1
|
Balakrishnan G, Garg S, Ramesh B, Rajendran EGMG, Rathnakumar K. A Comprehensive Review of Phenolic Compounds in Chia Seeds and Their Applications in the Food Industry. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2025; 80:46. [PMID: 39853445 DOI: 10.1007/s11130-024-01248-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 01/26/2025]
Abstract
Chia seeds (Salvia hispanica L.) have emerged as a significant focus in the food industry due to their rich nutritional profile and health-promoting attributes. They are a major powerhouse of bioactive compounds such as flavonoids, phenolic acids, and tocopherols that have been shown to possess anti-inflammatory, anti-diabetic, anti-cholesterol functions, enhance cognitive performance, and improve heart health. This article provides an in-depth review of the phenolic compounds in chia seeds and various fractions such as oil, and chia meal, their bioaccessibility, along with unique applications in food products. Additionally, 'green techniques' for extracting chia oil, as a sustainable alternative to conventional methods, have also been discussed. The findings presented in this review suggest that chia seeds, due to their bioactive components and versatile functional properties, are well-positioned to be a valuable ingredient in the development of novel foods, contributing to better health outcomes and innovation in food processing.
Collapse
Affiliation(s)
- Gayathri Balakrishnan
- Food Science and Human Nutrition, University of Florida, Gainesville, FL, 32611, USA.
| | - Sumedha Garg
- Sustainable Food Systems Program, Department of Health and Human Development, Montana State University, Bozeman, MT, 59717, USA
| | - Bharathi Ramesh
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE, 19711, USA
| | | | - Kaavya Rathnakumar
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
2
|
Fernandes SS, Egea MB, de Las Mercedes Salas-Mellado M, Segura-Campos MR. Chia Oil Nanoemulsion Using Chia Mucilage as a Wall Material: An Alternative for Cracker Fat Substitution. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 80:20. [PMID: 39714741 DOI: 10.1007/s11130-024-01268-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/15/2024] [Indexed: 12/24/2024]
Abstract
Crackers are bakery products that have shown an increase in consumption. One way to make crackers more nutritious is to add bioactive compounds, such as chia oil which is rich in polyunsaturated fatty acids. As these compounds are highly unsaturated, encapsulation techniques, such as nanoemulsion, allow the addition of them in foods, guaranteeing the preservation of their properties. Thus, the objective was to add chia oil nanoemulsion prepared with chia mucilage, in total replacement of water and soybean oil in crackers, and to evaluate the physical-chemical, technological, and sensory properties. The cracker with chia oil nanoemulsion showed a 73.2% reduction in lipid content compared to the control cracker, and no difference in protein and fiber content. The developed cracker presented expansion, firmness, fracture, and luminosity factors as the control cracker. Regarding antioxidant activity, the cracker with nanoemulsion showed greater activity. Sensorially, the developed crackers did not show a significant difference in appearance, flavor, and texture from the control cracker, and the purchase intention was positive. Also, the developed crackers were healthier, with a lower total lipid content, and higher antioxidant activity.
Collapse
Affiliation(s)
- Sibele Santos Fernandes
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Av Italy km 8, Carreiros, Rio Grande, 96203-900, Brazil.
| | - Mariana Buranelo Egea
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rio Verde, Goiás, Brazil
| | - Myriam de Las Mercedes Salas-Mellado
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Av Italy km 8, Carreiros, Rio Grande, 96203-900, Brazil
| | - Maira Rubi Segura-Campos
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Subsede Sureste, Carretera Sierra Papacal-Chuburná Puerto - Parque Científico y Tecnológico de Yucatán. Tablaje Catastral 31264. Km 5.5, Mérida, México
| |
Collapse
|
3
|
Novais LMRD, Melara VK, Salome KS, Barison A, Mascarenhas RDO, Andrade MVDO, Lasmar MC, Freitas JMD, Fernandes MRS, D'Oca CDRM. Investigation of fraud in the production of butter: a forensic case study of criminal association. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1219-1231. [PMID: 39133515 DOI: 10.1080/19440049.2024.2387191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024]
Abstract
Butter is among the most popular and commercially valuable dairy products. Its high commercial value makes it a major target for adulteration, which aims to reduce production costs by using lower-quality fats and oils from other sources. The annual global market is around USD 30 billion (2023), expected to reach USD 36 billion in 2028, which also justifies the enormous interest in adulteration. In this work, a confirmed case of butter adulteration was studied by Nuclear Magnetic Resonance (NMR) and Stable Carbon Isotopic Ratio Analysis (SCIRA) techniques, employed to detect the inclusion in butter production of vegetable oils, such as soybean and palm oils. A total of 21 samples seized by the Brazilian Federal Police were analysed by NMR and SCIR, and compared to original butter obtained from commercial sources. The composition of all the seized samples was a mixture of butter (dairy fat of animal origin) with fat of vegetable origin (soybean and palm oil) and did not contain milk as a major component. While NMR was an unequivocal choice to discriminate the chemical composition of food samples, identifying the short-chain saturated fatty acids present in milk fat, including the butyryl alkyl chain, SCIRA was able to discriminate the origin of fat present in the butter samples as C3 sources, such as palm vegetable oils.
Collapse
Affiliation(s)
| | - Vinícius Kemper Melara
- Multi-user NMR Laboratory, Department of Chemistry, Federal University of Paraná, Curitiba, Brazil
| | - Kahlil Schwanka Salome
- Multi-user NMR Laboratory, Department of Chemistry, Federal University of Paraná, Curitiba, Brazil
| | - Andersson Barison
- Multi-user NMR Laboratory, Department of Chemistry, Federal University of Paraná, Curitiba, Brazil
| | | | | | - Marcelo Carvalho Lasmar
- Brazilian Federal Police, Regional Superintendence of the Federal Police in Minas Gerais, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
4
|
Huang M, Xu H, Zhou Q, Xiao J, Su Y, Wang M. The nutritional profile of chia seeds and sprouts: tailoring germination practices for enhancing health benefits-a comprehensive review. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 38622873 DOI: 10.1080/10408398.2024.2337220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Chia seeds have gained significant attention due to their unique composition and potential health benefits, including high dietary fibers, omega-3 fatty acids, proteins, and phenolic compounds. These components contribute to their antioxidant, anti-inflammatory effects, as well as their ability to improve glucose metabolism and dyslipidemia. Germination is recognized as a promising strategy to enhance the nutritional value and bioavailability of chia seeds. Chia seed sprouts have been found to exhibit increased essential amino acid content, elevated levels of dietary fiber and total phenols, and enhanced antioxidant capability. However, there is limited information available concerning the dynamic changes of bioactive compounds during the germination process and the key factors influencing these alterations in biosynthetic pathways. Additionally, the influence of various processing conditions, such as temperature, light exposure, and duration, on the nutritional value of chia seed sprouts requires further investigation. This review aims to provide a comprehensive analysis of the nutritional profile of chia seeds and the dynamic changes that occur during germination. Furthermore, the potential for tailored germination practices to produce chia sprouts with personalized nutrition, targeting specific health needs, is also discussed.
