1
|
Ji H, Zhu X, Qiu J, Zhang S, Li J, Liu L, Li X, Muneeb M. Milk fat globule membranes ameliorate diet-induced obesity in mice by modulating glucolipid metabolism, body inflammation, and oxidative stress. Food Funct 2024; 15:11903-11917. [PMID: 39584542 DOI: 10.1039/d4fo04072d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
This study aimed to explore the lipid-lowering effect and the mechanism of action of the milk fat globule membrane (MFGM) in obese mice. All findings indicated that MFGM supplementation impeded weight gain in mice with obesity. qPCR and western blot analysis further revealed that MFGM could reduce lipid deposition and improve lipid metabolism by downregulating the expression levels of Fas, Scd1, PPARγ, and Srebp-1c and increasing the expression levels of Mcad, Cpt-1c, and PPAR-α. MFGM also reduced glucose metabolism disorders by downregulating the expression levels of Pepck and G6pase and upregulating the expression levels of PK and GK. MFGM can reduce the expression levels of TNF-α, IL-6, and IL-1β, thus reducing inflammation in the body. In addition, MFGM also increased the expression of the Nrf2 gene, strengthening the antioxidant enzymes' (GSH, CAT, and SOD) vitality, which strengthened the body's defenses against oxidative stress. In summary, our experiment demonstrated that the MFGM has the potential to treat obesity by controlling the metabolism of fat and glucose, thereby reducing oxidative stress and inflammation, which provides a theoretical foundation for the development of products related to the treatment of obesity.
Collapse
Affiliation(s)
- Haowen Ji
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., 150030, Harbin, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., 150030, Harbin, China
| | - Xiaojun Zhu
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., 150030, Harbin, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., 150030, Harbin, China
| | - Jiaxin Qiu
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., 150030, Harbin, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., 150030, Harbin, China
| | - Shouwen Zhang
- Postdoctoral Research Station of Heilongjiang Yaolan Dairy Technology Stock Company Ltd, 150010, Harbin, China
| | - Jiajun Li
- Heilongjiang Yaolan Dairy Technology Stock Company Ltd, 150010, Harbin, China
| | - Lu Liu
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., 150030, Harbin, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., 150030, Harbin, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., 150030, Harbin, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., 150030, Harbin, China
| | - Muhammad Muneeb
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., 150030, Harbin, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist., 150030, Harbin, China
| |
Collapse
|
2
|
Sarıyer ET, Baş M, Çolak H, Özkan Yenal N, Unay Demirel Ö, Yüksel M. Comparison of Dietary Supplementation with Krill Oil, Fish Oil, and Astaxanthin on an Experimental Ethanol-Induced Gastric Ulcer Model: A Biochemical and Histological Study. Nutrients 2024; 16:3426. [PMID: 39458422 PMCID: PMC11510526 DOI: 10.3390/nu16203426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Despite advances in ulcer treatment research, the search for new, safe, and effective strategies for preventing and treating ulcer diseases persists. METHODS In this study, the protective effects of dietary supplementation with krill oil (KO), fish oil (FO), and astaxanthin (ASX) on an ethanol-induced gastric ulcer model were compared during biochemical and histological observations. Sprague-Dawley (n = 64) rats randomly divided into four groups-normal control (vehicle), KO, FO, and ASX groups-received the supplements via the orogastric route at a rate of 2.5% (v/w) of their daily feed consumption for 4 weeks. Then, ulcer induction was performed with ethanol. RESULTS The ulcer group showed increased levels of malondialdehyde (MDA), chemiluminescence (CL), and myeloperoxidase (MPO) activity and decreased levels of glutathione in the gastric tissues. While KO, FO, and ASX supplementation decreased chemiluminescence levels in the ulcer group, only ASX supplementation decreased MDA levels and MPO activity. CONCLUSIONS In conclusion, supplementation with KO or FO has a similar protective effect against ethanol-induced ulcer damage, as it inhibits ROS formation and reduces lipid peroxidation. However, ASX supplementation has a higher protective effect than KO or FO supplementations against experimental ethanol-induced gastric lesions in rats, as it inhibits ROS formation and reduces neutrophil infiltration and lipid peroxidation.
Collapse
Affiliation(s)
- Esra Tansu Sarıyer
- Department of Nutrition and Dietetics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
- Department of Nutrition and Dietetics, Faculty of Health Science, University of Health Sciences, 34668 Istanbul, Turkey
| | - Murat Baş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey;
| | - Hatice Çolak
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Üsküdar University, 34662 Istanbul, Turkey;
| | - Naziye Özkan Yenal
- Department of Pathology Laboratory Techniques, Vocational School of Health-Related Services, Marmara University, 34865 Istanbul, Turkey;
| | - Özlem Unay Demirel
- Department of Medical Biochemistry, Bahçeşehir University Göztepe Medical Park Hospital Central Laboratory, Faculty of Medicine, Bahçeşehir University, 34353 Istanbul, Turkey;
| | - Meral Yüksel
- Department of Medical Laboratory Techniques, Vocational School of Health-Related Services, Marmara University, 34865 Istanbul, Turkey;
| |
Collapse
|
3
|
Qiu W, Wang Z, Liu Q, Du Q, Zeng X, Wu Z, Pan D, Zhang X, Tu M. Structure and regulatory mechanisms of food-derived peptides in inflammatory bowel disease: A review. Food Sci Nutr 2024; 12:6055-6069. [PMID: 39554349 PMCID: PMC11561845 DOI: 10.1002/fsn3.4228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 11/19/2024] Open
Abstract
The number of patients with inflammatory bowel disease (IBD) is increasing worldwide. Since IBD is a chronic disease that seriously affects patients' life quality, preventing and alleviating IBD with natural and less side effect substances has become a research hotspot. Food-derived bioactive peptides have been an attractive research focus due to their high efficiency and low toxicity. This paper comprehensively summarizes food-derived peptides with intestinal health effects, focusing on peptide sequences with IBD-regulatory effects and emphasizing the effects of their structure and physicochemical properties such as peptide length, amino acid composition, and net charge on their function. We also analyzed its regulatory mechanisms, mainly in 5 aspects: modulating the intestinal microbiota, decreasing intestinal epithelial permeability, increasing antioxidant ability, regulating the expression of inflammatory cytokines, and targeting signaling pathways. This review will help establish novel, efficient screening methods for IBD-regulatory peptides and contribute to further research and discovery of them.
