS restored brain mitochondrial dysfunction related to energy metabolism. Moreover, the bioactive compounds of EFPS were identified as di-caffeic acid, caffeic acid, dihydrokaempferol-hexoside, di-p-coumaroyl tartaric acid isomer and group B soyasaponins using ultra-performance liquid chromatography-quadrupole-time-of-flight (UPLC-Q-TOF) mass spectrometry. These results show that EFPS can improve cognitive functions in HFD-induced diabetic mice.
Collapse
Affiliation(s)
- Seon Kyeong Park
- Division of Applied Life Science, Institute of Agriculture and Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea
- Korea Food Research Institute, Wanju-gun, 55365, Republic of Korea
| | - Hyo Lim Lee
- Division of Applied Life Science, Institute of Agriculture and Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jin Yong Kang
- Division of Applied Life Science, Institute of Agriculture and Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea
- Advanced Process Technology and Fermentation Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Jong Min Kim
- Division of Applied Life Science, Institute of Agriculture and Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Ho Jin Heo
- Division of Applied Life Science, Institute of Agriculture and Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
17
|
Alam M, Ahmed S, Elasbali AM, Adnan M, Alam S, Hassan MI, Pasupuleti VR. Therapeutic Implications of Caffeic Acid in Cancer and Neurological Diseases. Front Oncol 2022; 12:860508. [PMID: 35359383 PMCID: PMC8960963 DOI: 10.3389/fonc.2022.860508] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/04/2022] [Indexed: 12/12/2022] Open
Abstract
Caffeic acid (CA) is found abundantly in fruits, vegetables, tea, coffee, oils, and more. CA and its derivatives have been used for many centuries due to their natural healing and medicinal properties. CA possesses various biological and pharmacological activities, including antioxidant, anti-inflammatory, anticancer, and neuroprotective effects. The potential therapeutic effects of CA are mediated via repression and inhibition of transcription and growth factors. CA possesses potential anticancer and neuroprotective effects in human cell cultures and animal models. However, the biomolecular interactions and pathways of CA have been described highlighting the target binding proteins and signaling molecules. The current review focuses on CA's chemical, physical, and pharmacological properties, including antioxidant, anti-inflammatory, anticancer, and neuroprotective effects. We further described CA's characteristics and therapeutic potential and its future directions.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Sarfraz Ahmed
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakakah, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Shoaib Alam
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine & Health Sciences, University Malaysia Sabah, Kota Kinabalu, Malaysia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru, Indonesia
- Centre for International Collaboration and Research, Reva University, Rukmini Knowledge Park, Kattigenahalli, Bangalore, India
| |
Collapse
|
18
|
Nouri-Majd S, Salari-Moghaddam A, Hassanzadeh Keshteli A, Afshar H, Esmaillzadeh A, Adibi P. Coffee and caffeine intake in relation to symptoms of psychological disorders among adults. Public Health Nutr 2022; 25:1-28. [PMID: 35094730 PMCID: PMC9991700 DOI: 10.1017/s1368980022000271] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 10/26/2021] [Accepted: 01/20/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Given that there is an inconsistency in the findings related to the relationship between coffee and caffeine consumption and symptoms of psychological disorders, we performed a cross-sectional analysis to examine the association between coffee and caffeine intake and symptoms of psychological disorders among adults. DESIGN In this cross-sectional study, 3362 participants were included. We assessed the coffee and caffeine intakes using a self-completed food frequency questionnaire (FFQ). Symptoms of depression, anxiety, and psychological distress were assessed using HADS and GHQ screening tools. RESULTS The mean age of participants in this study was 36.2±7.8 years. After controlling for potential confounders, individuals who consumed coffee weekly or more had a significantly lower odds of symptoms of depression (OR: 0.67; 95% CI: 0.46-0.96) and symptoms of anxiety (OR: 0.57; 95% CI: 0.34-0.95) compared with those who did not consume coffee. However, no significant association was found between coffee intake and symptoms of psychological distress (OR: 0.98; 95%CI: 0.68-1.42). No significant relationship was found between caffeine intake and odds of symptoms of depression (OR: 0.94; 95% CI: 0.75-1.16), symptoms of anxiety (OR: 0.90; 95% CI: 0.67-1.20), and symptoms of psychological distress (OR: 1.13; 95% CI: 0.89-1.42). CONCLUSION Compared with lack of coffee intake, weekly or more coffee consumption might be correlated with symptoms of depression and anxiety.
