1
|
Banu SPN, Rajendrakumar K. Studies on Gelatin-Keratin-Chitosan Functionalized Silver Nanoparticles Based Bionanocomposite Films With Improved Antimicrobial and UV-Blocking Properties. Biopolymers 2025; 116:e70023. [PMID: 40341646 DOI: 10.1002/bip.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 04/10/2025] [Accepted: 04/25/2025] [Indexed: 05/10/2025]
Abstract
This study investigates the properties of a biocomposite film made from gelatin and sustainably sourced keratin incorporating chitosan-functionalized silver nanoparticles. Varied concentrations of chitosan solution (i.e., 0.4%, 0.6%, 0.8%, and 1% w/v) were used in the synthesis of silver nanoparticles, and their particle size, distribution, and antibacterial and antifungal activities were evaluated against foodborne pathogens (Escherichia coli, Staphylococcus aureus, Rhizopus stolonifer, and Aspergillus niger). The addition of keratin enhanced the film's tensile strength to 16.64 MPa, a 403% increase compared to the gelatin film. However, incorporating 2% chitosan functionalized silver nanoparticles reduced the tensile strength to 9.07 MPa compared to the Gelatin-Keratin film. The distribution of nanoparticles and the interaction between the polymer chains were analyzed using scanning electron microscopy and Fourier transform infrared spectroscopy. The composite films also exhibited significant UV blocking efficiency, achieving 99% blockage of ultraviolet A and 100% blockage of ultraviolet B. The biocompatibility of the films was tested with MG63 cell lines, showing that silver nanoparticle concentrations (0.3%-2%) improved cell viability to 87% after 96 h of incubation. These findings reveal that the bionanocomposite films exhibit strong antibacterial and antifungal properties, along with excellent biocompatibility, making them ideal materials for wound healing and tissue engineering applications.
Collapse
Affiliation(s)
- S P Naseem Banu
- School of Advanced Sciences, Department of Chemistry, Vellore Institute of Technology, Chennai, India
| | - Kannapiran Rajendrakumar
- Centre for Advanced Materials and Innovative Technologies (CAMIT), Vellore Institute of Technology, Chennai, India
| |
Collapse
|
2
|
Zhang W, Azizi-Lalabadi M, Can Karaca A, Abedi-Firoozjah R, Assadpour E, Zhang F, Jafari SM. A review of bio-based dialdehyde polysaccharides as multifunctional building blocks for biomedical and food science applications. Int J Biol Macromol 2025; 309:142964. [PMID: 40210025 DOI: 10.1016/j.ijbiomac.2025.142964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Food science and biomedical engineering are key disciplines related to human health, with the development of functional materials being an important research direction in both fields. In recent years, dialdehyde polysaccharides (DAPs), as green biopolymers, have become increasingly important in functional materials within food science and biomedical engineering. This work systematically summarizes the sources and properties of various DAPs, introduces their preparation methods and common DAP-based functional biomaterials, including hydrogels, scaffolds, films, coatings, nanoparticles, and nanofibers. Importantly, this work also reviews DAP applications in functional materials for food science and biomedical engineering, such as drug delivery, wound dressings, tissue engineering, food packaging films/edible coatings, food emulsions, antibacterial nanoparticles, and enzyme immobilization. Finally, the work briefly discusses the biosafety of DAPs. To conclude, this study provides a toolkit for developing functional materials in these fields and offers important reference value regarding the broad application of DAPs.
Collapse
Affiliation(s)
- Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Maryam Azizi-Lalabadi
- Research Center of Oils and Fats, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Asli Can Karaca
- Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Reza Abedi-Firoozjah
- Student Research committee, Kermanshah University of Medical sciences, Kermanshah, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
3
|
Wang R. From Lab to Shelf: Gelatin-Based pH Sensors Revolutionizing Food Packaging. Gels 2025; 11:327. [PMID: 40422347 DOI: 10.3390/gels11050327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/19/2025] [Accepted: 04/24/2025] [Indexed: 05/28/2025] Open
Abstract
The development of multifunctional smart food packaging has garnered considerable attention in research. Gelatin exhibits outstanding characteristics, featuring remarkable gel strength, molecular binding affinity, excellent colloidal dispersibility, low solution viscosity, sustained dispersion stability, and significant water retention properties. Gelatin-based film is ideally suited for the developing simple, portable, and rapid pH sensors, owing to its satisfactory biocompatibility, biodegradability, biosafety, affordability, and facilitation of easy handling and usage. This paper aims to explore the challenges and opportunities relating to gelatin-based pH sensors. It begins by outlining the sources, classifications, and functional properties of gelatin, followed by an analysis of the current research landscape and future trends related to intelligent indicators and active carriers. Subsequently, potential research directions for gelatin-based pH sensors are proposed. Using a literature analysis, it can be concluded that novel gelatin-based smart packaging represents the future of food packaging. It is hoped that the paper can provide some basic information for the development and application of gelatin-based smart packaging.
Collapse
Affiliation(s)
- Ruirui Wang
- College of Chemistry and Chemical Engineering, Qinghai Normal University, 38 Wusi West Road Xining, Xining 810008, China
- Key Laboratory of Advanced Technology and Application of Environmental Functional Materials in Qinghai, Xining 810008, China
| |
Collapse
|
4
|
Jangra N, Singla A, Puri V, Dheer D, Chopra H, Malik T, Sharma A. Herbal bioactive-loaded biopolymeric formulations for wound healing applications. RSC Adv 2025; 15:12402-12442. [PMID: 40248229 PMCID: PMC12005159 DOI: 10.1039/d4ra08604j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/01/2025] [Indexed: 04/19/2025] Open
Abstract
Recent advancements in wound healing technologies focus on incorporating herbal bioactives into biopolymeric formulations. A biocompatible matrix that promotes healing is provided by biopolymeric wound dressings. These dressings use components such as ulvan, hyaluronic acid, starch, cellulose, chitosan, alginate, gelatin, and pectin. These natural polymers assist in three crucial processes, namely, cell adhesion, proliferation, and moisture retention, all of which are necessary for effective wound repair. Curcumin, quercetin, Aloe vera, Vinca alkaloids, and Centella asiatica are some of the herbal bioactives that are included in biopolymeric formulations. They have powerful anti-inflammatory, antibacterial, and antioxidant activities. Chitosan, cellulose, collagen, alginate, and hyaluronic acid are some of the biopolymers that have shown promise in clinical trials for wound healing. These trials have also confirmed the safety and functional performance of these materials. Their recent advancements in wound care can be understood by the increasing number of patents linked to these formulations. These innovative dressings improve healing outcomes in acute and chronic wounds while minimizing adverse effects by incorporating biopolymers with herbal bioactives in an efficient manner. This review emphasizes that the development of next-generation wound care products can be facilitated via the integration of natural materials and bioactive substances.
Collapse
Affiliation(s)
- Nitin Jangra
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| | - Aakanksha Singla
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| | - Vivek Puri
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| | - Divya Dheer
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences Chennai - 602105 Tamil Nadu India
| | - Tabarak Malik
- Department of Biomedical Sciences, Jimma University Jimma Oromia Ethiopia
- Division of Research & Development, Lovely Professional University Phagwara Punjab 144401 India
| | - Ameya Sharma
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| |
Collapse
|
5
|
Liang S, Zhang J, Huang S, Lan X, Wang W, Tang Y. Functionalized Gelatin Electrospun Nanofibrous Membranes in Food Packaging: Modification Strategies for Fulfilling Evolving Functional Requirements. Polymers (Basel) 2025; 17:1066. [PMID: 40284331 PMCID: PMC12030516 DOI: 10.3390/polym17081066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Gelatin, known for its excellent biocompatibility, strong aggregative properties, and low cost, has been extensively investigated as a promising material for food packaging. Among various fabrication methods, electrospinning stands out due to its simplicity, cost-effectiveness, high process controllability, and ability to produce nanofiber membranes with enhanced properties. This review provides a comprehensive overview of the sources, properties, and applications of gelatin, along with the fundamental principles of electrospinning and its applications in food packaging. Additionally, the common types of electrospinning techniques used in food packaging are also covered. In recent years, increasing research efforts have focused on gelatin-based electrospun nanofiber membranes for food packaging applications. The functionalization of electrospinning gelatin-based nanofiber membrane was realized by incorporating various active substances or combining it with other techniques, fulfilling the new requirements of food packaging. In this review, gelatin-based electrospun nanofiber membranes for food packaging applications are overviewed, with a particular emphasis on various types of modifications for the membranes aimed at meeting diverse application demands. Finally, the future perspectives and challenges in the research of gelatin-based electrospun nanofiber membranes for food packaging are discussed.
Collapse
Affiliation(s)
- Shiyi Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jian Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Shunfen Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xingzi Lan
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenlong Wang
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yadong Tang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
6
|
Rigane K, Laurichesse E, Chouaibi M, Schmitt V. Encapsulation of Polyphenols in Double Water-in-Oil-in-Water Emulsions Stabilized by Polyglycerol Polyricinoleate and Tunisian Arabic Gum. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:9335-9347. [PMID: 40171749 DOI: 10.1021/acs.langmuir.4c05214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Water-in-oil-in-water (W1/O/W2) double emulsions have been formulated using polyglycerol polyricinoleate (PGPR) to stabilize the reverse W1/O emulsions and Arabic Gum extracted from Bouhedma National Park in Sidi Bouzid in Tunisia to stabilize the direct emulsion, in order to encapsulate two polyphenols, oleuropein and green tea leaves polyphenol. These two polyphenols exhibit an antiradical activity. The Tunisian Arabic Gum allows obtaining a narrow size distribution for the double emulsions. Due to the presence of Arabic gum in W2, the deduction of the encapsulation efficiency, from UV-vis spectrometry measurements, is not straightforward, but the final obtained values are very high (>95%), making these double emulsions with a minimal list of ingredients interesting systems. Then, the kinetic stability of these capsule-type systems has been assessed at three storage temperatures. While the double emulsions are kinetically stable at 4 °C and at room temperature, destabilization occurs at 50 °C, the mechanism of which is discussed.
Collapse
Affiliation(s)
- Khouloud Rigane
- Higher School of Food Industries of Tunisia, 58, Street Alain Savary, 1003, ElKhadra city, 1003 Tunis, Tunisia
| | - Eric Laurichesse
- Centre de Recherche Paul Pascal, UMR CNRS 5031, Université de Bordeaux, 115 Avenue du Dr Albert Schweitzer, 33 600 Pessac, France
| | - Moncef Chouaibi
- Higher School of Food Industries of Tunisia, 58, Street Alain Savary, 1003, ElKhadra city, 1003 Tunis, Tunisia
| | - Véronique Schmitt
- Centre de Recherche Paul Pascal, UMR CNRS 5031, Université de Bordeaux, 115 Avenue du Dr Albert Schweitzer, 33 600 Pessac, France
| |
Collapse
|
7
|
Sanprasert S, Kumnerdsiri P, Seubsai A, Lueangjaroenkit P, Pongsetkul J, Indriani S, Petcharat T, Sai-ut S, Hunsakul K, Issara U, Pawde SV, Rawdkuen S, Karbowiak T, Jung YH, Kingwascharapong P. Techno-Functional, Rheological, and Physico-Chemical Properties of Gelatin Capsule By-Product for Future Functional Food Ingredients. Foods 2025; 14:1279. [PMID: 40238625 PMCID: PMC11988969 DOI: 10.3390/foods14071279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/22/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
The utilization of gelatin capsule waste (GCW) poses a challenge for the industry. This study investigates its potential as a functional food ingredient by evaluating the physico-chemical, rheological, and techno-functional properties of gelatin capsule waste powder (GCWP). To achieve this, the gelatin capsule waste (GCW) was mixed with maltodextrin at varying ratios (1:1, 1:2, 1:3, 1:4, and 1:5) and subjected to spray drying. The findings highlight maltodextrin's crucial role in stabilizing the drying process, reducing stickiness, and enhancing handling and storage properties. All the obtained GCWP samples appeared light white and had a slightly sticky texture. The 1:5 (w/w) GCW-to-maltodextrin ratio produced the highest powder recovery with minimal stickiness, indicating enhanced drying efficiency. Increasing maltodextrin reduced gel strength, texture, and foaming properties while raising the glass transition temperature. The FTIR analysis indicated a decline in protein-protein interactions and increased polysaccharide interactions at higher maltodextrin levels. The rheological analysis demonstrated lower elastic and loss moduli with increased maltodextrin, affecting GCWP's structural behavior. For overall properties, the GCW mixed with maltodextrin at a 1:1 ratio (GCW-1M) is recommended for future applications, particularly for its gelling characteristics. The GCW-1M, being rich in amino acids, demonstrates its potential as a functional food ingredient. However, certain properties, such as gel strength and powder stability (hygroscopicity and stickiness), require further optimization to enhance its industrial applicability as a functional food ingredient.