Collapse
Affiliation(s)
- Wenpei Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsNingbo UniversityNingboZhejiangChina
- Zhejiang‐Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and EngineeringNingbo UniversityNingboChina
| | - Zhicheng Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsNingbo UniversityNingboZhejiangChina
- Zhejiang‐Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and EngineeringNingbo UniversityNingboChina
| | - Qirui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsNingbo UniversityNingboZhejiangChina
- Zhejiang‐Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and EngineeringNingbo UniversityNingboChina
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsNingbo UniversityNingboZhejiangChina
- Zhejiang‐Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and EngineeringNingbo UniversityNingboChina
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsNingbo UniversityNingboZhejiangChina
- Zhejiang‐Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and EngineeringNingbo UniversityNingboChina
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsNingbo UniversityNingboZhejiangChina
- Zhejiang‐Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and EngineeringNingbo UniversityNingboChina
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsNingbo UniversityNingboZhejiangChina
- Zhejiang‐Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and EngineeringNingbo UniversityNingboChina
| | | | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsNingbo UniversityNingboZhejiangChina
- Zhejiang‐Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and EngineeringNingbo UniversityNingboChina
| |
Collapse
|
4
|
Bouhend A, Keddari S, Yahla I, Sadouki O, Bououdina M. Therapeutic Benefits of Tuna Oil by In Vitro and In Vivo Studies Using a Rat Model of Acetic Acid-Induced Ulcerative Colitis. Appl Biochem Biotechnol 2024; 196:3817-3843. [PMID: 37787891 DOI: 10.1007/s12010-023-04736-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/04/2023]
Abstract
Ulcerative colitis (UC), an inflammation of the colon lining, represents the main form of inflammatory bowel disease IBD. Nutritional therapy is extremely important in the management of ulcerative colitis. Fish oil contains long-chain omega-3 polyunsaturated fatty acids, which have beneficial effects on health, including anti-inflammatory effects. This study aims to investigate the benefits of bluefin tuna oil extracted by the Soxhlet method in vitro by determining the anti-radical and anti-inflammatory activities and in vivo by evaluating the preventive and curative effects. The experiments were carried out using two doses of oil (100 and 260 mg/kg) and glutamine (400 and 1000 mg/kg) on the acetic acid-induced UC model. UC has been induced in Wistar rats by intrarectal administration of a single dose of 1 mL acetic acid (5% v/v in distilled water). The obtained results indicate that tuna oil and glutamine have a significant anti-free radical effect. Tuna oil has a marked anti-inflammatory power based on membrane stabilization and inhibiting protein denaturation. The reduction of various UC parameters, such as weight loss, disease activity score DAS, and colonic ulceration in rats pre-treated with tuna oil and glutamine, demonstrate that these treatments have a significant effect on UC. Total glutathione GSH, superoxide dismutase SOD, and catalase activities are significantly restored in the tuna oil and glutamine groups, while lipid peroxidation has been markedly reduced.
Collapse
Affiliation(s)
- Abla Bouhend
- Laboratory of Bioeconomics, Food safety and Health, Faculty of Natural Sciences and Life, Abdelhamid Ibn Badis University of Mostaganem, 188, 27000, Mostaganem, BP, Algeria
| | - Soumia Keddari
- Laboratory of Bioeconomics, Food safety and Health, Faculty of Natural Sciences and Life, Abdelhamid Ibn Badis University of Mostaganem, 188, 27000, Mostaganem, BP, Algeria.
| | - Imen Yahla
- Laboratory of Beneficial Microorganisms, Functional Food and Health (LMBAFS), Faculty of Natural and Life Sciences, Abdelhamid Ibn Badis University, Mostaganem, Algeria
| | - Omar Sadouki
- Laboratory of Anapathology Histology, University Hospital Centre, Mostaganem, Algeria
| | - Mohamed Bououdina
- Department of Mathematics and Sciences, College of Humanities and Sciences, Prince Sultan University, Riyadh, Saudi Arabia.
| |
Collapse
|
5
|
Gao Y, Ding Z, Liu Y, Xu YJ. Advances in encapsulation systems of Antarctic krill oil: From extraction to encapsulation, and future direction. Compr Rev Food Sci Food Saf 2024; 23:e13332. [PMID: 38578167 DOI: 10.1111/1541-4337.13332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 04/06/2024]
Abstract
Antarctic krill oil (AKO) is highly sought after by consumers and the food industry due to its richness in a variety of nutrients and physiological activities. However, current extraction methods are not sufficient to better extract AKO and its nutrients, and AKO is susceptible to lipid oxidation during processing and storage, leading to nutrient loss and the formation of off-flavors and toxic compounds. The development of various extraction methods and encapsulation systems for AKO to improve oil yield, nutritional value, antioxidant capacity, and bioavailability has become a research hotspot. This review summarizes the research progress of AKO from extraction to encapsulation system construction. The AKO extraction mechanism, technical parameters, oil yield and composition of solvent extraction, aqueous enzymatic extraction, supercritical/subcritical extraction, and three-liquid-phase salting-out extraction system are described in detail. The principles, choice of emulsifier/wall materials, preparation methods, advantages and disadvantages of four common encapsulation systems for AKO, namely micro/nanoemulsions, microcapsules, liposomes and nanostructured lipid carriers, are summarized. These four encapsulation systems are characterized by high encapsulation efficiency, low production cost, high bioavailability and high antioxidant capacity. Depending on the unique advantages and conditions of different encapsulation methods, as well as consumer demand for health and nutrition, different products can be developed. However, existing AKO encapsulation systems lack relevant studies on digestive absorption and targeted release, and the single product category of commercially available products limits consumer choice. In conjunction with clinical studies of AKO encapsulation systems, the development of encapsulation systems for special populations should be a future research direction.
Collapse
Affiliation(s)
- Yuhang Gao
- State Key Laboratory of Food Science and Resource, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Zhansheng Ding
- State Key Laboratory of Food Science and Resource, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Resource, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Resource, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|
6
|
Liu Y, Robinson AM, Su XQ, Nurgali K. Krill Oil and Its Bioactive Components as a Potential Therapy for Inflammatory Bowel Disease: Insights from In Vivo and In Vitro Studies. Biomolecules 2024; 14:447. [PMID: 38672464 PMCID: PMC11048140 DOI: 10.3390/biom14040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Krill oil is extracted from krill, a small crustacean in the Antarctic Ocean. It has received growing attention because of krill oil's unique properties and diverse health benefits. Recent experimental and clinical studies suggest that it has potential therapeutic benefits in preventing the development of a range of chronic conditions, including inflammatory bowel disease (IBD). Krill oil is enriched with long-chain n-3 polyunsaturated fatty acids, especially eicosapentaenoic and docosahexaenoic acids, and the potent antioxidant astaxanthin, contributing to its therapeutic properties. The possible underlying mechanisms of krill oil's health benefits include anti-inflammatory and antioxidant actions, maintaining intestinal barrier functions, and modulating gut microbiota. This review aims to provide an overview of the beneficial effects of krill oil and its bioactive components on intestinal inflammation and to discuss the findings on the molecular mechanisms associated with the role of krill oil in IBD prevention and treatment.
