1
|
Nechchadi H, Nadir Y, Benhssaine K, Alem C, Sellam K, Boulbaroud S, Berrougui H, Ramchoun M. Hypolipidemic activity of phytochemical combinations: A mechanistic review of preclinical and clinical studies. Food Chem 2024; 459:140264. [PMID: 39068825 DOI: 10.1016/j.foodchem.2024.140264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Hyperlipidemia, a condition characterized by elevated levels of lipids in the blood, poses a significant risk factor for various health disorders, notably cardiovascular diseases. Phytochemical compounds are promising alternatives to the current lipid-lowering drugs, which cause many undesirable effects. Based on in vivo and clinical studies, combining phytochemicals with other phytochemicals, prebiotics, and probiotics and their encapsulation in nanoparticles is more safe and effective for managing hyperlipidemia than monotherapy. To this end, the results obtained and the mechanisms of action of these combinations were examined in detail in this review.
Collapse
Affiliation(s)
- Habiba Nechchadi
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco.
| | - Youssef Nadir
- Laboratory of Biological Engineering, Faculty of Sciences and Techniques, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Khalid Benhssaine
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Chakib Alem
- Biochemistry of Natural Products Team, Faculty of Sciences and Techniques, Moulay Ismail University, 52000 Errachidia, Morocco
| | - Khalid Sellam
- Biology, Environment and Health Team, Faculty of sciences and Techniques, Moulay Ismail University, 52000 Errachidia, Morocco
| | - Samira Boulbaroud
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Hicham Berrougui
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Mhamed Ramchoun
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| |
Collapse
|
2
|
Abbas MO, Ahmed H, Hamid E, Padayachee D, Abdulbadia MT, Khalid S, Abuelhana A, Abdul Rasool BK. Pharmacists' Knowledge, Perception, and Prescribing Practice of Probiotics in the UAE: A Cross-Sectional Study. Antibiotics (Basel) 2024; 13:967. [PMID: 39452233 PMCID: PMC11505214 DOI: 10.3390/antibiotics13100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The human body is a complex and interconnected system where trillions of microorganisms, collectively known as the gut microbiota, coexist with these cells. Besides maintaining digestive health, this relationship also impacts well-being, including immune function, metabolism, and mental health. As frontline healthcare providers, pharmacists are pivotal in promoting the benefits of probiotics for immune support. This study explored pharmacists' knowledge, perception, and practice behavior in the UAE towards the implication of probiotic application beyond digestive health, such as cardiovascular and mental health impacts and their diverse dosage forms. METHOD An online self-administered survey was distributed among pharmacists in the UAE. Data were collected through personal visits to pharmacies, where pharmacists were approached and asked to complete the questionnaire. The sample size included 407 pharmacists, determined using the formula for proportions with a 95% confidence level and a 5% margin of error. Statistical analysis was performed using SPSS version 29. Descriptive statistics were used to summarize demographic characteristics and survey responses. The knowledge levels were categorized into poor, moderate, and good. Chi-square analysis was employed to investigate associations between demographic factors and knowledge levels, with a significance level set at p < 0.05, enhancing the robustness of the study's findings. RESULTS This study included 407 completed eligible responses. About 63.56% of participants were female, with 52.1% employed in pharmacy chains. While 91.2% of pharmacists recognized probiotics' role in immune support, only 30% were aware of their cardiovascular benefits. Moreover, chewing gum was the least known dosage form of probiotics, recognized by only 16.7% of respondents. Additionally, only 57% of the participants recognized liposomes as a dosage form. In practice, most pharmacists recommended storing probiotics at room temperature, accounting for 66.6%. The most prevalent misconception encountered in the pharmacy setting was the belief that probiotics are primarily intended for gastrointestinal tract problems, at 79.1% of the respondents. Regarding perception, the agreement was observed regarding the safety of probiotics for all ages. Perceived barriers included the high cost of probiotics, with the majority (86.5%) indicating this as a significant obstacle, while lack of demand was identified as the minor barrier by 64.6%. Additionally, an association was found at a significance level of p < 0.05 with knowledge, gender, educational level, type and location of pharmacy, and source of information. CONCLUSIONS The study highlights knowledge gaps in pharmacists' understanding of probiotic applications beyond digestive health, particularly cardiovascular health and depression. Targeted educational interventions are necessary to address these gaps. The findings underscore the importance of ongoing professional development for pharmacists, enhancing their role in patient education and the promotion of probiotics for overall health.