Collapse
Affiliation(s)
- Sasina Sanprasert
- Department of Fishery Products, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand; (S.S.); (P.K.)
| | - Pudthaya Kumnerdsiri
- Department of Fishery Products, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand; (S.S.); (P.K.)
| | - Anusorn Seubsai
- Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand;
| | | | - Jaksuma Pongsetkul
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (J.P.); (S.I.)
| | - Sylvia Indriani
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (J.P.); (S.I.)
| | - Tanyamon Petcharat
- Professional Culinary Arts Program, School of Management, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand;
| | - Samart Sai-ut
- Department of Food Science, Faculty of Science, Burapha University, Chonburi 20131, Thailand;
| | - Kanrawee Hunsakul
- Division of Agro-Industrial Product Development, Faculty of Science and Technology, Rajamangala University of Technology Tawan-ok, Chonburi 22210, Thailand;
| | - Utthapon Issara
- Division of Food Science and Technology Management, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand;
| | - Subhash V. Pawde
- Unit of Innovative Food Packaging and Biomaterials, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Saroat Rawdkuen
- Unit of Innovative Food Packaging and Biomaterials, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Thomas Karbowiak
- Université Bourgogne Europe, Institut Agro, INRAE, UMR PAM, F-21000 Dijon, France;
| | - Young Hoon Jung
- School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Passakorn Kingwascharapong
- Department of Fishery Products, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand; (S.S.); (P.K.)
| |
Collapse
|
8
|
Golmakani MT, Zamansani E, Hajjari MM, Moosavi-Nasab M, Niakousari M. Curcumin-loaded gelatin/fucoidan electrospun composite: Physicochemical characterization and antioxidative application. Food Chem X 2025; 27:102495. [PMID: 40351500 PMCID: PMC12063031 DOI: 10.1016/j.fochx.2025.102495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 05/14/2025] Open
Abstract
This study aimed to develop gelatin/fucoidan (GF) and curcumin-loaded gelatin/fucoidan (CGF) electrospun, enhancing the shelf life of food products as an active packaging material. Simulation studies indicated the conversion of collagen-like to gelatin-like peptides at ∼75 °C and occurred hydrogen bonds between gelatin, fucoidan and curcumin. Morphological findings proved that optimum GF and CGF fibers had smooth and tubular morphology. Physicochemical results indicated possible hydrogen bonds between the compounds and enhanced thermostabilities using FTIR and TGA, respectively. Regarding antibacterial and antioxidant activities, CGF fibers demonstrated higher bactericidal (∼8 and 11 mm) and antioxidative (∼71 %) effects. During the 9-week storage test at 60 °C, lower values of PV and TBA values were observed for CGF and GF, endowing the peanuts decelerated lipid oxidation rate. These findings suggested a prospective active packaging material based on the incorporation of a bioactive molecule into a protein-carbohydrate composite, showing favorable active food packaging properties.
Collapse
Affiliation(s)
- Mohammad-Taghi Golmakani
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Elahe Zamansani
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mohammad Mahdi Hajjari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Marzieh Moosavi-Nasab
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mehrdad Niakousari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
9
|
da Costa FM, Melo PTS, Nishimoto PHK, Lorevice MV, Aouada FA, de Moura MR. Percolation Threshold of Bacterial Nanocrystals in Biopolymeric Matrices to Build Up Strengthened Biobased Food Packaging. Foods 2025; 14:1123. [PMID: 40238294 PMCID: PMC11988795 DOI: 10.3390/foods14071123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/11/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Bacterial cellulose nanocrystals (BCNCs) extracted from cellulose residues, resulting from film-cutting operations used for the commercial production of dressings, were studied as reinforcement for films based on gelatin, pectin, and hydroxypropylmethyl cellulose (HPMC). The biopolymer matrices differ in their monomer and functional group (gelatin: -COOH and -NH; pectin: -COOH and HPMC -OH). The addition of BCNCs into a polymer matrix for biopolymeric nanocomposite formulation was based on values around the theoretical percolation threshold. The results of this study showed that the BCNCs had a diameter and mean length range of (27 ± 1) nm and (180 ± 10) nm, respectively, producing films reaching 120.13 MPa of tensile strength, 10.9 GPa of Young's modulus, and a toughness of 335.17 × 106 J/m3. All films showed good transparency and a smooth surface. Surface micrographs (SEM) revealed homogeneous, compact, smooth regions, and no macropores. The crystallinity index of the BCNCs produced was 68.69%. The crystallinity of the gelatin, pectin, and HPMC films improved from 10.25 to 44.61%, from 29.79 to 53.04%, and from 18.81 to 39.88%, respectively. These results show the possibility of using films for freeze-dried food packaging.
Collapse
Affiliation(s)
- Fabíola Medeiros da Costa
- Hybrid Composites and Nanocomposites Group (GCNH), Department of Physics and Chemistry, School of Engineering, São Paulo State University (UNESP), Ilha Solteira 15385-000, SP, Brazil; (F.M.d.C.); (P.T.S.M.); (F.A.A.)
| | - Pamela Thais Sousa Melo
- Hybrid Composites and Nanocomposites Group (GCNH), Department of Physics and Chemistry, School of Engineering, São Paulo State University (UNESP), Ilha Solteira 15385-000, SP, Brazil; (F.M.d.C.); (P.T.S.M.); (F.A.A.)
| | - Pedro Henrique Kenzo Nishimoto
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (P.H.K.N.); (M.V.L.)
| | - Marcos Vinicius Lorevice
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (P.H.K.N.); (M.V.L.)
| | - Fauze Ahmad Aouada
- Hybrid Composites and Nanocomposites Group (GCNH), Department of Physics and Chemistry, School of Engineering, São Paulo State University (UNESP), Ilha Solteira 15385-000, SP, Brazil; (F.M.d.C.); (P.T.S.M.); (F.A.A.)
| | - Márcia Regina de Moura
- Hybrid Composites and Nanocomposites Group (GCNH), Department of Physics and Chemistry, School of Engineering, São Paulo State University (UNESP), Ilha Solteira 15385-000, SP, Brazil; (F.M.d.C.); (P.T.S.M.); (F.A.A.)
| |
Collapse
|
10
|
Dondero L, De Negri Atanasio G, Tardanico F, Lertora E, Boggia R, Capra V, Cometto A, Costamagna M, Fi L S E, Feletti M, Garibaldi F, Grasso F, Jenssen M, Lanteri L, Lian K, Monti M, Perucca M, Pinto C, Poncini I, Robino F, Rombi JV, Ahsan SS, Shirmohammadi N, Tiso M, Turrini F, Zaccone M, Zanotti-Russo M, Demori I, Ferrari PF, Grasselli E. Unlocking the Potential of Marine Sidestreams in the Blue Economy: Lessons Learned from the EcoeFISHent Project on Fish Collagen. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:63. [PMID: 40080223 PMCID: PMC11906597 DOI: 10.1007/s10126-025-10438-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/20/2025] [Indexed: 03/15/2025]
Abstract
This review provides a general overview of collagen structure, biosynthesis, and biological properties, with a particular focus on marine collagen sources, especially fisheries discards and by-catches. Additionally, well-documented applications of collagen are presented, with special emphasis not only on its final use but also on the processes enabling sustainable and safe recovery from materials that would otherwise go to waste. Particular attention is given to the extraction process, highlighting key aspects essential for the industrialization of fish sidestreams, such as hygiene standards, adherence to good manufacturing practices, and ensuring minimal environmental impact. In this context, the EcoeFISHent projects have provided valuable insights, aiming to create replicable, systemic, and sustainable territorial clusters based on a multi-circular economy and industrial symbiosis. The main goal of this project is to increase the monetary income of certain categories, such as fishery and aquaculture activities, through the valorization of underutilized biomass.
Collapse
Affiliation(s)
- Lorenzo Dondero
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, Genoa, Italy
| | - Giulia De Negri Atanasio
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, Genoa, Italy
| | - Francesca Tardanico
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, Genoa, Italy
| | - Erica Lertora
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, Genoa, Italy
- Angel Consulting, Via San Senatore 14, 20122, Milan, Italy
| | - Raffaella Boggia
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Vittorio Capra
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, Genoa, Italy
- MICAMO Lab - Microbiologia Ambientale E Molecolare, Via XX Settembre 33/10, 16121, Genoa, Italy
| | - Agnese Cometto
- Ticass S.C.R.L.- Tecnologie Innovative Per Il Controllo Ambientale E Lo Sviluppo Sostenibile, Via Domenico Fiasella, 3/16, 16121, Genoa, Italy
| | | | - Fi L S E
- Filse S.p.A., Piazza De Ferrari 1, 16121, Genoa, Italy
| | - Mirvana Feletti
- Regione Liguria - Direzione Generale Turismo, Agricoltura E Aree Interne Settore Politiche Agricole E Della Pesca , Viale Brigate Partigiane, 2, 16100, Genoa, Italy
| | - Fulvio Garibaldi
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, Genoa, Italy
| | - Federica Grasso
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Marte Jenssen
- Department of Marine Biotechnology, Nofima AS, Muninbakken 9-13, 9291, Tromsø, Norway
| | - Luca Lanteri
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, Genoa, Italy
| | - Kjersti Lian
- Department of Marine Biotechnology, Nofima AS, Muninbakken 9-13, 9291, Tromsø, Norway
| | - Marco Monti
- Proplast, Via Roberto Di Ferro 86, 15122, Alessandria, AL, Italy
| | - Massimo Perucca
- Project HUB-360, Corso Laghi 22, 10051, Avigliana, TO, Italy
| | - Cecilia Pinto
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, Genoa, Italy
| | - Ilaria Poncini
- Proplast, Via Roberto Di Ferro 86, 15122, Alessandria, AL, Italy
| | | | - Junio Valerio Rombi
- MICAMO Lab - Microbiologia Ambientale E Molecolare, Via XX Settembre 33/10, 16121, Genoa, Italy
| | - Syed Saad Ahsan
- Project HUB-360, Corso Laghi 22, 10051, Avigliana, TO, Italy
| | - Nikta Shirmohammadi
- Ticass S.C.R.L.- Tecnologie Innovative Per Il Controllo Ambientale E Lo Sviluppo Sostenibile, Via Domenico Fiasella, 3/16, 16121, Genoa, Italy
| | - Micaela Tiso
- MICAMO Lab - Microbiologia Ambientale E Molecolare, Via XX Settembre 33/10, 16121, Genoa, Italy
| | - Federica Turrini
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
- National Center for the Development of New Technologies in Agriculture (Agritech), 80121, Naples, Italy
| | - Marta Zaccone
- Proplast, Via Roberto Di Ferro 86, 15122, Alessandria, AL, Italy
| | | | - Ilaria Demori
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Pier Francesco Ferrari
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Via Opera Pia, 15, 16145, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Elena Grasselli
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, Genoa, Italy.
- National Center for the Development of New Technologies in Agriculture (Agritech), 80121, Naples, Italy.
| |
Collapse
|
11
|
Wang Z, Lin Z, Mei X, Cai L, Lin KC, Rodríguez JF, Ye Z, Parraguez XS, Guajardo EM, García Luna PC, Zhang JYJ, Zhang YS. Engineered Living Systems Based on Gelatin: Design, Manufacturing, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2416260. [PMID: 39910847 DOI: 10.1002/adma.202416260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/26/2024] [Indexed: 02/07/2025]
Abstract
Engineered living systems (ELSs) represent purpose-driven assemblies of living components, encompassing cells, biomaterials, and active agents, intricately designed to fulfill diverse biomedical applications. Gelatin and its derivatives have been used extensively in ELSs owing to their mature translational pathways, favorable biological properties, and adjustable physicochemical characteristics. This review explores the intersection of gelatin and its derivatives with fabrication techniques, offering a comprehensive examination of their synergistic potential in creating ELSs for various applications in biomedicine. It offers a deep dive into gelatin, including its structures and production, sources, processing, and properties. Additionally, the review explores various fabrication techniques employing gelatin and its derivatives, including generic fabrication techniques, microfluidics, and various 3D printing methods. Furthermore, it discusses the applications of ELSs based on gelatin in regenerative engineering as well as in cell therapies, bioadhesives, biorobots, and biosensors. Future directions and challenges in gelatin fabrication are also examined, highlighting emerging trends and potential areas for improvements and innovations. In summary, this comprehensive review underscores the significance of gelatin-based ELSs in advancing biomedical engineering and lays the groundwork for guiding future research and developments within the field.
Collapse
Affiliation(s)
- Zhenwu Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Zeng Lin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Xuan Mei
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ling Cai
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ko-Chih Lin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jimena Flores Rodríguez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Zixin Ye
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ximena Salazar Parraguez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Emilio Mireles Guajardo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Pedro Cortés García Luna
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jun Yi Joey Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| |
Collapse
|
12
|
Culqui-Arce C, Mori-Mestanza D, Fernández-Jeri AB, Cruzalegui RJ, Mori Zabarburú RC, Vergara AJ, Cayo-Colca IS, da Silva JG, Araujo NMP, Castro-Alayo EM, Balcázar-Zumaeta CR. Polymers Derived from Agro-Industrial Waste in the Development of Bioactive Films in Food. Polymers (Basel) 2025; 17:408. [PMID: 39940610 PMCID: PMC11819695 DOI: 10.3390/polym17030408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
This review explores the potential of biopolymers as sustainable alternatives to conventional plastics in food packaging. Biopolymers derived from plant or animal sources are crucial in extending food shelf life, minimizing degradation, and protecting against oxidative and microbial agents. Their physical and chemical properties, influenced by the raw materials used, determine their suitability for specific applications. Biopolymers have been successfully used in fruits, vegetables, meats, and dairy products, offering antimicrobial and antioxidant benefits. Consequently, they represent a functional and eco-friendly solution for the packaging industry, contributing to sustainability while maintaining product quality.