Collapse
Affiliation(s)
- Yingying Liu
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3021, Australia; (Y.L.); (A.M.R.)
| | - Ainsley M. Robinson
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3021, Australia; (Y.L.); (A.M.R.)
- School of Rural Health, La Trobe University, Melbourne, VIC 3010, Australia
- Department of Medicine Western Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Xiao Qun Su
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3021, Australia; (Y.L.); (A.M.R.)
| | - Kulmira Nurgali
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3021, Australia; (Y.L.); (A.M.R.)
- Department of Medicine Western Health, The University of Melbourne, Melbourne, VIC 3010, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| |
Collapse
|
7
|
Smyth M, Lunken G, Jacobson K. Insights Into Inflammatory Bowel Disease and Effects of Dietary Fatty Acid Intake With a Focus on Polyunsaturated Fatty Acids Using Preclinical Models. J Can Assoc Gastroenterol 2024; 7:104-114. [PMID: 38314173 PMCID: PMC10837003 DOI: 10.1093/jcag/gwad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Abstract
While the aetiology of inflammatory bowel disease (IBD) has been linked to genetic susceptibility coupled with environmental factors, the underlying molecular mechanisms remain unclear. Among the environmental factors, diet and the gut microbiota have been implicated as drivers of immune dysregulation in IBD. Indeed, epidemiologic studies have highlighted that the increase in incidence of IBD parallels the increase in dietary intake of omega-6 (n-6) polyunsaturated fatty acids (PUFAs) and the change in balance of intake of n-6 to n-3 fatty acids. Experimental evidence suggests that the increase in n-6 PUFA intake increases cell membrane arachidonic acid, which is accompanied by the production of pro-inflammatory mediators as well as increased oxidative stress; together, this contributes to the development of chronic inflammation. However, it is also increasingly clear that some of the n-6 PUFA-derived mediators exert beneficial effects depending on the settings and timing of ingestion. In contrast to n-6, when n-3 PUFA eicosapentaenoic acid and docosahexaenoic acid are incorporated into the cell membrane and are metabolized into less pro-inflammatory eicosanoids, as well as strong specialized pro-resolving mediators, which play a role in inflammation cessation. With a focus on preclinical models, we explore the relationship between dietary lipid, the gut microbiome, and intestinal inflammation.
Collapse
Affiliation(s)
- Matthew Smyth
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Faculty of Medicine, British Columbia Children's Hospital, University of British Columbia, B.C., Vancouver, British Columbia, Canada, V6H 3V4
| | - Genelle Lunken
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Faculty of Medicine, British Columbia Children's Hospital, University of British Columbia, B.C., Vancouver, British Columbia, Canada, V6H 3V4
- British Columbia Children Hospital Research Institute,Vancouver, British Columbia, Canada, V5Z 4H4
| | - Kevan Jacobson
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Faculty of Medicine, British Columbia Children's Hospital, University of British Columbia, B.C., Vancouver, British Columbia, Canada, V6H 3V4
- British Columbia Children Hospital Research Institute,Vancouver, British Columbia, Canada, V5Z 4H4
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada, V6T 2A1
| |
Collapse
|
8
|
Xiao N, He W, Chen S, Yao Y, Wu N, Xu M, Du H, Zhao Y, Tu Y. Egg Yolk Lipids Alleviated Dextran Sulfate Sodium-Induced Colitis by Inhibiting NLRP3 Inflammasome and Regulating Gut Microbiota. Mol Nutr Food Res 2024; 68:e2300509. [PMID: 38037542 DOI: 10.1002/mnfr.202300509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/11/2023] [Indexed: 12/02/2023]
Abstract
The increasing incidence of inflammatory bowel disease (IBD) has become a global phenomenon. Egg yolk lipids are one of the essential dietary foods, but its effects on intestinal immunity remain unclear. Here, egg yolk lipids are obtained using ethanol extraction and a total of 601 kinds of lipids are detected via lipidomics, including 251 kinds of triglycerides, 133 kinds of phosphatidylcholines, 44 kinds of phosphatidylethanolamines. Then, the study finds that egg yolk lipids significantly alleviate dextran sulfate sodium-induced colitis and reduce the production of inflammatory factors. Meanwhile, egg yolk lipids also maintain intestinal barrier integrity and decrease lipopolysaccharide translocation by alleviating intestinal structure damage and increasing the numbers of goblet cells and mucin 2. Mechanistically, egg yolk lipids attenuate colitis by inhibiting the assembly and activation of NLRP3 inflammasome. Moreover, the study also finds that egg yolk lipids reverse gut microbiota dysbiosis referring to increased relative abundance of Bacteroides acidifaciens and decrease relative abundance of Akkermansia muciniphila, as well as increased short chain fatty acids concentration in the gut. Together, the study elucidates the anti-colitis effect of egg yolk lipids and provides positive evidences for egg yolk lipids involving in dietary strategy and IBD therapy.
Collapse
Affiliation(s)
- Nanhai Xiao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wen He
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shuping Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Mingsheng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Huaying Du
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
9
|
Vijayapoopathi S, Ramamoorthy R, Meganathan J, Kalaiyazhagan A, Bhuvarahamurthy S, Venugopal B. Nutraceutical combination ameliorates imiquimod-induced psoriasis in mice. Chem Biol Drug Des 2023; 102:1578-1587. [PMID: 37705136 DOI: 10.1111/cbdd.14350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/04/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease that affects both localized and systemic regions of the body. This condition is characterized by the hyperproliferation of keratinocytes, resulting in skin thickening, scaling, and erythema. The severity of psoriasis depends on the extent of skin involvement, the location of the infection, and the symptoms that the person exhibits. While no cure exists, conventional therapies such as topical and systemic drugs are generally used to manage the exacerbation of symptoms. However, chronic use and overdose can lead to other severe adverse effects. Therefore, scientists and researchers are exploring potential nutraceuticals that can be considered as an alternative source of management for psoriasis. Current research aims to use different combinations of natural compounds like cannabidiol, myo-inositol, eicosapentaenoic acid, and krill oil to study the effect of these compounds in the prevention and treatment of psoriasis in the imiquimod (IMQ)-induced psoriatic mice model. The Psoriasis Area Severity Index (PASI) scoring system is used to analyze skin thickness, scales, and erythema. The results indicate that the krill oil combined with the cannabidiol and myo-inositol shows better results than other nutraceutical combinations. In the future, the natural products of krill oil can be combined with cannabidiol and myo-inositol to create an improved alternative to existing steroidal and nonsteroidal anti-inflammatory drugs for psoriasis treatment.