Collapse
Affiliation(s)
- Saeedeh Nouri-Majd
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran14155-6117, Iran
| | - Asma Salari-Moghaddam
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran14155-6117, Iran
| | - Ammar Hassanzadeh Keshteli
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Integrative Functional Gastroenterology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Afshar
- Department of Psychiatry, Psychosomatic Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Esmaillzadeh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran14155-6117, Iran
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular – Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Peyman Adibi
- Integrative Functional Gastroenterology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
19
|
Caffeic acid, a dietary polyphenol, as a promising candidate for combination therapy. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01947-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractIncreased effectiveness and decreasing toxicity are prime objectives in drug research. Overwhelming evidence suggests the use of appropriate combination therapy for the better efficacy of drugs owing to their synergistic profile. Dietary active constituents play a major role in health outcomes. Therefore, it is possible to increase the effectiveness of the drug by combining contemporary medication with active natural/semi-synthetic constituents. One such dietary constituent, caffeic acid (CA), is a by-product of the shikimate pathway in plants and is a polyphenol of hydroxycinnamic acid class. Extensive research on CA has proposed its efficacy against inflammatory, neurodegenerative, oncologic, and metabolic disorders. The synergistic/additive effects of CA in combination with drugs like caffeine, metformin, pioglitazone, and quercetin have been reported in several experimental models and thus the present review is an attempt to consolidate outcomes of this research. Multi-target-based mechanistic studies will facilitate the development of effective combination regimens of CA.
Collapse
|
20
|
Basu Mallik S, Mudgal J, Hall S, Kinra M, Grant GD, Nampoothiri M, Anoopkumar-Dukie S, Arora D. Remedial effects of caffeine against depressive-like behaviour in mice by modulation of neuroinflammation and BDNF. Nutr Neurosci 2021; 25:1836-1844. [PMID: 33814004 DOI: 10.1080/1028415x.2021.1906393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective: Caffeine (CAF) is one of the most commonly consumed nutritional stimulant in beverages. Interestingly, CAF produces varied effects in a dose-dependent manner, and that makes it one of the most controversial nutritional ingredients. Various studies have linked CAF consumption and reduced risk of depressive disorders. The aim of this study was to investigate the effect of CAF on lipopolysaccharide (LPS)-induced neuroinflammation and depressive-like behaviour.Methods: C57BL/6J male mice were divided into four groups consisting of saline (SAL), LPS, CAF and Imipramine (IMI). Animals were pretreated orally with CAF (10 mg/kg) and IMI (10 mg/kg) for 14 days once daily and all groups except SAL were challenged with LPS (0.83 mg/kg) intraperitoneally on day 14.Results: LPS produced a biphasic behavioural response with a significantly high immobility time and weight loss after 24 h. The brain cytokines (TNF-α, IL-6, IL-1β, and IFN-γ) levels were remarkably high, along with increased lipid peroxidation and reduced Brain Derived Neurotrophic Factor (BDNF). These biochemical and behavioural changes were significantly alleviated by CAF and IMI chronic treatment.Conclusion: The results of this study implicate that mild-moderate consumption of CAF could impart anti-inflammatory properties under neuroinflammatory conditions by modulating the cytokine and neurotrophic mechanisms.
Collapse
Affiliation(s)
- Sanchari Basu Mallik
- School of Pharmacy and Pharmacology, MHIQ, QUM Network, Griffith University, Gold Coast, Australia.,Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Susan Hall
- School of Pharmacy and Pharmacology, MHIQ, QUM Network, Griffith University, Gold Coast, Australia
| | - Manas Kinra
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Gary D Grant
- School of Pharmacy and Pharmacology, MHIQ, QUM Network, Griffith University, Gold Coast, Australia
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | | | - Devinder Arora
- School of Pharmacy and Pharmacology, MHIQ, QUM Network, Griffith University, Gold Coast, Australia.,Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
21
|
Gromer D, Kiser DP, Pauli P. Thigmotaxis in a virtual human open field test. Sci Rep 2021; 11:6670. [PMID: 33758204 PMCID: PMC7988123 DOI: 10.1038/s41598-021-85678-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/04/2021] [Indexed: 11/16/2022] Open
Abstract
Animal models are used to study neurobiological mechanisms in mental disorders. Although there has been significant progress in the understanding of neurobiological underpinnings of threat-related behaviors and anxiety, little progress was made with regard to new or improved treatments for mental disorders. A possible reason for this lack of success is the unknown predictive and cross-species translational validity of animal models used in preclinical studies. Re-translational approaches, therefore, seek to establish cross-species translational validity by identifying behavioral operations shared across species. To this end, we implemented a human open field test in virtual reality and measured behavioral indices derived from animal studies in three experiments (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\textit{N}=31$$\end{document}N=31, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\textit{N}=30$$\end{document}N=30, and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\textit{N}=80$$\end{document}N=80). In addition, we investigated the associations between anxious traits and such behaviors. Results indicated a strong similarity in behavior across species, i.e., participants in our study—like rodents in animal studies—preferred to stay in the outer region of the open field, as indexed by multiple behavioral parameters. However, correlational analyses did not clearly indicate that these behaviors were a function of anxious traits of participants. We conclude that the realized virtual open field test is able to elicit thigmotaxis and thus demonstrates cross-species validity of this aspect of the test. Modulatory effects of anxiety on human open field behavior should be examined further by incorporating possible threats in the virtual scenario and/or by examining participants with higher anxiety levels or anxiety disorder patients.