Collapse
Affiliation(s)
- Manting Huang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Hui Xu
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Qian Zhou
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| | - Yuting Su
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
5
|
Adhikary K, Banerjee P, Barman S, Bandyopadhyay B, Bagchi D. Nutritional Aspects, Chemistry Profile, Extraction Techniques of Lemongrass Essential Oil and It's Physiological Benefits. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:183-200. [PMID: 37579058 DOI: 10.1080/27697061.2023.2245435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/01/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
Lemongrass contains a variety of substances that are known to have antioxidant and disease-preventing properties, including essential oils, compounds, minerals, and vitamins. Lemongrass (Cymbopogon Spp.) essential oil (LGEO) has been demonstrated to ameliorate diabetes and accelerate wound healing. A member of the Poaceae family, Lemongrass, a fragrant plant, is cultivated for the extraction of essential oils including myrcene and a mixture of geranial and neral isomers of citral monoterpenes. Active constituents in lemongrass essential oil are myrcene, followed by limonene and citral along with geraniol, citronellol, geranyl acetate, neral, and nerol, which are beneficial to human health. A large part of lemongrass' expansion is driven by the plant's huge industrial potential in the food, cosmetics, and medicinal sectors. A great deal of experimental and modeling study was conducted on the extraction of essential oils. Using Google Scholar and PubMed databases, a systematic review of the literature covering the period from 1996 to 2022 was conducted, in accordance with the PRISMA declaration. There were articles on chemistry, biosynthesis, extraction techniques and worldwide demand of lemongrass oil. We compared the effectiveness of several methods of extracting lemongrass essential oil, including solvent extraction, supercritical CO2 extraction, steam distillation, hydrodistillation (HD), and microwave aided hydrodistillation (MAHD). Moreover, essential oils found in lemongrass and its bioactivities have a significant impact on human health. This manuscript demonstrates the different extraction techniques of lemongrass essential oil and its physiological benefits on diabetic wound healing, tissue repair and regeneration, as well as its immense contribution in ameliorating arthritis and joint pain.Key teaching pointsThe international market demand prediction and the pharmacological benefits of the Lemongrass essential oil have been thoroughly reported here.This article points out that different extraction techniques yield different percentages of citral and other secondary metabolites from lemon grass, for example, microwave assisted hydrodistillation and supercritical carbon dioxide extraction process yields more citral.This article highlights the concept and application of lemongrass oil in aromatherapy, joint-pain, and arthritis.Moreover, this manuscript includes a discussion about the effect of lemongrass oil on diabetic wound healing and tissue regeneration - that paves the way for further research.
Collapse
Affiliation(s)
- Krishnendu Adhikary
- Department of Interdisciplinary Science, Centurion University of Technology and Management, Odisha, India
| | - Pradipta Banerjee
- Department of Surgery, University of Pittsburgh, Pennsylvania, USA
- Department of Biochemistry and Plant Physiology, Centurion University of Technology and Management, Odisha, India
| | - Saurav Barman
- Department of Agricultural Chemistry and Soil Science, Centurion University of Technology and Management, Odisha, India
| | - Bidyut Bandyopadhyay
- Department of Biochemistry and Biotechnology, Oriental Institute of Science and Technology, Burdwan, India
| | - Debasis Bagchi
- Department of Psychology, Gordon F. Derner School of Psychology, & Department of Biology, College of Arts and Sciences, Adelphi University, Garden City, New York, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
| |
Collapse
|
6
|
Senna C, Soares L, Egea MB, Fernandes SS. The Techno-Functionality of Chia Seed and Its Fractions as Ingredients for Meat Analogs. Molecules 2024; 29:440. [PMID: 38257357 PMCID: PMC10819138 DOI: 10.3390/molecules29020440] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/06/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Eating practices are changing due to awareness about meat consumption associated with social, ethical, environmental, and nutritional issues. Plant-based meat analogs are alternatives to conventional meat products that attempt to mimic all the inherent characteristics of meat fully. Therefore, the search for raw materials that provide these characteristics is increasing. Chia seeds have excellent potential as a functional ingredient in these products since they are a source of proteins, lipids, and fibers. Allied with this, the full use of chia through the seed and its fractions highlights the numerous beneficial characteristics of the formulation regarding nutritional characteristics and techno-functionality. Therefore, this review aims to highlight the potential of chia seed and its fractions for applications in meat-like products. Chia seeds are protein sources. Chia oil is rich in polyunsaturated fatty acids, and its application in emulsions ensures the oil's nutritional quality and maintains its technological characteristics. Defatted chia flour has a high protein content and can be used to extract chia mucilage. Due to its high emulsification capacity, chia mucilage is an effective ingredient for meat products and, consequently, meat-like products. Therefore, this literature review demonstrates the strategic potential of using chia seeds and their fractions to develop meat analogs.
Collapse
Affiliation(s)
- Caroline Senna
- School of Chemistry and Food, Federal University of Rio Grande, Av Italy km 8, Carreiros, Rio Grande 96203-900, Brazil; (C.S.); (L.S.)
| | - Luiza Soares
- School of Chemistry and Food, Federal University of Rio Grande, Av Italy km 8, Carreiros, Rio Grande 96203-900, Brazil; (C.S.); (L.S.)
| | - Mariana Buranelo Egea
- Goiano Federal Institute, Campus Rio Verde, Km 01, Rural Area, Rio Verde 75901-970, Brazil
| | - Sibele Santos Fernandes
- School of Chemistry and Food, Federal University of Rio Grande, Av Italy km 8, Carreiros, Rio Grande 96203-900, Brazil; (C.S.); (L.S.)
| |
Collapse
|
7
|
Wu ZW, Huang HR, Liao SQ, Cai XS, Liu HM, Ma YX, Wang XD. Evaluation of Quality Properties of Brown Tigernut (Cyperus esculentus L.) Tubers from Six Major Growing Regions of China: A New Source of Vegetable Oil and Starch. J Oleo Sci 2024; 73:147-161. [PMID: 38311405 DOI: 10.5650/jos.ess23123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Tigernut has been recognized as a promising resource for edible oil and starch. However, the research on the quality characteristics of tigernut from different regions is lagging behind, which limits the application of tigernut in food industry. Tigernut tubers were obtained from six major growing regions in China, and the physicochemical properties of their main components, oil and starch, were characterized. Tigernut tubers from Baoshan contained the most oil (30.12%), which contained the most β-carotene (130.4 µg/100 g oil) due to high average annual temperature. Gas chromatography analysis and fingerprint analysis results indicated that tigernut oil (TNO) consists of seven fatty acids, of which oleic acid is the major component. Changchun TNO contained the least total tocopherols (6.04 mg/100 g oil) due to low average annual temperature. Tigernut tubers from Chifeng (CF) contained the most starch (34.85%) due to the large diurnal temperature range. Xingtai starch contained the most amylose (28.4%). Shijiazhuang starch showed the highest crystallinity (19.5%). Anyang starch had the highest pasting temperature (76.0°C). CF starch demonstrated superior freeze-thaw stability (syneresis: 50%) due to low mean annual precipitation. The results could be further applied to support tigernut industries and relevant researchers that looks for geographical origin discrimination and improvements on tigernut quality, with unique physicochemical and technological properties.
Collapse
Affiliation(s)
- Zhong-Wei Wu
- College of Food Science and Engineering, Henan University of Technology
- Institute of Special Oilseed Processing and Technology, Henan University of Technology
| | - Hong-Rui Huang
- College of Food Science and Engineering, Henan University of Technology
| | - Shu-Qiang Liao
- College of Food Science and Engineering, Henan University of Technology
| | - Xiao-Shuang Cai
- College of Food Science and Engineering, Henan University of Technology
- Institute of Special Oilseed Processing and Technology, Henan University of Technology
| | - Hua-Min Liu
- College of Food Science and Engineering, Henan University of Technology
- Institute of Special Oilseed Processing and Technology, Henan University of Technology
| | - Yu-Xiang Ma
- College of Food Science and Engineering, Henan University of Technology
- Institute of Special Oilseed Processing and Technology, Henan University of Technology
| | - Xue-De Wang
- College of Food Science and Engineering, Henan University of Technology
- Institute of Special Oilseed Processing and Technology, Henan University of Technology
| |
Collapse
|
8
|
Khatri M, Singh A, Singh R, Kamble DB, Dar AH, Sharma A. Optimization and evaluation of quinoa and chia based gluten free pasta formulation. FOOD AND HUMANITY 2023; 1:174-179. [DOI: 10.1016/j.foohum.2023.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Fernandes SS, da Silva Cardoso P, Egea MB, Quintal Martínez JP, Segura Campos MR, Otero DM. Chia mucilage carrier systems: A review of emulsion, encapsulation, and coating and film strategies. Food Res Int 2023; 172:113125. [PMID: 37689890 DOI: 10.1016/j.foodres.2023.113125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
The use of carrier systems for the protection and delivery of bioactive compounds in the agri-food industry is an area of opportunity that requires the design of new systems and sources of materials for their structure. Chia seeds (Salvia hispanica L.) produce mucilage with functional qualities that allow their application in diverse areas of the food industry. These qualities have been used to form very stable carrier systems, such as capsules, emulsions, coatings, and films that can protect and prolong the functionalities of loaded compounds (e.g., antimicrobial and antioxidant capabilities). This paper presents a review of chia mucilage-based carrier systems and their applications in food products (micro-and nanoparticles, emulsions, coatings, and films for food packaging), as well as the current technological prospects of these systems. The use of chia mucilage in coatings and films shows a high potential for use in biodegradable, edible, and organic packaging. Although many studies have been conducted on chia mucilage encapsulation systems, there is still a gap in the application of capsules and particles in food.
