1
|
Li Q, Zeng Z, Zhao Y, Li J, Chen F, Wang C. Genome-wide association study and linkage mapping reveal TaqW-6B associated with water-extractable arabinoxylan content in wheat grain. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:166. [PMID: 38907845 DOI: 10.1007/s00122-024-04662-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/08/2024] [Indexed: 06/24/2024]
Abstract
KEY MESSAGE A novel QTL, TaqW-6B of water-extractable arabinoxylan content in the wheat grain on chromosome 6BL was identified and fine mapped in a narrow region 3.8 Mb. Water-extractable arabinoxylan (WE-AX), an important component of hemicellulose, is associated with various abundant health benefits. In this study, QTLs for WE-AX content were detected in two populations: (1) a recombinant inbred line (RIL) population with 164 lines derived from a cross between Avocet and Chilero (AC population) genotyped with diversity array technology (DArT), and (2) a natural population of 243 varieties (CH population) genotyped with the Axiom wheat 660 K single-nucleotide polymorphism (SNP) array. A stable QTL Qwe-ax.haust-6B, explaining 8.51-15.59% of the phenotypic variance, was mapped in the physical interval 459.38-572.09 Mb on the long arm of chromosome 6B in the AC population, tightly linked with DArT markers 3,944,740 and 4,991,038 under three experimental conditions. The Qwe-ax.haust-6B was further narrowed down to be delimited in the physical interval 516.47-571.58 Mb on chromosome 6BL, explaining 5.86-16.27% of the phenotypic variance in the CH population. Furthermore, we developed high-throughput kompetitive allele-specific PCR (KASP) markers to reconstruct the genetic linkage map in the AC population, and Qwe-ax.haust-6B was fine mapped into a narrow region named TaqW-6B, which was compressed between KASP-6B-3 and KASP-6B-6 at a physical distance of 3.8 Mb. In the meanwhile, the markers were also validated in a natural population of 160 wheat lines (NP population). Consequently, this study is of great importance to provide the theoretical basis for cloning the key gene and developing functional markers for molecular breeding.
Collapse
Affiliation(s)
- Qiong Li
- College of Agronomy/Engineering Research Center for Utilization of Dryland Crop Germplasm Resources, Henan University of Science and Technology, Luoyang, 471000, Henan, China
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China
- Zhoukou Academy of Agricultural Sciences, Zhoukou, 466001, Henan, China
| | - Zhankui Zeng
- College of Agronomy/Engineering Research Center for Utilization of Dryland Crop Germplasm Resources, Henan University of Science and Technology, Luoyang, 471000, Henan, China
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China
| | - Yue Zhao
- College of Agronomy/Engineering Research Center for Utilization of Dryland Crop Germplasm Resources, Henan University of Science and Technology, Luoyang, 471000, Henan, China
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China
| | - Jiachuang Li
- College of Agronomy/Engineering Research Center for Utilization of Dryland Crop Germplasm Resources, Henan University of Science and Technology, Luoyang, 471000, Henan, China
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China
| | - Feng Chen
- College of Agronomy/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Longzihu College District, Zhengzhou, 450046, China.
| | - Chunping Wang
- College of Agronomy/Engineering Research Center for Utilization of Dryland Crop Germplasm Resources, Henan University of Science and Technology, Luoyang, 471000, Henan, China.
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
2
|
Jurkaninová L, Dvořáček V, Gregusová V, Havrlentová M. Cereal β-d-Glucans in Food Processing Applications and Nanotechnology Research. Foods 2024; 13:500. [PMID: 38338635 PMCID: PMC10855322 DOI: 10.3390/foods13030500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/21/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Cereal (1,3)(1,4)-β-d-glucans, known as β-d-glucans, are cell wall polysaccharides observed in selected plants of grasses, and oats and barley are their good natural sources. Thanks to their physicochemical properties β-d-glucans have therapeutic and nutritional potential and a specific place for their functional characteristics in diverse food formulations. They can function as thickeners, stabilizers, emulsifiers, and textural and gelation agents in beverages, bakery, meat, and extruded products. The objective of this review is to describe the primary procedures for the production of β-d-glucans from cereal grains, to define the processing factors influencing their properties, and to summarize their current use in the production of novel cereal-based foods. Additionally, the study delves into the utilization of β-d-glucans in the rapidly evolving field of nanotechnology, exploring potential applications within this technological realm.
Collapse
Affiliation(s)
- Lucie Jurkaninová
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 00 Praha, Czech Republic;
| | - Václav Dvořáček
- Crop Research Institute, Drnovská 507, 161 06 Prague, Czech Republic;
| | - Veronika Gregusová
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie J. Herdu 2, 917 01 Trnava, Slovakia;
| | - Michaela Havrlentová
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie J. Herdu 2, 917 01 Trnava, Slovakia;
- National Agricultural and Food Center—Research Institute of Plant Production, Bratislavská Cesta 122, 921 68 Piešťany, Slovakia
| |
Collapse
|
3
|
Yang Y, Wang X. Effects of coarse cereals on dough and Chinese steamed bread - a review. Front Nutr 2023; 10:1186860. [PMID: 37599688 PMCID: PMC10434817 DOI: 10.3389/fnut.2023.1186860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Chinese steamed breads (CSBs) are long-established staple foods in China. To enhance the nutritional value, coarse cereals such as oats, buckwheat, and quinoa have been added to the formulation for making CSBs. This review presents the nutritional value of various coarse cereals and analyses the interactions between the functional components of coarse cereals in the dough. The addition of coarse cereals leads to changes in the rheological, fermentation, and pasting aging properties of the dough, which further deteriorates the appearance and texture of CSBs. This review can provide some suggestions and guidelines for the production of staple and nutritious staple foods.