Collapse
Affiliation(s)
- Singaravel Vijayapoopathi
- Department of Medical Biochemistry, Dr. ALM Post-Graduation Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Rajalakshmi Ramamoorthy
- Department of Medical Biochemistry, Dr. ALM Post-Graduation Institute of Basic Medical Sciences, University of Madras, Chennai, India
- Department of Obstetrics, Gynecology and Reproductive Studies, University of Miami, Coral Gables, Florida, USA
| | - Jayaprakash Meganathan
- Department of Medical Biochemistry, Dr. ALM Post-Graduation Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Ananthi Kalaiyazhagan
- Department of Medical Biochemistry, Dr. ALM Post-Graduation Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | | | - Bhuvarahamurthy Venugopal
- Department of Medical Biochemistry, Dr. ALM Post-Graduation Institute of Basic Medical Sciences, University of Madras, Chennai, India
| |
Collapse
|
10
|
Wen Y, Tan L, Chen S, Wu N, Yao Y, Xu L, Xu M, Zhao Y, Tu Y. Egg yolk phosphatidylcholine alleviates DSS-induced colitis in BALB/c mice. Food Funct 2023; 14:9309-9323. [PMID: 37781872 DOI: 10.1039/d3fo02885b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Ulcerative colitis (UC) is a common inflammatory bowel disease, whose incidence is on the rise worldwide. The drugs commonly used for UC are often associated with a number of side effects. Therefore, the development of effective, food-borne substances for UC is in line with the current needs. Egg yolk phosphatidylcholine (EYPC) is one of the abundant lipids in egg yolk and possesses various biological activities. However, its protective effect against UC has not been clarified. In this study, the anti-UC activity of EYPC was investigated using a dextran sodium sulfate (DSS)-induced colitis model of BALB/c mice. The results showed that EYPC supplementation inhibited DSS-induced colon shortening, the spleen index and disease activity index increase and intestinal structural damage. EYPC could down-regulate the levels of TNF-α, IL-1β, IL-6 and MPO in the colon and restore the number of goblet cells and the level of tight junction (TJ) proteins. Besides, EYPC modulated the composition of the gut microbiota, lowered the relative abundance of the pathogenic bacterium Parabacteroides and upregulated the abundance of the beneficial bacteria Alistipes and Lachnospiraceae_NK4A136_group. These results evidenced that EYPC could attenuate DSS-induced colitis in mice and had the potential to prevent and treat UC.
Collapse
Affiliation(s)
- Yunpeng Wen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lixin Tan
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuping Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lilan Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mingsheng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
11
|
Huang R, Yao J, Zhou L, Li X, Zhu J, Hu Y, Liu J. Protective effect and mechanism insight of purified Antarctic kill phospholipids against mice ulcerative colitis combined with bioinformatics. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:11. [PMID: 37016023 PMCID: PMC10073399 DOI: 10.1007/s13659-023-00375-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/21/2023] [Indexed: 05/08/2023]
Abstract
Antarctic krill oil is functional oil and has a complex phospholipids composition that poses difficulties in elucidating its effect mechanism on ulcerative colitis (UC). The mechanism of UC action was studied by bioinformatics, and the therapeutic effect of Antarctic krill phospholipids (APL) on dextran sulfate sodium (DSS)-induced colitis mice was verified. GO functional enrichment analysis uncovered an enrichment of these genes in the regulation of cell-cell adhesion, membrane region, signaling receptor activator activity, and cytokine activity. Meanwhile, the KEGG results revealed the genes were enriched in the TNF signaling pathway, pathogenic Escherichia coli infection, inflammatory bowel disease and tight junction. Animal experiments showed that APL treatment alleviated the UC symptoms and reduced inflammatory damage. Meanwhile, the expressions of the tight junction (TJ) proteins, ZO-1 and occludin, were restored, and the levels of IL-6 and TNF-α were reduced. Moreover, Firmicutes/Bacteroidetes ratio in the intestinal microbiota was regulated, and the contents of short-chain fatty acids metabolites were raised. These findings would provide an insight for the beneficial effects of APL and dietary therapy strategies for UC.
Collapse
Affiliation(s)
- Rong Huang
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China
| | - Jiaxu Yao
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China
| | - Li Zhou
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China.
| | - Xiang Li
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China
| | - Jinrui Zhu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China
| | - Yueqi Hu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China
| | - Jikai Liu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
12
|
Chen L, Jiang Q, Jiang C, Lu H, Hu W, Yu S, Li M, Tan CP, Feng Y, Xiang X, Shen G. Sciadonic acid attenuates high-fat diet-induced obesity in mice with alterations in the gut microbiota. Food Funct 2023; 14:2870-2880. [PMID: 36883533 DOI: 10.1039/d2fo02524h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Obesity has been reported to be associated with dysbiosis of gut microbiota. Sciadonic acid (SC) is one of the main functional components of Torreya grandis "Merrillii" seed oil. However, the effect of SC on high-fat diet (HFD)-induced obesity has not been elucidated. In this study, we evaluated the effects of SC on lipid metabolism and the gut flora in mice fed with a high-fat diet. The results revealed that SC activates the PPARα/SREBP-1C/FAS signaling pathway and reduces the levels of total cholesterol (TC), triacylglycerols (TG), and low-density lipoprotein cholesterol (LDL-C), but increases the level of high-density lipoprotein cholesterol (HDL-C) and inhibits weight gain. Among them, high-dose SC was the most effective; the TC, TG and LDL-C levels were reduced by 20.03%, 28.40% and 22.07%, respectively; the HDL-C level was increased by 8.55%. In addition, SC significantly increased glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) levels by 98.21% and 35.17%, respectively, decreased oxidative stress, and ameliorated the pathological damage to the liver caused by a high-fat diet. Furthermore, SC treatment altered the composition of the intestinal flora, promoting the relative abundance of beneficial bacteria such as Lactobacillus and Bifidobacterium, while simultaneously decreasing the relative abundance of potentially harmful bacteria such as Faecalibaculum, norank_f_Desulfovibrionaceae, and Romboutsia. Spearman's correlation analysis indicated that the gut microbiota was associated with SCFAs and biochemical indicators. In summary, our results suggested that SC can improve lipid metabolism disorders and regulate the gut microbial structure.
