1
|
Guo Z, Wu X, Jayan H, Yin L, Xue S, El-Seedi HR, Zou X. Recent developments and applications of surface enhanced Raman scattering spectroscopy in safety detection of fruits and vegetables. Food Chem 2024; 434:137469. [PMID: 37729780 DOI: 10.1016/j.foodchem.2023.137469] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/01/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
This article reviewed the latest research progress of Surface-enhanced Raman Spectroscopy (SERS) in the security detection of fruits and vegetables in recent years, especially in three aspects: pesticide residues, microbial toxin contamination and harmful microorganism infection. The binding mechanism and application potential of SERS detection materials (including universal type and special type) and carrier materials (namely rigid and flexible materials) were discussed. Finally, the application prospect of SERS in fruit and vegetable safety detection was explored, and the problems to be solved and development trends were put forward. The poor stability and reproducibility of SERS substrates make it difficult for practical applications. It is necessary to continuously optimize SERS substrates and develop small and portable Raman spectroscopy analyzers. In the future, SERS technology is expected to play an important role in human health, food safety and economy.
Collapse
Affiliation(s)
- Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xinchen Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Heera Jayan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Limei Yin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shanshan Xue
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE 751 24 Uppsala, Sweden; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang 212013, China
| |
Collapse
|
2
|
Guo Q, Peng Y, Chao K, Qin J, Chen Y, Yin T. A determination method for clenbuterol residue in pork based on optimal particle size gold colloid using SERS. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123097. [PMID: 37418907 DOI: 10.1016/j.saa.2023.123097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/27/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023]
Abstract
Clenbuterol is often used as a feed additive to increase the percentage of lean meat in livestock. Meat containing clenbuterol can cause many illnesses and even death for people. In this paper, the particle growth method was used to prepare gold colloids of different sizes, and the enhanced effectiveness of gold colloids of different sizes on clenbuterol in pork was investigated. The results showed that the gold colloid with the best enhanced effectiveness for clenbuterol had a particle size of approximately 90 nm. Second, a sample collection component was designed to detect clenbuterol from bottom to top, solving the problem of poor reproducibility of Surface-enhanced Raman scattering (SERS) detection caused by different droplet sizes and shapes. Then, the influence of different volumes of samples and concentrations of aggregating compounds on the enhanced effectiveness was optimized. The results showed that, based on the sample collection components designed in this article, 5 µL of enhanced substrate, 7.5 µL of clenbuterol and 3 µL of 1 mol/L mixed detection of NaCl solution had the best enhanced performance. Finally, 88 pork samples (0.5, 1, 1.5,…, 10, 12, 14 µg/g) with different concentrations were divided into correction sets and prediction sets in a ratio of 3:1. Unary linear regression models were established between the concentration of clenbuterol residue in the pork and the intensity of the bands at 390, 648, 1259, 1472, and 1601 cm-1. The results showed that the unary linear regression models at 390, 648, and 1259 cm-1 had lower root mean square errors than those at 1472 and 1601 cm-1. The intensity of the three bands and the concentration of clenbuterol residue in the pork were selected to establish a multiple linear regression model, and the concentration of clenbuterol residue in the pork was predicted. The results showed that the determination coefficients (R2) of the correction set and the prediction set were 0.99 and 0.99, respectively. The root mean square errors (RMSE) of the correction set and the prediction set were 0.169 and 0.184, respectively. The detection limit of clenbuterol in pork by this method is 42 ng/g, which can realize the crude screening of pork containing clenbuterol in the market.
Collapse
Affiliation(s)
- Qinghui Guo
- College of Engineering, National R&D Center for Agro-processing Equipment, China Agricultural University, Beijing 100083, China
| | - Yankun Peng
- College of Engineering, National R&D Center for Agro-processing Equipment, China Agricultural University, Beijing 100083, China.
| | - Kuanglin Chao
- USDA/ARS Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, 10300 Baltimore Ave., Beltsville, MD 20705, USA
| | - Jianwei Qin
- USDA/ARS Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, 10300 Baltimore Ave., Beltsville, MD 20705, USA
| | - Yahui Chen
- College of Engineering, National R&D Center for Agro-processing Equipment, China Agricultural University, Beijing 100083, China
| | - Tianzhen Yin
- College of Engineering, National R&D Center for Agro-processing Equipment, China Agricultural University, Beijing 100083, China
| |
Collapse
|
3
|
Yang T, Luo Z, Wang Y, Li L, Xu Y, Lin X. Hydrogel Digital LAMP with Suppressed Nonspecific Amplification for Rapid Diagnostics of Fungal Disease in Fresh Fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18636-18644. [PMID: 37975529 DOI: 10.1021/acs.jafc.3c06141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Fungal disease, mainly caused by Alternaria alternata infection, can generate severe economic losses and health hazards. However, rapid nucleic acid test without nonspecific reaction still remains challenging. Here, we reported the hydrogel digital loop-mediated isothermal amplification (HdLAMP) with suppressed nonspecific amplification for rapid diagnosis of fungi in fresh fruits. The introduction of hydrogel offered a simple platform to achieve absolute quantification. By breaking the 3'end G-C anchor, the nonspecific amplification of primers could be suppressed, while the specific positive reaction in HdLAMP was not affected. This method could be applied for A. alternata detection in 9 min with excellent performances in speed, specificity, reproducibility, sensitivity, and detection limit down to a single copy. Finally, the real diseased jujubes during postharvest storage were successfully diagnosed as an A. alternata infection. HdLAMP promotes the molecular diagnosis of fungal diseases and broadens the application of hydrogels in the agricultural and food industry.