Collapse
Affiliation(s)
- Carlos Culqui-Arce
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Diner Mori-Mestanza
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Armstrong B. Fernández-Jeri
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Robert J. Cruzalegui
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Roberto Carlos Mori Zabarburú
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Alex J. Vergara
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Ilse S. Cayo-Colca
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru;
| | - Juliana Guimarães da Silva
- Institute of Technology, School of Food Engineering, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (J.G.d.S.); (N.M.P.A.)
| | - Nayara Macêdo Peixoto Araujo
- Institute of Technology, School of Food Engineering, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (J.G.d.S.); (N.M.P.A.)
| | - Efraín M. Castro-Alayo
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - César R. Balcázar-Zumaeta
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| |
Collapse
|
13
|
Xu X, Dai D, Yan H, Du J, Zhang Y, Chen T. Enhancing mechanical and blocking properties of gelatin films using zein-quercetin nanoparticle and applications for strawberry preservation. Food Chem 2025; 464:141895. [PMID: 39515172 DOI: 10.1016/j.foodchem.2024.141895] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
New gelatin films incorporated with zein-quercetin nanoparticles (GA/ZQNPs) were developed. The GA/ZQNP films had improved tensile strength, water vapor and oxygen barrier capabilities, hydrophobicity, UV blocking feature, antioxidant activities and antimicrobial properties, which varied with various contents of ZQNPs. Notably, the GA/ZQNP0.1-10 films exhibited enhanced tensile stress value around 3.2 MPa and strain of 142 %, a 78.4 % decrease in water vapor permeability, a 76.9 % decrease in oxygen permeability, the highest water contact angle at 112.0 ± 0.6°, an improved DPPH∙ scavenging rate of 64.9 ± 0.7 %, excellent UV blocking properties and antimicrobial properties. The GA/ZQNP films were further applied for strawberries packaging to assess their preservation capabilities under ambient conditions. The results showed that GA/ZQNP0.1-10 nanocomposite films efficiently maintained the best nutrient quality and acceptable appearance of strawberries compared with untreated strawberries, prolonging the shelflife of strawberries to approximately 8 days. These findings suggested promising applications for these new functional films in fruit packaging.
Collapse
Affiliation(s)
- Xuefeng Xu
- College of Chemical and Material Engineering, Hainan Vocation University of Science and Technology, Haikou 571126, China.
| | - Decai Dai
- College of Chemical and Material Engineering, Hainan Vocation University of Science and Technology, Haikou 571126, China
| | - Hao Yan
- College of Chemical and Material Engineering, Hainan Vocation University of Science and Technology, Haikou 571126, China
| | - Jinfeng Du
- College of Chemical and Material Engineering, Hainan Vocation University of Science and Technology, Haikou 571126, China
| | - Yu Zhang
- College of Chemical and Material Engineering, Hainan Vocation University of Science and Technology, Haikou 571126, China
| | - Tao Chen
- College of Chemical and Material Engineering, Hainan Vocation University of Science and Technology, Haikou 571126, China
| |
Collapse
|
14
|
Wang N, Zhang YM, Li J, Mao HF, Zhou Q, Yang H, Wang LJ, Wang ZY, Li K, Yu XQ. Novel high-strength, recyclable, microbial-resistant, and freeze-thaw dual topological network hydrogel cooling media. Food Chem 2025; 464:141899. [PMID: 39509887 DOI: 10.1016/j.foodchem.2024.141899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
The demand for multifunctional hydrogels, offering high mechanical strength, efficient cooling, and antimicrobial properties, is growing in food preservation. Here, a dual-network (DN) hydrogel PM@Cur, which includes curcumin, is fabricated through chemical crosslinking and hydrogen bonding interactions. The resulting hydrogels can withstand more than five freeze-thaw cycles at -80 °C, and resist brittleness after liquid nitrogen treatment. PM@Cur also exhibits surface hydrophobicity (contact angle >90°) for both water and organic solvents. These properties meet the mechanical, anti-fouling, and recyclable demands for hydrogel coolants. The antimicrobial assays in vitro confirmed that the inclusion of curcumin provided the PM@Cur with photodynamic antimicrobial capacity. Finally, the prepared PM@Cur hydrogel ice cubes have been confirmed to exhibit better anti-melting properties than traditional ice cubes, thus enabling the preservation of strawberries and shrimp. This study presents an innovative solution for producing advanced functional integrated hydrogels, offering a promising and safer option for food coolants.\.
Collapse
Affiliation(s)
- Nan Wang
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yi-Miao Zhang
- Sichuan Engineering Research Center for Molecular Targeted Diagnostic & Therapeutic Drugs, Research and Application of Small Organic Chiral Molecules Key Laboratory of Yibin City, Department of Chemistry, Xihua University, Chengdu 610039, China
| | - Jun Li
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Hua-Feng Mao
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Qian Zhou
- Sichuan Engineering Research Center for Molecular Targeted Diagnostic & Therapeutic Drugs, Research and Application of Small Organic Chiral Molecules Key Laboratory of Yibin City, Department of Chemistry, Xihua University, Chengdu 610039, China
| | - Hui Yang
- Sichuan Engineering Research Center for Molecular Targeted Diagnostic & Therapeutic Drugs, Research and Application of Small Organic Chiral Molecules Key Laboratory of Yibin City, Department of Chemistry, Xihua University, Chengdu 610039, China
| | - Li-Jun Wang
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Zhou-Yu Wang
- Sichuan Engineering Research Center for Molecular Targeted Diagnostic & Therapeutic Drugs, Research and Application of Small Organic Chiral Molecules Key Laboratory of Yibin City, Department of Chemistry, Xihua University, Chengdu 610039, China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiao-Qi Yu
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Sichuan Engineering Research Center for Molecular Targeted Diagnostic & Therapeutic Drugs, Research and Application of Small Organic Chiral Molecules Key Laboratory of Yibin City, Department of Chemistry, Xihua University, Chengdu 610039, China.
| |
Collapse
|
15
|
Kowalczyk D, Karaś M, Kazimierczak W, Skrzypek T, Wiater A, Bartkowiak A, Basiura-Cembala M. A Comparative Study on the Structural, Physicochemical, Release, and Antioxidant Properties of Sodium Casein and Gelatin Films Containing Sea Buckthorn Oil. Polymers (Basel) 2025; 17:320. [PMID: 39940522 PMCID: PMC11821040 DOI: 10.3390/polym17030320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
The aim of this study was to compare the effect of increasing concentrations (0, 1, 2, 4%) of sea buckthorn oil (SBO) on the structural, physicochemical, release, and antioxidant properties of glycerol-plasticized sodium casein (NaCAS) and gelatin (GEL) films. Ultrasonic treatment ensured effective homogenization of SBO in both types of emulsions, resulting in yellow-tinted semi-opaque films with relatively low micro-roughness. Generally, GEL films demonstrated lower UV barrier properties and solubility but exhibited higher compactness, crystallinity, transparency, surface hydrophobicity, oxygen barrier performance, strength, and antiradical activity compared to their NaCAS-based counterparts. In a concentration-dependent manner, SBO decreased the solubility and water absorption of the gelatin-based film and enhanced its oxygen permeability. Conversely, SBO improved the water vapor barrier properties of both films in a concentration-independent manner. At the highest SBO concentration, the tensile strength of NaCAS- and GEL-based films decreased by 27% and 20%, respectively, while their antiradical activity increased by 9.3× and 4.3× (based on the time required for the half-neutralization of 2,2-diphenyl-1-picrylhydrazyl radicals). Migration studies showed that at the lowest concentration, SBO was released (into 95% ethanol) approximately 2× faster from the GEL-based film than from the NaCAS film, whereas at higher concentrations, the trend reversed.
Collapse
Affiliation(s)
- Dariusz Kowalczyk
- Department of Biochemistry and Food Chemistry, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland;
| | - Monika Karaś
- Department of Biochemistry and Food Chemistry, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland;
| | - Waldemar Kazimierczak
- Department of Biomedicine and Environmental Research, Faculty of Medicine, John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland; (W.K.); (T.S.)
| | - Tomasz Skrzypek
- Department of Biomedicine and Environmental Research, Faculty of Medicine, John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland; (W.K.); (T.S.)
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Artur Bartkowiak
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 35, 71-270 Szczecin, Poland;
| | - Monika Basiura-Cembala
- Institute of Engineering Sciences, Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biała, Poland;
| |
Collapse
|
16
|
Koh N, Kim DK. Synergistic antibacterial effect of 405 nm blue light-emitting diodes (LEDs) and gelatin film for inactivation of Escherichia coli O157:H7 and Salmonella Typhimurium on stainless steel and fresh fruit peel. Int J Food Microbiol 2025; 427:110961. [PMID: 39532024 DOI: 10.1016/j.ijfoodmicro.2024.110961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/09/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
A combined antibacterial effect of 405 nm blue LEDs (BL) and gelatin film (G) was investigated on stainless steel (SUS) and fresh fruit peel for the inactivation of Escherichia coli O157:H7 and Salmonella Typhimurium. On the SUS, the sum of the individual treatments of G for 20 min and BL at 20 J/cm2 was <1 log reduction (log CFU/cm2). In comparison, combination treatment of G and BL (G + BL) at 20 J/cm2 exhibited 2.37 and 3.09 log reduction on E. coli O157:H7 and S. Typhimurium. The G + BL treatment only increased a propidium iodide (PI) uptake, indicating that cell membrane damage occurred. In the G + BL treatment, reactive oxygen species (ROS) scavenging assay confirmed that ROS involved in the bactericidal mechanism. On orange peel, the G + BL treatment at 40 J/cm2 resulted in a 3.05 and 3.17 log reduction on E. coli O157:H7 and S. Typhimurium. In contrast, the individual treatment of G for 40 min led to reductions of 0.63 log CFU/cm2 for E. coli O157:H7 and 0.50 log CFU/cm2 for S. Typhimurium, while the BL treatment at 40 J/cm2 achieved reductions of 0.78 and 0.69 log CFU/cm2, respectively. A synergistic bactericidal effect was similarly observed in the combined treatment groups for both apple and grapefruit peels. In a color and texture analysis, G did not affect hardness, toughness, and visual color of fruit.
Collapse
Affiliation(s)
- Naeun Koh
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea
| | - Do-Kyun Kim
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
17
|
Zhao M, Han P, Mu H, Sun S, Dong J, Sun J, Lu S, Wang Q, Ji H. Food packaging films from natural polysaccharides and protein hydrogels: A comprehensive review. Food Chem X 2025; 25:102174. [PMID: 39897972 PMCID: PMC11786921 DOI: 10.1016/j.fochx.2025.102174] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/09/2024] [Accepted: 01/11/2025] [Indexed: 02/04/2025] Open
Abstract
The development of innovative, biodegradable food packaging materials to combat plastic pollution has garnered significant attention from scholars and government agencies worldwide. Natural polysaccharides and proteins exhibit excellent modifiability, biodegradability, high ductility, and compatibility with food products, making them ideal candidates for constructing hydrogels. Hydrogel films based on these biopolymers have opened new research horizons in food packaging applications. This review examines natural polysaccharides and proteins commonly used in hydrogel film preparation and explores strategies to improve their packaging performance, including the use of binary mixtures and exogenous additives. To optimize functionality, the cross-linking mechanisms between materials and film-forming methods are summarized. Additionally, recent applications of hydrogel films in food packaging in are discussed, showcasing their ability to extend or monitor food freshness. Despite existing challenges, the current advancements present a promising and sustainable alternative to conventional plastic materials paving the way for innovative packaging solutions.
Collapse
Affiliation(s)
- Mou Zhao
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Ping Han
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Hongyan Mu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Suling Sun
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Juan Dong
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Jingtao Sun
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Shiling Lu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Qingling Wang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Hua Ji
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| |
Collapse
|
18
|
Hejabi N, Fakhari A, Haeili M, Ghasempour Z. Pectin/gelatin-based bionanocomposite containing modified graphene quantum dots and carnauba wax as functional fillers for food packaging applications. J Food Sci 2025; 90:e17466. [PMID: 39832235 DOI: 10.1111/1750-3841.17466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/10/2024] [Accepted: 09/25/2024] [Indexed: 01/22/2025]
Abstract
Alternatives to nonbiodegradable synthetic plastics for food packaging include films made from biopolymers that are nontoxic and environment-friendly. In this study, carnauba wax (CW) and nitrogen-doped graphene quantum dots (NG) as functional additives were utilized in the production of pectin/gelatin (PG) film. NG was synthesized through the microwave method, using acetic acid as the carbon source, giving size, and zeta potential of 1.635 nm and +0.647 mV, respectively. NG (0%-10%) and CW (0%-10%) were investigated for nanocomposite film preparation using central composite design. The lowest water vapor permeability of film samples was 1.74 × 10-10 g mm/h m2 kPa, which was obtained at 8.5% CW and 6% NG. The highest solubility rate (57%) was observed in the PG film with 10% NG. The incorporation of NG significantly amplified light absorbance at 280 nm. The antioxidant properties improved as NG content increased from 1.5% to 10%. Optimum condition for the fabrication of film sample was obtained at 8.5% NG and 8.5% CW. Adding NG led to a substantial enhancement in the tensile strength (up to 68.97%) and elongation at break (up to 40.20%). PG film with CW and NG reduced the viable cell count of Staphylococcus aureus and Klebsiella pneumoniae by 4- and 1.75-fold, respectively. The produced composite film combined with NG and CW can serve as suitable novel active packaging components for items prone to oxidation and bacterial spoilage to enhance their quality and longevity.