Collapse
Affiliation(s)
- Lin Chen
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| | - Qihong Jiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Chenkai Jiang
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| | - Hongling Lu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| | - Wenjun Hu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| | - Shaofang Yu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| | - Mingqian Li
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, China
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, 43400 Serdang, Malaysia
- Xujing (Hangzhou) Biotechnology Research Institute Co., Ltd, Hangzhou, Zhejiang 310021, China
| | - Yongcai Feng
- Xujing (Hangzhou) Biotechnology Research Institute Co., Ltd, Hangzhou, Zhejiang 310021, China
| | - Xingwei Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Guoxin Shen
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| |
Collapse
|
13
|
Wang X, Zeng X, Zhang X, Wei J, Zhang Y, Long F, Yue T, Yuan Y. Aspergillus cristatus attenuates DSS-induced intestinal barrier damage through reducing the oxidative stress, regulating short-chain fatty acid and inhibiting MAPK signaling pathways. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1736-1748. [PMID: 36372907 DOI: 10.1002/jsfa.12334] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 10/26/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Probiotics are regarded as a promising strategy for relieving colitis caused by dextran sulfate sodium (DSS). One of the dominant probiotic fungi in Fuzhuan brick tea is identified as Aspergillus cristatus, but whether it can effectively improve colitis remains poorly understood. Here, the improving effect of A. cristatus on colitis was investigated. RESULTS Our results showed that A. cristatus intervention prominently alleviated gut damage as evidenced by the inhibition of shortened colon length, goblet cell depletion, and histological injury. Mechanistically, after administration with low concentrations of A. cristatus H-1 and A. cristatus S-6, the expression of interleukin-6, tumor necrosis factor-α, interleukin-1β, nitric oxide, and malondialdehyde were significantly downregulated, and the content of glutathione, catalase, interleukin-10, immunoglobulin G, claudin-1, occludin, and zonula occludens-1 were effectively upregulated. More importantly, live A. cristatus supplementation lightened DSS-induced gut barrier damage by suppressing activation of the mitogen-activated protein kinase (MAPK) signaling pathway, increasing the synthesis of short-chain fatty acids (SCFAs) and stimulating the increase in peroxisome proliferator-activated receptor γ expression. CONCLUSION Together, A. cristatus can attenuate DSS-induced intestinal barrier damage through reducing the oxidative stress, regulating SCFA and inhibiting MAPK signaling pathways (P38/JNK/ERK). Our findings indicate that A. cristatus replenishment has potential as a new probiotic fungi to reduce DSS-induced colitis. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- Laboratory of Quality and Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, China
| | - Xuejun Zeng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- Laboratory of Quality and Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, China
| | - Xiao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- Laboratory of Quality and Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, China
| | - Jianping Wei
- College of Food Science and Technology, Northwest University, Xian, China
| | - Yuxiang Zhang
- College of Food Science and Technology, Northwest University, Xian, China
| | - Fangyu Long
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- Laboratory of Quality and Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- Laboratory of Quality and Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, China
- College of Food Science and Technology, Northwest University, Xian, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- Laboratory of Quality and Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, China
| |
Collapse
|
14
|
Huang L, Wu W, Huang L, Zhong J, Chen L, Wang M, Chen H. Antarctic krill ( Euphausia superba) oil modulatory effects on ethanol-induced acute injury of the gastric mucosa in rats. Front Nutr 2022; 9:1003627. [PMID: 36185650 PMCID: PMC9525105 DOI: 10.3389/fnut.2022.1003627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Antarctic krill oil (KO) prepared using supercritical carbon dioxide extraction and characterized using gas chromatography-mass spectrometry was used to investigate its preventive effect on ethanol-induced gastric tissue damage in a rat model in vivo. KO characterization showed that 74.96% of the unsaturated fatty acids consist of oleic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Rats pre-treated with KO (100, 200, and 500 mg/kg) showed mitigated oxidative stress through enhanced antioxidant enzyme superoxide dismutase (SOD) and reducing enzymes malondialdehyde (MDA) and myeloperoxidase (MPO) in gastric mucosal injury induced by ethanol. Additionally, the secretion of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β), the expression of the IκBα/NF-κB signaling pathway, and nitric oxide (NO) production was suppressed. The results also demonstrated a significant decrease in histological injury and hemorrhage scores in a dose-dependent manner in the KO range. Therefore, KO has potential as a food supplement to alleviate ethanol-induced acute gastric mucosal injury.
Collapse
Affiliation(s)
- Luqiang Huang
- College of Life Science, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Fujian Normal University, Fuzhou, China
- Marine Active Substance and Product Technology Research and Development Center of Ocean Research Institute of Fuzhou, Fujian Normal University, Fuzhou, China
| | - Wenxin Wu
- College of Life Science, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Linshan Huang
- College of Life Science, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Jiaze Zhong
- College of Life Science, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Meiying Wang
- School of Engineering, University of Guelph, Guelph, ON, Canada
| | - Huibin Chen
- College of Life Science, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Fujian Normal University, Fuzhou, China
| |
Collapse
|
15
|
Extraction, Chemical Composition, and Protective Effect of Essential Oil from Chimonanthus nitens Oliv. Leaves on Dextran Sodium Sulfate-Induced Colitis in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9701938. [PMID: 35847597 PMCID: PMC9279075 DOI: 10.1155/2022/9701938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
Abstract
In this study, the essential oil (EO) was extracted by steam distillation from Chimonanthus nitens Oliv, and the extraction process was optimized by response surface methodology. The optimum process conditions are as follows: extraction time of 4.57 h, soaking time of 1.33 h, and solid-liquid ratio of 1 : 21.4. Under these conditions, the theoretical yield of EO is 1.5624%. The EO compounds were analyzed by gas chromatography-mass spectrometry (GC-MS). A total of 52 chemical components were detected, among which the content of 3-(4,8-dimethylnona-3,7-dienyl)-furan was the highest, accounting for 21.43% of the total peak area. The EO showed good antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2
-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), and reducing power. In this study, we observed the protective effect of EO on ulcerative colitis (UC) induced by dextran sodium sulfate (DSS) in mice. EO effectively delayed weight loss and reduced DAI score. Histological examination also observed a significant reduction in damage in the EO group. The colon length of mice in DSS group was the shortest, and the colon length of mice in EO treatment group was longer than that in model group, but shorter than that in normal group (
). The GSH activity in the L-EO and SASP groups was significantly higher than that in the DSS group (
). SOD activity in L-EO and M-EO groups was also significantly higher than that in DSS treatment group (
). MDA was decreased in the EO treatment groups and the SASP group (L-EO, H-EO, SASP:
; M-EO:
). MPO of EO treatment group was lower than that of model group (the L-EO group was not significant, M-EO:
, H-EO:
). This study shows that EO can effectively improve the symptoms of colitis.