Collapse
Affiliation(s)
| | - Xinwei Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
4
|
Li Z, Zhang H, He L, Hou Y, Che Y, Liu T, Xiong S, Zhang X, Luo S, Liu C, Chen T. Influence of structural features and feruloylation on fermentability and ability to modulate gut microbiota of arabinoxylan in in vitro fermentation. Front Microbiol 2023; 13:1113601. [PMID: 36713199 PMCID: PMC9874102 DOI: 10.3389/fmicb.2022.1113601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Arabinoxylan (AX) is a versatile polysaccharide that shows various effects in modulating gut microbiota and health. The influence of arabinoxylan carbohydrate structural feature and feruloylation on fermentability and the effect of modulation of gut microbiota of AX was not clear. Methods Arabinoxylans from rice bran and corn bran (RAX and CAX), and their deferulyolated counterpart dRAX and dCAX were fermented using an in vitro fermentation model. Structural information was determined based on monosaccharide composition. Gas production of fermentation products, SCFAs production, pH change, and microbiota change were measured. Results RAX and dRAX posessed lower A/X ratio compared with CAX and dCAX. The gas and total SCFAs production were lower in RAX and dRAX, and the butyrate production were higher in RAX and dRAX compared with CAX and dCAX. Butyrate production was lower at dRAX compared to RAX. On the other hand, butyrate production was higher in dCAX than in CAX. The microbiota shift were different for the four fibers. Discussion The AXs from rice have a higher A/X ratio than the AXs from maize, suggesting more branching and a more complex side chain. The structural difference was crucial for the difference in fermentation pattern. Different Bacteroides species are responsible for the utilization of rice AXs and corn AXs. Although feruloylation had a minor effect on the overall fermentation pattern, it significantly affected butyrate production and alpha diversity. dRAX promoted less butyrate than RAX, which is associated with a significantly lower amount of Faecalibacterium prausnitzi. dCAX promoted more butyrate than CAX, which may be associated with a lower amount of Bacteroides ovatus and a higher amount of Blautia in dCAX compared to CAX. The effects of feruloylation on the fermentation pattern and the resulted microbiota shift of AX varied depending on the carbohydrate structure.
Collapse
Affiliation(s)
- Zhongxia Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China,BYHEALTH Institute of Nutrition and Health, Guangzhou, China
| | - Huibin Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Li He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Yaqin Hou
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Yingjuan Che
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Tian Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Shaobai Xiong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Xuguang Zhang
- BYHEALTH Institute of Nutrition and Health, Guangzhou, China
| | - Shunjing Luo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China,Chengmei Liu,
| | - Tingting Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China,*Correspondence: Tingting Chen,
| |
Collapse
|
5
|
Recent Developments in Molecular Characterization, Bioactivity, and Application of Arabinoxylans from Different Sources. Polymers (Basel) 2023; 15:polym15010225. [PMID: 36616574 PMCID: PMC9824288 DOI: 10.3390/polym15010225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Arabinoxylan (AX) is a polysaccharide composed of arabinose, xylose, and a small number of other carbohydrates. AX comes from a wide range of sources, and its physicochemical properties and physiological functions are closely related to its molecular characterization, such as branched chains, relative molecular masses, and substituents. In addition, AX also has antioxidant, hypoglycemic, antitumor, and proliferative abilities for intestinal probiotic flora, among other biological activities. AXs of various origins have different molecular characterizations in terms of molecular weight, degree of branching, and structure, with varying structures leading to diverse effects of the biological activity of AX. Therefore, this report describes the physical properties, biological activities, and applications of AX in diverse plants, aiming to provide a theoretical basis for future research on AX as well as provide more options for crop breeding.
Collapse
|
6
|
Khorasaniha R, Olof H, Voisin A, Armstrong K, Wine E, Vasanthan T, Armstrong H. Diversity of fibers in common foods: Key to advancing dietary research. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
7
|
Monitoring the effect of cell wall integrity in modulating the starch digestibility of durum wheat during different steps of bread making. Food Chem 2022; 396:133678. [PMID: 35849983 DOI: 10.1016/j.foodchem.2022.133678] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/29/2022] [Accepted: 07/09/2022] [Indexed: 11/20/2022]
Abstract
Reduction of starch digestibility in starchy foods is beneficial for lowering the risks for major non-communicable diseases. Preserving cell integrity is known to delay starch digestibility in flour but its effect in bread is not clear. In this study, the effect of increasing particle size on in vitro starch digestibility of durum wheat flour, dough, and bread was investigated. Cell integrity was retained during bread processing for medium (1000 µm-1800 µm), and large (>1800 µm) flour, whereas in small one cell walls were mostly damaged (<350 µm). In vitro starch digestibility of flour decreased increasing particle size, but no difference was found in dough. In bread, instead, a modest decrease of starch digestibility for the bread made by large particle was observed, likely due to its dense structure. In conclusion, a high particle size could limit starch digestibility in durum wheat flour but not in bread.