Collapse
Affiliation(s)
- Daniel Gromer
- Department of Psychology (Biological Psychology, Clinical Psychology, and Psychotherapy), University of Würzburg, Würzburg, Germany.
| | - Dominik P Kiser
- Department of Psychology (Biological Psychology, Clinical Psychology, and Psychotherapy), University of Würzburg, Würzburg, Germany
| | - Paul Pauli
- Department of Psychology (Biological Psychology, Clinical Psychology, and Psychotherapy), University of Würzburg, Würzburg, Germany.,Center of Mental Health, Medical Faculty, University of Würzburg, Würzburg, Germany
| |
Collapse
|
22
|
Es-safi I, Mechchate H, Amaghnouje A, Jawhari FZ, Al Kamaly OM, Imtara H, Grafov A, Bari A, Bousta D. An Insight into the Anxiolytic and Antidepressant-Like Proprieties of Carum carvi L. and Their Association with Its Antioxidant Activity. Life (Basel) 2021; 11:life11030207. [PMID: 33807960 PMCID: PMC8000502 DOI: 10.3390/life11030207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 01/15/2023] Open
Abstract
Depression and anxiety are widespread illnesses whose consequences on patients’ social and professional lives are becoming ever more dangerous and severe. The study’s objective is to explore the antidepressant-like and anxiolytic activity of the polyphenolic extract of Carum carvi L. as well as its antioxidant power as they were recently associated. The predictive antidepressant activity was evaluated using the forced swimming and tail suspension test in mice, a preclinical behavioral model widely used to determine the efficacy of antidepressant drugs. As for anxiolytic-like activity, two models were used, namely the light/dark chamber test to measure the animal’s degree of anxiety and the open field test to evaluate both anxiolytic and locomotor activity. The tests results indicate a remarkable antidepressant and anxiolytic-like effect after oral administration of the polyphenolic fraction of C. carvi and interesting antioxidant property. In the extract it has been confirmed the presence of 6 molecules belonging to polyphenols, identified with HPLC analysis. This study confirms and encourages the traditional use of the extract and appeals to further studies to understand its action mechanism.
Collapse
Affiliation(s)
- Imane Es-safi
- Laboratory of Biotechnology, Environment, Agrifood, and Health, University of Sidi Mohamed Ben Abdellah, FSDM-Fez 30050, Morocco; (I.E.-s.); (A.A.); (F.Z.J.); (A.B.); (D.B.)
| | - Hamza Mechchate
- Laboratory of Biotechnology, Environment, Agrifood, and Health, University of Sidi Mohamed Ben Abdellah, FSDM-Fez 30050, Morocco; (I.E.-s.); (A.A.); (F.Z.J.); (A.B.); (D.B.)
- Correspondence: ; Tel.: +212-602-083-601
| | - Amal Amaghnouje
- Laboratory of Biotechnology, Environment, Agrifood, and Health, University of Sidi Mohamed Ben Abdellah, FSDM-Fez 30050, Morocco; (I.E.-s.); (A.A.); (F.Z.J.); (A.B.); (D.B.)
| | - Fatima Zahra Jawhari
- Laboratory of Biotechnology, Environment, Agrifood, and Health, University of Sidi Mohamed Ben Abdellah, FSDM-Fez 30050, Morocco; (I.E.-s.); (A.A.); (F.Z.J.); (A.B.); (D.B.)
| | - Omkulthom Mohamed Al Kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia;
| | - Hamada Imtara
- Faculty of Arts and Sciences, Arab American University Palestine, Jenin 240, Palestine;
| | - Andriy Grafov
- Department of Chemistry, University of Helsinki, 00100 Helsinki, Finland;
| | - Amina Bari
- Laboratory of Biotechnology, Environment, Agrifood, and Health, University of Sidi Mohamed Ben Abdellah, FSDM-Fez 30050, Morocco; (I.E.-s.); (A.A.); (F.Z.J.); (A.B.); (D.B.)