Collapse
Affiliation(s)
- Tao Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
| | - Yiru Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Li Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
| | - Yanqun Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
4
|
Fan M, Rakotondrabe TF, Chen G, Guo M. Advances in microbial analysis: based on volatile organic compounds of microorganisms in food. Food Chem 2023; 418:135950. [PMID: 36989642 DOI: 10.1016/j.foodchem.2023.135950] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/30/2022] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
In recent years, microbial volatile organic compounds (mVOCs) produced by microbial metabolism have attracted more and more attention because they can be used to detect food early contamination and flaws. So far, many analytical methods have been reported for the determination of mVOCs in food, but few integrated review articles discussing these methods are published. Consequently, mVOCs as indicators of food microbiological contamination and their generation mechanism including carbohydrate, amino acid, and fatty acid metabolism are introduced. Meanwhile, a detailed summary of the mVOCs sampling methods such as headspace, purge trap, solid phase microextraction, and needle trap is presented, and a systematic and critical review of the analytical methods (ion mobility spectrometry, electronic nose, biosensor, and so on) of mVOCs and their application in the detection of food microbial contamination is highlighted. Finally, the future concepts that can help improve the detection of food mVOCs are prospected.
Collapse
Affiliation(s)
- Minxia Fan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Tojofaniry Fabien Rakotondrabe
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Prencipe S, Meloni GR, Nari L, Schiavon G, Spadaro D. Pathogenicity, Molecular Characterization, and Mycotoxigenic Potential of Alternaria spp. Agents of Black Spots on Fruit and Leaves of Pyrus communis in Italy. PHYTOPATHOLOGY 2023; 113:309-320. [PMID: 36167507 DOI: 10.1094/phyto-03-22-0103-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Brown and black spots, caused by Stemphylium and Alternaria species, are important fungal diseases affecting European pear (Pyrus communis) in orchards. Both fungal genera cause similar symptoms, which could favor misidentification, but Alternaria spp. are increasingly reported due to the changing climatic conditions. In this study, Alternaria spp. were isolated from symptomatic leaves and fruits of European pear, and their pathogenicity was evaluated on pear fruits from cultivar Abate Fétel, and molecular and chemical characterization were performed. Based on maximum likelihood phylogenetic analysis, 15 of 46 isolates were identified as A. arborescens species complex (AASC), 27 as A. alternata, and four as Alternaria sp. Both species were isolated from mature fruits and leaves. In pathogenicity assays on pear fruits, all isolates reproduced the symptoms observed in the field, by both wound inoculation and direct penetration. All but one isolate produced Alternaria toxins on European pears, including tenuazonic acid and alternariol (89.1% of the isolates), alternariol monomethyl ether (89.1%), altertoxin I (80.4%), altenuene (50.0%), and tentoxin (2.2%). These isolates also produced at least two mycotoxins, and 43.5% produced four mycotoxins, with an average total concentration of the Alternaria toxins exceeding 7.58 × 106 ng/kg. Our data underline the potential risks for human health related to the high mycotoxin content found on fruits affected by black spot. This study also represents the first report of AASC as an agent of black spot on European pear in Italy.
Collapse
Affiliation(s)
- Simona Prencipe
- Department of Agricultural, Forestry and Food Sciences (DiSAFA), University of Torino, via Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Giovanna Roberta Meloni
- Department of Agricultural, Forestry and Food Sciences (DiSAFA), University of Torino, via Paolo Braccini 2, 10095, Grugliasco, TO, Italy
- Centre of Competence for the Innovation in the Agro-Environmental Sector - AGROINNOVA, University of Turin, via Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Luca Nari
- Fondazione Agrion - Via Falicetto, 24, 12030, Manta, CN, Italy
| | - Giada Schiavon
- Department of Agricultural, Forestry and Food Sciences (DiSAFA), University of Torino, via Paolo Braccini 2, 10095, Grugliasco, TO, Italy
- Centre of Competence for the Innovation in the Agro-Environmental Sector - AGROINNOVA, University of Turin, via Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Davide Spadaro
- Department of Agricultural, Forestry and Food Sciences (DiSAFA), University of Torino, via Paolo Braccini 2, 10095, Grugliasco, TO, Italy
- Centre of Competence for the Innovation in the Agro-Environmental Sector - AGROINNOVA, University of Turin, via Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| |
Collapse
|
6
|
Lian K, Chen G, Wang X, Zhang W, Hu X, Wang H, Li Y, Xi D, Wang Y. Fluorescent detection of brown spot of tobacco caused by Alternaria alternata based on lambda exonuclease-induced DNAzyme amplification. RSC Adv 2023; 13:1587-1593. [PMID: 36688064 PMCID: PMC9827279 DOI: 10.1039/d2ra05616j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
A rapid, simple, and sensitive fluorescent detection method for brown spot of tobacco is established by lambda exonuclease-induced Mg2+-dependent DNAzyme amplification. It contains hybridization of the Alternaria alternata genome and HP1, digestion of the 5'-phosphorylated strand of the hybrid dsDNA by lambda exonuclease, acquisition of complete Mg2+-dependent DNAzyme, cleavage of the substrate modified with FAM and BHQ-1, and fluorescent detection. The proposed assay exhibits good sensitivity (10 pg L-1), selectivity and reproducibility. The method does not require pure DNA and expensive instruments, and can be performed within 2.5 hours. To the best of our knowledge, this is the first report of fluorescent detection of Alternaria alternata and its tobacco field samples. This method can be applied to the rapid and sensitive detection of Alternaria alternata in tobacco and its seedlings, and is particularly important for the green prevention and control of tobacco brown spot disease.