Collapse
Affiliation(s)
- Sibele Santos Fernandes
- Graduate Program in Chemical Engineering, School of Chemistry and Food, Federal University of Rio Grande, Campus Carreiros, Rio Grande, Rio Grande do Sul 96203-900, Brazil.
| | - Patrick da Silva Cardoso
- Graduate Program in Food, Nutrition, and Health, Nutrition School, Federal University of Bahia, Campus Canela, Salvador, Bahia 40110907, Brazil.
| | - Mariana Buranelo Egea
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rio Verde, Goiás, Brazil.
| | - Juan Pablo Quintal Martínez
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Km. 33.5, Tablaje Catastral 13615, Colonia Chuburná de Hidalgo Inn. Mérida, Yucatán C.P. 97203, Mexico.
| | - Maira Rubi Segura Campos
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Km. 33.5, Tablaje Catastral 13615, Colonia Chuburná de Hidalgo Inn. Mérida, Yucatán C.P. 97203, Mexico.
| | - Deborah Murowaniecki Otero
- Graduate Program in Food, Nutrition, and Health, Nutrition School, Federal University of Bahia, Campus Canela, Salvador, Bahia 40110907, Brazil; Graduate Program in Food Science, Faculty of Pharmacy, Federal University of Bahia, Campus Ondina, Salvador, Bahia 40170-115, Brazil.
| |
Collapse
|
10
|
Lira MM, Oliveira Filho JGD, Sousa TLD, Costa NMD, Lemes AC, Fernandes SS, Egea MB. Selected plants producing mucilage: Overview, composition, and their potential as functional ingredients in the development of plant-based foods. Food Res Int 2023; 169:112822. [PMID: 37254398 DOI: 10.1016/j.foodres.2023.112822] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
The increase in the preference for vegan and vegetarian diets is directly related to changing eating habits and the need for plant-based alternatives to animal-based products, which are better for health, due to the high content of essential amino acids and lipid profile rich in polyunsaturated fatty acids, and have lower environmental impacts. In this scenario, there is a growing demand for plant-based foods, making it necessary to find new plant-based ingredients for application in foods and beverages. Flaxseed, chia seed, and Barbados gooseberry contain mucilage, a component with potential application in plant-based products. These hydrocolloids can be used as gelling agents, texture modifiers, stabilizers, and emulsifiers in solid and semi-solid foods. This review presents the extraction, characterization, and application of flaxseed, chia seed, and Barbados gooseberry mucilage for use in plant-based foods. It was found that mucilage composition varies due to the extraction method used, extraction conditions, and geographic location of the seed or leaf. However, applications in plant-based foods are currently limited, mainly focused on applying chia mucilage in bakery products and packaging. Research on applying flaxseed and Barbados gooseberry mucilage to plant-based products is limited, though it has been shown to have potential applications in packaging. Mucilage may also increase the nutritional profile of the product and provide better technological, functional, and sensory characteristics. Therefore, because of mucilage's excellent functional and technological properties, it is a promising candidate to act as an ingredient in plant-based food products.
Collapse
Affiliation(s)
- Michelle Monteiro Lira
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rodovia Sul Goiana, 75901-970, Rio Verde, Goiás, Brazil
| | - Josemar Gonçalves de Oliveira Filho
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Rodovia Araraquara - Jaú Km 1, 14800-903 Araraquara, São Paulo, Brazil
| | - Tainara Leal de Sousa
- Federal University of Goiás (UFG), Agronomy Department, Agronomy School, Street 235, s/n - East University Sector, CEP 74605-450 Goiânia/GO, Brazil
| | - Nair Mota da Costa
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rodovia Sul Goiana, 75901-970, Rio Verde, Goiás, Brazil
| | - Ailton Cesar Lemes
- Federal University of Rio de Janeiro (UFRJ), School of Chemistry, Department of Biochemical Engineering, Av. Athos da Silveira Ramos, 149, 21941-909 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sibele Santos Fernandes
- Federal University of Rio Grande, School of Chemistry and Food, Av Italy km 8, Carreiros 96203-900, Rio Grande, Brazil
| | - Mariana Buranelo Egea
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rodovia Sul Goiana, 75901-970, Rio Verde, Goiás, Brazil.
| |
Collapse
|
11
|
Rodríguez ME, Rikal L, Schneider-Teixeira A, Deladino L, Ixtaina V. Extraction method impact on the physicochemical characteristics of lipids from chia nutlets applicable to long-term storage studies. Food Chem 2023; 427:136706. [PMID: 37379750 DOI: 10.1016/j.foodchem.2023.136706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/08/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023]
Abstract
Lipids are relevant during the seed aging process, for which it is pertinent to choose an extraction method that does not alter their nature. Thus, three methods were applied to extract lipids from chia seeds: one used as reference (Soxhlet) and two at room temperature using hexane/ethanol (COBio) and hexane/isopropanol (COHar). The fatty acid composition and the tocopherol content of the oils were analyzed. Also, their oxidative status through the peroxide index, conjugated dienes and trienes, and malondialdehyde were determined. Besides, biophysical techniques, such as DSC and FT-IR, were applied. The extraction yield was not affected by the extraction method, while the fatty acid composition presented slight differences. Despite the high content of PUFAs, the oxidation level was low in all cases, especially in COBio, associated with the high content of α-tocopherol. DSC and FT-IR outcomes coincided with those obtained by conventional studies, resulting in efficient and fast characterization tools.
Collapse
Affiliation(s)
- María Emilia Rodríguez
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) - (Facultad de Ciencias Exactas, UNLP - CONICET La Plata-CICBA), Calle 47 and 116 (1900), La Plata, Argentina.
| | - Luis Rikal
- Núcleo TECSE, Facultad de Ingeniería, Universidad Nacional del Centro de la Provincia de Buenos Aires, Avenida del Valle 5737 (B7400), Olavarría, Argentina
| | - Aline Schneider-Teixeira
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) - (Facultad de Ciencias Exactas, UNLP - CONICET La Plata-CICBA), Calle 47 and 116 (1900), La Plata, Argentina; YPF-TECNOLOGÍA (Y-TEC), Av. del Petróleo S/N between 129 and 143 (CP 1923), Berisso, Argentina
| | - Lorena Deladino
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) - (Facultad de Ciencias Exactas, UNLP - CONICET La Plata-CICBA), Calle 47 and 116 (1900), La Plata, Argentina; Facultad de Ciencias Exactas- UNLP. Calle 47 and 115 (1900), La Plata, Argentina.
| | - Vanesa Ixtaina
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) - (Facultad de Ciencias Exactas, UNLP - CONICET La Plata-CICBA), Calle 47 and 116 (1900), La Plata, Argentina; Facultad de Ciencias Agrarias y Forestales- UNLP, Calle 60 and 119 (1900), La Plata, Argentina.
| |
Collapse
|
12
|
Fernandes SS, Egea MB, Salas-Mellado MDLM, Segura-Campos MR. Chia Oil and Mucilage Nanoemulsion: Potential Strategy to Protect a Functional Ingredient. Int J Mol Sci 2023; 24:7384. [PMID: 37108546 PMCID: PMC10139160 DOI: 10.3390/ijms24087384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/29/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Nanoencapsulation can increase the stability of bioactive compounds, ensuring protection against physical, chemical, or biological degradations, and allows to control of the release of these biocompounds. Chia oil is rich in polyunsaturated fatty acids-8% corresponds to omega 3 and 19% to omega 6-resulting in high susceptibility to oxidation. Encapsulation techniques allow the addition of chia oil to food to maintain its functionality. In this sense, one strategy is to use the nanoemulsion technique to protect chia oil from degradation. Therefore, this review aims to present the state-of-the-art use of nanoemulsion as a new encapsulation approach to chia oil. Furthermore, the chia mucilage-another chia seed product-is an excellent material for encapsulation due to its good emulsification properties (capacity and stability), solubility, and water and oil retention capacities. Currently, most studies of chia oil focus on microencapsulation, with few studies involving nanoencapsulation. Chia oil nanoemulsion using chia mucilage presents itself as a strategy for adding chia oil to foods, guaranteeing the functionality and oxidative stability of this oil.