Collapse
Affiliation(s)
- Maram O. Abbas
- Institute of Public Health, College of Medicine & Health Sciences, UAE University, Al Ain 15551, United Arab Emirates;
- Pharmacy Practice Department, Dubai Pharmacy College for Girls, Dubai P.O. Box 19099, United Arab Emirates
| | - Hanan Ahmed
- Pharmaceutical Sciences Department, Dubai Pharmacy College for Girls, Dubai P.O. Box 19099, United Arab Emirates; (H.A.); (E.H.); (D.P.); (M.T.A.); (S.K.)
| | - Eisha Hamid
- Pharmaceutical Sciences Department, Dubai Pharmacy College for Girls, Dubai P.O. Box 19099, United Arab Emirates; (H.A.); (E.H.); (D.P.); (M.T.A.); (S.K.)
| | - Dyshania Padayachee
- Pharmaceutical Sciences Department, Dubai Pharmacy College for Girls, Dubai P.O. Box 19099, United Arab Emirates; (H.A.); (E.H.); (D.P.); (M.T.A.); (S.K.)
| | - Menah Talla Abdulbadia
- Pharmaceutical Sciences Department, Dubai Pharmacy College for Girls, Dubai P.O. Box 19099, United Arab Emirates; (H.A.); (E.H.); (D.P.); (M.T.A.); (S.K.)
| | - Sohila Khalid
- Pharmaceutical Sciences Department, Dubai Pharmacy College for Girls, Dubai P.O. Box 19099, United Arab Emirates; (H.A.); (E.H.); (D.P.); (M.T.A.); (S.K.)
| | - Ahmed Abuelhana
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, UK;
| | - Bazigha K. Abdul Rasool
- Pharmaceutical Sciences Department, Dubai Pharmacy College for Girls, Dubai P.O. Box 19099, United Arab Emirates; (H.A.); (E.H.); (D.P.); (M.T.A.); (S.K.)
| |
Collapse
|
3
|
Cuervo L, McAlpine PL, Olano C, Fernández J, Lombó F. Low-Molecular-Weight Compounds Produced by the Intestinal Microbiota and Cardiovascular Disease. Int J Mol Sci 2024; 25:10397. [PMID: 39408727 PMCID: PMC11477366 DOI: 10.3390/ijms251910397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiovascular disease is the main cause of mortality in industrialized countries, with over 500 million people affected worldwide. In this work, the roles of low-molecular-weight metabolites originating from the gut microbiome, such as short-chain fatty acids, hydrogen sulfide, trimethylamine, phenylacetic acid, secondary bile acids, indoles, different gases, neurotransmitters, vitamins, and complex lipids, are discussed in relation to their CVD-promoting or preventing activities. Molecules of mixed microbial and human hepatic origin, such as trimethylamine N-oxide and phenylacetylglutamine, are also presented. Finally, dietary agents with cardioprotective effects, such as probiotics, prebiotics, mono- and poly-unsaturated fatty acids, carotenoids, and polyphenols, are also discussed. A special emphasis is given to their gut microbiota-modulating properties.