| | - Dalila Bousta
- Laboratory of Biotechnology, Environment, Agrifood, and Health, University of Sidi Mohamed Ben Abdellah, FSDM-Fez 30050, Morocco; (I.E.-s.); (A.A.); (F.Z.J.); (A.B.); (D.B.)
| |
Collapse
|
23
|
Deguchi Y, Ito M. Caffeic acid and rosmarinic acid contents in genus Perilla. J Nat Med 2020; 74:834-839. [PMID: 32488608 DOI: 10.1007/s11418-020-01418-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 05/24/2020] [Indexed: 10/24/2022]
Abstract
Caffeic acid and rosmarinic acid are common components of Labiatae plants, such as shiso (Perilla frutescens Britton var. crispa W. Deane) and Boraginaceae plants. These compounds have various pharmacological activities, such as anti-inflammatory, anti-anxiety, and anti-depressive activities, but the content of these compounds in perilla has not been studied in detail. This study investigated the caffeic acid and rosmarinic acid contents of several pure strains in genus Perilla. Perilla plants cultivated under a certain set of conditions had different caffeic acid and rosmarinic acid contents. For example, their contents were higher in P. setoyensis ("Setoegoma"), suggesting that the genetic background of the species greatly affects caffeic acid and rosmarinic acid contents. Several strains of P. frutescens var. crispa were cultivated at the Experimental Station for Medicinal Plants, Graduate School of Pharmaceutical Sciences, Kyoto University and differences in their caffeic acid and rosmarinic acid contents were also observed. The total content of anthocyanins, which are closely related to the leaf color of perilla, was measured as cyanidin-3-glucoside equivalents, and a weak positive correlation was observed between the content of rosmarinic acid, and the total content of total anthocyanins. Furthermore, the results suggest that luminosity and photon flux density of light during cultivation can affect rosmarinic acid content.
Collapse
Affiliation(s)
- Yuya Deguchi
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Michiho Ito
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
24
|
Caffeine effects on systemic metabolism, oxidative-inflammatory pathways, and exercise performance. Nutr Res 2020; 80:1-17. [DOI: 10.1016/j.nutres.2020.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 04/11/2020] [Accepted: 05/09/2020] [Indexed: 01/06/2023]
|
25
|
Oboh G, Ojueromi OO, Ademosun AO, Omayone TP, Oyagbemi AA, Ajibade TO, Adedapo AA. Effects of caffeine and caffeic acid on selected biochemical parameters in L-NAME-induced hypertensive rats. J Food Biochem 2020; 45:e13384. [PMID: 32725646 DOI: 10.1111/jfbc.13384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022]
Abstract
Biologically active compounds such as caffeine and caffeic acid can be obtained in plants especially cocoa and coffee. Hence, the combinatory effect of caffeine and caffeic acid as well as their individual effect were assessed on the activities of arginase, angiotensin-1-converting enzyme (ACE) as well as nitric oxide (NOx), and malondialdehyde (MDA) level in the Nω-Nitro-L-arginine-methylester (L-NAME)-induced hypertensive rats. The individual and combinatory effect of caffeine and caffeic acid were investigated in L-NAME-induced rats. Animals were grouped into eleven containing six animals each. Hemodynamic parameter was determined by tail-cuff plethysmography. Furthermore, the result showed a notable rise in ACE and arginase activities of L-NAME-induced group compared with the control group. However, pretreatment with test compounds lowered ACE, arginase activities, and MDA content with rise in NOx. This study supports that caffeine and caffeic acid combinations demonstrated antihypertensive properties by lowering the systolic blood pressure in L-NAME-induced rats. PRATICAL APPLICATIONS: This duo bioactive compounds; caffeine (alkaloid) and caffeic acid (phenolic acid) are lavishly distributed in coffee. Their cardiopotective and cardiomodulatory roles have been investigated due to their biological activities. As far as we are aware, this could be foremost in-depth study on the antihypertensive and cardioprotective effect of the combinations of caffeine and caffeic acid targeting the key enzymes system relevant to hypertension. Decreased ACE and arginase activities as well as high nitric oxide (NOx) and low MDA level may be associated with its antihypertensive effect. This present study suggests that the combinations of this phenolics and alkaloid compound might proffer a therapeutic strategy in the management of hypertension.
Collapse
Affiliation(s)
- Ganiyu Oboh
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Opeyemi Oluwafemi Ojueromi
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Ayokunle Olubode Ademosun
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | | | - Ademola Adetokunbo Oyagbemi
- Department of veterinary physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temitayo Olabisi Ajibade
- Department of veterinary physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of veterinary physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|