Collapse
Affiliation(s)
- Negin Hejabi
- Students Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ashraf Fakhari
- Department of Radiology, Medical School, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehri Haeili
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Zahra Ghasempour
- Nutrition Research Center, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Edo GI, Mafe AN, Razooqi NF, Umelo EC, Gaaz TS, Isoje EF, Igbuku UA, Akpoghelie PO, Opiti RA, Essaghah AEA, Ahmed DS, Umar H, Ozsahin DU. Advances in bio-polymer coatings for probiotic microencapsulation: chitosan and beyond for enhanced stability and controlled release. Des Monomers Polym 2024; 28:1-34. [PMID: 39777298 PMCID: PMC11703421 DOI: 10.1080/15685551.2024.2448122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
This review paper analyzes recent advancements in bio-polymer coatings for probiotic microencapsulation, with a particular emphasis on chitosan and its synergistic combinations with other materials. Probiotic microencapsulation is essential for protecting probiotics from environmental stresses, enhancing their stability, and ensuring effective delivery to the gut. The review begins with an overview of probiotic microencapsulation, highlighting its significance in safeguarding probiotics through processing, storage, and gastrointestinal transit. Advances in chitosan-based encapsulation are explored, including the integration of chitosan with other bio-polymers such as alginate, gelatin, and pectin, as well as the application of nanotechnology and innovative encapsulation techniques like spray drying and layer-by-layer assembly. Detailed mechanistic insights are integrated, illustrating how chitosan influences gut microbiota by promoting beneficial bacteria and suppressing pathogens, thus enhancing its role as a prebiotic or synbiotic. Furthermore, the review delves into chitosan's immunomodulatory effects, particularly in the context of inflammatory bowel disease (IBD) and autoimmune diseases, describing the immune signaling pathways influenced by chitosan and linking gut microbiota changes to improvements in systemic immunity. Recent clinical trials and human studies assessing the efficacy of chitosan-coated probiotics are presented, alongside a discussion of practical applications and a comparison of in vitro and in vivo findings to highlight real-world relevance. The sustainability of chitosan sources and their environmental impact are addressed, along with the novel concept of chitosan's role in the gut-brain axis. Finally, the review emphasizes future research needs, including the development of personalized probiotic therapies and the exploration of novel bio-polymers and encapsulation techniques.
Collapse
Affiliation(s)
- Great Iruoghene Edo
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
- Department of Petroleum Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Alice Njolke Mafe
- Department of Biological Sciences, Faculty of Science, Taraba State University Jalingo, Taraba State, Nigeria
| | - Nawar. F. Razooqi
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
| | - Ebuka Chukwuma Umelo
- Department of Healthcare Organisation Management, Cyprus International University, Nicosia, Turkey
| | - Tayser Sumer Gaaz
- Department of Prosthetics and Orthotics Engineering, College of Engineering and Technologies, Al-Mustaqbal University, Babylon, Iraq
| | - Endurance Fegor Isoje
- Department of Science Laboratory Technology (Biochemistry Option), Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Ufuoma Augustina Igbuku
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Patrick Othuke Akpoghelie
- Department of Food Science and Technology, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Rapheal Ajiri Opiti
- Department of Petroleum Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Arthur Efeoghene Athan Essaghah
- Department of Urban and Regional Planning, Faculty of Environmental Sciences, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Dina S. Ahmed
- Department of Chemical Industries, Institute of Technology-Baghdad, Middle Technical University, Baghdad, Iraq
| | - Huzaifa Umar
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus
| | - Dilber Uzun Ozsahin
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus
- Department of Medical Diagnostic Imaging, College of Health Sciences, University of Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates
| |
Collapse
|
20
|
Rezagholizade-shirvan A, Soltani M, Shokri S, Radfar R, Arab M, Shamloo E. Bioactive compound encapsulation: Characteristics, applications in food systems, and implications for human health. Food Chem X 2024; 24:101953. [PMID: 39582652 PMCID: PMC11584689 DOI: 10.1016/j.fochx.2024.101953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024] Open
Abstract
Nanotechnology plays a pivotal role in food science, particularly in the nanoencapsulation of bioactive compounds, to enhance their stability, bioavailability, and therapeutic potential. This review aims to provide a comprehensive analysis of the encapsulation of bioactive compounds, emphasizing the characteristics, food applications, and implications for human health. This work offers a detailed comparison of polymers such as sodium alginate, gum Arabic, chitosan, cellulose, pectin, shellac, and xanthan gum, while also examining both conventional and emerging encapsulation techniques, including freeze-drying, spray-drying, extrusion, coacervation, and supercritical anti-solvent drying. The contribution of this review lies in highlighting the role of encapsulation in improving system stability, controlling release rates, maintaining bioactivity under extreme conditions, and reducing lipid oxidation. Furthermore, it explores recent technological advances aimed at optimizing encapsulation processes for targeted therapies and functional foods. The findings underline the significant potential of encapsulation not only in food supplements and functional foods but also in supportive medical treatments, showcasing its relevance to improving human health in various contexts.
Collapse
Affiliation(s)
| | - Mahya Soltani
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Samira Shokri
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Lorestan, Iran
| | - Ramin Radfar
- Department of Agriculture and Food Policies, Agricultural Planning, Economic and Rural Development Research Institute (APERDRI), Tehran, Iran
| | - Masoumeh Arab
- Department of Food Science and Technology, School of Public Health, Shahid sadoughi University of Medical Sciences, Yazd, Iran Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ehsan Shamloo
- Department of Food Science and Technology, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
21
|
Fornaro M, Liguori B, Ambrogi V, Caputo D. Zeolite Additives for Flexible Packaging Polymers: Current Status Review and Future Perspectives. Polymers (Basel) 2024; 16:3399. [PMID: 39684145 DOI: 10.3390/polym16233399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Zeolites are interesting inorganic additives that could be employed for plastic packaging applications. Polyethylene (PE) and polypropylene (PP) are intensively used for packaging as they provide great performance at low cost, even though they have poor environmental sustainability and may be more valorized. Biodegradable polymers may therefore represent a more eco-friendly alternative, but still, they have limited applications due to their generally inferior properties. Therefore, this review focuses on the use of zeolites as additives for flexible packaging applications to mainly improve the mechanical and barrier properties of PE, PP, and some biodegradable polymers, possibly with antimicrobial and scavenging activities, by exploiting zeolites' cation exchange ability and adsorption properties. Film preparation and characterization have been investigated. The obtained enhancements regard generally higher gas barriers, elastic moduli, and strengths, along with thermal stability. Elongation at break decreased for all PE composites and tended to increase for other matrices. The use of zeolites as additives for polymer films is promising (mainly for biodegradable polymers); still, it requires overcoming some limiting drawbacks associated with the additive concentration and dispersion mainly due to matrix-additive incompatibility.
Collapse
Affiliation(s)
- Mattia Fornaro
- ACLabs-Applied Chemistry Labs, Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli, Italy
| | - Barbara Liguori
- ACLabs-Applied Chemistry Labs, Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| | - Veronica Ambrogi
- PolyFun, Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli, Italy
| | - Domenico Caputo
- ACLabs-Applied Chemistry Labs, Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
22
|
Wang Q, Fan D, Hu Y, Liu H, Tan B, Xie S, Chen Q. Effects of supplementation with freeze-dried Clostridium butyricum powder after replacement of fishmeal with cottonseed protein concentrate on growth performance, immune response, and intestinal microbiota of Litopenaeus vannamei. BMC Vet Res 2024; 20:519. [PMID: 39551754 PMCID: PMC11571666 DOI: 10.1186/s12917-024-04372-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024] Open
Abstract
The present study was designed to investigate the effects of supplementation with freeze-dried Clostridium butyricum (CB) powder on the growth, immune function and intestinal health of Litopenaeus vannamei after replacing fishmeal in the diet with cottonseed protein concentrate (CPC). Six treatment groups were designed, namely the control group (CON, 25% fish meal) and five alternative groups (CPC replacing 40% fishmeal protein in the control group). Based on the alternative group, 0%, 0.065%, 0.26%, 1.04%, and 4.16% of freeze-dried CB bacterial powder (4.6 × 108 CFU/g) were added, recorded as CB 0, CB 0.065, CB 0.26, CB 1.04, and CB 4.16, respectively. Each treatment had 3 replicates of 40 shrimps (0.29 ± 0.01 g) each and breeding for 8 weeks. After the experiment, serum enzyme activities, muscle amino acids, and intestinal parameters (short-chain fatty acids, digestive enzymes, gene expression, and microbiota) were tested to explore the effects of freeze-dried CB powder in shrimp aquaculture. The results showed that the CB1.04 group had the highest final body weight, weight gain rate, and specific growth ratio (P > 0.05). Freeze-dried CB powder increased the activity of serum superoxide dismutase, glutathione peroxidase, complement 3, and complement 4. Muscle tyrosine, proline, and total essential amino acids were remarkably increased in the CB 1.04 group (P < 0.05). Propionic acid levels were elevated in the CB 1.04 and CB4.16 groups (P < 0.001). The relative expression of Dorsal, Relish, and Target of Rapamycin (TOR) genes was significantly increased in the CB 1.04 group (P < 0.01). Actinobacteria and Demequina abundance was significantly higher in the CB 1.04 group (P < 0.01). The results of the Vibrio parahaemolyticus challenge test showed the highest cumulative mortality rate (43.33%) in the CB0 group and the lowest cumulative mortality rate (20%) in the CB1.04 group. This study confirmed that freeze-dried CB powder alleviated the negative effects of CPC replacement of fish meal protein in Litopenaeus vannamei, and the optimum additive level was 2.11% (9.71 × 109 CFU/kg) as indicated by binary regression analysis of specific growth ratio.
Collapse
Affiliation(s)
- Qi Wang
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, P.R. China
- Bio-Form Biotechnology (Guangdong) Co., Ltd, Foshan, 528200, PR China
| | - Depeng Fan
- Bio-Form Biotechnology (Guangdong) Co., Ltd, Foshan, 528200, PR China
| | - Yadong Hu
- Bio-Form Biotechnology (Guangdong) Co., Ltd, Foshan, 528200, PR China
| | - Hongyu Liu
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, P.R. China.
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, P.R. China
| | - Shiwei Xie
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, P.R. China
| | - Qiang Chen
- Bai Yang Industrial Investment Group Co., Ltd, Nanning, 530000, PR China
| |
Collapse
|
23
|
Cottet C, Fernández-García M, Peltzer MA. Evaluation of Different Concentrations of Antimicrobial Quaternary Polymers on the Behavior of Gelatin- and Starch-Based Films. Polymers (Basel) 2024; 16:3168. [PMID: 39599259 PMCID: PMC11597982 DOI: 10.3390/polym16223168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Nowadays, incorporating quaternary ammonium groups into polymers is one of the most promising strategies for preparing antimicrobial biomaterials for general applications. The main objective of this work was to evaluate the effect of different concentrations of antimicrobial quaternary polymers in gelatin- and starch-based films for the development of active materials intended for applications in food packaging and medical fields. Two antimicrobial biobased polymers, called MeFPIAx (MeFPIA1 and MeFPIA2), were previously synthesized through the radical polymerization of itaconic acid (IA), followed by their subsequent functionalization and modification. Both polymers were incorporated into a new blend of gelatin and starch (15% w/w, 4:1 mass ratio), using glycerol (30% w/w) as a plasticizer. Films were prepared using the casting technique from aqueous dispersions of the polymers and their structure was characterized by Fourier Transform Infrared Spectroscopy with Attenuated Total Reflectance (FTIR-ATR). The findings of this study showed the addition of MeFPIAx had a significant effect (p < 0.05), resulting in films with higher tensile strength (TS) and a higher Young's modulus (YM), with values close to 20 MPa and exceeding 250 MPa, respectively. On the other hand, elongation at break (EB) values lower than 80% were obtained. Additionally, the swelling was reduced from ~400% to 100% and a reduction in water vapor permeability (Pw) was observed, thanks to the increased interaction between the polymeric chains. Differential scanning calorimetry (DSC) scans showed that the addition of MeFPIAx increased the glass transition temperatures (Tg) from 29 °C to 65 °C. Furthermore, thermogravimetry analysis (TGA) indicated an increase in the initial degradation temperatures, suggesting that the films were more thermally resistant. Finally, the films exhibited slight antioxidant activity but significant antimicrobial activity, achieving bacterial reduction values greater than 70% with the incorporation of MeFPIAx polymers against Gram-positive Staphylococcus aureus.