Collapse
Affiliation(s)
- Lorena Cuervo
- Research Group BIOMIC (Biosynthesis of Antitumor Molecules), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (L.C.); (C.O.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| | - Patrick L. McAlpine
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carlos Olano
- Research Group BIOMIC (Biosynthesis of Antitumor Molecules), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (L.C.); (C.O.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| | - Javier Fernández
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Felipe Lombó
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
4
|
Naghipour A, Amini-Salehi E, Orang Gorabzarmakhi M, Shahdkar M, Fouladi B, Alipourfard I, Sanat ZM. Effects of gut microbial therapy on lipid profile in individuals with non-alcoholic fatty liver disease: an umbrella meta-analysis study. Syst Rev 2023; 12:144. [PMID: 37605283 PMCID: PMC10441764 DOI: 10.1186/s13643-023-02299-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 07/28/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD), the most common liver disease, is closely associated with metabolic conditions such as obesity and diabetes mellitus, which significantly impact human health outcomes. The impaired lipid profiles observed in NAFLD individuals can further contribute to cardiovascular events. Despite the high prevalence of NAFLD, there is currently no confirmed intervention approved for its treatment. This study aimed to summarize the results of meta-analysis studies of randomized control trials assessing the impact of gut microbial therapy (probiotics, synbiotics, and prebiotics) on the lipid profile of individuals with NAFLD. METHODS A systematic search was conducted on PubMed, Scopus, Web of Science, and Cochrane Library up to November 1, 2022. Meta-analyses surveying the impact of microbial therapy on lipid profile parameters (triglyceride (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), and total cholesterol (TC)) in the NAFLD population were included in our umbrella review. The final effect size (ES) was estimated, and sensitivity and subgroup analyses were performed to explore heterogeneity. RESULTS Fifteen studies were included in this umbrella review. Microbial therapy significantly reduced TG (ES - 0.31, 95% CI - 0.51, - 0.11, P < 0.01), TC (ES - 1.04, 95% CI - 1.46, - 0.61, P < 0.01), and LDL (ES - 0.77, 95% CI - 1.15, - 0.39, P < 0.01) in individuals with NAFLD. However, the effect on HDL was not statistically significant (ES - 0.06; 95% CI - 0.19, 0.07, P = 0.39). CONCLUSION Considering the absence of approved treatments for NAFLD and the promising role of microbial therapies in improving the three lipid profiles components in individuals with NAFLD, the use of these agents as alternative treatment options could be recommended. The findings underscore the potential of gut microbial therapy, including probiotics, synbiotics, and prebiotics, in managing NAFLD and its associated metabolic complications. TRIAL REGISTRATION PROSPERO ( CRD42022346998 ).
Collapse
Affiliation(s)
- Amirhossein Naghipour
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Amini-Salehi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | | | - Bahman Fouladi
- Pediatric Gastroenterology and Hepatoloy Research center, Zabol University of Medical Sciences, Zabol, Iran
- Department of Parasitology and Mycology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Marsaw, Poland
| | - Zahra Momayez Sanat
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Campaniello D, Bevilacqua A, Speranza B, Racioppo A, Sinigaglia M, Corbo MR. A narrative review on the use of probiotics in several diseases. Evidence and perspectives. Front Nutr 2023; 10:1209238. [PMID: 37497058 PMCID: PMC10368401 DOI: 10.3389/fnut.2023.1209238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Gut microbiota is a complex ecosystem, strictly linked to health and disease, as a balanced composition (referred as eubiosis) is necessary for several physiological functions, while an unbalanced composition (dysbiosis) is often associated to pathological conditions and/or diseases. An altered microbiota could be positively affected and partially restored through probiotic supplementation, among others. This review addresses the effects of probiotics in several conditions, used as case-studies (colorectal cancer, neuro-psychiatric diseases, intestinal diseases, obesity, diabetes, metabolic syndrome, immune system, and musculoskeletal system disorders) by pointing out the clinical outcomes, the mode of action, mainly related to the production of short chain fatty acids (SCFA), the impact of probiotic dose and mode of supplementation, as well as trying to highlight a hit of the most used genera.
Collapse
|
6
|
Salazar J, Morillo V, Suárez MK, Castro A, Ramírez P, Rojas M, Añez R, D’Marco L, Chacín-González M, Bermudez V. Role of Gut Microbiome in Atherosclerosis: Molecular and Therapeutic Aspects. Curr Cardiol Rev 2023; 19:e020223213408. [PMID: 36733248 PMCID: PMC10494273 DOI: 10.2174/1573403x19666230202164524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 02/04/2023] Open
Abstract
Atherosclerosis is one of the most relevant and prevalent cardiovascular diseases of our time. It is one of the pathological entities that increases the morbidity and mortality index in the adult population. Pathophysiological connections have been observed between atherosclerosis and the gut microbiome (GM), represented by a group of microorganisms that are present in the gut. These microorganisms are vital for metabolic homeostasis in humans. Recently, direct and indirect mechanisms through which GM can affect the development of atherosclerosis have been studied. This has led to research into the possible modulation of GM and metabolites as a new target in the prevention and treatment of atherosclerosis. The goal of this review is to analyze the physiopathological mechanisms linking GM and atherosclerosis that have been described so far. We also aim to summarize the recent studies that propose GM as a potential target in atherosclerosis management.