Collapse
Affiliation(s)
- Sibele Santos Fernandes
- School of Chemistry and Food, Federal University of Rio Grande, Av Italy km 8, Carreiros 96203-900, Brazil;
| | - Mariana Buranelo Egea
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Sul Goiana, Km 01, Rio Verde 75901-970, Brazil
| | | | - Maira Rubi Segura-Campos
- Faculty of Chemical Engineering, Autonomous University of Yucatán, Periférico Norte km 33.5, Tablaje Catastral 13615, Mexico;
| |
Collapse
|
13
|
Martínez E, Pardo JE, Álvarez-Ortí M, Rabadán A, Pardo-Giménez A, Alvarruiz A. Substitution of Pork Fat by Emulsified Seed Oils in Fresh Deer Sausage ('Chorizo') and Its Impact on the Physical, Nutritional, and Sensory Properties. Foods 2023; 12:foods12040828. [PMID: 36832903 PMCID: PMC9956160 DOI: 10.3390/foods12040828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Meat products are consumed worldwide, but their high content of saturated fatty acids requires a reformulation of that type of food. In this regard, the objective of this study is to reformulate 'chorizos' by replacing the pork fat with emulsified seed oils from seeds (50%, 75%, and 100%). Commercial seeds (chia and poppy) and other seeds considered wastes from the agri-food industry (melon and pumpkin) were evaluated. Physical parameters, nutritional composition, fatty acid profile, and consumer evaluation were analyzed. The reformulated chorizos presented a softer texture but a better fatty acid profile due to their decrease in saturated fatty acids and their increase in linoleic and linolenic fatty acids. Regarding consumer evaluation, all the batches were positively evaluated in all the parameters studied.
Collapse
Affiliation(s)
- Elena Martínez
- Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología, Universidad de Castilla-La Mancha, Campus Universitario, s/n, 02071 Albacete, Spain
- Correspondence:
| | - José Emilio Pardo
- Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología, Universidad de Castilla-La Mancha, Campus Universitario, s/n, 02071 Albacete, Spain
| | - Manuel Álvarez-Ortí
- Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología, Universidad de Castilla-La Mancha, Campus Universitario, s/n, 02071 Albacete, Spain
| | - Adrián Rabadán
- Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología, Universidad de Castilla-La Mancha, Campus Universitario, s/n, 02071 Albacete, Spain
| | - Arturo Pardo-Giménez
- Centro de Investigación, Experimentación y Servicios del Champiñón (CIES), C/Peñicas, s/n, Quintanar del Rey, 16220 Cuenca, Spain
| | - Andrés Alvarruiz
- Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología, Universidad de Castilla-La Mancha, Campus Universitario, s/n, 02071 Albacete, Spain
| |
Collapse
|
14
|
Mondor M. Chia (Salvia Hispanica) Seed Oil Extraction By-Product and Its Edible Applications. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2022.2160457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Martin Mondor
- J2S 8E3 St-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada St-Hyacinthe, QC, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC, Canada
| |
Collapse
|
15
|
Stability and bioaccessibility of α-tocopherol-enriched nanoemulsions containing different edible oils as carriers. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
16
|
Piloni RV, Bordón MG, Barrera GN, Martínez ML, Ribotta PD. Porous Microparticles of Corn Starch as Bio-Carriers for Chia Oil. Foods 2022; 11:4022. [PMID: 36553764 PMCID: PMC9778643 DOI: 10.3390/foods11244022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/25/2022] [Accepted: 12/09/2022] [Indexed: 12/16/2022] Open
Abstract
Native corn starch and pretreated corn starch were treated with α-amylase, glucoamylase and mixtures of both to generate starches with high porosity with conserved granular structure. Porous starches were characterized; particle size distribution analysis, nitrogen adsorption-desorption analysis, scanning electron microscopy, water and oil adsorption capacity, differential scanning calorimeter, X-ray diffraction and damaged starch techniques were used. The α-amylase/glucoamylase mixture at the highest dose was the best treatment to generate porous starches with interesting adsorption capacity and granular structure conservation. Selected starches were impregnated with chia oil using a vacuum. Pretreated corn starch modified with the α-amylase/glucoamylase mixture showed no significant differences on impregnation capacity compared with native starch with a similar enzyme treatment. The highest oxidative stability was achieved with pretreated porous starch impregnated with 10 to 25% chia oil, compared with the bulk oil (5.37 to 4.72 and 2.58 h, respectively). Results have demonstrated that vacuum impregnation could be a potential technique for the incorporation of oil in porous structures based on starch and porous starches obtained by enzymatic hydrolysis are a promising material for the incorporation and protection of oils susceptible to oxidation.
Collapse
Affiliation(s)
- Roxana V. Piloni
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC-CONICET), Juan Filloy S/N, Córdoba X5000HUA, Argentina
| | - M. Gabriela Bordón
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC-CONICET), Juan Filloy S/N, Córdoba X5000HUA, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA-FCEFyN), Universidad Nacional de Córdoba (UNC), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
| | - Gabriela N. Barrera
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC-CONICET), Juan Filloy S/N, Córdoba X5000HUA, Argentina
| | - Marcela L. Martínez
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA-FCEFyN), Universidad Nacional de Córdoba (UNC), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
- Departamento de Química Industrial y Aplicada, Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
| | - Pablo D. Ribotta
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC-CONICET), Juan Filloy S/N, Córdoba X5000HUA, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA-FCEFyN), Universidad Nacional de Córdoba (UNC), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
- Departamento de Química Industrial y Aplicada, Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
| |
Collapse
|
17
|
Jian Y, Yuan H, Li D, Guo Q, Li X, Zhang S, Ning C, Zhang L, Jian F. Evaluation of the in vitro acaricidal activity of Chinese herbal compounds on the poultry red mite (Dermanyssus gallinae). Front Vet Sci 2022; 9:996422. [PMID: 36238438 PMCID: PMC9551093 DOI: 10.3389/fvets.2022.996422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022] Open
Abstract
The poultry red mite Dermanyssus gallinae is an economically important pest in poultry farms worldwide, but an effective treatment option is lacking. The current study determined the effectiveness of six Chinese herbal medicines [Syzygium aromaticum (clove), Hibiscus syriacus (Hibiscus), Illicium verum (star anise), Leonurus artemisia (motherwort), Cinnamomum cassia (cinnamon), and Taraxacum sp. (dandelion)] against D. gallinae. Alcohol extracts were prepared via the solvent extraction method and the phenol, flavonoid, and tannin contents were determined. These active components were highest in S. aromaticum and lowest in H. syriacus, I. verum. No tannin content was detected in L. artemisia. All extracts showed contact toxicity against D. gallinae at a test concentration of 1 g/mL, with S. aromaticum and L. artemisia resulting in 100% mortality. S. aromaticum, L. artemisia, and I. verum showed the best efficacy (LC50 0.159, 0.200, and 0.292 g/mL, respectively). Different combinations of extracts showed an additive effect of I. verum LC90 + L. artemisia LC90. The acaricidal efficacy of this combination was tested against different developmental stages of D. gallinae, being most efficacious against nymphal and larval D. gallinae, with a corrected mortality rate of 100%. However, inhibition of egg hatching was only 53.69%. Taken together, these results highlight I. verum LC90 + L. artemisia LC90 as a promising compound with severe contact toxicity against D. gallinae. Given the wide cultivation of these species and their extensive use in foodstuffs and cosmetics as flavors and fragrances, they could be a cheap, readily available ecofriendly alternative to pesticides currently used in poultry farms.