Collapse
Affiliation(s)
- Kai Lian
- College of Life Science, Linyi University Linyi 276005 China
| | - Guangyan Chen
- College of Life Science, Linyi University Linyi 276005 China
| | - Xiaoqiang Wang
- Plant Protection Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences Qingdao 266101 China
| | - Wenna Zhang
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University Linyi 276000 China
| | - Xihao Hu
- Shandong Tobacco Company Qingdao Branch Qingdao 266101 China
| | - Hui Wang
- Plant Protection Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences Qingdao 266101 China
| | - Yusen Li
- College of Life Science, Linyi University Linyi 276005 China
| | - Dongmei Xi
- College of Life Science, Linyi University Linyi 276005 China
| | - Ying Wang
- College of Life Science, Linyi University Linyi 276005 China
| |
Collapse
|
7
|
Yang J, Wang T, Gao W, Zhu C, Sha P, Dong P, Wu X. The novel sandwich composite structure: a new detection strategy for the ultra-sensitive detection of cyclotrimethylenetrinitramine (RDX). NANOTECHNOLOGY 2022; 33:355707. [PMID: 35580555 DOI: 10.1088/1361-6528/ac7059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
This study presents a novel sandwich composite structure that was designed for the ultra-sensitive detection of cyclotrimethylenetrinitramine (RDX). Au nanorod arrays (Au NRAs) were prepared and bound to 10-7M 6-MNA as adsorption sites for RDX, while Au nanorods (Au NRs) were modified using 10-5M 6-MNA as SERS probes. During detection, RDX molecules connect the SERS probe to the surface of the Au NRAs, forming a novel type of Au NRAs-RDX-Au NRs 'sandwich' composite structure. The electromagnetic coupling effect between Au NRs and Au NRAs is enhanced due to the molecular level of the connection spacing, resulting in new 'hot spots'. Meanwhile, Au NRAs and Au NRs have an auto-enhancement effect on 6-MNA. In addition, the presence of charge transfer in the formed 6-MNA-RDX complex induced chemical enhancement. The limits of detection of RDX evaluated by Raman spectroscopy using 6-MNA were as low as 10-12mg ml-1(4.5 × 10-15M) with good linear correlation between 10-12and 10-8mg ml-1(correlation coefficientR2 = 0.9985). This novel sandwich composite structure accurately detected RDX contamination in drinking water and on plant surfaces in an environment with detection limits as low as 10-12mg ml-1and 10-8mg ml-1.
Collapse
Affiliation(s)
- Jie Yang
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, People's Republic of China
| | - Tianran Wang
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, People's Republic of China
| | - Weiye Gao
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, People's Republic of China
| | - Chushu Zhu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, People's Republic of China
| | - Pengxing Sha
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, People's Republic of China
| | - Peitao Dong
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, People's Republic of China
| | - Xuezhong Wu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, People's Republic of China
| |
Collapse
|
8
|
Ramirez-Perez JC, A Reis T, Olivera CLP, Rizzutto MA. Impact of silver nanoparticles size on SERS for detection and identification of filamentous fungi. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:120980. [PMID: 35168033 DOI: 10.1016/j.saa.2022.120980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/22/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Using the proper size of nanoparticles as an active substrate, Surface-enhanced Raman scattering (SERS) can provide a reliable technique for detecting and identifying fungi, including Alternaria alternata, Aspergillus flavus, Fusarium verticilliodes, and Aspergillus parasiticus that have been associated to biodeterioration and biodegradation of cultural heritage materials. In this research spherical silver nanoparticles (AgNPs) of average size of 10, 30 and 60 nm were synthesized using the wet chemical method with good yield and their size and shape distributions were examined using small-angle X-ray scattering (SAXS). The protocol for fungi sample preparation proved to be critical for producing high-quality and reproducible SERS spectra. We found that the effect of AgNPs on SERS signal enhancement is size dependent under the same experimental conditions; the SERS intensity of fungal strains using 60 nm achieved up to 2.3x105 enhancement, about twice as intense as those produced with 30 nm, and 10 nm produced a minor broad weak peak barely discernible around 1400 cm-1, similar to the NR spectra profile in the 550-1700 cm-1 spectral region, and the SERS signals using 60 nm showed high reproducibility, with less than 20% variance. Furthermore, we used principal component analysis (PCA) to statistically classify the SERS spectrum into four separate clusters with 99 percent variability so that the four fungal strains could be clearly detected and identified. The SERS technique, in combination with the PCA developed in this study, provides a simple, rapid, accurate, and cost-effective analytical tool for detecting and identifying filamentous fungal strains.
Collapse
Affiliation(s)
- Javier Christian Ramirez-Perez
- Institute of Physics, Laboratory of Archaeometry and Science Applied to Cultural Heritage, University of Sao Paulo, Sao Paulo, Brazil.
| | - Tatiana A Reis
- Institute of Biosciences, Laboratory of Mycology of University of Sao Paulo, Sao Paulo, Brazil
| | - Cristiano L P Olivera
- Institute of Physics, Complex Fluids Group of University of Sao Paulo, Sao Paulo, Brazil
| | - Marcia A Rizzutto
- Institute of Physics, Laboratory of Archaeometry and Science Applied to Cultural Heritage, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
9
|
Agyekum AA, Kutsanedzie FYH, Mintah BK, Annavaram V, Braimah AO. Rapid Detection and Prediction of Norfloxacin in Fish Using Bimetallic Au@Ag Nano-Based SERS Sensor Coupled Multivariate Calibration. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
First Isolation and Identification of Neopestalotiopsis clavispora Causing Postharvest Rot of Rosa sterilis and Its Control with Methyl Jasmonate and Calcium Chloride. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Postharvest rot is a major issue in fruit. However, the cause of postharvest rot on R. sterilis fruit has not been clarified, and there are few studies on the disease control. In this study, the fungus causing postharvest rot is isolated from the symptomatic R. sterilis fruit, and identified by morphological characteristic, pathogenicity test and molecular identification. Moreover, the effects of methyl jasmonate (MeJA) or calcium chloride (CaCl2) alone and their combination on disease resistance to fruit rot were assessed by the determination of defense-related enzyme activity and other indicators. N. clavispora was identified as the main fungus causing the postharvest rot of R. sterilis fruit. The infected fruits were treated with MeJA and CaCl2, and these partially controlled the disease, were additive in effectiveness when used together, increased retention of vitamin C content and fruit firmness, and both enhanced and improved the retention of PAL, POD and PPO activities. The treatment of 500 μL/L MeJA and 3% CaCl2 resulted in the high inhibition of the disease. To our knowledge, this is the first report of N. clavispora causing R. sterilis fruit rot, and the combined treatment is a promising method for controlling postharvest rot on R. sterilis fruit.