Collapse
Affiliation(s)
- Juan Salazar
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Valery Morillo
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - María K Suárez
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Ana Castro
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Paola Ramírez
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Milagros Rojas
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Roberto Añez
- Departamento de Endocrinología y Nutrición. Hospital General Universitario Gregorio Marañón, Madrid, España
| | - Luis D’Marco
- Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, 46115, Spain
| | | | - Valmore Bermudez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| |
Collapse
|
7
|
The Roles of Probiotics in the Gut Microbiota Composition and Metabolic Outcomes in Asymptomatic Post-Gestational Diabetes Women: A Randomized Controlled Trial. Nutrients 2022; 14:nu14183878. [PMID: 36145254 PMCID: PMC9504400 DOI: 10.3390/nu14183878] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 12/04/2022] Open
Abstract
Probiotics are widely used as an adjuvant therapy in various diseases. Nonetheless, it is uncertain how they affect the gut microbiota composition and metabolic and inflammatory outcomes in women who have recently experienced gestational diabetes mellitus (post-GDM). A randomized, double-blind, placebo-controlled clinical trial involving 132 asymptomatic post-GDM women was conducted to close this gap (Clinical Trial Registration: NCT05273073). The intervention (probiotics) group received a cocktail of six probiotic strains from Bifidobacterium and Lactobacillus for 12 weeks, while the placebo group received an identical sachet devoid of living microorganisms. Anthropometric measurements, biochemical analyses, and 16S rRNA gene sequencing results were evaluated pre- and post-intervention. After the 12-week intervention, the probiotics group’s fasting blood glucose level significantly decreased (mean difference −0.20 mmol/L; p = 0.0021). The HbA1c, total cholesterol, triglycerides, and high-sensitivity C-reactive protein levels were significantly different between the two groups (p < 0.05). Sequencing data also demonstrated a large rise in the Bifidobacterium adolescentis following probiotic supplementation. Our findings suggest that multi-strain probiotics are beneficial for improved metabolic and inflammatory outcomes in post-GDM women by modulating gut dysbiosis. This study emphasizes the necessity for a comprehensive strategy for postpartum treatment that includes probiotics to protect post-GDM women from developing glucose intolerance.
Collapse
|
8
|
Ghorbani Z, Kazemi A, Bartolomaeus TUP, Martami F, Noormohammadi M, Salari A, Löber U, Balou HA, Forslund SK, Mahdavi-Roshan M. The effect of probiotic and synbiotic supplementation on lipid parameters among patients with cardiometabolic risk factors: a systematic review and meta-analysis of clinical trials. Cardiovasc Res 2022; 119:933-956. [PMID: 35934838 DOI: 10.1093/cvr/cvac128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 11/12/2022] Open
Abstract
Although the available evidence emphasizes the beneficial effects of probiotics in normalizing various cardiometabolic markers, there is still substantial uncertainty in this regard. Thus, we set out to determine the effect sizes of probiotics on blood lipid parameters more coherently. A systematic literature search of the Medline (PubMed) and Scopus databases was conducted from inception to February 12, 2021, applying both MeSH terms and free text terms to find the relevant randomized controlled trials (RCTs). The meta-analysis was conducted based on a random-effect model to calculate the mean effect sizes demonstrated as weighted mean differences (WMD) and the 95% confidence intervals (95%CI). To explore the heterogeneity, the Cochrane Chi-squared test, and analysis of Galbraith plots were performed. Meta-analysis of data from 40 RCTs (n = 2795) indicated a significant decrease in serum/plasma triglyceride (WMD (95%CI) -12.26 (-17.11- -7.41) mg/dL; P-value <0.001; I2 (%)= 29.9; P heterogeneity = 0.034)), total cholesterol (with high heterogeneity) (WMD (95%CI) -8.43 (-11.90- -4.95) mg/dL; P-value <0.001; I2 (%) =56.8; P heterogeneity < 0.001), LDL-C (WMD (95%CI) -5.08 (-7.61, -2.56) mg/dL; P-value <0.001; I2 (%) =42.7; P heterogeneity =0.002), and HDL-C (with high heterogeneity) (WMD (95%CI) 1.14 (0.23, 2.05) mg/dL; P-value =0.014; I2 (%) = 59.8; P heterogeneity < 0.001) following receiving probiotic/synbiotic supplements. Collectively, the current preliminary evidence supports the effectiveness of probiotics/synbiotics in improving dyslipidemia and various lipid parameters more prominently among subjects with hyperlipidemia, diabetes, and metabolic syndrome. However, large and well conducted RCTs are required to provide further convincing support for these results.