Collapse
Affiliation(s)
- Yichen Jian
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center for Animal Immunology of China, Zhengzhou, China
| | - Huizhen Yuan
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center for Animal Immunology of China, Zhengzhou, China
| | - Dongliang Li
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center for Animal Immunology of China, Zhengzhou, China
| | - Qing Guo
- Hennan Hemu Animal Pharmaceutical Co., Ltd., Zhengzhou, China
| | - Xiaoying Li
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center for Animal Immunology of China, Zhengzhou, China
| | - Sumei Zhang
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center for Animal Immunology of China, Zhengzhou, China
| | - Changshen Ning
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center for Animal Immunology of China, Zhengzhou, China
| | - Longxian Zhang
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center for Animal Immunology of China, Zhengzhou, China
| | - Fuchun Jian
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- International Joint Research Center for Animal Immunology of China, Zhengzhou, China
- *Correspondence: Fuchun Jian ;
| |
Collapse
|
18
|
Quispe-Sanchez L, Mestanza M, Goñas M, Gill ERA, Oliva-Cruz M, Chavez SG. Physical, functional and sensory properties of bitter chocolates with incorporation of high nutritional value flours. Front Nutr 2022; 9:990887. [PMID: 36204381 PMCID: PMC9531265 DOI: 10.3389/fnut.2022.990887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Due to the growing demand for healthy food products, the industry is seeking to incorporate inputs with high nutritional potential to traditional products. The objective of this research was to evaluate the effect of incorporating Lepidium meyenii, Chenopodium pallidicaule, Amaranthus caudatus, Sesamum indicum and Salvia hispanica flours on the physical, chemical, rheological, textural and thermal characteristics, and the degree of sensory acceptance of dark chocolate bars (65% cocoa). To this end, chocolate bars were made with the incorporation of five flours in four doses (1, 2, 3 and 4%), obtaining 20 different formulations compared with a control treatment (without flour addition). It was found that as flour incorporation levels increased, viscosity, antioxidants and particle size of the chocolates increased, but hardness and pH decreased. The addition of the flours also affected the acceptability and microstructure of the chocolate bars. The incorporation of up to 4% of the flours studied improved the degree of acceptance of the chocolates. Consequently, the incorporation of grain flours with high nutritional value can enhance the characteristics of dark chocolates, becoming a technological alternative for the chocolate industry.
Collapse
Affiliation(s)
- Luz Quispe-Sanchez
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
- *Correspondence: Luz Quispe-Sanchez,
| | - Marilu Mestanza
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
| | - Malluri Goñas
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
| | - Elizabeth Renee Ambler Gill
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
- College of Life Sciences and Agriculture COLSA, University of New Hampshire, Durham, NC, United States
| | - Manuel Oliva-Cruz
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
| | - Segundo G. Chavez
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
| |
Collapse
|
19
|
Tarjuelo L, Pardo JE, Álvarez-Ortí M, Pardo-Giménez A, Millán C, Rabadán A. Development of Seed-Oil Based Dried Sausages, Considering Physicochemical and Nutritional Quality and the Role of Food Neophobia. Nutrients 2022; 14:3106. [PMID: 35956283 PMCID: PMC9370214 DOI: 10.3390/nu14153106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 02/05/2023] Open
Abstract
A growing number of consumers now consider the consumption of processed meat products to be an essentially unhealthy habit. Hence, the reformulation of meat products is crucial. In this regard, the aim of this study is to reformulate "fuet", a traditional Spanish dried sausage, by replacing the pork fat with emulsified seed oils (50-50%, 25-75% and 0-100%). Four seed oils were evaluated, including commercial seeds (poppy and chia) and other seeds considered subproducts (melon and pumpkin). Physical parameters, nutritional quality and consumer evaluation of the reformulated dried sausages were analyzed. Additionally, we considered the effects of food neophobia on consumer evaluation. The resulting fuets had a higher concentration of linoleic and linolenic acids, which varied according to the oil used. In the sensory analysis, non-neophobic consumers showed higher preference for the reformulated fuets, while all consumers gave their highest ratings to the fuets produced with pumpkin seed oil.
Collapse
Affiliation(s)
- Laura Tarjuelo
- E.T.S.I. Agrónomos y de Montes, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; (L.T.); (J.E.P.); (M.Á.-O.); (C.M.)
| | - José Emilio Pardo
- E.T.S.I. Agrónomos y de Montes, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; (L.T.); (J.E.P.); (M.Á.-O.); (C.M.)
| | - Manuel Álvarez-Ortí
- E.T.S.I. Agrónomos y de Montes, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; (L.T.); (J.E.P.); (M.Á.-O.); (C.M.)
| | - Arturo Pardo-Giménez
- Centro de Investigación, Experimentación y Servicios del Champiñón (CIES), C/Peñicas s/n, Apdo. 63, Quintanar del Rey, 16220 Cuenca, Spain;
| | - Cristina Millán
- E.T.S.I. Agrónomos y de Montes, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; (L.T.); (J.E.P.); (M.Á.-O.); (C.M.)
| | - Adrián Rabadán
- E.T.S.I. Agrónomos y de Montes, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; (L.T.); (J.E.P.); (M.Á.-O.); (C.M.)
| |
Collapse
|
20
|
Chia seeds as functional ingredient of healthy muffins. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01503-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Tak Y, Kaur M, Kumar R, Gautam C, Singh P, Kaur H, Kaur A, Bhatia S, Jha NK, Gupta PK, Amarowicz R. Repurposing chia seed oil: A versatile novel functional food. J Food Sci 2022; 87:2798-2819. [PMID: 35708201 DOI: 10.1111/1750-3841.16211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022]
Abstract
Chia seed oil (CSO) has been recently gaining tremendous interest as a functional food. The oil is rich in with polyunsaturated fatty acids (PUFAs), especially, alpha linolenic acid (ALA), linoleic acid (LA), tocopherols, phenolic acids, vitamins, and antioxidants. Extracting CSO through green technologies has been highly efficient, cost-effective, and sustainable, which has also shown to improve its nutritional potential and proved to be eco-friendly than any other traditional or conventional processes. Due to the presence of valuable bioactive metabolites, CSO is proving to be a revolutionary source for food, baking, dairy, pharmaceutical, livestock feed, and cosmetic industries. CSO has been reported to possess antidiabetic, anticancer, anti-inflammatory, antiobesity, antioxidant, antihyperlipidemic, insect-repellent, and skin-healing properties. However, studies on toxicological safety and commercial potency of CSO are limited and therefore the need of the hour is to focus on large-scale molecular mechanistic and clinical studies, which may throw light on the possible translational opportunities of CSO to be utilized to its complete potential. In this review, we have deliberated on the untapped therapeutical possibilities and novel findings about this functional food, its biochemical composition, extraction methods, nutritional profiling, oil stability, and nutraceutical and pharmaceutical applications for its health benefits and ability to counter various diseases.
Collapse
Affiliation(s)
- Yamini Tak
- Department of Biochemistry, Agriculture University, Kota, Rajasthan, India
| | - Manpreet Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Rajendra Kumar
- Department of Entomology, MBDDS Girls College, Siswali, Baran, Rajasthan, India
| | - Chirag Gautam
- Department of Plant Pathology, Agriculture University, Kota, Rajasthan, India
| | - Prabhjot Singh
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Harjeet Kaur
- Department of Agronomy, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Amanpreet Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Surekha Bhatia
- Department of Processing & Food engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, India.,Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
22
|
Aranibar C, Pigni NB, Martínez ML, Aguirre A, Ribotta PD, Wunderlin DA, Borneo R. Influence of the extraction conditions on chia oil quality and partially defatted flour antioxidant properties. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:1982-1993. [PMID: 35531402 PMCID: PMC9046508 DOI: 10.1007/s13197-021-05213-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/11/2021] [Accepted: 07/14/2021] [Indexed: 05/03/2023]
Abstract
Partially defatted chia flour (PDCF) is a by-product of oil extraction from chia seeds (Salvia hispanica L.). It may be used as an ingredient to improve food products, especially due to its antioxidant properties. In this work, we studied the best screw press extraction conditions that allow preserving the antioxidant properties of PDCF. A central composite design was applied to perform a response surface analysis in order to optimize the oil extraction. The variables considered for optimization were seed moisture content and pressing temperature. Besides the oil quality indicators, the study was focused on the assessment of PDCF properties, including total polyphenol content and antioxidant capacity determined by chemical methods. Our results show that, within the range of screw press conditions evaluated, the chemical quality of the oil and the antioxidant properties of PDCF are both preserved. The best results (highest oil yield and stability) were obtained under a seed moisture content of 10.2% and a pressing temperature of 58.5 °C. In general, our results indicate that screw press methodology can be applied to process chia seeds, using a wide range of conditions, to concurrently produce good quality oil and a PDCF with beneficial properties.