Collapse
|
11
|
Ji Y, Hu L, Xiong W, Wang Y, Yang F, Shi M, Zhang H, Shao J, Lu C, Fang D, Deng H, Bian Z, Tang G, Liu S, Fan Z, Liu S. Highly sensitive time-resolved fluoroimmunoassay for the quantitative onsite detection of Alternaria longipes in tobacco. J Appl Microbiol 2022; 132:1250-1259. [PMID: 34312955 DOI: 10.1111/jam.15233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/05/2021] [Accepted: 07/19/2021] [Indexed: 12/20/2022]
Abstract
AIMS Alternaria longipes is a causal agent of brown spot of tobacco, which remains a serious threat to tobacco production. Herein, we established a detection method for A. longipes in tobacco samples based on the principle of time-resolved fluoroimmunoassay, in order to fulfil the requirement of rapid, sensitive and accurate detection in situ. METHODS AND RESULTS A monoclonal antibody against A. longipes was generated, and its purity and titration were assessed using western blot and ELISA. The size of europium (III) nanospheres was measured to confirm successful antibody conjugation. The method described here can detect A. longipes protein lysates as low as 0.78 ng ml-1 , with recovery rates ranging from 85.96% to 99.67% in spiked tobacco. The specificity was also confirmed using a panel of microorganisms. CONCLUSIONS The fluorescent strips allow rapid and sensitive onsite detection of A. longipes in tobacco samples, with high accuracy, specificity, and repeatability. SIGNIFICANCE AND IMPACT OF THE STUDY This novel detection method provides convenience of using crude samples without complex procedures, and therefore allows rapid onsite detection by end users and quick responses towards A. longipes, which is critical for disease control and elimination of phytopathogens.
Collapse
Affiliation(s)
- Yuan Ji
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Liwei Hu
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China
| | - Wei Xiong
- Sichuan Tobacco Quality Supervision and Testing Station, Chengdu, China
| | - Ying Wang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Fei Yang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Mowen Shi
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Haiyan Zhang
- Sichuan Tobacco Quality Supervision and Testing Station, Chengdu, China
| | - Jimin Shao
- Sichuan Tobacco Quality Supervision and Testing Station, Chengdu, China
| | - Canhua Lu
- Yunnan Academy of Tobacco Agricultural Sciences of China National Tobacco Corporation, Kunming, China
| | - Dunhuang Fang
- Yunnan Academy of Tobacco Agricultural Sciences of China National Tobacco Corporation, Kunming, China
| | - Huimin Deng
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Zhaoyang Bian
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Gangling Tang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Shili Liu
- Department of Medical Microbiology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Ziyan Fan
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Shanshan Liu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| |
Collapse
|
12
|
Okere EE, Arendse E, Nieuwoudt H, Fawole OA, Perold WJ, Opara UL. Non-Invasive Methods for Predicting the Quality of Processed Horticultural Food Products, with Emphasis on Dried Powders, Juices and Oils: A Review. Foods 2021; 10:foods10123061. [PMID: 34945612 PMCID: PMC8701083 DOI: 10.3390/foods10123061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
This review covers recent developments in the field of non-invasive techniques for the quality assessment of processed horticultural products over the past decade. The concept of quality and various quality characteristics related to evaluating processed horticultural products are detailed. A brief overview of non-invasive methods, including spectroscopic techniques, nuclear magnetic resonance, and hyperspectral imaging techniques, is presented. This review highlights their application to predict quality attributes of different processed horticultural products (e.g., powders, juices, and oils). A concise summary of their potential commercial application for quality assessment, control, and monitoring of processed agricultural products is provided. Finally, we discuss their limitations and highlight other emerging non-invasive techniques applicable for monitoring and evaluating the quality attributes of processed horticultural products. Our findings suggest that infrared spectroscopy (both near and mid) has been the preferred choice for the non-invasive assessment of processed horticultural products, such as juices, oils, and powders, and can be adapted for on-line quality control. Raman spectroscopy has shown potential in the analysis of powdered products. However, imaging techniques, such as hyperspectral imaging and X-ray computed tomography, require improvement on data acquisition, processing times, and reduction in the cost and size of the devices so that they can be adopted for on-line measurements at processing facilities. Overall, this review suggests that non-invasive techniques have the potential for industrial application and can be used for quality assessment.
Collapse
Affiliation(s)
- Emmanuel Ekene Okere
- SARChI Postharvest Technology Research Laboratory, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa; (E.E.O.); (E.A.)
- Department of Electrical and Electronic Engineering, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa;
| | - Ebrahiema Arendse
- SARChI Postharvest Technology Research Laboratory, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa; (E.E.O.); (E.A.)
| | - Helene Nieuwoudt
- Department Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa;
| | - Olaniyi Amos Fawole
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa;
| | - Willem Jacobus Perold
- Department of Electrical and Electronic Engineering, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa;
| | - Umezuruike Linus Opara
- SARChI Postharvest Technology Research Laboratory, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa; (E.E.O.); (E.A.)
- UNESCO International Centre for Biotechnology, Nsukka 410001, Nigeria
- Correspondence: or
| |
Collapse
|
13
|
Pan TT, Guo MT, Guo W, Lu P, Hu DY. A Sensitive SERS Method for Determination of Pymetrozine in Apple and Cabbage Based on an Easily Prepared Substrate. Foods 2021; 10:1874. [PMID: 34441651 PMCID: PMC8392414 DOI: 10.3390/foods10081874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 11/03/2022] Open
Abstract
Residual pesticides are one of the major food safety concerns around the world. There is a demand for simple and reliable methods to monitor pesticide residues in foods. In this study, a sensitive method for determination of pymetrozine in apple and cabbage samples using surface-enhanced Raman spectroscopy (SERS) based on decanethiol functionalized silver nanoparticles was established. The proposed method performed satisfactorily with the linear detection range of 0.01-1.00 mg/L and limit of detection (LOD) of 0.01 mg/L in methanol. In addition, it was successfully used to detect pymetrozine in apple and cabbage samples, the LOD was 0.02 and 0.03 mg/L, respectively, and the recoveries of spiked cabbage and apple ranged 70.40-104.00%, with relative standard deviations below 12.18% and 10.33% for intra-day and inter-day tests. Moreover, the results of the correlation test with real cabbage samples of liquid chromatography-tandem mass spectrometry showed that they were highly correlated (slope = 0.9895, R2 = 0.9953). This study provides a sensitive approach for detection of pymetrozine in apple and cabbage, which has great potential for determination of pymetrozine residues in food products.