Collapse
Affiliation(s)
- Zeinab Ghorbani
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Department of Clinical Nutrition, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Asma Kazemi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Theda U P Bartolomaeus
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Berlin, Germany
| | - Fahimeh Martami
- School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Morvarid Noormohammadi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Arsalan Salari
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ulrike Löber
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Berlin, Germany
| | - Heydar Ali Balou
- Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sofia K Forslund
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Berlin, Germany.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Marjan Mahdavi-Roshan
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Department of Clinical Nutrition, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
9
|
Li X, Wang Y, Zhang J, Lu G, You Y, Wang Y, Sun H, Nan B, Wang Y. The effect of Lactobacillus rhamnosus B10 on alcoholic liver injury and intestinal microbiota in alcohol-induced mice model. J Food Biochem 2022; 46:e14372. [PMID: 35929524 DOI: 10.1111/jfbc.14372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/22/2022] [Accepted: 07/22/2022] [Indexed: 11/28/2022]
Abstract
Lactobacillus rhamnosus B10 (L. rhamnosus B10) isolated from the baby feces was given to an alcohol mice model, aiming to investigate the effects of L. rhamnosus B10 on alcoholic liver injury by regulating intestinal microbiota. C57BL/6N mice were fed with liquid diet Lieber-DeCarli with or without 5% (v/v) ethanol for 8 weeks, and treated with L. rhamnosus B10 at the last 2 weeks. The results showed that L. rhamnosus B10 decreased the serum total cholesterol (1.48 mmol/L), triglycerides (0.97 mmol/L), alanine aminotransferase (26.4 U/L), aspartate aminotransferase (14.2 U/L), lipopolysaccharide (0.23 EU/mL), and tumor necrosis factor-α (138 pg/mL). In addition, L. rhamnosus B10 also reduced the liver triglycerides (1.02 mmol/g prot), alanine aminotransferase (17.8 mmol/g prot) and aspartate aminotransferase (12.5 mmol/g prot) in alcohol mice, thereby ameliorating alcohol-induced liver injury. The changes of intestinal microbiota composition on class, family and genus level in cecum were analyzed. The intestinal symbiotic abundance of Firmicutes was elevated while gram-negative bacteria Proteobacteria and Deferribacteres was decreased in alcohol mice treated with L. rhamnosus B10 for 2 weeks. In summary, this study provided evidence for the therapeutic effects of probiotics on alcoholic liver injury by regulating intestinal flora.