Collapse
|
16
|
Zhang M, Zhu J, Zhou L, Kan J, Zhao M, Huang R, Liu J, Marchioni E. Antarctic krill oil high internal phase Pickering emulsion stabilized by bamboo protein gels and the anti-inflammatory effect in vitro and in vivo. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
17
|
He XQ, Liu D, Liu HY, Wu DT, Li HB, Zhang XS, Gan RY. Prevention of Ulcerative Colitis in Mice by Sweet Tea ( Lithocarpus litseifolius) via the Regulation of Gut Microbiota and Butyric-Acid-Mediated Anti-Inflammatory Signaling. Nutrients 2022; 14:nu14112208. [PMID: 35684007 PMCID: PMC9183097 DOI: 10.3390/nu14112208] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022] Open
Abstract
Sweet tea (Lithocarpus litseifolius [Hance] Chun) is a new resource for food raw materials, with plenty of health functions. This study aimed to investigate the preventive effect and potential mechanism of sweet tea extract (STE) against ulcerative colitis (UC). Briefly, BABL/c mice were treated with STE (100 and 400 mg/kg) for 2 weeks to prevent 3% dextran sulfate sodium (DSS)-induced UC. It was found that STE supplementation significantly prevented DSS-induced UC symptoms; suppressed the levels of pro-inflammatory mediators, such as myeloperoxidase and tumor necrosis factor-α; increased the levels of anti-inflammatory cytokines; and up-regulated the expression of tight junction proteins (Zonula occludens-1 and Occludin). STE also altered the gut microbiota profile of UC mice by increasing Bacteroidetes, Lactobacillus, Akkermansia, Lachnospiraceae_NK4A136_group, and Alistipes and inhibiting Firmicutes, Proteobacteria, and Helicobacter, accompanied by a significant increase in the content of butyric acid. Moreover, STE increased the expression of G-protein-coupled receptor (GPR) 43 and GPR109A and inhibited the expression of histone deacetylase 3 (HDAC3) and nuclear factor-κB p65 (NF-κB p65) in the colon. In conclusion, this study indicated that STE has a good preventive effect on UC by regulating gut microbiota to activate butyrate-GPR-mediated anti-inflammatory signaling and simultaneously inhibit HDAC3/NF-κB inflammatory signaling.
Collapse
Affiliation(s)
- Xiao-Qin He
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China; (X.-Q.H.); (D.L.); (H.-Y.L.)
| | - Dan Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China; (X.-Q.H.); (D.L.); (H.-Y.L.)
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China;
| | - Hong-Yan Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China; (X.-Q.H.); (D.L.); (H.-Y.L.)
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China;
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China;
| | - Xin-Shang Zhang
- Institute of Laboratory Animal Sciences, Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu 610212, China
- Correspondence: (X.-S.Z.); (R.-Y.G.)
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China; (X.-Q.H.); (D.L.); (H.-Y.L.)
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China;
- Correspondence: (X.-S.Z.); (R.-Y.G.)
| |
Collapse
|
18
|
Cheng H, Liu J, Zhang D, Wang J, Tan Y, Feng W, Peng C. Ginsenoside Rg1 Alleviates Acute Ulcerative Colitis by Modulating Gut Microbiota and Microbial Tryptophan Metabolism. Front Immunol 2022; 13:817600. [PMID: 35655785 PMCID: PMC9152015 DOI: 10.3389/fimmu.2022.817600] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/14/2022] [Indexed: 12/19/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic and recurrent inflammatory disorder in the gastrointestinal tract. Here, we examined the pharmacological effects of ginsenoside Rg1, a natural compound with low bioavailability, on the acute experimental colitis mice induced by dextran sulfate sodium (DSS) and explored underlying mechanisms. Acute UC was induced in C57BL/6 mice by 2.5% DSS for 7 days, meanwhile, 2 mg/10 g b.w. ginsenoside Rg1 was administrated to treat the mice. Body weight, colon length, colon tissue pathology, and colon tissue inflammatory cytokines were assessed. The composition structure of gut microbiota was profiled using 16s rRNA sequencing. Global metabolomic profiling of the feces was performed, and tryptophan and its metabolites in the serum were detected. The results showed that Rg1 significantly ameliorated DSS-induced colonic injury and colonic inflammation. In addition, Rg1 also partly reversed the imbalance of gut microbiota composition caused by DSS. Rg1 intervention can regulate various metabolic pathways of gut microbiota such as valine, leucine, and isoleucine biosynthesis and vitamin B6 metabolism and the most prominent metabolic alteration was tryptophan metabolism. DSS decreased the levels of tryptophan metabolites in the serum, including indole-3-carboxaldehyde, indole-3-lactic acid, 3-indolepropionic acid, and niacinamide and Rg1 can increase the levels of these metabolites. In conclusion, the study discovered that Rg1 can protect the intestinal barrier and alleviate colon inflammation in UC mice, and the underlying mechanism is closely related to the regulation of gut microbiota composition and microbial tryptophan metabolism.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
19
|
Huang B, Wang L, Liu M, Wu X, Lu Q, Liu R. The underlying mechanism of A-type procyanidins from peanut skin on DSS-induced ulcerative colitis mice by regulating gut microbiota and metabolism. J Food Biochem 2022; 46:e14103. [PMID: 35218055 DOI: 10.1111/jfbc.14103] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/30/2021] [Accepted: 01/09/2022] [Indexed: 12/18/2022]
Abstract
Ulcerative colitis (UC) is a kind of inflammatory bowel disease. Procyanidins have been found to prevent UC. However, most research has been focused on the alleviation effect of B-type procyanidins on UC and ignored those of A-type procyanidins. Hence, this study aims to investigate the anti-UC effect and the potential mechanism of A-type procyanidins by combining gut microbiome and metabolic profile. UC was induced by dextran sulfate sodium (DSS) in Balb/c mice, and then the mice were administrated with peanut skin procyanidins (PSP; rich in A-type procyanidins) for 9 days. Administration of PSP can ameliorate DSS-induced UC by mediating the intestinal barrier, the expression of inflammatory cytokines (TNF-α, IL-β, IL-6, and IL-10) and oxidative stress (MDA, T-SOD, NO, and iNOS) in mice. We observed that PSP affects the gut microbiota and colon metabolomic patterns of mice. The 16S rDNA sequencing showed increase in abundance of Lachnospiraceae_NK4A136_group, Oscillibacter and Roseburia and decrease of Bacteroides, Helicobacter, Parabacteroides, Escherichia-Shigella, and Enterobacter after PSP treatment. The colon tissue metabolome was significantly altered, as reflected by regulating taste transduction, mTOR signaling pathway, PI3K-Akt signaling pathway, and FoxO signaling pathway to improve the protection against UC. PRACTICAL APPLICATIONS: We investigated the anti-ulcerative colitis (UC) effect and its potential mechanism of peanut skin procyanidins (PSP). This suggests that PSP with abundant A-type procyanidins may be an effective candidate for dietary supplementation to alleviate the symptoms of UC by regulating gut microbiota and metabolism.