Collapse
Affiliation(s)
- Carolina Aranibar
- Instituto de Ciencia y Tecnología de Alimentos-Córdoba, ICYTAC, CONICET-Universidad Nacional de Córdoba, Av. J. Filloy S/N, Ciudad Universitaria, CP X5000HUA Córdoba, Argentina
| | - Natalia B. Pigni
- Instituto de Ciencia y Tecnología de Alimentos-Córdoba, ICYTAC, CONICET-Universidad Nacional de Córdoba, Av. J. Filloy S/N, Ciudad Universitaria, CP X5000HUA Córdoba, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Marcela L. Martínez
- Instituto Multidisciplinario de Biología Vegetal (IMBIV – CONICET), Córdoba, Argentina
- Instituto de Ciencia y Tecnología de Los Alimentos (ICTA), Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN) - Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Departamento de Química Industrial y Aplicada (FCEFyN – UNC), Córdoba, Argentina
| | - Alicia Aguirre
- Instituto de Ciencia y Tecnología de Alimentos-Córdoba, ICYTAC, CONICET-Universidad Nacional de Córdoba, Av. J. Filloy S/N, Ciudad Universitaria, CP X5000HUA Córdoba, Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales. Cátedra de Química Aplicada, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pablo D. Ribotta
- Instituto de Ciencia y Tecnología de Alimentos-Córdoba, ICYTAC, CONICET-Universidad Nacional de Córdoba, Av. J. Filloy S/N, Ciudad Universitaria, CP X5000HUA Córdoba, Argentina
- Instituto de Ciencia y Tecnología de Los Alimentos (ICTA), Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN) - Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Departamento de Química Industrial y Aplicada (FCEFyN – UNC), Córdoba, Argentina
| | - Daniel A. Wunderlin
- Instituto de Ciencia y Tecnología de Alimentos-Córdoba, ICYTAC, CONICET-Universidad Nacional de Córdoba, Av. J. Filloy S/N, Ciudad Universitaria, CP X5000HUA Córdoba, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Rafael Borneo
- Instituto de Ciencia y Tecnología de Alimentos-Córdoba, ICYTAC, CONICET-Universidad Nacional de Córdoba, Av. J. Filloy S/N, Ciudad Universitaria, CP X5000HUA Córdoba, Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales. Cátedra de Química Aplicada, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
23
|
Jian Y, Li S, Li D, Ning C, Zhang S, Jian F, Si H. Evaluation of the in vitro acaricidal activity of ethanol extracts of seven Chinese medicinal herbs on Ornithonyssus sylviarum (Acari: Macronyssidae). EXPERIMENTAL & APPLIED ACAROLOGY 2022; 87:67-79. [PMID: 35737253 PMCID: PMC9287229 DOI: 10.1007/s10493-022-00716-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Ornithonyssus sylviarum (Acari: Macronyssidae) is a common ectoparasite that feeds on the blood of poultry. Following infestation, this mite will cause symptoms such as weight loss, anemia, and decreased egg production. To explore green and safe drugs for the prevention and treatment of O. sylviarum, this study evaluated the effects of ethanol extracts of seven Chinese medicinal herbs-Leonurus artemisia (motherwort), Illicium verum (star anise), Cinnamomum cassia (cinnamon), Hibiscus syriacus, Artemisia argyi (Chinese mugwort), Taraxacum sp. (dandelion), and Syzygium aromaticum (clove)-on O. sylviarum at different life stages. The results showed that different methods of administration affected the acaricidal efficacy of these plant extracts on O. sylviarum. After 6 h of administration with the fumigation method, the acaricidal efficacy of S. aromaticum on adults, nymphs and larvae of O. sylviarum reached 100%. 30 min after administration with the infiltration method, S. aromaticum, H. syriacus and L. artemisia showed acaricidal effects on adults and nymphs of O. sylviarum reaching 100%. In another experiment evaluating the inhibition of egg hatching of O. sylviarum with alcohol extracts of these seven herbs, at 48 h after treatment, A. argyi and C. cassia showed inhibition rates of 19.4%. The results of this study indicate that S. aromaticum induced mortality at all stages of O. sylviarum, whereas A. argyi was found to be the most effective at inhibiting the mite's egg hatching among the seven herbs. These herbs can therefore be used as potential substitutes for chemical pesticides to prevent and control O. sylviarum. These results provide practical knowledge for the control of O. sylviarum.
Collapse
Affiliation(s)
- Yichen Jian
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- College of Animal Science and Technology, GuangXi University, Nanning, 530000, China
| | - Shijie Li
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Dongliang Li
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Changshen Ning
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Sumei Zhang
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Fuchun Jian
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Hongbin Si
- College of Animal Science and Technology, GuangXi University, Nanning, 530000, China.
| |
Collapse
|
24
|
Meerasri J, Sothornvit R. Novel development of coffee oil extracted from spent coffee grounds as a butter substitute in bakery products. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jitrawadee Meerasri
- Department of Food Engineering, Faculty of Engineering at Kamphaengsaen Kasetsart University Kamphaengsaen Campus, Nakhonpathom, 73140 Thailand
| | - Rungsinee Sothornvit
- Department of Food Engineering, Faculty of Engineering at Kamphaengsaen Kasetsart University Kamphaengsaen Campus, Nakhonpathom, 73140 Thailand
| |
Collapse
|
25
|
Hasnul Hadi MH, Ker PJ, Lee HJ, Leong YS, Hannan MA, Jamaludin MZ, Mahdi MA. Color Index of Transformer Oil: A Low-Cost Measurement Approach Using Ultraviolet-Blue Laser. SENSORS 2021; 21:s21217292. [PMID: 34770602 PMCID: PMC8587144 DOI: 10.3390/s21217292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022]
Abstract
The color of transformer oil can be one of the first indicators determining the quality of the transformer oil and the condition of the power transformer. The current method of determining the color index (CI) of transformer oil utilizes a color comparator based on the American Society for Testing and Materials (ASTM) D1500 standard, which requires a human observer, leading to human error and a limited number of samples tested per day. This paper reports on the utilization of ultra violet-blue laser at 405- and 450-nm wavelengths to measure the CI of transformer oil. In total, 20 transformer oil samples with CI ranging from 0.5 to 7.5 were measured at optical pathlengths of 10 and 1 mm. A linear regression model was developed to determine the color index of the transformer oil. The equation was validated and verified by measuring the output power of a new batch of transformer oil samples. Data obtained from the measurements were able to quantify the CI accurately with root-mean-square errors (RMSEs) of 0.2229 for 405 nm and 0.4129 for 450 nm. This approach shows the commercialization potential of a low-cost portable device that can be used on-site for the monitoring of power transformers.
Collapse
Affiliation(s)
- Muhamad Haziq Hasnul Hadi
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Malaysia; (M.H.H.H.); (M.A.H.)
| | - Pin Jern Ker
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Malaysia; (M.H.H.H.); (M.A.H.)
- Correspondence:
| | - Hui Jing Lee
- Institute of Power Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia; (H.J.L.); (Y.S.L.); (M.Z.J.)
| | - Yang Sing Leong
- Institute of Power Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia; (H.J.L.); (Y.S.L.); (M.Z.J.)