Collapse
Affiliation(s)
- Xia Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China.,National Processing Laboratory for Soybean Industry and Technology, Changchun, China
| | - Yushan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China
| | - Jun Zhang
- Changchun Shengjinnuo Biological Pharmaceutical Co., Ltd, Changchun, China
| | - Guijiao Lu
- Jilin Correction Health Co., Ltd, Changchun, China
| | - Ying You
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China.,National Processing Laboratory for Soybean Industry and Technology, Changchun, China
| | - Yu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China.,National Processing Laboratory for Soybean Industry and Technology, Changchun, China
| | - Haiyue Sun
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China.,National Processing Laboratory for Soybean Industry and Technology, Changchun, China
| | - Bo Nan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China.,National Processing Laboratory for Soybean Industry and Technology, Changchun, China
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China.,National Processing Laboratory for Soybean Industry and Technology, Changchun, China
| |
Collapse
|
10
|
Zarezadeh M, Musazadeh V, Faghfouri AH, Roshanravan N, Dehghan P. Probiotics act as a potent intervention in improving lipid profile: An umbrella systematic review and meta-analysis. Crit Rev Food Sci Nutr 2021; 63:145-158. [PMID: 34817299 DOI: 10.1080/10408398.2021.2004578] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Several meta-analysis studies have revealed improving effects of probiotics on lipid profile, while some studies have reported controversial findings. The purpose of present study was to evaluate the efficacy of probiotics on blood lipids. Relevant studies were searched in the international databases, including PubMed, Scopus, EMBASE, Web of Science, and Cochrane Central Library up to August 2021. The pooled results were calculated with the use of a random-effects model to assess the effects of probiotics on blood lipids. Overall, 38 meta-analyses were inclueded in the study. The results indicated that the probiotics supplementation was effective on reduction of total cholesterol (TC) (ES= -0.46 mg/dL; 95% CI: -0.61, -0.30, p < 0.001; I2= 83.8%, p < 0.001), triglycerides (TG) (ES= -0.13 mg/dl; 95% CI: -0.23, -0.04, p = 0.006; I2= 74.7%, p < 0.001), and low-density lipoprotein cholesterol (LDL-C)levels (ES= -0.29 mg/dL; 95% CI: -0.40, -0.19, p < 0.001; I2= 77.8%, p < 0.001). There was no significant effect of probiotics on high-density lipoprotein cholesterol (HDL-C) levels (ES= 0.02 mg/dl; 95% CI: -0.04, 0.08, p = 0.519; I2= 72.5%, p= <0.001). The results of present umbrella meta-analysis strongly support supplementation with probiotics as an influential intervention for improving lipid profile.
Collapse
Affiliation(s)
- Meysam Zarezadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vali Musazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Community Nutrition, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Hossein Faghfouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Community Nutrition, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Dehghan
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Patil MP, Ahire JJ, Patil UK, Bhushan B, Chaudhari BL. Effect of Lactobacillus helveticus CD6 on serum lipid profile and indicators of liver function in high-fat diet fed Swiss albino mice. 3 Biotech 2021; 11:266. [PMID: 34017672 DOI: 10.1007/s13205-021-02832-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/05/2021] [Indexed: 12/01/2022] Open
Abstract
In this study, we have investigated the effect of Lactobacillus helveticus CD6 on weight gain, lipid profile, liver function biomarkers (ALT: alanine aminotransferase; and AST: aspartate aminotransferase) and liver histopathology in high-fat diet fed Swiss albino mice. Twenty-four healthy male Swiss albino mice with an average body weight of 25.94 ± 0.33 g (35 days old) were acclimatized and equally distributed into four groups treated with different diets. The treatment groups were control (control diet), HFD (high-fat diet), HFD + LH (high-fat diet + L. helveticus CD6), and HFD + Gemf (high-fat diet + Gemfibrozil). After 12 weeks, L. helveticus CD6 treatment significantly reduced HFD-induced weight gain, the levels of serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), ALT and AST, and elevated serum high-density lipoprotein (HDL) levels. In addition, L. helveticus CD6 treatment maintained satiety and normal liver histology as compared to HFD group. Besides this, the results observed with L. helveticus CD6 treatment were comparable with lipid lowering drug gemfibrozil, except TG levels and body weight gain. In conclusion, it was found that L. helveticus CD6 could effectively reduce HFD-induced hyperlipidemia and weight gain and maintained normal liver histology. Moreover, the strain could be used to develop functional foods for individuals with dyslipidemia after appropriate human studies.