Collapse
Affiliation(s)
- Bijun Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han, China.,Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han, China
| | - Li Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han, China.,Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han, China
| | - Min Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han, China.,Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han, China
| | - Xin Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han, China.,Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han, China
| | - Qun Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han, China.,Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han, China.,Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wu Han, China
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han, China.,Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han, China.,Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wu Han, China.,Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, Wu Han, P. R. China
| |
Collapse
|
20
|
Du G, Guo Q, Yan X, Chen H, Yuan Y, Yue T. Potential protective mechanism of Tibetan kefir underlying gut-derived liver injury induced by ochratoxin A. Food Funct 2022; 13:11690-11704. [DOI: 10.1039/d2fo02360a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tibetan kefir against Ochratoxin A-induced liver injury by maintaining the intestinal barrier and modulating the gut microbiota and metabolites.
Collapse
Affiliation(s)
- Gengan Du
- College of Food Science and Engineering, Northwest A & F University, 22. Xi-nong Road, Yangling, Shaanxi, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Qi Guo
- College of Food Science and Engineering, Northwest A & F University, 22. Xi-nong Road, Yangling, Shaanxi, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Xiaohai Yan
- College of Food Science and Engineering, Northwest A & F University, 22. Xi-nong Road, Yangling, Shaanxi, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Hong Chen
- College of Food Science and Engineering, Northwest A & F University, 22. Xi-nong Road, Yangling, Shaanxi, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A & F University, 22. Xi-nong Road, Yangling, Shaanxi, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A & F University, 22. Xi-nong Road, Yangling, Shaanxi, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| |
Collapse
|
21
|
Xiang X, Jiang Q, Shao W, Li J, Zhou Y, Chen L, Deng S, Zheng B, Chen Y. Protective Effects of Shrimp Peptide on Dextran Sulfate Sodium-Induced Colitis in Mice. Front Nutr 2021; 8:773064. [PMID: 34901119 PMCID: PMC8652227 DOI: 10.3389/fnut.2021.773064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/29/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease, an intestinal relapsing inflammatory disease, not only impairs gastrointestinal function but also increases the chances of developing colon cancer. Currently, the effects of shrimp peptide (SP) in mice model of ulcerative colitis (UC) are still unclear. In particular, it is uncertain whether SP affects the gut flora with UC mice. In this study, we investigated the anti-inflammatory effects of SP on a dextran sulfate sodium (DSS)-induced mouse model of UC. Firstly, the molecular weight of SP was mainly distributed in the range of 180-1,000 Da (61.95% proportion), and the amino acid composition showed that SP contained 17 amino acids, of which, the essential amino acids accounted for 54.50%. In vivo, oral SP significantly attenuated the severity of colitis, such as diarrhea, weight loss, and rectal bleeding. Furthermore, treatment with SP remarkably ameliorated intestinal barrier integrity, thus lowering the levels of the inflammatory cytokines and ameliorating antioxidant indices and intestinal injury indicators in the serum and colon. Lastly, the cecal contents were used to sequence and analyze the 16S rRNA genes of bacteria. Results suggested that treatment with SP could restore the balance of intestinal flora in modeled mice by regulating the abundance of pathogenic and beneficial bacteria. Furthermore, SP could significantly improve intestinal flora dysfunction in mice with UC. In summary, our findings show that SP has a prophylactic and therapeutic effect in UC in vivo, thereby highlighting its broad medicinal applications.
Collapse
Affiliation(s)
- Xingwei Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Biological Resources Innovation and Development of Zhejiang Province, Hangzhou, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Qihong Jiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Biological Resources Innovation and Development of Zhejiang Province, Hangzhou, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Wan Shao
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, China
| | - Jinhong Li
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Biological Resources Innovation and Development of Zhejiang Province, Hangzhou, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Yufang Zhou
- Zhejiang Marine Development Research Institute, Zhoushan, China
| | - Lin Chen
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shanggui Deng
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, China
| | - Bin Zheng
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, China
| | - Yufeng Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Biological Resources Innovation and Development of Zhejiang Province, Hangzhou, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| |
Collapse
|
22
|
p-Hydroxybenzoic acid alleviates inflammatory responses and intestinal mucosal damage in DSS-induced colitis by activating ERβ signaling. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
23
|
Protective Effect of Salvianolic Acid B in Acetic Acid-Induced Experimental Colitis in a Mouse Model. Processes (Basel) 2021. [DOI: 10.3390/pr9091589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In its prominent experimental studies salvianolic acid B (Sal B) is novel because of its well-defined, common physiological effects, which include anti-inflammatory, anti-depressant, cardioprotective, DNA protective, neuroprotective and hepatoprotective activity in experimental animals. Initially, Sal B was studied for its anti-inflammatory properties, used as a remedy for a wide range of disease conditions, but its specific efficacy on inflammatory bowel disease is still unclear. The aim of this current study was to understand the therapeutic potential of Sal B in an acetic acid (AA)—triggered experimental mouse colitis model. Colitis was triggered by intrarectal injection of 5% AA, and then laboratory animals were given Sal B (10, 20 and 40 μg/kg) for seven days. The ulcerated colonic mucosa was assessed by clinical experiment, macroscopical, biological and histopathological analysis. The results showed depleted SOD, CAT, GSH levels and consequential elevated MPO and MDA levels and aberrant crypt foci and mast cells were seen in the AA-induced colonic mucosa of experimental animals. The data obtained from this study demonstrate that a dose of 40 µg/kg showed an efficacious anti-ulcer effect against AA-induced experimental colitis. Based on its antioxidant efficacy, Sal B may therefore be useful as a therapeutic approach for ulcerative colitis.