- Department of Electrical, Electronic and System Engineering, Faculty of Engineering and Built Environmental, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
| | - Mahammad A. Hannan
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Malaysia; (M.H.H.H.); (M.A.H.)
| | - Md. Zaini Jamaludin
- Institute of Power Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia; (H.J.L.); (Y.S.L.); (M.Z.J.)
| | - Mohd Adzir Mahdi
- Wireless and Photonics Networks Research Centre, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia;
| |
Collapse
|
26
|
Hasnul Hadi MH, Ker PJ, Thiviyanathan VA, Tang SGH, Leong YS, Lee HJ, Hannan MA, Jamaludin MZ, Mahdi MA. The Amber-Colored Liquid: A Review on the Color Standards, Methods of Detection, Issues and Recommendations. SENSORS 2021; 21:s21206866. [PMID: 34696079 PMCID: PMC8540017 DOI: 10.3390/s21206866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022]
Abstract
For most natural or naturally-derived liquid products, their color reflects on their quality and occasionally affects customer preferences. To date, there are a few subjective and objective methods for color measurement which are currently utilized by various industries. Researchers are also improving these methods and inventing new methods, as color is proven to have the ability to provide various information on the condition and quality of the liquid. However, a review on the methods, especially for amber-colored liquid, has not been conducted yet. This paper presents a comprehensive review on the subjective and objective methods for color measurement of amber-colored liquids. The pros and cons of the measurement methods, the effects of the color on customer preferences, and the international industry standards on color measurements are reviewed and discussed. In addition, this study elaborates on the issues and challenges related to the color measurement techniques as well as recommendations for future research. This review demonstrates that the existing color measurement technique can determine the color according to the standards and color scales. However, the efforts toward minimizing the complexity of the hardware while maximizing the signal processing through advanced computation are still lacking. Therefore, through this critical review, this review can hopefully intensify the efforts toward finding an optimized method or technique for color measurement of liquids and thus expedite the development of a portable device that can measure color accurately.
Collapse
Affiliation(s)
- Muhamad Haziq Hasnul Hadi
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Malaysia; (M.H.H.H.); (V.A.T.); (M.A.H.)
| | - Pin Jern Ker
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Malaysia; (M.H.H.H.); (V.A.T.); (M.A.H.)
- Correspondence:
| | - Vimal A. Thiviyanathan
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Malaysia; (M.H.H.H.); (V.A.T.); (M.A.H.)
| | - Shirley Gee Hoon Tang
- Department of Microbiology, Faculty of Medicine, Manipal University College Malaysia, Bukit Baru, Melaka 75150, Malaysia;
- International Medical School, Management and Science University, Shah Alam 40100, Malaysia
| | - Yang Sing Leong
- Department of Electrical, Electronic and System Engineering, Faculty of Engineering and Built Environmental, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia;
| | - Hui Jing Lee
- Institute of Power Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia; (H.J.L.); (M.Z.J.)
| | - Mahammad A. Hannan
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Malaysia; (M.H.H.H.); (V.A.T.); (M.A.H.)
| | - Md. Zaini Jamaludin
- Institute of Power Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia; (H.J.L.); (M.Z.J.)
| | - Mohd Adzir Mahdi
- Wireless and Photonics Networks Research Centre, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia;
| |
Collapse
|
27
|
da Costa Borges V, Fernandes SS, da Rosa Zavareze E, Haros CM, Hernandez CP, Guerra Dias AR, de las Mercedes Salas-Mellado M. Production of gluten free bread with flour and chia seeds (Salvia hispânica L). FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Extraction of Fatty Acids and Phenolics from Mastocarpus stellatus Using Pressurized Green Solvents. Mar Drugs 2021; 19:md19080453. [PMID: 34436292 PMCID: PMC8399028 DOI: 10.3390/md19080453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Polyunsaturated fatty acids are well known for their protective properties in relation to different skin diseases. Although seaweeds possess a low lipid fraction, they could act as an alternative renewable source of polyunsaturated fatty acids whenever other valuable seaweed components are also valorized. In this study, a biorefinery process using Mastocarpus stellatus as a model seaweed was proposed. The process started with the supercritical carbon dioxide extraction of the lipid and phenolic fractions. The influence of pressure during extraction with pure supercritical CO2 was studied while operating at a selected temperature and solvent flow rate. Kinetic data obtained during the ethanol-modified supercritical CO2 extraction were fitted to the spline model. Sequential processing was proposed with (i) pure CO2 to obtain a product with 30% PUFA content and ω-3:ω-6 ratio 1:1, (ii) ethanol-modified CO2 to extract phenolics, and (iii) microwave-assisted subcritical water extraction operating under previously optimized conditions for the extraction of phenolics, carrageenan and protein fractions. The composition of the supercritical extracts showed potential for use in both dietary and topical applications in skin care products. The remaining solids are suitable for the extraction of other valuable fractions.
Collapse
|
29
|
Fernandes SS, Greque L, Santos MDFC, Novais LMR, D'Oca CDRM, Prentice C, Salas‐Mellado MDLM. Effect of the spray drying conditions on the physicochemical and structural characteristics and the stability of chia oil microparticles. J Appl Polym Sci 2021. [DOI: 10.1002/app.51015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sibele Santos Fernandes
- Laboratory of Food Technology School of Chemistry and Food, Federal University of Rio Grande Carreiros Brazil
| | - Leonardo Greque
- Laboratory of Food Technology School of Chemistry and Food, Federal University of Rio Grande Carreiros Brazil
| | | | - Leice M. R. Novais
- NMR Laboratory, Department of Chemistry Federal University of Paraná Curitiba Brazil
| | | | - Carlos Prentice
- Laboratory of Food Technology School of Chemistry and Food, Federal University of Rio Grande Carreiros Brazil
| | | |
Collapse
|
30
|
Ishak I, Hussain N, Coorey R, Ghani MA. Optimization and characterization of chia seed (Salvia hispanica L.) oil extraction using supercritical carbon dioxide. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2020.101430] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Yuenyong J, Pokkanta P, Phuangsaijai N, Kittiwachana S, Mahatheeranont S, Sookwong P. GC-MS and HPLC-DAD analysis of fatty acid profile and functional phytochemicals in fifty cold-pressed plant oils in Thailand. Heliyon 2021; 7:e06304. [PMID: 33665454 PMCID: PMC7907780 DOI: 10.1016/j.heliyon.2021.e06304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/13/2021] [Accepted: 02/12/2021] [Indexed: 11/16/2022] Open
Abstract
Cold-pressed oil is one of the healthiest plant extracts, but its use is limited only in some kinds of plants. Therefore, we aimed to investigate some potential cold-pressed oils with attractive fatty acid profiles and high amounts of functional phytochemicals. Fifty cold-pressed plant oils were prepared from various plant materials in Thailand, in which some of them were from uncommon or unattended plant materials. The oils included were nut oils (n = 9), pseudo-cereal oils (n = 9), legume oils (n = 3), amaranth oils (n = 3), marrow seed oils (n = 8), cruciferous seed oils (n = 7), and leafy green seed oils (n = 11). Gas-chromatography mass-spectrometry (GC-MS) and high-performance liquid chromatography coupled with a diode array detector (HPLC-DAD) were employed to analyze fatty acid profile and five functional phytochemicals (e.g., phytosterols, cholecalciferol, and squalene). Saturated fatty acids were detected around 7.87-36.04%, monounsaturated fatty acids 10.17-80.25%, and polyunsaturated fatty acids nondetectable (ND)-78.25%, phytosterols 663-15123 μg g-1, squalene 265-5979 μg g-1, and cholecalciferol ND-1287.75 μg g-1. The study showed chemical characteristic of the analyzed oils: some contained good fatty acid composition and some were rich in functional phytochemical content. Among the obtained oils, marrow seed oils are a good source of phytosterol, cholecalciferol, and linoleic acid. Pseudo-cereal oils are rich in squalene and linolenic acid. Legume oils are rich in phytosterols and oleic acid. Besides, principal component analysis (PCA) was applied to identify the significance of oils that share compositional similarity (e.g., the samples from pseudo-cereal oil were found on the lower side of the PCA space, which separated them from marrow and leafy green seed oils distributed on the upper part of the plot). In summary, the qualitative and quantitative data would provide a good foundation for further application or selection of those plant oils for health purposes.