Collapse
Affiliation(s)
- Mahesh P Patil
- Department of Microbiology, R. C. Patel Arts, Commerce and Science College, Shirpur, Maharashtra 425405 India
| | - Jayesh J Ahire
- Centre for Research and Development, Unique Biotech Ltd., Plot No. 2, Phase II, MN Park, Hyderabad, Telangana 500078 India
| | - Ulhas K Patil
- Department of Microbiology, Government Institute of Science, Aurangabad, Maharashtra 431004 India
| | - Bharat Bhushan
- Department of Basic and Applied Sciences, National Institute of Food Technology, Entrepreneurship and Management, Sonipat, Haryana 131028 India
| | - Bhushan L Chaudhari
- Department of Microbiology, School of Life Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, Maharashtra 425001 India
| |
Collapse
|
12
|
Comparative effect of probiotic and paraprobiotic addition on physicochemical, chemometric and microstructural properties of yogurt. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Mannino G, Iovino P, Lauria A, Genova T, Asteggiano A, Notarbartolo M, Porcu A, Serio G, Chinigò G, Occhipinti A, Capuzzo A, Medana C, Munaron L, Gentile C. Bioactive Triterpenes of Protium heptaphyllum Gum Resin Extract Display Cholesterol-Lowering Potential. Int J Mol Sci 2021; 22:ijms22052664. [PMID: 33800828 PMCID: PMC7961947 DOI: 10.3390/ijms22052664] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/21/2022] Open
Abstract
Hypercholesterolemia is one of the major causes of cardiovascular disease, the risk of which is further increased if other forms of dyslipidemia occur. Current therapeutic strategies include changes in lifestyle coupled with drug administration. Statins represent the most common therapeutic approach, but they may be insufficient due to the onset of resistance mechanisms and side effects. Consequently, patients with mild hypercholesterolemia prefer the use of food supplements since these are perceived to be safer. Here, we investigate the phytochemical profile and cholesterol-lowering potential of Protium heptaphyllum gum resin extract (PHE). Chemical characterization via HPLC-APCI-HRMS2 and GC-FID/MS identified 13 compounds mainly belonging to ursane, oleanane, and tirucallane groups. Studies on human hepatocytes have revealed how PHE is able to reduce cholesterol production and regulate the expression of proteins involved in its metabolism. (HMGCR, PCSK9, LDLR, FXR, IDOL, and PPAR). Moreover, measuring the inhibitory activity of PHE against HMGR, moderate inhibition was recorded. Finally, molecular docking studies identified acidic tetra- and pentacyclic triterpenoids as the main compounds responsible for this action. In conclusion, our study demonstrates how PHE may be a useful alternative to contrast hypercholesterolemia, highlighting its potential as a sustainable multitarget natural extract for the nutraceutical industry that is rapidly gaining acceptance as a source of health-promoting compounds.
Collapse
Affiliation(s)
- Giuseppe Mannino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.M.); (A.L.); (M.N.); (G.S.)
| | - Piera Iovino
- Biosfered S.R.L., 10148 Turin, Italy; (P.I.); (A.A.)
| | - Antonino Lauria
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.M.); (A.L.); (M.N.); (G.S.)
| | - Tullio Genova
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (T.G.); (G.C.); (L.M.)
| | - Alberto Asteggiano
- Biosfered S.R.L., 10148 Turin, Italy; (P.I.); (A.A.)
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10125 Torino, Italy (C.M.)
| | - Monica Notarbartolo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.M.); (A.L.); (M.N.); (G.S.)
| | - Alessandra Porcu
- Abel Nutraceuticals S.R.L., 10148 Turin, Italy; (A.P.); (A.O.); (A.C.)
| | - Graziella Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.M.); (A.L.); (M.N.); (G.S.)
| | - Giorgia Chinigò
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (T.G.); (G.C.); (L.M.)
| | - Andrea Occhipinti
- Abel Nutraceuticals S.R.L., 10148 Turin, Italy; (A.P.); (A.O.); (A.C.)
| | - Andrea Capuzzo
- Abel Nutraceuticals S.R.L., 10148 Turin, Italy; (A.P.); (A.O.); (A.C.)
| | - Claudio Medana
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10125 Torino, Italy (C.M.)
| | - Luca Munaron
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (T.G.); (G.C.); (L.M.)
| | - Carla Gentile
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.M.); (A.L.); (M.N.); (G.S.)