Collapse
Affiliation(s)
- Ting-Tiao Pan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; (T.-T.P.); (M.-T.G.); (W.G.); (P.L.)
- College of Biological Sciences and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Mei-Ting Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; (T.-T.P.); (M.-T.G.); (W.G.); (P.L.)
| | - Wang Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; (T.-T.P.); (M.-T.G.); (W.G.); (P.L.)
| | - Ping Lu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; (T.-T.P.); (M.-T.G.); (W.G.); (P.L.)
| | - De-Yu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; (T.-T.P.); (M.-T.G.); (W.G.); (P.L.)
| |
Collapse
|
14
|
Pan TT, Guo W, Lu P, Hu D. In situ and rapid determination of acetamiprid residue on cabbage leaf using surface-enhanced Raman scattering. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3595-3604. [PMID: 33275280 DOI: 10.1002/jsfa.10988] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/12/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pesticide residues in agricultural products and foods pose a serious threat to human health, and therefore a simple, rapid and direct method is urgently needed for pesticide residue detection. In addition to realizing the detection of acetamiprid in cabbage extract solution, the main target of this study was to establish an in situ surface-enhanced Raman scattering (SERS) method, which could directly detect acetamiprid residue on cabbage leaf without the need for extraction. Acetamiprid was first used to contaminate the surface of fresh cabbage leaf, and then bimetallic silver-coated gold nanoparticles (Au@AgNPs) were added on the contaminated spots and dried for SERS measurement. RESULTS Results suggested that acetamiprid can be detected in cabbage extract and on cabbage leaf surface in situ using the SERS method based on the Au@AgNPs substrate. The limit of detection was 0.08 μg mL-1 in cabbage extract and 0.14 mg kg-1 on cabbage leaf, the recovery ranged from 80.5% to 105.5% and the relative standard deviation was in the range 4.37-10.63%. CONCLUSIONS The proposed SERS method provides an in situ, nondestructive and rapid way to detect acetamiprid residue on the surface of fruits and vegetables, which could serve as an auxiliary approach for early screening of contaminated produce in field or on site in the future. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ting-Tiao Pan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- College of Biological Sciences and Agriculture, Qiannan Normal University for Nationalities, Duyun, China
| | - Wang Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Ping Lu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
15
|
Petersen M, Yu Z, Lu X. Application of Raman Spectroscopic Methods in Food Safety: A Review. BIOSENSORS 2021; 11:187. [PMID: 34201167 PMCID: PMC8229164 DOI: 10.3390/bios11060187] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022]
Abstract
Food detection technologies play a vital role in ensuring food safety in the supply chains. Conventional food detection methods for biological, chemical, and physical contaminants are labor-intensive, expensive, time-consuming, and often alter the food samples. These limitations drive the need of the food industry for developing more practical food detection tools that can detect contaminants of all three classes. Raman spectroscopy can offer widespread food safety assessment in a non-destructive, ease-to-operate, sensitive, and rapid manner. Recent advances of Raman spectroscopic methods further improve the detection capabilities of food contaminants, which largely boosts its applications in food safety. In this review, we introduce the basic principles of Raman spectroscopy, surface-enhanced Raman spectroscopy (SERS), and micro-Raman spectroscopy and imaging; summarize the recent progress to detect biological, chemical, and physical hazards in foods; and discuss the limitations and future perspectives of Raman spectroscopic methods for food safety surveillance. This review is aimed to emphasize potential opportunities for applying Raman spectroscopic methods as a promising technique for food safety detection.
Collapse
Affiliation(s)
- Marlen Petersen
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (M.P.); (Z.Y.)
| | - Zhilong Yu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (M.P.); (Z.Y.)
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Saint-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (M.P.); (Z.Y.)
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Saint-Anne-de-Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
16
|
Li D, Zhu Z, Sun DW. Visualization of the in situ distribution of contents and hydrogen bonding states of cellular level water in apple tissues by confocal Raman microscopy. Analyst 2020; 145:897-907. [PMID: 31820748 DOI: 10.1039/c9an01743g] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Raman spectroscopy has been employed for studying the hydrogen bonding states of water molecules for decades, however, Raman imaging data contain thousands of spectra, making it challenging to obtain information on water with different hydrogen bonds. In the current study, a novel method combining confocal Raman microscopy (CRM) imaging with the iterative curve fitting algorithms was developed to determine the distribution of water contents at the cellular level and water states with different hydrogen bonds in apple tissues. Raman imaging data ranging from 2700 to 3800 cm-1 were acquired from whole cells in the apple tissue, which were then decomposed into seven sub-peaks using the fixed-position Gaussian iterative curve fitting (FPGICF) algorithm. The content and hydrogen bonding states of cellular water were calculated as the area sum of the OH stretching vibration and the area ratio of DA-OH over DDAA-OH stretching vibration or the number of hydrogen bonds of each water molecule, respectively. Finally, the area of each sub-peak, the area sum of the OH stretching vibration, and the area ratio of DA-OH over DDAA-OH stretching vibration were used to visualize the distribution of each sub-peak, water contents and water states with different hydrogen bonds, respectively. In addition, it was found that the number of hydrogen bonds of each water molecule could also be considered as a criterion to describe the hydrogen bond states of water in apple tissues. The availability of such information should provide new insights for future study of cellular water in other food materials.