Collapse
|
8
|
Zhang Z, Yang P, Zhao J. Ferulic acid mediates prebiotic responses of cereal-derived arabinoxylans on host health. ANIMAL NUTRITION 2022; 9:31-38. [PMID: 35949987 PMCID: PMC9344318 DOI: 10.1016/j.aninu.2021.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/05/2021] [Accepted: 08/30/2021] [Indexed: 10/25/2022]
|
9
|
Nguyen TTL, Flanagan BM, Tao K, Ni D, Gidley MJ, Fox GP, Gilbert RG. Effect of processing on the solubility and molecular size of oat β-glucan and consequences for starch digestibility of oat-fortified noodles. Food Chem 2022; 372:131291. [PMID: 34638062 DOI: 10.1016/j.foodchem.2021.131291] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/11/2021] [Accepted: 09/29/2021] [Indexed: 11/04/2022]
Abstract
White wheat salted noodles containing oats have a slower digestion rate those without oats, with potential health benefits. Oat β-glucan may play an important role in this. Effects of sheeting and shearing during noodle-making and subsequent cooking on β-glucan concentration, solubility, molecular size and starch digestibility were investigated. The levels of β-glucan were reduced by 16% after cooking, due to the loss of β-glucan into the cooking water. Both the noodle-making process and cooking increased the solubility of β-glucan but did not change its average molecular size. Digestion profiles show that β-glucan in wholemeal oat flour did not change starch digestion rates compared with isolated starch, but reduced the starch digestion rate of oat-fortified wheat noodles compared to the control (wheat noodles). Confocal laser scanning microscopy suggests that interaction between β-glucan and protein contributes to the starch-protein matrix and changes noodle microstructure, and thus alters their digestibility.
Collapse
Affiliation(s)
- Thoa T L Nguyen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu Province, China; Queensland Alliance for Agriculture and Food Innovation (QAAFI), Centre for Nutrition and Food Sciences, The University of Queensland, Qld 4067, Australia; Faculty of Chemical Engineering, University of Science and Technology, The University of Danang, Danang 50000, Viet Nam
| | - Bernadine M Flanagan
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Centre for Nutrition and Food Sciences, The University of Queensland, Qld 4067, Australia
| | - Keyu Tao
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Centre for Nutrition and Food Sciences, The University of Queensland, Qld 4067, Australia
| | - Dongdong Ni
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Centre for Nutrition and Food Sciences, The University of Queensland, Qld 4067, Australia
| | - Michael J Gidley
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Centre for Nutrition and Food Sciences, The University of Queensland, Qld 4067, Australia
| | - Glen P Fox
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Centre for Nutrition and Food Sciences, The University of Queensland, Qld 4067, Australia; Department of Food Science and Technology, University of California Davis, CA 95616, USA
| | - Robert G Gilbert
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu Province, China; Queensland Alliance for Agriculture and Food Innovation (QAAFI), Centre for Nutrition and Food Sciences, The University of Queensland, Qld 4067, Australia.
| |
Collapse
|
10
|
Wang Q, Li L, Wang T, Zheng X. A review of extrusion-modified underutilized cereal flour: chemical composition, functionality, and its modulation on starchy food quality. Food Chem 2022; 370:131361. [PMID: 34788965 DOI: 10.1016/j.foodchem.2021.131361] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/09/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022]
Abstract
Compared with three major cereals, underutilized cereals (UCs) are those with less use but having abundant bioactive components and better functionalities after proper processing. As a productive and energy-efficient technology, extrusion has been used for UC modification to improve its technological and nutritional quality. Extrusion could induce structural and quantitative changes in chemical components of UC flour, the degree of which is affected by extrusion intensity. Based on the predominant component (starch), functionalities of extruded underutilized cereal flour (EUCF) and potential mechanisms are reviewed. Considering bioactive compounds, it also summarizes the physiological functions of EUCF. EUCF incorporation could modulate the dough rheological behavior and starchy foods quality. Controlling extrusion intensity or incorporation level of EUCF is vital to achieve sensory-appealing and nutritious products. This paper gives comprehensive information of EUCF to promote its utilization in novel staple foods.
Collapse
Affiliation(s)
- Qingfa Wang
- College of Grain, Oil and Food Science, Henan University of Technology, No.100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China
| | - Limin Li
- College of Grain, Oil and Food Science, Henan University of Technology, No.100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China
| | - Ting Wang
- College of Grain, Oil and Food Science, Henan University of Technology, No.100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China
| | - Xueling Zheng
- College of Grain, Oil and Food Science, Henan University of Technology, No.100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China.
| |
Collapse
|
11
|
Kaur P, Singh Sandhu K, Singh Purewal S, Kaur M, Kumar Singh S. Rye: A wonder crop with industrially important macromolecules and health benefits. Food Res Int 2021; 150:110769. [PMID: 34865784 DOI: 10.1016/j.foodres.2021.110769] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/16/2021] [Accepted: 10/18/2021] [Indexed: 01/21/2023]
Abstract
Rye (Secale cereale) is a rich source of macromolecules, especially starch, fiber, and proteins which encourages the researchers and industries to use it for various purposes including bakery products, beverages and edible films formulation. However, despite many nutritional and health benefiting properties, rye has not been explored up to its full potential. Interest of consumers in formulating foods with high fiber and phenolic compounds has generated our interest in compiling the detailed information on rye. The present review on rye grains summarizes the existing scientific data on rye macronutrients (starch, arabinoxylan, β-glucan, fructan and proteins) and their corresponding industrial importance. Detailed description in this review unfolds the potential of rye grains for human nutrition. This review provides comprehensive knowledge and fills the remaining gap between the previous and latest scientific findings. Comprehensive information on rye nutrients along with health benefits will help to open a new era for scientific world and industrial sectors.