Collapse
Affiliation(s)
- Celeste Cottet
- Laboratory of Obtention, Modification, Characterization and Evaluation of Materials (LOMCEM), Department of Science and Technology, University of Quilmes, Buenos Aires B1876BXD, Argentina;
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1033AAJ, Argentina
| | - M. Fernández-García
- Institute of Polymer Science and Technology, Superior Council of Scientific Investigations (ICTP-CSIC), 28006 Madrid, Spain;
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy, SUSPLAST, CSIC, 28006 Madrid, Spain
| | - M. A. Peltzer
- Laboratory of Obtention, Modification, Characterization and Evaluation of Materials (LOMCEM), Department of Science and Technology, University of Quilmes, Buenos Aires B1876BXD, Argentina;
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1033AAJ, Argentina
| |
Collapse
|
24
|
Wang Q, Jiang C, Wang H, Jin X, Tao Y, Lu J, Du J, Wang H. A multifunctional soybean protein isolates crosslinked gelatins composite mulch film: Fabrication, characterization, and application. Int J Biol Macromol 2024; 282:137252. [PMID: 39505181 DOI: 10.1016/j.ijbiomac.2024.137252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
The development of sustainable agriculture has boosted an increase in demand for biodegradable and multifunctional biomass-based mulch films. Herein, a sort of eco-friendly and multifunctional soybean protein isolates crosslinked gelatins (SPI-c-Gel) composite mulch films were elaborately designed through the Schiff base reaction. The formation of physical entanglement and chemical cross-linking between the molecular chains of SPI and Gel could effectively dissipate the loading energy and thereby strengthen the resistance of the composite mulch films to water penetration. Specifically, the maximum tensile strain and tensile stress were observed to increase from 4.05 MPa at 73.3 % for pure SPI film to 14.7 MPa at 151 % for optimized SPI-c-Gel0.3 mulch film. The swelling rate in water declined from 280 % for pure SPI film to 141 % for SPI-c-Gel0.3 composite film. Furthermore, the fabricated composite mulch film exhibited satisfied water retention, urea slow-release properties, and biodegradability. The application experiments of SPI-c-Gel0.3 composite mulch have shown that the seeds grew faster when cabbage seeds were covered by such mulch film during seed germination. Our findings provide a novel strategy for regulating the physical and chemical properties of biopolymer-based multifunctional mulch films, which may be employed to promote the development of sustainable agriculture.
Collapse
Affiliation(s)
- Qiansen Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Cong Jiang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Hong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xingming Jin
- Beijing Shieldry Technology Co., Ltd., Bejing 100053, China
| | - Yehan Tao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jie Lu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jian Du
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Haisong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
25
|
Hasheminya SM, Dehghannya J. Development and characterization of kefiran-gelatin bio-nanocomposites containing Zhumeria majdae essential oil nanoemulsion to use as active food packaging in sponge cakes. Int J Biol Macromol 2024; 279:135120. [PMID: 39208884 DOI: 10.1016/j.ijbiomac.2024.135120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/19/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Active packaging films based on kefiran-gelatin were developed and characterized using Zhumeria majdae essential oil nanoemulsion (ZMEO-NE) at concentrations of 0 (control), 1, 2 and 3 %. The main compounds of the essential oil (EO) of Zhumeria majdae (ZM) plant were linalool (61.44 %) and camphor (20.67 %). Adding the ZMEO-NE to the films decreased permeability to water vapor (from 7.82 × 10-7 to 4.09 × 10-7 g·m/m2·Pa·h), ultimate tensile strength (from 38.44 to 33.48 MPa), percentage of light transmission, and increased thickness (from 0.085 to 0.121 mm), opacity (from 2.11 to 2.79), and elongation at break (from 19.97 to 34.73 %), and changed color parameters. The establishment of hydrogen bonds between the ZMEO-NE and polymer network was confirmed. The ZMEO-NE decreased the storage modulus and glass transition temperature. Distinct variations in the films' surface morphology and a reduction in the crystalline structure were observed due to the presence of the ZMEO-NE. Elevating the concentration of the ZMEO-NE increased antioxidant capabilities of the films. The films incorporating the ZMEO-NE exhibited notable antibacterial efficacy against Staphylococcus aureus (reductions ≥4 log CFU/cm2) and Escherichia coli (reductions ≥2 log CFU/cm2) bacteria. The films also demonstrated suitable antifungal properties during storage of sponge cakes for 16 days.
Collapse
Affiliation(s)
| | - Jalal Dehghannya
- Department of Food Science and Technology, University of Tabriz, Tabriz 51666-16471, Iran.
| |
Collapse
|
26
|
Das PP, Prathapan R, Ng KW. Advances in biomaterials based food packaging systems: Current status and the way forward. BIOMATERIALS ADVANCES 2024; 164:213988. [PMID: 39116599 DOI: 10.1016/j.bioadv.2024.213988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/16/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
World hunger is getting worse, while one-third of food produced around the globe is wasted and never consumed. It is vital to reduce food waste to promote the sustainability of food systems, and improved food packaging solutions can augment this effort. The utilization of biomaterials in smart food packaging not only enhances food preservation and safety but also aligns with current demands for eco-friendly technologies to mitigate the impacts of climate change. This review provides a comprehensive overview of the developments in the field of food packaging based on the innovative use of biomaterials. It emphasizes the potential use of biomaterials derived from nature including cellulose, chitosan, keratin, etc. for this purpose. Various smart food packaging technologies such as active and intelligent packaging are discussed in detail including scavenging additives, colour-changing environment indicators, sensors, RFID tags, etc. The article also delves into the utilization of edible films and coatings, nanoparticle fillers and 2D materials in food packaging systems. Furthermore, it outlines the challenges and opportunities in this dynamic domain, emphasizing the ongoing need for research and innovation to shape the future of sustainable and smart food packaging solutions to enhance and monitor the shelf-life of food products.
Collapse
Affiliation(s)
- Partha Pratim Das
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Ragesh Prathapan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment and Water Research Institute (NEWRI), 1 Cleantech Loop, Singapore 637141, Singapore.
| |
Collapse
|
27
|
Wang X, Xue Z, Sun Y, Peng B, Wu C, Kou X. Chitosan-ginger essential oil nanoemulsions loaded gelatin films: A biodegradable material for food preservation. Int J Biol Macromol 2024; 280:135791. [PMID: 39306174 DOI: 10.1016/j.ijbiomac.2024.135791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/27/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
The alarming issue of food waste, coupled with the potential risks posed by petroleum-based plastic preservation materials to both the environment and human health necessitate innovative solutions. In this study, we prepared nanoemulsions (NEs) of chitosan (CS) and ginger essential oil (GEO) and systematically evaluated the effects of varying NEs concentrations (0, 10 %, 30 %, 50 %) on the physicochemical properties and biological activities of gelatin films. These films were subsequently applied to blueberry preservation. The scanning electron microscopy confirmed that the NEs were well-integrated with the Gel matrix, significantly enhancing the performance of the Gel films, including improvements of mechanical properties (tensile strength from 7.71 to 19.92 MPa; elongation at break from 38.55 to 113.65 %), thermal, and barrier properties (water vapor permeability from 1.52 × 10-9 to 6.54 × 10-10 g·m/Pa·s·m2). The films exhibited notable antibacterial and antioxidant activities due to the gradual release of GEO, thereby extending the storage life of blueberries. Moreover, the prepared composite films demonstrated excellent biodegradability and environmental friendliness, with the majority of the material decomposing within 30 days under soil microbial action. In conclusion, the active films loaded with NEs exhibit superior performance and hold significant potential for developing biodegradable materials for food preservation.
Collapse
Affiliation(s)
- Xiaohan Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yijie Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Bo Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
28
|
Eranda DHU, Chaijan M, Panpipat W, Karnjanapratum S, Cerqueira MA, Castro-Muñoz R. Gelatin-chitosan interactions in edible films and coatings doped with plant extracts for biopreservation of fresh tuna fish products: A review. Int J Biol Macromol 2024; 280:135661. [PMID: 39299417 DOI: 10.1016/j.ijbiomac.2024.135661] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
The preservation of tuna fish products, which are extremely perishable seafood items, is a substantial challenge due to their instantaneous spoilage caused by microbial development and oxidative degradation. The current review explores the potential of employing chitosan-gelatin-based edible films and coatings, which are enriched with plant extracts, as a sustainable method to prolong the shelf life of tuna fish products. The article provides a comprehensive overview of the physicochemical properties of chitosan and gelatin, emphasizing the molecular interactions that underpin the formation and functionality of these biopolymer-based films and coatings. The synergistic effects of combining chitosan and gelatin are explored, particularly in terms of improving the mechanical strength, barrier properties, and bioactivity of the films. Furthermore, the application of botanical extracts, which include high levels of antioxidants and antibacterial compounds, is being investigated in terms of their capacity to augment the protective characteristics of the films. The study also emphasizes current advancements in utilizing these composite films and coatings for tuna fish products, with a specific focus on their effectiveness in preventing microbiological spoilage, decreasing lipid oxidation, and maintaining sensory qualities throughout storage. Moreover, the current investigation explores the molecular interactions associated with chitosan-gelatin packaging systems enriched with plant extracts, offering valuable insights for improving the design of edible films and coatings and suggesting future research directions to enhance their effectiveness in seafood preservation. Ultimately, the review underscores the potential of chitosan-gelatin-based films and coatings as a promising, eco-friendly alternative to conventional packaging methods, contributing to the sustainability of the seafood industry.
Collapse
Affiliation(s)
- Don Hettiarachchige Udana Eranda
- Doctor of Philosophy Program in Agro-Industry and Biotechnology, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand; Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Manat Chaijan
- Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Worawan Panpipat
- Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Supatra Karnjanapratum
- Division of Marine Product Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| | - Roberto Castro-Muñoz
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
29
|
Oliver-Cuenca V, Salaris V, Muñoz-Gimena PF, Agüero Á, Peltzer MA, Montero VA, Arrieta MP, Sempere-Torregrosa J, Pavon C, Samper MD, Crespo GR, Kenny JM, López D, Peponi L. Bio-Based and Biodegradable Polymeric Materials for a Circular Economy. Polymers (Basel) 2024; 16:3015. [PMID: 39518225 PMCID: PMC11548373 DOI: 10.3390/polym16213015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Nowadays, plastic contamination worldwide is a concerning reality that can be addressed with appropriate society education as well as looking for innovative polymeric alternatives based on the reuse of waste and recycling with a circular economy point of view, thus taking into consideration that a future world without plastic is quite impossible to conceive. In this regard, in this review, we focus on sustainable polymeric materials, biodegradable and bio-based polymers, additives, and micro/nanoparticles to be used to obtain new environmentally friendly polymeric-based materials. Although biodegradable polymers possess poorer overall properties than traditional ones, they have gained a huge interest in many industrial sectors due to their inherent biodegradability in natural environments. Therefore, several strategies have been proposed to improve their properties and extend their industrial applications. Blending strategies, as well as the development of composites and nanocomposites, have shown promising perspectives for improving their performances, emphasizing biopolymeric blend formulations and bio-based micro and nanoparticles to produce fully sustainable polymeric-based materials. The Review also summarizes recent developments in polymeric blends, composites, and nanocomposite plasticization, with a particular focus on naturally derived plasticizers and their chemical modifications to increase their compatibility with the polymeric matrices. The current state of the art of the most important bio-based and biodegradable polymers is also reviewed, mainly focusing on their synthesis and processing methods scalable to the industrial sector, such as melt and solution blending approaches like melt-extrusion, injection molding, film forming as well as solution electrospinning, among others, without neglecting their degradation processes.
Collapse
Affiliation(s)
- Víctor Oliver-Cuenca
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Valentina Salaris
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Pedro Francisco Muñoz-Gimena
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Ángel Agüero
- Instituto Universitario de Tecnología de Materiales (IUTM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain;
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (V.A.M.); (M.P.A.)
| | - Mercedes A. Peltzer
- Laboratory of Obtention, Modification, Characterization, and Evaluation of Materials (LOMCEM), Department of Science and Technology, University of Quilmes, Bernal B1876BXD, Argentina;
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
| | - Victoria Alcázar Montero
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (V.A.M.); (M.P.A.)
- Grupo de Investigación en Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Marina P. Arrieta
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (V.A.M.); (M.P.A.)
- Grupo de Investigación en Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Jaume Sempere-Torregrosa
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.S.-T.); (C.P.); (M.D.S.)
| | - Cristina Pavon
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.S.-T.); (C.P.); (M.D.S.)
| | - Maria Dolores Samper
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.S.-T.); (C.P.); (M.D.S.)
| | - Gema Rodríguez Crespo
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Jose M. Kenny
- STM Group, University of Perugia, Strada Pentima 4, 05100 Terni, Italy;
| | - Daniel López
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| |
Collapse
|
30
|
Chaudhary MN, Li X, Yang S, Wang D, Luo L, Zeng L, Luo W. Microencapsulation Efficiency of Carboxymethylcellulose, Gelatin, Maltodextrin, and Acacia for Aroma Preservation in Jasmine Instant Tea. Gels 2024; 10:670. [PMID: 39451323 PMCID: PMC11507381 DOI: 10.3390/gels10100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Enhancing the sensory appeal of jasmine instant tea, particularly its aroma, poses a significant challenge due to the loss of volatile organic compounds during conventional processing. This study introduces a novel approach to address this issue through the application of microencapsulation techniques, aimed at preserving these key aromatic elements. Our investigation focused on the encapsulating agents gelatin, acacia gum, carboxymethylcellulose (CMC), and maltodextrin, chosen for their compatibility with the volatile organic compounds of tea. A statistical analysis was conducted on the analytical results through comprehensive analytical techniques like Principal Component Analysis (PCA), Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA), and Variable Importance in Projection (VIP) analysis for microcapsule characterization. The statistical analysis revealed gelatin to be a particularly effective encapsulating medium, preserving an aroma profile more akin to fresh tea. The statistical analysis confirmed the reliability of these findings, highlighting the potential of microencapsulation in refining the quality of jasmine instant tea products. The results of this research suggest that microencapsulation could be instrumental in improving the sensory quality and shelf life of instant tea products, offering new opportunities for product enhancement in the beverage industry.