Collapse
Affiliation(s)
- Dongmei Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | | | | |
Collapse
|
17
|
Hussain A, Sun DW, Pu H. Bimetallic core shelled nanoparticles (Au@AgNPs) for rapid detection of thiram and dicyandiamide contaminants in liquid milk using SERS. Food Chem 2020; 317:126429. [DOI: 10.1016/j.foodchem.2020.126429] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 07/30/2019] [Accepted: 02/17/2020] [Indexed: 01/03/2023]
|
18
|
Two-dimensional Au@Ag nanodot array for sensing dual-fungicides in fruit juices with surface-enhanced Raman spectroscopy technique. Food Chem 2020; 310:125923. [DOI: 10.1016/j.foodchem.2019.125923] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 10/15/2019] [Accepted: 11/17/2019] [Indexed: 11/22/2022]
|
19
|
Hussain A, Pu H, Sun DW. SERS detection of sodium thiocyanate and benzoic acid preservatives in liquid milk using cysteamine functionalized core-shelled nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117994. [PMID: 31951941 DOI: 10.1016/j.saa.2019.117994] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/25/2019] [Accepted: 12/25/2019] [Indexed: 05/04/2023]
Abstract
A cysteamine functionalized core shelled nanoparticles (Au@Ag-CysNPs) was presented for simultaneous and rapid detection of sodium thiocyanate (STC) and benzoic acid (BA) preservatives in liquid milk using surface-enhanced Raman spectroscopy (SERS) technique. A spectrum covering 350-2350 cm-1 region was selected to detect STC with concentrations ranging from 0.5 to 10 mg/L and BA with concentrations ranging from 15 to 240 mg/L in milk samples. Characterization of nanoparticles using high-resolution TEM confirmed that the successful synthesis of Au@AgNPs with core (gold) size of 28 nm and shell (silver) thickness of about 5 nm was grafted with 120 μL of 0.1 nM cysteamine hydrochloride. Results showed that Au@Ag-CysNPs could be used to detect STC up to 0.03 mg/L with a limit of quantification (LOQ) of 0.039 mg/L and a coefficient of determination (R2) of 0.9833 in the milk sample. For detecting BA, it could be screened up to 9.8 mg/L with LOQ of 10.2 mg/L and R2 of 0.9903. The proposed substrate was also highly sensitive and the employed method involved only minor sample pretreatment steps. It is thus hoped that the new substrate could be used in the screening of prohibited chemicals in complex food matrices in future studies.
Collapse
Affiliation(s)
- Abid Hussain
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
20
|
Recent development in rapid detection techniques for microorganism activities in food matrices using bio-recognition: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.11.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Wang K, Sun DW, Pu H, Wei Q. A rapid dual-channel readout approach for sensing carbendazim with 4-aminobenzenethiol-functionalized core–shell Au@Ag nanoparticles. Analyst 2020; 145:1801-1809. [DOI: 10.1039/c9an02185j] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this study, a 4-aminobenzenethiol-functionalized silver-coated gold nanoparticle (Au@Ag-4ABT NP) system was designed for the rapid sensing of carbendazim (CBZ) using a combination of naked-eye colorimetry and SERS dual-channel approach.
Collapse
Affiliation(s)
- Kaiqiang Wang
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- Academy of Contemporary Food Engineering
| | - Da-Wen Sun
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- Academy of Contemporary Food Engineering
| | - Hongbin Pu
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- Academy of Contemporary Food Engineering
| | - Qingyi Wei
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- Academy of Contemporary Food Engineering
| |
Collapse
|
22
|
Recent advances in detecting and regulating ethylene concentrations for shelf-life extension and maturity control of fruit: A review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.06.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Huang L, Sun DW, Pu H, Wei Q. Development of Nanozymes for Food Quality and Safety Detection: Principles and Recent Applications. Compr Rev Food Sci Food Saf 2019; 18:1496-1513. [PMID: 33336906 DOI: 10.1111/1541-4337.12485] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/10/2019] [Accepted: 06/30/2019] [Indexed: 12/22/2022]
Abstract
The public concerns about agrifood safety call for innovative and reformative analytical techniques to meet the inspection requirements of high sensitivity, specificity, and reproducibility. Enzyme-mimetic nanomaterials or nanozymes, which combine enzyme-like properties with nanoscale features, emerge as an excellent tool for quality and safety detection in the agrifood sector, due to not only their robust capacity in detection but also their attraction in future-oriented exploitations. However, in-depth understanding about the fundamental principles of nanozymes for food quality and safety detection remains limited, which makes their applications largely empirical. This review provides a comprehensive overview of the principles, designs, and applications of nanozyme-based detection technique in the agrifood industry. The discussion mainly involves three mimicking types, that is, peroxidase, oxidase, and catalase-like nanozymes, capable of detecting major agrifood analytes. The current principles and strategies are classified and then discussed in details through discriminating the roles of nanozymes in diverse detection platforms. Thereafter, recent applications of nanozymes in detecting various endogenous ingredients and exogenous contaminants in foods are reviewed, and the outlook of profound developments are explained. Evidenced by the increasing publications, nanozyme-based detection techniques are narrowing the gap to practical-oriented food analytical methods, while some challenges in optimization of nanozymes, diversification of recognition-to-signal manners, and sustainability of methodology need to conquer in the future.
Collapse
Affiliation(s)
- Lunjie Huang
- School of Food Science and Engineering, South China Univ. of Technology, Guangzhou, 510641, China.,Academy of Contemporary Food Engineering, South China Univ. of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China Univ. of Technology, Guangzhou, 510641, China.,Academy of Contemporary Food Engineering, South China Univ. of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, Univ. College Dublin, Natl. Univ. of Ireland, Belfield, Dublin 4, Ireland
| | - Hongbin Pu
- School of Food Science and Engineering, South China Univ. of Technology, Guangzhou, 510641, China.,Academy of Contemporary Food Engineering, South China Univ. of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Qingyi Wei
- School of Food Science and Engineering, South China Univ. of Technology, Guangzhou, 510641, China.,Academy of Contemporary Food Engineering, South China Univ. of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| |
Collapse
|
24
|
Yaseen T, Pu H, Sun DW. Effects of Ions on Core-Shell Bimetallic Au@Ag NPs for Rapid Detection of Phosalone Residues in Peach by SERS. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01454-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Developments of nondestructive techniques for evaluating quality attributes of cheeses: A review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.04.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Pu H, Huang Z, Sun DW, Fu H. Recent advances in the detection of 17β-estradiol in food matrices: A review. Crit Rev Food Sci Nutr 2019; 59:2144-2157. [PMID: 31084362 DOI: 10.1080/10408398.2019.1611539] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pollution of endocrine disrupting chemicals has become a global issue. As one of the hormonally active compounds, 17β-estradiol produces the strongest estrogenic effect when it enters the organism exogenously including food intakes, bringing potential harmfulness such as malfunction of the endocrine system. Therefore, in order to assure food safety and avoid potential risks of 17β-estradiol to humans, it is of great significance to develop rapid, sensitive and selective approaches for the detection of 17β-estradiol in food matrices. In this review, the harmfulness and main sources of 17β-estradiol are firstly introduced, followed by the description of the principles and applications of different approaches for 17β-estradiol detection including high performance liquid chromatography, electrochemistry, Raman spectroscopy, fluorescence and colorimetry. Particularly, applications in detecting 17β-estradiol in food matrices over the years of 2010-2018 are discussed. Finally, advantages and limitations of these detection methods are highlighted and perspectives on future developments in the detection methods for 17β-estradiol are also proposed. Although many detection approaches can achieve trace or ultratrace detection of 17β-estradiol, further studies should be focused on the development of in-situ and real-time methods to monitor and evaluate 17β-estradiol for food safety.