- Correspondence: ; Tel.: +39-091-2388-6472
| |
Collapse
|
14
|
Oniszczuk A, Oniszczuk T, Gancarz M, Szymańska J. Role of Gut Microbiota, Probiotics and Prebiotics in the Cardiovascular Diseases. Molecules 2021; 26:molecules26041172. [PMID: 33671813 PMCID: PMC7926819 DOI: 10.3390/molecules26041172] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, there has been a growing interest in identifying and applying new, naturally occurring molecules that promote health. Probiotics are defined as “live microorganisms which, when administered in adequate amounts, confer health benefits on the host”. Quite a few fermented products serve as the source of probiotic strains, with many factors influencing the effectiveness of probiotics, including interactions of probiotic bacteria with the host’s microbiome. Prebiotics contain no microorganisms, only substances which stimulate their growth. Prebiotics can be obtained from various sources, including breast milk, soybeans, and raw oats, however, the most popular prebiotics are the oligosaccharides contained in plants. Recent research increasingly claims that probiotics and prebiotics alleviate many disorders related to the immune system, cancer metastasis, type 2 diabetes, and obesity. However, little is known about the role of these supplements as important dietary components in preventing or treating cardiovascular disease. Still, some reports and clinical studies were conducted, offering new ways of treatment. Therefore, the aim of this review is to discuss the roles of gut microbiota, probiotics, and prebiotics interventions in the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Correspondence: (A.O.); (T.O.)
| | - Tomasz Oniszczuk
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland
- Correspondence: (A.O.); (T.O.)
| | - Marek Gancarz
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland;
| | - Jolanta Szymańska
- Department of Integrated Paediatric Dentistry, Chair of Integrated Dentistry, Medical University of Lublin, Chodźki 6, 20-093 Lublin, Poland;
| |
Collapse
|
15
|
Strain-Specific Effects of Bifidobacterium longum on Hypercholesterolemic Rats and Potential Mechanisms. Int J Mol Sci 2021; 22:ijms22031305. [PMID: 33525627 PMCID: PMC7866116 DOI: 10.3390/ijms22031305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/14/2021] [Accepted: 01/26/2021] [Indexed: 01/03/2023] Open
Abstract
Hypercholesterolemia is an independent risk factor of cardiovascular disease, which is among the major causes of death worldwide. The aim of this study was to explore whether Bifidobacterium longum strains exerted intra-species differences in cholesterol-lowering effects in hypercholesterolemic rats and to investigate the potential mechanisms. SD rats underwent gavage with each B. longum strain (CCFM 1077, I3, J3 and B3) daily for 28 days. B. longum CCFM 1077 exerted the most potent cholesterol-lowering effect, followed by B. longum I3 and B3, whereas B. longum B3 had no effect in alleviating hypercholesterolemia. Divergent alleviation of different B. longum strains on hypercholesterolemia can be attributed to the differences in bile salt deconjugation ability and cholesterol assimilation ability in vitro. By 16S rRNA metagenomics analysis, the relative abundance of beneficial genus increased in the B. longum CCFM 1077 treatment group. The expression of key genes involved in cholesterol metabolism were also altered after the B. longum CCFM 1077 treatment. In conclusion, B. longum exhibits strain-specific effects in the alleviation of hypercholesterolemia, mainly due to differences in bacterial characteristics, bile salt deconjugation ability, cholesterol assimilation ability, expressions of key genes involved in cholesterol metabolism and alterations of gut microbiota.
Collapse
|
16
|
Effects of Lactobacillus acidophilus NCFM and Bifidobacterium lactis Bi-07 Supplementation on Nutritional and Metabolic Parameters in the Early Postoperative Period after Roux-en-Y Gastric Bypass: a Randomized, Double-Blind, Placebo-Controlled Trial. Obes Surg 2021; 31:2105-2114. [DOI: 10.1007/s11695-021-05222-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022]
|