Collapse
Affiliation(s)
- Muneeba Naseer Chaudhary
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; (M.N.C.); (X.L.); (S.Y.); (L.L.)
| | - Xiaolin Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; (M.N.C.); (X.L.); (S.Y.); (L.L.)
| | - Siyue Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; (M.N.C.); (X.L.); (S.Y.); (L.L.)
| | - Damao Wang
- College of Food Science, Southwest University, Chongqing 400715, China;
| | - Liyong Luo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; (M.N.C.); (X.L.); (S.Y.); (L.L.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
| | - Liang Zeng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; (M.N.C.); (X.L.); (S.Y.); (L.L.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
| | - Wei Luo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; (M.N.C.); (X.L.); (S.Y.); (L.L.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
| |
Collapse
|
31
|
Xie Y, Ding K, Xu S, Xu H, Ge S, Chang X, Li H, Wang Z, Luo Z, Shan Y, Ding S. Citrus oil gland and cuticular wax inspired multifunctional gelatin film of OSA-starch nanoparticles-based nanoemulsions for preserving perishable fruit. Carbohydr Polym 2024; 342:122352. [PMID: 39048217 DOI: 10.1016/j.carbpol.2024.122352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 07/27/2024]
Abstract
Inspired by the citrus oil gland and cuticular wax, a multifunctional material that stably and continuously released the carvacrol and provided physical defenses was developed to address issues of fresh-cut fruits to microbial infestation and moisture loss. The results confirmed that low molecular weight and loose structure of starch nanoparticles prepared by the ultrasound-assisted Fenton system were preferable for octenyl succinic anhydride modification compared to native starch, achieving a higher degree of substitution (increased by 18.59 %), utilizing in preparing nanoemulsions (NEs) for encapsulating carvacrol (at 5 % level: 81.58 %). Furthermore, the NEs-based gelatin (G) film improved with surface hydrophobic modification by myristic acid (MA) successfully replicated the citrus oil gland and cuticular wax, providing superior antioxidant (enhanced by 3-4 times) and antimicrobial properties (95.99 % and 84.97 % against Staphylococcus aureus and Escherichia coli respectively), as well as the exceptional UV shielding (nearly 0 transmittance in the UV region), mechanical (72 % increase in tensile strength), and hydrophobic (WCA 133.63°). Moreover, the 5%NE-G@MA film inhibited foodborne microbial growth (reduced by 50 %) and water loss (controlled below 15 %), extending the shelf life of fresh-cut navel orange and kiwi. Thus, the multifunctional film was a potential shield for preserving perishable fresh-cut products.
Collapse
Affiliation(s)
- Ying Xie
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ke Ding
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Saiqing Xu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Haishan Xu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Shuai Ge
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xia Chang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Huan Li
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zijun Wang
- DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310000, China
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Shenghua Ding
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
32
|
Ulfa LR, Ningrum A, Supriyadi. Effect of edible coating of gelatin-sodium alginate with the addition of green tea (Camellia sinensis) extract on the characteristics of star fruit (Averrhoa carambola L.) during storage. J Food Sci 2024; 89:6217-6231. [PMID: 39183678 DOI: 10.1111/1750-3841.17311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
Star fruit has a good nutritional value but was very easy to damage. Edible coating can be used to extend the shelf life of star fruit. Green tea had been added to improve the mechanical properties and functional value of edible coating. This study aimed to evaluate the application of edible coating gelatin-sodium alginate with the addition of green tea to the physicochemical and microbiological characteristics of star fruit. This research was conducted by making edible coating solutions from gelatin, sodium alginate, glycerol, and green tea of various concentrations (0%, 5%, 10%, and 15%). The coating solution was applied to star fruit and stored for 1, 6, and 13 days to determine the effect of coating on the physicochemical and microbiological properties of star fruit. The results showed that adding green tea was not significantly different from the color change of the coating solution. However, there was a change in viscosity and pH along with the concentration of green tea extract (p < 0.05). FTIR analyses indicated that an interaction existed between gelatin-sodium alginate and green tea extract. The addition of green tea to star fruit with an edible coating of gelatin and sodium alginate could prevent weight loss (25.84%), reduce respiration rate (11.035 mg CO2/kg/h), maintain fruit anatomy, protect against color change, inhibit pH changes (4.22), total titrated acid (0.22%), increase vitamin C (244.55 mg/g), and even reduce damage for up to 13 days of storage. This study indicates that edible coating with the addition of green tea might be effective to retain the quality and extend the storage life star fruit.
Collapse
Affiliation(s)
- Lale Rahmawati Ulfa
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Gadjah Mada University, Bulaksumur, Yogyakarta, Indonesia
| | - Andriati Ningrum
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Gadjah Mada University, Bulaksumur, Yogyakarta, Indonesia
| | - Supriyadi
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Gadjah Mada University, Bulaksumur, Yogyakarta, Indonesia
| |
Collapse
|
33
|
Harrazi N, Özbek HN, Yanık DK, Zaghbib I, Göğüş F. Development and characterization of gelatin-based biodegradable films incorporated with pistachio shell hemicellulose. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1919-1929. [PMID: 39285996 PMCID: PMC11401810 DOI: 10.1007/s13197-024-05968-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 09/19/2024]
Abstract
This study aimed to incorporate pistachio shell hemicellulose into a film of gelatin and glycerol for the production of biodegradable films. The gelatin and glycerol are chosen because of their functional properties, which make it extensively used in food industry. The film composition was defined after a statistical optimization by central composite face-centered design and response surface methodology. The hemicellulose/gelatin ratio of 35.93% and the glycerol ratio of 18.02% were the optimum conditions to obtain lower film water solubility, higher tensile strength, and elongation at break values. The physical, structural, mechanical, and barrier properties of the developed hemicellulose-gelatin film were analyzed and compared with those of the gelatin film. Tensile strength and film water solubility values were reduced significantly with hemicellulose incorporation from 20.41 to 16.64 MPa and 49.57 to 39.21%, respectively, while EB was enhanced by 4.34 times. In addition, hemicellulose incorporation enhanced the water vapor permeability and the film degradation in the soil. The films were also examined by Fourier transform infrared spectroscopy and differential scanning calorimetry. The novelty of this study is to use pistcahio shell hemicellulose in the production of an edible film for the first time. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-05968-4.
Collapse
Affiliation(s)
- Narjes Harrazi
- Higher School of Food Industries of Tunis, University of Carthage, 1003 Tunis, Tunisia
- Department of Food Engineering, Engineering Faculty, University of Gaziantep, 27310 Gaziantep, Turkey
| | - Hatice Neval Özbek
- Department of Food Engineering, Engineering Faculty, University of Gaziantep, 27310 Gaziantep, Turkey
| | - Derya Koçak Yanık
- Department of Food Engineering, Faculty of Agriculture, Eskişehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Imen Zaghbib
- Higher School of Food Industries of Tunis, University of Carthage, 1003 Tunis, Tunisia
- Higher Institute of Biotechnology of Béja, University of Jendouba, 9000 Beja, Tunisia
| | - Fahrettin Göğüş
- Department of Food Engineering, Engineering Faculty, University of Gaziantep, 27310 Gaziantep, Turkey
| |
Collapse
|
34
|
Estrella-Osuna DE, Ruiz-Cruz S, Rodríguez-Félix F, Figueroa-Enríquez CE, González-Ríos H, Fernández-Quiroz D, Márquez-Ríos E, Tapia-Hernández JA, Pérez-Álvarez JÁ, Suárez-Jiménez GM. Rheological Properties and Antioxidant Activity of Gelatin-Based Edible Coating Incorporating Tomato ( Solanum lycopersicum L.) Extract. Gels 2024; 10:624. [PMID: 39451277 PMCID: PMC11507370 DOI: 10.3390/gels10100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Gelatin is a promising biopolymer for edible coatings thanks to its low cost and gelling properties. However, its weak mechanical properties limit its use. This study aimed to develop a gelatin coating with tomato extract, analyzing its antioxidant activity and rheological properties for food applications. Gelatin concentrations (2, 5, and 7%) were evaluated, and it was determined that 7% with 7.5% glycerol was the optimal mixture. Three concentrations of tomato extract (0.5, 1, and 1.5%) were added, and antioxidant activity was evaluated using the ABTS technique, as well as the interaction of components through FT-IR and physicochemical analysis. The results showed that there were no significant differences in terms of their physicochemical characterization, maintaining a pH of 5 and a yellowish hue. The FT-IR spectra indicated there were hydrogen bond interactions between gelatin and the extract. The antioxidant capacity was higher with the 1.5% extract, achieving an inhibition of 58.9%. It was found that the combination of the different materials used improved the rheological (specifically the viscosity and stability of the material) and antioxidant properties of the gelatin. These findings suggest that modified gelatin coatings may be effective in extending the shelf life of foods.
Collapse
Affiliation(s)
- Danya E. Estrella-Osuna
- Department of Research and Graduate Studies in Food, University of Sonora, Encinas y Rosales s/n, Hermosillo 83000, Sonora, Mexico; (D.E.E.-O.); (C.E.F.-E.); (E.M.-R.); (J.A.T.-H.); (G.M.S.-J.)
| | - Saul Ruiz-Cruz
- Department of Research and Graduate Studies in Food, University of Sonora, Encinas y Rosales s/n, Hermosillo 83000, Sonora, Mexico; (D.E.E.-O.); (C.E.F.-E.); (E.M.-R.); (J.A.T.-H.); (G.M.S.-J.)
| | - Francisco Rodríguez-Félix
- Department of Research and Graduate Studies in Food, University of Sonora, Encinas y Rosales s/n, Hermosillo 83000, Sonora, Mexico; (D.E.E.-O.); (C.E.F.-E.); (E.M.-R.); (J.A.T.-H.); (G.M.S.-J.)
| | - Cielo E. Figueroa-Enríquez
- Department of Research and Graduate Studies in Food, University of Sonora, Encinas y Rosales s/n, Hermosillo 83000, Sonora, Mexico; (D.E.E.-O.); (C.E.F.-E.); (E.M.-R.); (J.A.T.-H.); (G.M.S.-J.)
| | - Humberto González-Ríos
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico;
| | - Daniel Fernández-Quiroz
- Department of Chemical Engineering and Metallurgy, University of Sonora, Av. Colosio S/N, Centro, Hermosillo 83000, Sonora, Mexico;
| | - Enrique Márquez-Ríos
- Department of Research and Graduate Studies in Food, University of Sonora, Encinas y Rosales s/n, Hermosillo 83000, Sonora, Mexico; (D.E.E.-O.); (C.E.F.-E.); (E.M.-R.); (J.A.T.-H.); (G.M.S.-J.)
| | - José Agustín Tapia-Hernández
- Department of Research and Graduate Studies in Food, University of Sonora, Encinas y Rosales s/n, Hermosillo 83000, Sonora, Mexico; (D.E.E.-O.); (C.E.F.-E.); (E.M.-R.); (J.A.T.-H.); (G.M.S.-J.)
| | - José Ángel Pérez-Álvarez
- IPOA Research Group, Grupo 1-UMH Grupo REVIV, Generalitat Valenciana, Dpto Tecnología Agroalimentaria, Escuela Politécnica Superior de Orihuela, Universidad Miguel Hernández, Ctra Beniel, Km 3.2, E-03312 Orihuela, Alicante, Spain;
| | - Guadalupe Miroslava Suárez-Jiménez
- Department of Research and Graduate Studies in Food, University of Sonora, Encinas y Rosales s/n, Hermosillo 83000, Sonora, Mexico; (D.E.E.-O.); (C.E.F.-E.); (E.M.-R.); (J.A.T.-H.); (G.M.S.-J.)
| |
Collapse
|
35
|
Vanaraj R, Suresh Kumar SM, Mayakrishnan G, Rathinam B, Kim SC. A Current Trend in Efficient Biopolymer Coatings for Edible Fruits to Enhance Shelf Life. Polymers (Basel) 2024; 16:2639. [PMID: 39339103 PMCID: PMC11435994 DOI: 10.3390/polym16182639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
In recent years, biopolymer coatings have emerged as an effective approach for extending the shelf life of edible fruits. The invention of biopolymer coverings has emerged as an innovation for extending fruit shelf life. Natural polymers, like chitosan, alginate, and pectin, are used to create these surfaces, which have several uses, including creating a barrier that prevents water evaporation, the spread of living microbes, and respiratory movement. These biopolymer coatings' primary benefits are their environmental friendliness and lack of damage. This study highlights the advancements made in the creation and usage of biopolymer coatings, highlighting how well they preserve fruit quality, reduce post-harvest losses, and satisfy consumer demand for natural preservation methods. This study discusses the usefulness of the biopolymer coating in terms of preserving fruit quality, reducing waste, and extending the product's shelf life. Biopolymer coatings' potential as a sustainable solution for synthetic preservatives in the fruit sector is highlighted as are formulation process advances that combine natural ingredients and environmental implications. This essay focuses on the essential methods, such as new natural additives, as well as the environmental effect of biopolymer coatings, which are safe and healthy commercial alternatives.