Collapse
Affiliation(s)
- Hongbin Pu
- a School of Food Science and Engineering , South China University of Technology , Guangzhou , China.,b Academy of Contemporary Food Engineering , South China University of Technology, Guangzhou Higher Education Mega Center , Guangzhou , China.,c Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods , Guangzhou Higher Education Mega Center , Guangzhou , China
| | - Zhibin Huang
- a School of Food Science and Engineering , South China University of Technology , Guangzhou , China.,b Academy of Contemporary Food Engineering , South China University of Technology, Guangzhou Higher Education Mega Center , Guangzhou , China.,c Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods , Guangzhou Higher Education Mega Center , Guangzhou , China
| | - Da-Wen Sun
- a School of Food Science and Engineering , South China University of Technology , Guangzhou , China.,b Academy of Contemporary Food Engineering , South China University of Technology, Guangzhou Higher Education Mega Center , Guangzhou , China.,c Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods , Guangzhou Higher Education Mega Center , Guangzhou , China.,d Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre , University College Dublin, National University of Ireland , Belfield , Dublin 4 , Ireland
| | - Haohua Fu
- e Tang Renshen Group Co., Ltd , Zhuzhou , China
| |
Collapse
|
27
|
Yaseen T, Pu H, Sun DW. Fabrication of silver-coated gold nanoparticles to simultaneously detect multi-class insecticide residues in peach with SERS technique. Talanta 2019; 196:537-545. [DOI: 10.1016/j.talanta.2018.12.030] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 12/18/2022]
|
28
|
Hussain A, Sun DW, Pu H. SERS detection of urea and ammonium sulfate adulterants in milk with coffee ring effect. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:851-862. [DOI: 10.1080/19440049.2019.1591643] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Abid Hussain
- School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, PR China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, PR China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, PR China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| |
Collapse
|
29
|
Yaseen T, Pu H, Sun DW. Rapid detection of multiple organophosphorus pesticides (triazophos and parathion-methyl) residues in peach by SERS based on core-shell bimetallic Au@Ag NPs. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:762-778. [DOI: 10.1080/19440049.2019.1582806] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tehseen Yaseen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
- Academy of Contemporary Food Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou, PR China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
- Academy of Contemporary Food Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou, PR China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
- Academy of Contemporary Food Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou, PR China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin, Ireland
| |
Collapse
|
30
|
Shell thickness-dependent Au@Ag nanoparticles aggregates for high-performance SERS applications. Talanta 2019; 195:506-515. [DOI: 10.1016/j.talanta.2018.11.057] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 01/05/2023]
|
31
|
Ultrasensitive analysis of kanamycin residue in milk by SERS-based aptasensor. Talanta 2019; 197:151-158. [PMID: 30771917 DOI: 10.1016/j.talanta.2019.01.015] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/27/2018] [Accepted: 01/03/2019] [Indexed: 12/16/2022]
Abstract
An ultrasensitive method for the kanamycin (KANA) detection in milk sample using surface-enhanced Raman spectroscopy-based aptasensor was employed in the current study. Double strand DNA binding bimetallic gold@silver nanoparticles were developed as a sensing platform. Probe DNAs were first embedded on the surface of gold nanoparticles by the end-modified thiol, and after silver shell encapsulating, KANA aptamer DNAs with the Raman reporter Cy3 were then hybridized with probe DNAs by complementary base pairing. Results showed that with increase in the KANA concentration, the Raman intensity of Cy3 decreased. Besides achieving selectivity, an ultralow detection limit of 0.90 pg/mL, a broad linear relationship ranging from 10 μg/mL to 100 ng/mL in aqueous reagent and satisfactory recoveries of 90.4-112% in liquid whole milk were obtained. The result of actual sample proved that this aptasensor was promising in trace determination of KANA residue.
Collapse
|
32
|
Surface-enhanced Raman scattering of core-shell Au@Ag nanoparticles aggregates for rapid detection of difenoconazole in grapes. Talanta 2019; 191:449-456. [DOI: 10.1016/j.talanta.2018.08.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/29/2018] [Accepted: 08/01/2018] [Indexed: 12/15/2022]
|
33
|
Hussain A, Pu H, Sun DW. Measurements of lycopene contents in fruit: A review of recent developments in conventional and novel techniques. Crit Rev Food Sci Nutr 2018; 59:758-769. [DOI: 10.1080/10408398.2018.1518896] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Abid Hussain
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| |
Collapse
|
34
|
Fu G, Sun DW, Pu H, Wei Q. Fabrication of gold nanorods for SERS detection of thiabendazole in apple. Talanta 2018; 195:841-849. [PMID: 30625626 DOI: 10.1016/j.talanta.2018.11.114] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 12/13/2022]
Abstract
Thiabendazole (TBZ) is a kind of pesticide that is widely used in agriculture, and its residue may pose a threat to human health. In order to measure TBZ residues in food samples, a surface-enhanced Raman spectroscopy (SERS) method combined with a homogeneous and reusable gold nanorods (GNR) array substrate was proposed. GNR with a high uniformity was synthesized and then applied to the self-assembly of a GNR vertically aligned array. The relative standard deviation (RSD) of the array for SERS could reach 15.4%, and the array could be reused for more than seven times through the treatment of plasma etching. A logarithmic correlation between TBZ concentration and Raman intensity was obtained, with the best determination coefficient (R2) and the corresponding limit of detection (LOD) of 0.991 and 0.037 mg/L in methanol solution, and 0.980 and 0.06 ppm in apple samples, respectively. The recoveries of TBZ in apple samples ranged from 76% to 107%. This study provided a rapid and sensitive approach for detecting TBZ in apples based on SERS coupled with GNR array substrate, showing great potential for analyzing other trace contaminants in food matrices.