Collapse
Affiliation(s)
- Pinderpal Kaur
- Department of Food Science and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Kawaljit Singh Sandhu
- Department of Food Science and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India.
| | - Sukhvinder Singh Purewal
- Department of Food Science and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Maninder Kaur
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar, India
| | | |
Collapse
|
12
|
Maina NH, Rieder A, De Bondt Y, Mäkelä-Salmi N, Sahlstrøm S, Mattila O, Lamothe LM, Nyström L, Courtin CM, Katina K, Poutanen K. Process-Induced Changes in the Quantity and Characteristics of Grain Dietary Fiber. Foods 2021; 10:foods10112566. [PMID: 34828846 PMCID: PMC8624990 DOI: 10.3390/foods10112566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/08/2021] [Accepted: 10/15/2021] [Indexed: 12/16/2022] Open
Abstract
Daily use of wholegrain foods is generally recommended due to strong epidemiological evidence of reduced risk of chronic diseases. Cereal grains, especially the bran part, have a high content of dietary fiber (DF). Cereal DF is an umbrella concept of heterogeneous polysaccharides of variable chemical composition and molecular weight, which are combined in a complex network in cereal cell walls. Cereal DF and its distinct components influence food digestion throughout the gastrointestinal tract and influence nutrient absorption and other physiological reactions. After repeated consumption of especially whole grain cereal foods, these effects manifest in well-demonstrated health benefits. As cereal DF is always consumed in the form of processed cereal food, it is important to know the effects of processing on DF to understand, safeguard and maximize these health effects. Endogenous and microbial enzymes, heat and mechanical energy during germination, fermentation, baking and extrusion destructurize the food and DF matrix and affect the quantity and properties of grain DF components: arabinoxylans (AX), beta-glucans, fructans and resistant starch (RS). Depolymerization is the most common change, leading to solubilization and loss of viscosity of DF polymers, which influences postprandial responses to food. Extensive hydrolysis may also remove oligosaccharides and change the colonic fermentability of DF. On the other hand, aggregation may also occur, leading to an increased amount of insoluble DF and the formation of RS. To understand the structure–function relationship of DF and to develop foods with targeted physiological benefits, it is important to invest in thorough characterization of DF present in processed cereal foods. Such understanding also demands collaborative work between food and nutritional sciences.
Collapse
Affiliation(s)
- Ndegwa H. Maina
- Department of Food and Nutrition, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland; (N.M.-S.); (K.K.)
- Correspondence:
| | - Anne Rieder
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, PB 210, N-1431 Ås, Norway; (A.R.); (S.S.)
| | - Yamina De Bondt
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, 3001 Leuven, Belgium; (Y.D.B.); (C.M.C.)
| | - Noora Mäkelä-Salmi
- Department of Food and Nutrition, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland; (N.M.-S.); (K.K.)
| | - Stefan Sahlstrøm
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, PB 210, N-1431 Ås, Norway; (A.R.); (S.S.)
| | - Outi Mattila
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 Espoo, Finland; (O.M.); (K.P.)
| | - Lisa M. Lamothe
- Nestlé Institute of Materials Science, Nestlé Research, Société des Produits Nestlé S.A. Route du Jorat 57, 1000 Lausanne 26, 1800 Vevey, Switzerland;
| | - Laura Nyström
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland;
| | - Christophe M. Courtin
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, 3001 Leuven, Belgium; (Y.D.B.); (C.M.C.)
| | - Kati Katina
- Department of Food and Nutrition, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland; (N.M.-S.); (K.K.)
| | - Kaisa Poutanen
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 Espoo, Finland; (O.M.); (K.P.)
| |
Collapse
|
13
|
Skendi A, Zinoviadou KG, Papageorgiou M, Rocha JM. Advances on the Valorisation and Functionalization of By-Products and Wastes from Cereal-Based Processing Industry. Foods 2020; 9:E1243. [PMID: 32899587 PMCID: PMC7554810 DOI: 10.3390/foods9091243] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/22/2022] Open
Abstract
Cereals have been one of the major food resources for human diets and animal feed for thousands of years, and a large quantity of by-products is generated throughout the entire processing food chain, from farm to fork. These by-products mostly consist of the germ and outer layers (bran) derived from dry and wet milling of the grains, of the brewers' spent grain generated in the brewing industry, or comprise other types obtained from the breadmaking and starch production industries. Cereal processing by-products are an excellent low-cost source of various compounds such as dietary fibres, proteins, carbohydrates and sugars, minerals and antioxidants (such as polyphenols and vitamins), among others. Often, they are downgraded and end up as waste or, in the best case, are used as animal feed or fertilizers. With the increase in world population coupled with the growing awareness about environmental sustainability and healthy life-styles and well-being, the interest of the industry and the global market to provide novel, sustainable and innovative solutions for the management of cereal-based by-products is also growing rapidly. In that respect, these promising materials can be valorised by applying various biotechnological techniques, thus leading to numerous economic and environmental advantages as well as important opportunities towards new product development (NPD) in the food and feed industry and other types such as chemical, packaging, nutraceutical (dietary supplements and food additives), cosmetic and pharmaceutical industries. This review aims at giving a scientific overview of the potential and the latest advances on the valorisation of cereal-based by-products and wastes. We intended it to be a reference document for scientists, technicians and all those chasing new research topics and opportunities to explore cereal-based by-products through a circular economy approach.