Collapse
Affiliation(s)
- Ramkumar Vanaraj
- Department of Computational Biology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam 602105, India;
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Gopiraman Mayakrishnan
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda 386-8567, Nagano, Japan;
| | - Balamurugan Rathinam
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, 123 Univ. Rd., Sec. 3, Douliu 64002, Taiwan
| | - Seong Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
36
|
Zhang R, Zhang P, Xia F, Jin Z, Chen S, Yu Y, Sun W. Preparation of chitosan photodynamic antibacterial film loaded with VK 3 complex in the preservation of chilled mutton. Int J Biol Macromol 2024; 274:133105. [PMID: 38876240 DOI: 10.1016/j.ijbiomac.2024.133105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/19/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
To effectively utilize the photodynamic antibacterial ability of vitamin K3 (VK3), by solving the photothermal instability of VK3, it was combined with natural polymers to apply the preservation of chilled mutton. We encapsulated VK3 in the (2-Hydroxypropyl)-β-cyclodextrin (HP-β-CD) to construct VK3-HP-β-CD complex and then introduced the complex to chitosan (CS) and polyvinyl alcohol (PVA) to fabricate an antibacterial film (CS/PVA-VK3-HP-β-CD film). Through the packaging performance test of the film, the content of VK3-HP-β-CD was an important factor determining the properties of film including tensile strength, elongation at break, water vapor permeability, water content and water contact angle. Meanwhile, CS/PVA-VK3-HP-β-CD films could continuously release ROS under light and suspended in dark, thus realizing >99 % antibacterial rate for Escherichia coli and Staphylococcus aureus. In the application experiment of chilled mutton, CS/PVA-VK3-1-HP-β-CD film could significantly inhibit the increase of total viable count (TVC), pH value (pH) and total volatile base nitrogen (TVB-N) of chilled mutton, and extended its shelf life for at least 12 days. These results indicated that the CS/PVA film with the VK3-HP-β-CD complex might have promising potential as an antibacterial material for packaging and preserving food.
Collapse
Affiliation(s)
- Rongxi Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Peng Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Fei Xia
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Zichun Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Sixu Chen
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Yaxin Yu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Wenxiu Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China.
| |
Collapse
|
37
|
Pandita G, de Souza CK, Gonçalves MJ, Jasińska JM, Jamróz E, Roy S. Recent progress on Pickering emulsion stabilized essential oil added biopolymer-based film for food packaging applications: A review. Int J Biol Macromol 2024; 269:132067. [PMID: 38710257 DOI: 10.1016/j.ijbiomac.2024.132067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/20/2024] [Accepted: 05/01/2024] [Indexed: 05/08/2024]
Abstract
Nowadays food safety and protection are a growing concern for food producers and food industry. The stability of food-grade materials is key in food processing and shelf life. Pickering emulsions (PEs) have gained significant attention in food regimes owing to their stability enhancement of food specimens. PE can be developed by high and low-energy methods. The use of PE in the food sector is completely safe as it uses solid biodegradable particles to stabilize the oil in water and it also acts as an excellent carrier of essential oils (EOs). EOs are useful functional ingredients, the inclusion of EOs in the packaging film or coating formulation significantly helps in the improvement of the shelf life of the packed food item. The highly volatile nature, limited solubility and ease of oxidation in light of EOs restricts their direct use in packaging. In this context, the use of PEs of EOs is suitable to overcome most of the challenges, Therefore, recently there have been many papers published on PEs of EOs including active packaging film and coatings and the obtained results are promising. The current review amalgamates these studies to inform about the chemistry of PEs followed by types of stabilizers, factors affecting the stability and different high and low-energy manufacturing methods. Finally, the review summarizes the recent advancement in PEs-added packaging film and their application in the enhancement of shelf life of food.
Collapse
Affiliation(s)
- Ghumika Pandita
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | | | | | - Joanna Maria Jasińska
- Department of Chemistry, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland
| | - Ewelina Jamróz
- Department of Chemistry, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland; Department of Product Packaging, Cracow University of Economics, Rakowicka 27, PL-31-510 Kraków, Poland
| | - Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India.
| |
Collapse
|
38
|
Martinović J, Ambrus R, Planinić M, Šelo G, Klarić AM, Perković G, Bucić-Kojić A. Microencapsulation of Grape Pomace Extracts with Alginate-Based Coatings by Freeze-Drying: Release Kinetics and In Vitro Bioaccessibility Assessment of Phenolic Compounds. Gels 2024; 10:353. [PMID: 38920899 PMCID: PMC11203361 DOI: 10.3390/gels10060353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024] Open
Abstract
The phenols from grape pomace have remarkable beneficial effects on health prevention due to their biological activity, but these are often limited by their bioaccessibility in the gastrointestinal tract. Encapsulation could protect the phenolics during digestion and influence the controlled release in such an intestine where their potential absorption occurs. The influence of freeze-drying encapsulation with sodium alginate (SA) and its combination with gum Arabic (SA-GA) and gelatin (SA-GEL) on the encapsulation efficiency (EE) of phenol-rich grape pomace extract and the bioaccessibility index (BI) of phenolics during simulated digestion in vitro was investigated. The addition of a second coating to SA improved the EE, and the highest EE was obtained with SA-GEL (97.02-98.30%). The release of phenolics followed Fick's law of diffusion and the Korsmeyer-Peppas model best fitted the experimental data. The highest BI was found for the total phenolics (66.2-123.2%) and individual phenolics (epicatechin gallate 958.9%, gallocatechin gallate 987.3%) using the SA-GEL coating were used. This study shows that freeze-dried encapsulated extracts have the potential to be used for the preparation of various formulations containing natural phenolic compounds with the aim of increasing their bioaccessibility compared to formulations containing non-encapsulated extracts.
Collapse
Affiliation(s)
- Josipa Martinović
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, HR-31 000 Osijek, Croatia
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary
| | - Mirela Planinić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, HR-31 000 Osijek, Croatia
| | - Gordana Šelo
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, HR-31 000 Osijek, Croatia
| | - Ana-Marija Klarić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, HR-31 000 Osijek, Croatia
| | - Gabriela Perković
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, HR-31 000 Osijek, Croatia
| | - Ana Bucić-Kojić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, HR-31 000 Osijek, Croatia
| |
Collapse
|
39
|
Yu X, Ryadun AA, Pavlov DI, Guselnikova TY, Potapov AS, Fedin VP. Ln-MOF-Based Hydrogel Films with Tunable Luminescence and Afterglow Behavior for Visual Detection of Ofloxacin and Anti-Counterfeiting Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311939. [PMID: 38275004 DOI: 10.1002/adma.202311939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/23/2024] [Indexed: 01/27/2024]
Abstract
Highly selective and sensitive quantitative detection of ofloxacin (OFX) at ultralow concentrations in aqueous media and development of new afterglow materials remains a challenge. Herein, a new 2D water-stable lanthanide metal-organic framework (NIIC-2-Tb) is proposed, which exhibits high selectivity towards OFX through the luminescence quenching with the lowest detection limit (1.1 × 10-9 M) reported to date and a fast response within 6 s. In addition, the luminescent detection of OFX by NIIC-2-Tb is not affected by typical components of blood plasma and urine. The excellent sensing effect of NIIC-2-Tb is further utilized to prepare a composite functional sensing carrageenan hydrogel material for the rapid detection of OFX in meat in real time and the first discovery of impressive afterglow in MOF-based hydrogels. This study not only presents novel Ln-MOF materials and Ln-MOF-based hydrogel films for luminescent sensing of OFX, but also demonstrates color-tunable luminescent films with afterglow, which expands the application of composite luminescent materials for detection and anti-counterfeiting.
Collapse
Affiliation(s)
- Xiaolin Yu
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., Novosibirsk, 630090, Russia
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., Novosibirsk, 630090, Russia
| | - Alexey A Ryadun
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., Novosibirsk, 630090, Russia
| | - Dmitry I Pavlov
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., Novosibirsk, 630090, Russia
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., Novosibirsk, 630090, Russia
| | - Tatiana Y Guselnikova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., Novosibirsk, 630090, Russia
| | - Andrei S Potapov
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., Novosibirsk, 630090, Russia
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., Novosibirsk, 630090, Russia
| | - Vladimir P Fedin
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., Novosibirsk, 630090, Russia
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., Novosibirsk, 630090, Russia
| |
Collapse
|
40
|
Dang X, Du Y, Wang X. Engineering eco-friendly and biodegradable biomass-based multifunctional antibacterial packaging films for sustainable food preservation. Food Chem 2024; 439:138119. [PMID: 38061301 DOI: 10.1016/j.foodchem.2023.138119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024]
Abstract
The study presents a new class of eco-friendly and biodegradable biomass-based multifunctional antibacterial packaging films (G-OCSI) based on oxidized corn starch-based nonionic biopolymer (OCSI) and gelatin (Gel), and investigates the effects of different OCSI contents on the properties of G-OCSI. The results demonstrated that G-OCSI 0.25 had good water vapor barrier properties, antioxidant activity (DPPH RSA: 85.84 %), UV resistance (UV blocking > 99.9 %), water resistance (WCA: 122.30°), and tensile properties. Based on the disk diffusion experiment, G-OCSI exhibited significant bactericidal and antibacterial effects against S. aureus and E. coli. Moreover, G-OCSI had good biodegradability in natural environments, and could obviously accelerate the crops growth. Finally, a banana preservation experiment confirmed that G-OCSI could significantly extend the shelf life of bananas at room temperature at least 3 days. The biodegradable packaging films not only realizes the sustainable utilization of biomass resources but also has the potential to replace traditional petroleum-based plastics.
Collapse
Affiliation(s)
- Xugang Dang
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China; Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilization of Bio-Based Textile Materials, Wuhan Textile University, Wuhan 430200, PR China.
| | - Yongmei Du
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Xuechuan Wang
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| |
Collapse
|
41
|
Jridi M, Abdelhedi O, Salem A, Zouari N, Nasri M. Food applications of bioactive biomaterials based on gelatin and chitosan. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 110:399-438. [PMID: 38906591 DOI: 10.1016/bs.afnr.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Food packaging must guarantee the products' quality during the different operations including packing and maintenance throughout transportation and storage until to consumption. Thus, it should satisfy, both, food freshness and quality preservation and consumers health safety. Natural bio-sourced polymers have been explored as safe edible materials for several packaging applications, being interestingly carrier of bioactive substances, once added to improve films' properties. Gelatin and chitosan are among the most studied biomaterials for the preparation of edible packaging films due to their excellent characteristics including biodegradability, compatibility and film-forming property. These polymers could be used alone or in combination with other polymers to produce composite films with the desired physicochemical and mechanical properties. When incorporated with bioactive substances (natural extracts, polyphenolic compounds, essential oils), chitosan/gelatin-based films acquired various biological properties, including antioxidant and antimicrobial activities. The emerging bioactive composite films with excellent physical attributes represent excellent packaging alternative to preserve different types of foodstuffs (fruits, meat, fish, dairy products, …) and have shown great achievements. This chapter provides the main techniques used to prepare gelatin- and chitosan- based films, showing some examples of bioactive compounds incorporated into the films' matrix. Also, it illustrates the outstanding advantages given by these biomaterials for food preservation, when used as coating and wrapping agents.
Collapse
Affiliation(s)
- Mourad Jridi
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR23ES08), Higher Institute of Biotechnology of Beja (ISBB), University of Jendouba, Beja, Tunisia.
| | - Ola Abdelhedi
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR23ES08), Higher Institute of Biotechnology of Beja (ISBB), University of Jendouba, Beja, Tunisia
| | - Ali Salem
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR23ES08), Higher Institute of Biotechnology of Beja (ISBB), University of Jendouba, Beja, Tunisia
| | - Nacim Zouari
- Higher Institute of Applied Biology of Medenine, University of Gabes, Medenine, Tunisia
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, Sfax, Tunisia
| |
Collapse
|
42
|
Parveen S, Nazeer S, Chotana GA, Kanwal A, Batool B, Bukhari N, Yaqoob A, Talib F. Designing of chitosan/gelatin based nanocomposite films integrated with Vachellia nilotica gum carbon dots for smart food packaging applications. Int J Biol Macromol 2024; 264:130208. [PMID: 38403229 DOI: 10.1016/j.ijbiomac.2024.130208] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
Microbial growth and exposure to UV light is a persistent global concern resulting in food spoilage, therefore, smart packaging is crucial for the availability of safer and quality food. Present work describes fabrication of chitosan (CH) and gelatin (GL) based nanocomposite films by introducing green source, highly fluorescent Vachillia nilotica gum-derived carbon dots (VNG-CDs). The VNG-CDs and incorporated CH/GL nanocomposite films were characterized by UV-Visible, FTIR, XRD, SEM and TGA analysis. The FTIR and XRD data revealed that VNG-CDs, chitosan, gelatin, and glycerol are combined/interlinked to form homogeneous nanocomposite films. The inclusion of VNG-CDs to CS/GL-CDs nanocomposite film efficiently enhanced the thermal stability and improved mechanical properties. VNG-CDs added to films markedly blocked the ultraviolet light and their effectiveness improved as concentration of CDs increases, being >90 % in UVC (200-280 nm) region. The prepared CS/GL-CDs nanocomposite films manifested radical scavenging activity, reducing capability and also excellently inhibited growth of E. coli, K. pneumonia and S. aureus bacteria. The viability of CS/GL-CDs nanocomposite films examined using banana as a model fruit extending the storage time by two weeks. In conclusion, CH/GL films containing VNG-CDs can be developed into smart packaging materials with enhanced protection and antimicrobial properties.