Collapse
|
24
|
Xiang XW, Wang R, Yao LW, Zhou YF, Sun PL, Zheng B, Chen YF. Anti-Inflammatory Effects of Mytilus coruscus Polysaccharide on RAW264.7 Cells and DSS-Induced Colitis in Mice. Mar Drugs 2021; 19:md19080468. [PMID: 34436307 PMCID: PMC8400803 DOI: 10.3390/md19080468] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022] Open
Abstract
Considerable literature has been published on polysaccharides, which play a critical role in regulating the pathogenesis of inflammation and immunity. In this essay, the anti-inflammatory effect of Mytilus coruscus polysaccharide (MP) on lipopolysaccharide-stimulated RAW264.7 cells and a dextran sulfate sodium (DSS)-induced ulcerative colitis model in mice was investigated. The results showed that MP effectively promoted the proliferation of RAW264.7 cells, ameliorated the excessive production of inflammatory cytokines (TNF-α, IL-6, and IL-10), and inhibited the activation of the NF-κB signaling pathway. For DSS-induced colitis in mice, MP can improve the clinical symptoms of colitis, inhibit the weight loss of mice, reduce the disease activity index, and have a positive effect on the shortening of the colon caused by DSS, meliorating intestinal barrier integrity and lowering inflammatory cytokines in serum. Moreover, MP makes a notable contribution to the richness and diversity of the intestinal microbial community, and also regulates the structural composition of the intestinal flora. Specifically, mice treated with MP showed a repaired Firmicutes/Bacteroidetes ratio and an increased abundance of some probiotics like Anaerotruncus, Lactobacillus, Desulfovibrio, Alistipe, Odoribacter, and Enterorhabdus in colon. These data suggest that the MP could be a promising dietary candidate for enhancing immunity and protecting against ulcerative colitis.
Collapse
Affiliation(s)
- Xing-Wei Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (X.-W.X.); (R.W.); (P.-L.S.)
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
| | - Rui Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (X.-W.X.); (R.W.); (P.-L.S.)
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
| | - Li-Wen Yao
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316000, China; (L.-W.Y.); (B.Z.)
| | - Yu-Fang Zhou
- Zhejiang Marine Development Research Institute, Zhoushan 316000, China
- Correspondence: (Y.-F.Z.); (Y.-F.C.); Tel.: +86-151-0580-6692 (Y.-F.Z.); +86-133-7257-2058 (Y.-F.C.)
| | - Pei-Long Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (X.-W.X.); (R.W.); (P.-L.S.)
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
| | - Bin Zheng
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316000, China; (L.-W.Y.); (B.Z.)
| | - Yu-Feng Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (X.-W.X.); (R.W.); (P.-L.S.)
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
- Correspondence: (Y.-F.Z.); (Y.-F.C.); Tel.: +86-151-0580-6692 (Y.-F.Z.); +86-133-7257-2058 (Y.-F.C.)
| |
Collapse
|
25
|
Zhang SY, Zhao GX, Suo SK, Wang YM, Chi CF, Wang B. Purification, Identification, Activity Evaluation, and Stability of Antioxidant Peptides from Alcalase Hydrolysate of Antarctic Krill ( Euphausia superba) Proteins. Mar Drugs 2021; 19:md19060347. [PMID: 34204535 PMCID: PMC8235214 DOI: 10.3390/md19060347] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022] Open
Abstract
For utilizing the largest source of marine proteins, Antarctic krill (Euphausia superba) proteins were defatted and hydrolyzed separately using pepsin, alcalase, papain, trypsin, and netrase, and alcalase hydrolysate (EPAH) showed the highest DPPH radical (DPPH·) and hydroxyl radical (HO·) scavenging activity among five hydrolysates. Using ultrafiltration and chromatography methods, fifteen antioxidant peptides were purified from EPAH and identified as Asn-Gln-Met (NQM), Trp-Phe-Pro-Met (WFPM), Gln-Asn-Pro-Thr (QNPT), Tyr-Met-Asn-Phe (YMNF), Ser-Gly-Pro-Ala (SGPA), Ser-Leu-Pro-Tyr (SLPY), Gln-Tyr-Pro-Pro-Met-Gln-Tyr (QYPPMQY), Glu-Tyr-Glu-Ala (EYEA), Asn-Trp-Asp-Asp-Met-Arg-Ile-Val-Ala-Val (NWDDMRIVAV), Trp-Asp-Asp-Met-Glu-Arg-Leu-Val-Met-Ile (WDDMERLVMI), Asn-Trp-Asp-Asp-Met-Glu-Pro-Ser-Phe (NWD-DMEPSF), Asn-Gly-Pro-Asp-Pro-Arg-Pro-Ser-Gln-Gln (NGPDPRPSQQ), Ala-Phe-Leu-Trp-Asn (AFLWA), Asn-Val-Pro-Asp-Met (NVPDM), and Thr-Phe-Pro-Ile-Tyr-Asp-Tyr-Pro-Gln (TFPIYDPQ), respectively, using a protein sequencer and ESI/MS. Among fifteen antioxidant peptides, SLPY, QYPPMQY and EYEA showed the highest scavenging activities on DPPH· (EC50 values of 1.18 ± 0.036, 1.547 ± 0.150, and 1.372 ± 0.274 mg/mL, respectively), HO· (EC50 values of 0.826 ± 0.027, 1.022 ± 0.058, and 0.946 ± 0.011 mg/mL, respectively), and superoxide anion radical (EC50 values of 0.789 ± 0.079, 0.913 ± 0.007, and 0.793 ± 0.056 mg/mL, respectively). Moreover, SLPY, QYPPMQY and EYEA showed strong reducing power, protective capability against H2O2-damaged plasmid DNA, and lipid peroxidation inhibition ability. Furthermore, SLPY, QYPPMQY, and EYEA had high stability under temperatures lower than 80 °C, pH values ranged from 6-8, and simulated GI digestion for 180 min. The results showed that fifteen antioxidant peptides from alcalase hydrolysate of Antarctic krill proteins, especially SLPY, QYPPMQY and EYEA, might serve as effective antioxidant agents applied in food and health products.
Collapse
Affiliation(s)
- Shuang-Yi Zhang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (S.-Y.Z.); (G.-X.Z.); (S.-K.S.); (Y.-M.W.)
| | - Guo-Xu Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (S.-Y.Z.); (G.-X.Z.); (S.-K.S.); (Y.-M.W.)
| | - Shi-Kun Suo
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (S.-Y.Z.); (G.-X.Z.); (S.-K.S.); (Y.-M.W.)
| | - Yu-Mei Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (S.-Y.Z.); (G.-X.Z.); (S.-K.S.); (Y.-M.W.)
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
- Correspondence: (C.-F.C.); (B.W.); Tel./Fax: +86-580-255-4818 (C.-F.C.); +86-580-255-4781 (B.W.)
| | - Bin Wang
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
- Correspondence: (C.-F.C.); (B.W.); Tel./Fax: +86-580-255-4818 (C.-F.C.); +86-580-255-4781 (B.W.)
| |
Collapse
|