Collapse
Affiliation(s)
- Adriana Skendi
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece;
| | - Kyriaki G. Zinoviadou
- Department of Food Science and Technology, Perrotis College, American Farm School, GR-57001 Thessaloniki, Greece;
| | - Maria Papageorgiou
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece;
| | - João M. Rocha
- REQUIMTE—Chemistry and Technology Network, Green Chemistry Laboratory (LAQV), Department of Chemistry and Biochemistry, Faculty of Sciences—University of Porto (FCUP), Rua do Campo Alegre, s/n., P-4169-007 Porto, Portugal; or
| |
Collapse
|
14
|
Gastl M, Kupetz M, Becker T. Determination of Cytolytic Malt Modification – Part I: Influence of Variety Characteristics. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2020. [DOI: 10.1080/03610470.2020.1796156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- M. Gastl
- Lehrstuhl für Brau- und Getränketechnologie, Technische Universität München, Weihenstephan, Freising, Germany
| | - M. Kupetz
- Lehrstuhl für Brau- und Getränketechnologie, Technische Universität München, Weihenstephan, Freising, Germany
| | - T. Becker
- Lehrstuhl für Brau- und Getränketechnologie, Technische Universität München, Weihenstephan, Freising, Germany
| |
Collapse
|
15
|
Li M, Du J, Zhang K. Profiling of carbohydrates in commercial beers and their influence on beer quality. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3062-3070. [PMID: 32077484 DOI: 10.1002/jsfa.10337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/10/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The carbohydrates in beer play an important role as they are essential for fermentation. Any change in their composition may influence the sensory characteristics of the beer and so their determination is of great interest. This study compares the carbohydrates in three types of commercial beer - barley malt beer, wheat beer, and barley malt beer with adjuncts - and examines their influence on beer quality, which is important for selecting raw ingredients and production conditions, and for quality control. RESULTS Among the oligosaccharides in three types of beer, raffinose was the most, followed by maltotetraose, maltotriose and maltose. Monosaccharides were only present in small amounts. Dextrin, oligosaccharides with 2-6 polymerization degree and non-starch polysaccharides (NSP) make up 15.90-34.83%, 17.59-38.63%, and 2.33-7.47% of the total carbohydrates in beer, respectively. The dextrin content and NSP content were significantly (P < 0.05) different in wheat beer and barley malt beer, and their content was significantly (P < 0.01) correlated with the content of extracts in beer. Non-starch polysaccharide, dextrin, trisaccharide, and tetrasaccharide content significantly (P < 0.05) correlated with beer viscosity. These beer samples could be categorized clearly into three groups by principal component analysis. CONCLUSION The oligosaccharides in beer reflect yeast utilization, depending on the type of beer. Dextrin, oligosaccharides with 2-4 polymerization, and NSP, were major carbohydrates in beer. Their composition and concentration influenced its characteristics and quality, and played an important role in the discrimination of different beer types. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Miaomiao Li
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jinhua Du
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Kaili Zhang
- Shandong Taishan Beer Limited Co., Tai'an, China
| |
Collapse
|
16
|
Holland C, Ryden P, Edwards CH, Grundy MML. Plant Cell Walls: Impact on Nutrient Bioaccessibility and Digestibility. Foods 2020; 9:E201. [PMID: 32079083 PMCID: PMC7074226 DOI: 10.3390/foods9020201] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Cell walls are important structural components of plants, affecting both the bioaccessibility and subsequent digestibility of the nutrients that plant-based foods contain. These supramolecular structures are composed of complex heterogeneous networks primarily consisting of cellulose, and hemicellulosic and pectic polysaccharides. The composition and organization of these different polysaccharides vary depending on the type of plant tissue, imparting them with specific physicochemical properties. These properties dictate how the cell walls behave in the human gastrointestinal tract, and how amenable they are to digestion, thereby modulating nutrient release from the plant tissue. This short narrative review presents an overview of our current knowledge on cell walls and how they impact nutrient bioaccessibility and digestibility. Some of the most relevant methods currently used to characterize the food matrix and the cell walls are also described.
Collapse
Affiliation(s)
- Claire Holland
- School of Agriculture, Policy and Development, Sustainable Agriculture and Food Systems Division, University of Reading, Earley Gate, Reading RG6 6AR, UK;
| | - Peter Ryden
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UA, UK; (P.R.); (C.H.E.)
| | - Cathrina H. Edwards
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UA, UK; (P.R.); (C.H.E.)