Collapse
Affiliation(s)
- Gendi Fu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Qingyi Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| |
Collapse
|
35
|
Wei Q, Liu T, Sun DW. Advanced glycation end-products (AGEs) in foods and their detecting techniques and methods: A review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.09.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
36
|
Pan TT, Sun DW, Paliwal J, Pu H, Wei Q. New Method for Accurate Determination of Polyphenol Oxidase Activity Based on Reduction in SERS Intensity of Catechol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11180-11187. [PMID: 30209938 DOI: 10.1021/acs.jafc.8b03985] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Rapid and accurate measurement of polyphenol oxidase (PPO) activity is important in the food industry as PPOs play a vital role in catalyzing enzymatic reactions. The aim of this study was to develop surface-enhanced Raman scattering (SERS) approach for accurate determination of PPO activity in fruit and vegetables using the reduction in SERS intensity of catechol in reaction medium. Within a certain catechol concentration, when a purified PPO solution was analyzed, the reduction in SERS intensity (Δ I) was linear to PPO activity ( Ec) in a wide range of 500-50 000 U/L, and a linear regression equation of log Δ I/Δ t = 0.6223 log Ec + 0.8072, with a correlation coefficient of 0.9689 and a limit of detection of 224.65 U/L, was obtained. The method was used for detecting PPO activity in apple and potato samples, and the results were compared with those obtained from colorimetric assay, which demonstrated that the proposed method could be successfully used for detecting PPO activity in food samples.
Collapse
Affiliation(s)
- Ting-Tiao Pan
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510641 , China
- Academy of Contemporary Food Engineering , South China University of Technology , Guangzhou Higher Education Mega Center, Guangzhou 510006 , China
- Engineering and Technological Research Centre , Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods , Guangzhou Higher Education Mega Center, Guangzhou 510006 , China
- Department of Biosystems Engineering , University of Manitoba , E2-376, EITC, 75A Chancellor's Circle , Winnipeg , R3T 2N2 Manitoba , Canada
| | - Da-Wen Sun
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510641 , China
- Academy of Contemporary Food Engineering , South China University of Technology , Guangzhou Higher Education Mega Center, Guangzhou 510006 , China
- Engineering and Technological Research Centre , Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods , Guangzhou Higher Education Mega Center, Guangzhou 510006 , China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre , University College Dublin , National University of Ireland, Belfield, Dublin 4 , Ireland
| | - Jitendra Paliwal
- Department of Biosystems Engineering , University of Manitoba , E2-376, EITC, 75A Chancellor's Circle , Winnipeg , R3T 2N2 Manitoba , Canada
| | - Hongbin Pu
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510641 , China
- Academy of Contemporary Food Engineering , South China University of Technology , Guangzhou Higher Education Mega Center, Guangzhou 510006 , China
- Engineering and Technological Research Centre , Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods , Guangzhou Higher Education Mega Center, Guangzhou 510006 , China
| | - Qingyi Wei
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510641 , China
- Academy of Contemporary Food Engineering , South China University of Technology , Guangzhou Higher Education Mega Center, Guangzhou 510006 , China
- Engineering and Technological Research Centre , Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods , Guangzhou Higher Education Mega Center, Guangzhou 510006 , China
| |
Collapse
|
37
|
Pu H, Xie X, Sun DW, Wei Q, Jiang Y. Double strand DNA functionalized Au@Ag Nps for ultrasensitive detection of 17β-estradiol using surface-enhanced raman spectroscopy. Talanta 2018; 195:419-425. [PMID: 30625564 DOI: 10.1016/j.talanta.2018.10.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 11/15/2022]
Abstract
A detection method for 17β-estradiol (E2) using surface-enhanced Raman scattering (SERS)-based aptamer sensor was presented. Raman reporter molecule Cy3 labeled E2-aptamer and DNA functionalized gold-silver core-shell nanoparticles (Au@Ag CS NPs) offered SERS with high sensitivity and selectivity. Based on the fabricated double strand DNA-immobilized gold-silver core-shell nanoparticles (Au@Ag NPs), SERS signal intensity of Raman reporter changed with the number of Cy3-labeled aptamer attached to the core-shell nanoparticles due to the strong binding affinity between the aptamers and E2 with different concentrations. A wide linear range from 1.0 × 10-13 to 1.0 × 10-9 was obtained for the detection of E2, with a low detection limit of 2.75 fM. This proposed method showed highly sensitive and selective for detecting E2, and could be used to determine E2 in actual samples.
Collapse
Affiliation(s)
- Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Xiaohui Xie
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| | - Qingyi Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Yingfen Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| |
Collapse
|
38
|
Jiang Y, Sun DW, Pu H, Wei Q. Surface enhanced Raman spectroscopy (SERS): A novel reliable technique for rapid detection of common harmful chemical residues. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.02.020] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
39
|
|
40
|
Qu JH, Wei Q, Sun DW. Carbon dots: Principles and their applications in food quality and safety detection. Crit Rev Food Sci Nutr 2018; 58:2466-2475. [DOI: 10.1080/10408398.2018.1437712] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jia-Huan Qu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Qingyi Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Food Refrigeration and Computerised Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| |
Collapse
|