Collapse
Affiliation(s)
- Jitkunya Yuenyong
- Rice and Cereal Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Master's Degree Program in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Piramon Pokkanta
- Rice and Cereal Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nutthatida Phuangsaijai
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sila Kittiwachana
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sugunya Mahatheeranont
- Rice and Cereal Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Phumon Sookwong
- Rice and Cereal Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
32
|
Fernandes SS, Bernardino JCC, Owen PQ, Prentice C, Salas‐Mellado MDLM, Segura‐Campos MR. Effect of the use of ethanol and chia mucilage on the obtainment and techno‐functional properties of chia oil nanoemulsions. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Sibele Santos Fernandes
- Laboratory of Food Technology, School of Chemistry and Food Federal University of Rio Grande Rio Grande Brazil
| | | | | | - Carlos Prentice
- Laboratory of Food Technology, School of Chemistry and Food Federal University of Rio Grande Rio Grande Brazil
| | | | - Maira Rubi Segura‐Campos
- Laboratory of Food Science, Faculty of Chemical Engineering Autonomous University of Yucatán Mérida Mexico
| |
Collapse
|
33
|
Fumigant activity of essential oils from Cinnamomum and Citrus spp. and pure compounds against Dermanyssus gallinae (De Geer) (Acari: Dermanyssidae) and toxicity toward the nontarget organism Beauveria bassiana (Vuill.). Vet Parasitol 2021; 290:109341. [PMID: 33472157 DOI: 10.1016/j.vetpar.2021.109341] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 11/22/2022]
Abstract
Dermanyssus gallinae(De Geer) (Acari: Dermanyssidae) is the main ectoparasite associated with laying poultry. This mite is commonly controlled by the application of synthetic chemical insecticides, wich lead to the selection of resistant populations and formation of residues in eggs. Thus, new molecules must be developed to control D. gallinae. This work evaluated the toxicity of essential oils (EOs) from Cinnamomum cassia, Cinnamomum camphora, Cinnamomum camphora var. linalooliferum, Citrus aurantium, Citrus aurantium var. bergamia, Citrus aurantifolia and Citrus reticulata var. tangerine against D. gallinae. Additionally, the chemical profiles of the most bioactive EOs were analyzed by gas chromatography coupled with mass spectrometry (GC-MS) and the major compounds were subjected to new tests using D. gallinae. The most toxic EOs against D. gallinae were evaluated for the nontarget entomopathogenic fungus Beauveria bassiana (Unioeste 88). The EOs from C. cassia (LC50 = 25.43 ± 1.0423 μg/cm3) and C. camphora var. linalooliferum (LC50 = 39.84 ± 1.9635 μg/cm3) were the most active in the fumigant bioassay and caused mortality rates of 96 and 61%, respectively. The GC-MS analysis revealed that the major constituents of EOs from C. cassia and C. camphora var. linalooliferum were trans-cinnamaldehyde and linalool, respectively. The pure compounds, trans-cinnamaldehyde (LC50 = 68.89 ± 3.1391 μg/cm3) and linalool (LC50 = 51.45 ± 1.1967 μg/cm3), were tested on D. gallinae and showed lower toxicity than the EOs. Thus, the compounds were not the only active substances produced by C. cassia and C. camphora var. linalooliferum; moreover synergism may have occurred between the substances. The EOs from C. cassia and C. camphora var. linalooliferum were also toxic to B. bassiana (Unioeste 88). Thus, EOs from C. cassia and C. camphora var. linalooliferum are promising candidates for use in D. gallinae control, but cannot be used in conjunction with the fungus B. bassiana.
Collapse
|
34
|
Gañan N, Bordón MG, Ribotta PD, González A. Study of chia oil microencapsulation in soy protein microparticles using supercritical Co2-assisted impregnation. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Rapid screening of antioxidant bioactive components in blue ginger (Dichorisandra thyrsiflora) essential oil by GC electronic-nose and radical scavenging mechanisms. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00481-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Lucas-González R, Roldán-Verdu A, Sayas-Barberá E, Fernández-López J, Pérez-Álvarez JA, Viuda-Martos M. Assessment of emulsion gels formulated with chestnut (Castanea sativa M.) flour and chia (Salvia hispanica L) oil as partial fat replacers in pork burger formulation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:1265-1273. [PMID: 31709548 DOI: 10.1002/jsfa.10138] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/22/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The aim of this work was to evaluate the effect on chemical composition, physico-chemical properties, cooking characteristics, fatty acid profile, lipid oxidation, and sensory acceptability of an oil-in-water emulsion gel that was prepared with chestnut flour, chia oil, gellan gum, and water (CEG), used as a fat replacer in pork burgers. The original mixture was used as a control sample (CS). The other samples were formulated partially replacing pork backfat with 5% of CEG (CEG5%) and 10% of CEG (CEG10%). RESULTS Proximate analysis of samples showed several differences between samples. The CEG addition was found to be effective for improving the cooking yield while diameter reduction and thickness increase were positively affected. As regards lipid oxidation, in cooked burger, the 2-thiobarbituric acid (TBA) values for CS, CEG5% and CEG10% were 0.46, 0.57, and 0.59 mg malonaldehyde/kg sample, respectively. The linolenic and linolenic acid content of pork burger increased as CEG addition increased. Sensory properties for CS and CEG5% were similar whereas CEG10% showed the highest sensory scores. CONCLUSIONS A combination of chestnut flour and chia oil could be used as a novel ingredient to develop pork burgers with a better nutritional profile without diminishing their sensory and physico-chemical properties. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Raquel Lucas-González
- IPOA Research Group, Agro-Food Technology Department, Escuela Politécnica Superior de Orihuela, Miguel Hernández University, Orihuela, Spain
| | - Alba Roldán-Verdu
- IPOA Research Group, Agro-Food Technology Department, Escuela Politécnica Superior de Orihuela, Miguel Hernández University, Orihuela, Spain
| | - Estrella Sayas-Barberá
- IPOA Research Group, Agro-Food Technology Department, Escuela Politécnica Superior de Orihuela, Miguel Hernández University, Orihuela, Spain
| | - Juana Fernández-López
- IPOA Research Group, Agro-Food Technology Department, Escuela Politécnica Superior de Orihuela, Miguel Hernández University, Orihuela, Spain
| | - José A Pérez-Álvarez
- IPOA Research Group, Agro-Food Technology Department, Escuela Politécnica Superior de Orihuela, Miguel Hernández University, Orihuela, Spain
| | - Manuel Viuda-Martos
- IPOA Research Group, Agro-Food Technology Department, Escuela Politécnica Superior de Orihuela, Miguel Hernández University, Orihuela, Spain
| |
Collapse
|
37
|
Knez Hrnčič M, Ivanovski M, Cör D, Knez Ž. Chia Seeds ( Salvia hispanica L.): An Overview-Phytochemical Profile, Isolation Methods, and Application. Molecules 2019; 25:E11. [PMID: 31861466 PMCID: PMC6994964 DOI: 10.3390/molecules25010011] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 11/16/2022] Open
Abstract
Chia (Salvia hispanica L.) is a small seed that comes from an annual herbaceous plant, Salvia hispanica L. In recent years, usage of Chia seeds has tremendously grown due to their high nutritional and medicinal values. Chia was cultivated by Mesopotamian cultures, but then disappeared for centuries until the middle of the 20th century, when it was rediscovered. Chia seeds contain healthy ω-3 fatty acids, polyunsaturated fatty acids, dietary fiber, proteins, vitamins, and some minerals. Besides this, the seeds are an excellent source of polyphenols and antioxidants, such as caffeic acid, rosmarinic acid, myricetin, quercetin, and others. Today, chia has been analyzed in different areas of research. Researches around the world have been investigating the benefits of chia seeds in the medicinal, pharmaceutical, and food industry. Chia oil is today one of the most valuable oils on the market. Different extraction methods have been used to produce the oil. In the present study, an extensive overview of the chemical composition, nutritional properties, and antioxidant and antimicrobial activities, along with extraction methods used to produce chia oil, will be discussed.
Collapse
Affiliation(s)
- Maša Knez Hrnčič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (M.I.); (D.C.)
| | - Maja Ivanovski
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (M.I.); (D.C.)
| | - Darija Cör
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (M.I.); (D.C.)
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (M.I.); (D.C.)
- Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
| |
Collapse
|
38
|
Majewska E, Kozłowska M, Gruczyńska-Sękowska E, Kowalska D, Tarnowska K. Lemongrass (Cymbopogon citratus) Essential Oil: Extraction, Composition, Bioactivity and Uses for Food Preservation – a Review. POL J FOOD NUTR SCI 2019. [DOI: 10.31883/pjfns/113152] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|