| | - Myriam M.-L. Grundy
- School of Agriculture, Policy and Development, Sustainable Agriculture and Food Systems Division, University of Reading, Earley Gate, Reading RG6 6AR, UK;
| |
Collapse
|
17
|
Cereal-derived arabinoxylans: Structural features and structure–activity correlations. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.12.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Non-Starch Polysaccharides in Wheat Beers and Barley Malt beers: A Comparative Study. Foods 2020; 9:foods9020131. [PMID: 32012746 PMCID: PMC7073560 DOI: 10.3390/foods9020131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Non-starch polysaccharides (NSPs) in beers attract extensive attention due to their health benefits. The aim of this work was to investigate and compare NSPs including arabinoxylan, arabinogalactan, β–glucans, and mannose polymers in wheat and barley malt beers as well as the influence on its quality. NSPs in wheat beers (1953–2923 mg/L) were higher than that in barley malt beers (1442–1756 mg/L). Arabinoxylan was the most abundant followed by arabinogalactan. In contrast to barley malt beers, wheat beers contained more mannose polymers (130–182 mg/L) than β-glucan (26–99 mg/L), indicating that more arabinoxylan, arabinogalactan, and mannose polymers came from wheat malt. The substitution degree of arabinoxylan in wheat beers (0.57–0.66) was lower than that in barley malt beers (0.68–0.72), while the degree of polymerization (38–83) was higher (p < 0.05) than that in barley malt beers (38–48), indicating different structures of arabinoxylan derived from barley malt and wheat malt. NSPs, especially arabinoxylan content, positively correlated (p < 0.01) with real extract and viscosity of beers. Furthermore, wheat and barley malt beers were well separated in groups by principal component analysis.
Collapse
|
19
|
Henrion M, Francey C, Lê KA, Lamothe L. Cereal B-Glucans: The Impact of Processing and How It Affects Physiological Responses. Nutrients 2019; 11:E1729. [PMID: 31357461 PMCID: PMC6722849 DOI: 10.3390/nu11081729] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 12/29/2022] Open
Abstract
Cereal β-glucans are dietary fibres primarily found in oats and barley, and have several positive effects on health, including lowering the postprandial glucose response and the improvement of blood cholesterol levels. Cereal β-glucans have a specific combination of β-(1→4) and β-(1→3) linkages into linear long-chain polysaccharides of high molecular weight. Due to their particular structure, cereal β-glucans generate viscosity within the intestinal tract, which is thought to be the main mechanism of action responsible for their positive health effects. However, cereal grains are rarely consumed raw; at least one cooking step is generally required before they can be safely eaten. Cooking and processing methods more generally will modify the physicochemical characteristics of β-glucans, such as molecular weight, extractability and the resulting viscosity. Therefore, the health impact of β-glucans will depend not only on the dose administered, but also on the ways they are processed or converted into food products. This review aims at summarizing the different parameters that can affect β-glucans efficacy to improve glucose and lipid metabolism in humans.
Collapse
Affiliation(s)
- Muriel Henrion
- Science & Technology Dairy, Nestle Research & Development Orbe, Route de Chavornay 3, CH-1350 Orbe, Switzerland
| | - Célia Francey
- Institute of Health Sciences, Nestlé Research, Route du Jorat 57, CH-1000 Lausanne, Switzerland
| | - Kim-Anne Lê
- Institute of Health Sciences, Nestlé Research, Route du Jorat 57, CH-1000 Lausanne, Switzerland
| | - Lisa Lamothe
- Institute of Materials Science, Nestlé Research, Route du Jorat 57, CH-1000 Lausanne, Switzerland.
| |
Collapse
|
20
|
Dong JL, Wang L, Lü J, Zhu YY, Shen RL. Structural, antioxidant and adsorption properties of dietary fiber from foxtail millet (Setaria italica) bran. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3886-3894. [PMID: 30684279 DOI: 10.1002/jsfa.9611] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Foxtail millet (Setaria italica) bran is a by-product of millet processing, rich in dietary fiber (DF) and has great application value. A comparative study was conducted to explore the differences in structural and functional properties among millet bran DF, soluble dietary fiber (SDF) and insoluble dietary fiber (IDF). RESULTS There was a significant difference in the content of monosaccharides between SDF and IDF, in which xylose, arabinose and glucose were the main compositions. The results of scanning electron microscopy showed that DF and IDF had different forms of network structure, and SDF presented a sign of mutual adhesion. The total phenolic and flavonoid contents were 0.54 and 0.08 g kg-1 in SDF. Antioxidant activity of SDF was higher than that of IDF based on the evaluation of free radical scavenging and iron reducing capacity in vitro. Meanwhile, the glucose dialysis retardation index of IDF and SDF was 12.59% and 9.26% at 30 min, respectively. And, there was no significant difference in the adsorption capacity of glucose among different samples (P > 0.05). Furthermore, SDF had strong α-amylase inhibition (17.92% inhibition rate) and sodium cholate adsorption capacities; the adsorption amount was 16.76 g kg-1 in 2.00 g L-1 sodium cholate solution. CONCLUSION Foxtail millet bran DF, especially SDF, has good functional properties and would be a suitable ingredient for health-beneficial food production. However, the relevant verification trials in vivo need to be carried out in the next steps. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ji-Lin Dong
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China
- Collaborative Innovation Center of Food Production and Safety Henan Province, Zhengzhou, Henan, China
| | - Lei Wang
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China
- Collaborative Innovation Center of Food Production and Safety Henan Province, Zhengzhou, Henan, China
| | - Jing Lü
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Ying-Ying Zhu
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China
- Collaborative Innovation Center of Food Production and Safety Henan Province, Zhengzhou, Henan, China
| | - Rui-Ling Shen
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China
- Collaborative Innovation Center of Food Production and Safety Henan Province, Zhengzhou, Henan, China
| |
Collapse
|
21
|
Gartaula G, Dhital S, Netzel G, Flanagan BM, Yakubov GE, Beahan CT, Collins HM, Burton RA, Bacic A, Gidley MJ. Quantitative structural organisation model for wheat endosperm cell walls: Cellulose as an important constituent. Carbohydr Polym 2018; 196:199-208. [DOI: 10.1016/j.carbpol.2018.05.041] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 12/01/2022]
|
22
|
Comino P, Williams BA, Gidley MJ. In vitro fermentation gas kinetics and end-products of soluble and insoluble cereal flour dietary fibres are similar. Food Funct 2018; 9:898-905. [PMID: 29302665 DOI: 10.1039/c7fo01724c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Insoluble dietary fibre is often considered to be fermented slower and to a lesser extent in (models for) the colon than soluble dietary fibre. However these comparisons are typically made for fibre components of different composition. In the case of fibre from refined cereal flours, there is little difference in fibre composition between soluble and insoluble forms, so effects of solubility on fermentation can be tested without this confounding factor. For each of wheat, rye, and hull-less barley, soluble and insoluble fibre fractions from refined flour and models for baking and extrusion had comparable in vitro fermentation rates and extents, with similar levels of short chain fatty acid metabolites. This study suggests that there should be little difference in the large intestinal nutritional functionality of the soluble and insoluble fibre fractions from cereal grain flours, either unprocessed or after baking or extrusion processing.
Collapse
Affiliation(s)
- Penny Comino
- The University of Queensland, Centre for Nutrition and Food Sciences, ARC Centre of Excellence in Plant Cell Walls, Queensland Alliance for Agriculture and Food Innovation, St Lucia, 4072, Australia.
| | | | | |
Collapse
|
23
|
Fadel A, Plunkett A, Li W, Ranneh Y, Tessu Gyamfi VE, Salmon Y, Nyaranga RR, Ashworth J. Arabinoxylans from rice bran and wheat immunomodulatory potentials: a review article. NUTRITION & FOOD SCIENCE 2018; 48:97-110. [DOI: 10.1108/nfs-06-2017-0111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
The purpose of this study is to discuss recent research on arabinoxylans from rice bran and wheat byproducts and their immunomodulatory potentials. Also, a potential receptor for arabinoxylans is proposed in relation to arabinoxylans structure.
Design/methodology/approach
This review summarises recent publications on arabinoxylans from rice bran and wheat, classification of arabinoxylans, a brief background on their method of extraction and their immunomodulatory potentials as they induce pro-inflammatory response in vitro, in vivo and in humans. The mechanism of action in which arabinoxylans modulate the immune activity is yet to be discovered, However, the authors have proposed a potential receptor for arabinoxylans in relation to arabinoxylans structure and molecular weight.
Findings
The effects of arabinoxylans from rice bran and wheat on the immune response was found to cause a pro-inflammatory response in vitro, in vivo and in humans. Also, the immune response depends on arabinoxylans structure, the degree of branching and origin.
Originality/value
This review paper focuses on the effects of arabinoxylans from rice bran and wheat on immunomodulatory potentials in vitro, in vivo and in humans. A new mechanism of action has been proposed based on the literature and via linking between arabinoxylans and lipopolysaccharide structure, molecular weight and suggested proposed receptor, which might be activated via both of them.
Collapse
|
24
|
Liu R, Yang G, Guo J, Wu T, Sui W, Zhang M. Effects of incorporation of black garlic on rheological, textural and sensory properties of rye ( Secale cereale L.) flour noodles. CYTA - JOURNAL OF FOOD 2018. [DOI: 10.1080/19476337.2018.1515792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Education, Tianjin, China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center, Tianjin University of Science & Technology, Tianjin, China
- Engineering Research Center of Food Biotechnology, Tianjin University of Science & Technology, Ministry of Education, Tianjin, China
| | - Guang Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Jiamin Guo
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Education, Tianjin, China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center, Tianjin University of Science & Technology, Tianjin, China
- Engineering Research Center of Food Biotechnology, Tianjin University of Science & Technology, Ministry of Education, Tianjin, China
| |
Collapse
|
25
|
Djurle S, Andersson AA, Andersson R. Effects of baking on dietary fibre, with emphasis on β-glucan and resistant starch, in barley breads. J Cereal Sci 2018. [DOI: 10.1016/j.jcs.2017.10.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Fadel A, Mahmoud AM, Ashworth JJ, Li W, Ng YL, Plunkett A. Health-related effects and improving extractability of cereal arabinoxylans. Int J Biol Macromol 2017; 109:819-831. [PMID: 29133103 DOI: 10.1016/j.ijbiomac.2017.11.055] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 10/26/2017] [Accepted: 11/09/2017] [Indexed: 02/08/2023]
Abstract
Arabinoxylans (AXs) are major dietary fibers. They are composed of backbone chains of β-(1-4)-linked xylose residues to which α-l-arabinose are linked in the second and/or third carbon positions. Recently, AXs have attracted a great deal of attention because of their biological activities such as their immunomodulatory potential. Extraction of AXs has some difficulties; therefore, various methods have been used to increase the extractability of AXs with varying degrees of success, such as alkaline, enzymatic, mechanical extraction. However, some of these treatments have been reported to be either expensive, such as enzymatic treatments, or produce hazardous wastes and are non-environmentally friendly, such as alkaline treatments. On the other hand, mechanical assisted extraction, especially extrusion cooking, is an innovative pre-treatment that has been used to increase the solubility of AXs. The aim of the current review article is to point out the health-related effects and to discuss the current research on the extraction methods of AXs.
Collapse
Affiliation(s)
- Abdulmannan Fadel
- Department of Food and Nutrition, School of Health Psychology and Social Care, Manchester Metropolitan University, Manchester, United Kingdom
| | - Ayman M Mahmoud
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Egypt; Department of Endocrinology, Diabetes and Nutrition, Charité-University Medicine Berlin, Germany; Department of Endocrinology, Diabetes and Nutrition at the Center for Cardiovascular Research (CCR), Charité-University Medicine Berlin, Germany.
| | - Jason J Ashworth
- School of Healthcare Science, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Weili Li
- Institute of Food Science & Innovation, University of Chester, Chester, United Kingdom
| | - Yu Lam Ng
- Department of Food and Nutrition, School of Health Psychology and Social Care, Manchester Metropolitan University, Manchester, United Kingdom
| | - Andrew Plunkett
- Department of Food and Nutrition, School of Health Psychology and Social Care, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
27
|
Effects of high-speed homogenization and high-pressure homogenization on structure of tomato residue fibers. Food Chem 2017; 232:443-449. [DOI: 10.1016/j.foodchem.2017.04.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 01/27/2023]
|
28
|
Liu W, Brennan M, Serventi L, Brennan C. Effect of Wheat Bran on Dough Rheology and Final Quality of Chinese Steamed Bread. Cereal Chem 2017. [DOI: 10.1094/cchem-09-16-0234-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Wenjun Liu
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Science, Lincoln University, Lincoln 7647, Christchurch, New Zealand
| | - Margaret Brennan
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Science, Lincoln University, Lincoln 7647, Christchurch, New Zealand
| | - Luca Serventi
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Science, Lincoln University, Lincoln 7647, Christchurch, New Zealand
| | - Charles Brennan
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Science, Lincoln University, Lincoln 7647, Christchurch, New Zealand
| |
Collapse
|
29
|
Impact of hydrothermal and mechanical processing on dissolution kinetics and rheology of oat β-glucan. Carbohydr Polym 2017; 166:387-397. [PMID: 28385246 PMCID: PMC5388193 DOI: 10.1016/j.carbpol.2017.02.077] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/07/2017] [Accepted: 02/20/2017] [Indexed: 11/23/2022]
Abstract
Oat mixed-linkage β-glucan has been shown to lower fasting blood cholesterol concentrations due notably to an increase in digesta viscosity in the proximal gut. To exert its action, the polysaccharide has to be released from the food matrix and hydrated. The dissolution kinetics of β-glucan from three oat materials, varying in their structure, composition and degree of processing, was investigated by incubating the oats at 37°C over multiple time points (up to 72h). The samples were analysed for β-glucan content, weight-average molecular weight and rheological behaviour. Regardless of the materials studied and the processing applied, the solubilisation of β-glucan was not complete. Mechanical and hydrothermal processing led to differences in the viscosity flow curves of the recovered solutions, with the presence of particulates having a marked effect. This study revealed that the structure and processing methods applied to oat materials resulted in varied and complex rheological properties, especially when particulates are present.
Collapse
|
30
|
Djurle S, Andersson AA, Andersson R. Milling and extrusion of six barley varieties, effects on dietary fibre and starch content and composition. J Cereal Sci 2016. [DOI: 10.1016/j.jcs.2016.09.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Guiné RPF, Ferreira M, Correia P, Duarte J, Leal M, Rumbak I, Barić IC, Komes D, Satalić Z, Sarić MM, Tarcea M, Fazakas Z, Jovanoska D, Vanevski D, Vittadini E, Pellegrini N, Szűcs V, Harangozó J, EL-Kenawy A, EL-Shenawy O, Yalçın E, Kösemeci C, Klava D, Straumite E. Knowledge about dietary fibre: a fibre study framework. Int J Food Sci Nutr 2016; 67:707-14. [DOI: 10.1080/09637486.2016.1191443] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | | | - Paula Correia
- CI&DETS, Polytechnic Institute of Viseu, Viseu, Portugal
| | - João Duarte
- CI&DETS, Polytechnic Institute of Viseu, Viseu, Portugal
| | - Marcela Leal
- Faculty of Health Sciences, Maimonides University, Maimonides, Argentina
| | - Ivana Rumbak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Irena C. Barić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Drazenka Komes
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Zvonimir Satalić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | | | - Monica Tarcea
- University of Medicine and Pharmacy from Tirgu-Mures, Tirgu-Mures, Romania
| | - Zita Fazakas
- University of Medicine and Pharmacy from Tirgu-Mures, Tirgu-Mures, Romania
| | - Dijana Jovanoska
- Public Health Institute, Centre for Public Health, Tetovo, Macedonia
| | | | - Elena Vittadini
- Department of Food Science, University of Parma, Parma, Italy
| | | | - Viktória Szűcs
- National Agricultural R&I Centre – Food Science Research Institute, Budapest, Hungary
| | - Júlia Harangozó
- National Agricultural R&I Centre – Food Science Research Institute, Budapest, Hungary
| | - Ayman EL-Kenawy
- Genetic Engineering Institute, University of Sadat City, Sadat, Egypt
| | - Omnia EL-Shenawy
- Department of Psychology, Faculty of Arts, Menofiya University, Menofiya, Egypt
| | - Erkan Yalçın
- Department of Food Engineering, Abant İzzet Baysal University, Abant, Turkey
| | - Cem Kösemeci
- Department of Food Engineering, Abant İzzet Baysal University, Abant, Turkey
| | - Dace Klava
- LUA Latvia University of Agriculture, Jelgava, Latvia
| | | |
Collapse
|