Collapse
Affiliation(s)
- Shehla Parveen
- Department of Chemistry, The Government Sadiq College Women University Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Sadia Nazeer
- Department of Chemistry, The Government Sadiq College Women University Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ghayoor Abbas Chotana
- Department of Chemistry, Sayyed Babar Ali School of science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Aqsa Kanwal
- Department of Chemistry, The Government Sadiq College Women University Bahawalpur, Bahawalpur 63100, Pakistan
| | - Benish Batool
- Department of Chemistry, The Government Sadiq College Women University Bahawalpur, Bahawalpur 63100, Pakistan
| | - Naeema Bukhari
- Department of Chemistry, The Government Sadiq College Women University Bahawalpur, Bahawalpur 63100, Pakistan
| | - Asma Yaqoob
- Department of Biohemistry, Institute of biochemistry biotechnology and bio-informatics, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Faiza Talib
- Department of Chemistry, The Government Sadiq College Women University Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
43
|
Hossen MA, Shimul IM, Sameen DE, Rasheed Z, Dai J, Li S, Qin W, Tang W, Chen M, Liu Y. Essential oil-loaded biopolymeric particles on food industry and packaging: A review. Int J Biol Macromol 2024; 265:130765. [PMID: 38462119 DOI: 10.1016/j.ijbiomac.2024.130765] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/20/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Essential oils (EOs) are liquid extracts derived from various parts of herbal or medicinal plants. They are widely accepted in food packaging due to their bioactive components, which exhibit remarkable antioxidant and antimicrobial properties against various pathogenic and food spoilage microorganisms. However, the functional efficacy of EOs is hindered by the high volatility of their bioactive compounds, leading to rapid release. Combining biopolymers with EOs forms a complex network within the polymeric matrix, reducing the volatility of EOs, controlling their release, and enhancing thermal and mechanical stability, favoring their application in food packaging or processing industries. This study presents a comprehensive overview of techniques used to encapsulate EOs, the natural polymers employed to load EOs, and the functional properties of EOs-loaded biopolymeric particles, along with their potential antioxidant and antimicrobial benefits. Additionally, a thorough discussion is provided on the widespread application of EOs-loaded biopolymers in the food industries. However, research on their utilization in confectionery processing, such as biscuits, chocolates, and others, remains limited. Further studies can be conducted to explore and expand the applications of EOs-loaded biopolymeric particles in food processing industries.
Collapse
Affiliation(s)
- Md Alomgir Hossen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China; Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Islam Md Shimul
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Dur E Sameen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zainab Rasheed
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Jianwu Dai
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Suqing Li
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Wuxia Tang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Mingrui Chen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
44
|
Hassan F, Mu B, Yang Y. Natural polysaccharides and proteins-based films for potential food packaging and mulch applications: A review. Int J Biol Macromol 2024; 261:129628. [PMID: 38272415 DOI: 10.1016/j.ijbiomac.2024.129628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/17/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Conventional nondegradable packaging and mulch films, after reaching the end of their use, become a major source of waste and are primarily disposed of in landfills. Accumulation of non-degradable film residues in the soil leads to diminished soil fertility, reduced crop yield, and can potentially affect humans. Application of degradable films is still limited due to the high cost, poor mechanical, and gas barrier properties of current biobased synthetic polymers. In this respect, natural polysaccharides and proteins can offer potential solutions. Having versatile functional groups, three-dimensional network structures, biodegradability, ease of processing, and the potential for surface modifications make polysaccharides and proteins excellent candidates for quality films. Besides, their low-cost availability as industrial waste/byproducts makes them cost-effective alternatives. This review paper covers the performance properties, cost assessment, and in-depth analysis of macromolecular structures of some natural polysaccharides and proteins-based films that have great potential for packaging and mulch applications. Proper dissolution of biopolymers to improve molecular interactions and entanglement, and establishment of crosslinkages to form an ordered and cohesive polymeric structure can help to obtain films with good properties. Simple aqueous-based film formulation techniques and utilization of waste/byproducts can stimulate the adoption of affordable biobased films on a large-scale.
Collapse
Affiliation(s)
- Faqrul Hassan
- Department of Textiles, Merchandising and Fashion Design, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States
| | - Bingnan Mu
- Department of Textiles, Merchandising and Fashion Design, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States
| | - Yiqi Yang
- Department of Textiles, Merchandising and Fashion Design, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States; Department of Biological Systems Engineering, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States.
| |
Collapse
|
45
|
Yadeta AT. Chemical structures, biological activities, and medicinal potentials of amine compounds detected from Aloe species. Front Chem 2024; 12:1363066. [PMID: 38496272 PMCID: PMC10940337 DOI: 10.3389/fchem.2024.1363066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Unrestricted interest in Aloe species has grown rapidly, and a lot of research is currently being done to learn more about the properties of the various Aloe constituents. Organic compounds containing amine as functional group are present in a vivid variety of compounds, namely, amino acids, hormones, neurotransmitters, DNA, alkaloids, dyes, etc. These compounds have amine functional groups that have various biological activities, which make them responsible for medicinal potential in the form of pharmaceutical, nutraceutical, and cosmeceutical applications. Consequently, the present review work provides an indication of the amines investigated in Aloe species and their therapeutic uses. Various amine compounds of the Aloe species have effective biological properties to treat diseases. Generally, the genus Aloe has various active amine-containing compounds to combat diseases when humans use them in various forms.
Collapse
|
46
|
Singh AK. Recent advancements in polysaccharides, proteins and lipids based edible coatings to enhance guava fruit shelf-life: A review. Int J Biol Macromol 2024; 262:129826. [PMID: 38296124 DOI: 10.1016/j.ijbiomac.2024.129826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/13/2024]
Abstract
Fresh fruits are highly needed for the health benefits of human beings because of the presence of high content of natural nutrition in the form of vitamins, minerals, antioxidants, and other phenolic compounds. However, some nutritional fruits such as guava are climacteric in nature with very less post-harvest shelf-life because of the ripening in a very short period and possibility of microbial infections. Thus security of natural nutrients is a serious concern in order to properly utilize guava without generating a huge amount of waste. Among reported various methods for the enhancement of fruits shelf-life, the application of edible coatings with antimicrobial activities on the outer surface of fruits have attracted significant attention because of their eco-friendly nature, easy applicability, high efficacy, and good durability. In recent years, researchers are paying more and more attention in the development of antimicrobial edible coatings to enhance the post-harvest shelf-life of guava using polysaccharides, protein and lipids. In this review, basic approaches and recent advancements in development of antimicrobial and edible coatings on guava fruit by the application of polysaccharides and protein and lipids along with the combination of nanomaterials are summarized. In addition, improvements in basic properties of edible coatings to significantly control the permeation of gases (O2/CO2) by the optimization of coating components as well as delay in ripening process are reviewed and discussed.
Collapse
Affiliation(s)
- Arun K Singh
- Department of Chemistry, M. M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| |
Collapse
|
47
|
Yunoki S, Mogi A, Mizuno K, Nagakawa Y, Hiraoka Y. Plasticizer-gelatin mixed solutions as skin protection materials with flexible-film-forming capability. Heliyon 2024; 10:e25441. [PMID: 38352760 PMCID: PMC10862670 DOI: 10.1016/j.heliyon.2024.e25441] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
To demonstrate the feasibility of plasticizer-gelatin solutions as novel skin protection materials from a physical aspect, we evaluated the rheological properties of the solutions and the mechanical properties and textures of their dried sheets and films. Three types of sugars and polyols were employed as organic plasticizers and mixed with gelatin in solutions at plasticizer/gelatin weight ratios of 0.13-1.67. The plasticizers minimally affected the viscosities and gelation temperatures of the gelatin solutions, but they remarkably softened dried gelatin sheets, except for propylene glycol. Glycerol exhibited the best plasticizing effects, but the sheets obtained using glycerol showed tacky textures. Preliminary investigations on the film-forming properties of the solutions on the human skin showed that the fructose-gelatin solution at a weight ratio of 1.0 formed a flexible thin film with a texture and mechanical properties similar to those of a commercially available polyurethane-based flexible film dressing. In terms of physical properties, we conclude that the fructose-gelatin solution has potential as a skin protection material that transforms from a solution to a film on the skin.
Collapse
Affiliation(s)
- Shunji Yunoki
- Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
- Biotechnology Group, Tokyo Metropolitan Industrial Technology Research Institute (TIRI), 2-4-10 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Asami Mogi
- New Business Planning and Research Section, Shin Nippon Yakugyo Co., Ltd, 15-10 Nihonbashi-Kodenmacho, Chuo-Ku, Tokyo, 103-0001, Japan
| | - Keizo Mizuno
- New Business Planning and Research Section, Shin Nippon Yakugyo Co., Ltd, 15-10 Nihonbashi-Kodenmacho, Chuo-Ku, Tokyo, 103-0001, Japan
| | - Yoshiyasu Nagakawa
- Biotechnology Group, Tokyo Metropolitan Industrial Technology Research Institute (TIRI), 2-4-10 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Yosuke Hiraoka
- Biomedical Department, R&D Center, Nitta Gelatin Inc., 2-22, Futamata, Yao City, Osaka, 581-0024, Japan
| |
Collapse
|
48
|
Zhang W, Liu J, Zhang T, Teng B. A High-Performance Food Package Material Prepared by the Synergistic Crosslinking of Gelatin with Polyphenol-Titanium Complexes. Antioxidants (Basel) 2024; 13:167. [PMID: 38397765 PMCID: PMC10885897 DOI: 10.3390/antiox13020167] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
This study aims to enhance gelatin film performance in the food industry by incorporating polyphenol-titanium complexes (PTCs) as crosslinkers. PTCs introduce multiple linkages with gelatin, including coordination and hydrogen bonds, resulting in synergistic crosslinking effects. This leads to an increased hydrodynamic volume, particle size, and thermal stability of the gelatin films. Compared to films crosslinked solely by polyphenols or titanium, PTC-crosslinked gelatin films exhibit significant improvements. They show enhanced mechanical properties with a tensile strength that is 1.7 to 2.6 times higher than neat gelatin films. Moreover, these films effectively shield UV light (from 82% to 99%), providing better protection for light-sensitive food ingredients and preserving lutein content (from 74.2% to 78.1%) under light exposure. The incorporation of PTCs also improves film hydrophobicity, as indicated by water contact angles ranging from 115.3° to 131.9° and a water solubility ranging from 31.5% to 33.6%. Additionally, PTC-enhanced films demonstrate a superior antioxidant ability, with a prolonged polyphenol release (up to 18 days in immersed water) and a higher free radical scavenging ability (from 22% to 25.2%). Overall, the improved characteristics of gelatin films enabled by PTCs enhance their performance, making them suitable for various food packaging applications.
Collapse
Affiliation(s)
- Wanqin Zhang
- College of Science, Shantou University, Shantou 515063, China; (W.Z.); (J.L.)
| | - Jiaman Liu
- College of Science, Shantou University, Shantou 515063, China; (W.Z.); (J.L.)
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Bo Teng
- College of Science, Shantou University, Shantou 515063, China; (W.Z.); (J.L.)
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| |
Collapse
|
49
|
Jamroży M, Kudłacik-Kramarczyk S, Drabczyk A, Krzan M. Advanced Drug Carriers: A Review of Selected Protein, Polysaccharide, and Lipid Drug Delivery Platforms. Int J Mol Sci 2024; 25:786. [PMID: 38255859 PMCID: PMC10815656 DOI: 10.3390/ijms25020786] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Studies on bionanocomposite drug carriers are a key area in the field of active substance delivery, introducing innovative approaches to improve drug therapy. Such drug carriers play a crucial role in enhancing the bioavailability of active substances, affecting therapy efficiency and precision. The targeted delivery of drugs to the targeted sites of action and minimization of toxicity to the body is becoming possible through the use of these advanced carriers. Recent research has focused on bionanocomposite structures based on biopolymers, including lipids, polysaccharides, and proteins. This review paper is focused on the description of lipid-containing nanocomposite carriers (including liposomes, lipid emulsions, lipid nanoparticles, solid lipid nanoparticles, and nanostructured lipid carriers), polysaccharide-containing nanocomposite carriers (including alginate and cellulose), and protein-containing nanocomposite carriers (e.g., gelatin and albumin). It was demonstrated in many investigations that such carriers show the ability to load therapeutic substances efficiently and precisely control drug release. They also demonstrated desirable biocompatibility, which is a promising sign for their potential application in drug therapy. The development of bionanocomposite drug carriers indicates a novel approach to improving drug delivery processes, which has the potential to contribute to significant advances in the field of pharmacology, improving therapeutic efficacy while minimizing side effects.
Collapse
Affiliation(s)
- Mateusz Jamroży
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 Niezapominajek Str., 30-239 Krakow, Poland;
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (S.K.-K.); (A.D.)
| | - Sonia Kudłacik-Kramarczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (S.K.-K.); (A.D.)
| | - Anna Drabczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (S.K.-K.); (A.D.)
| | - Marcel Krzan
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 Niezapominajek Str., 30-239 Krakow, Poland;
| |
Collapse
|
50
|
Zhuang D, Li R, Wang S, Ahmad HN, Zhu J. Reinforcing effect of ε-polylysine-carboxymethyl chitosan nanoparticles on gelatin-based film: Enhancement of physicochemical, antioxidant, and antibacterial properties. Int J Biol Macromol 2024; 255:128043. [PMID: 37984581 DOI: 10.1016/j.ijbiomac.2023.128043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
The development and application of antibacterial film were highly anticipated to prevent food spoilage caused by bacteria. In this investigation, antibacterial and antioxidant functionalized gelatin-based film was formed with the incorporation of oregano essential emulsion Pickering emulsion (OPE). ε-Polylysine-Carboxymethyl Chitosan nanoparticles (CMCS-ε-PL) composed of different mass ratios of CMCS and ε-PL were orchestrated by electrostatic forces and hydrogen bonding, which effectively acted as a stabilizer for OPE. The design of different mass ratios of CMCS and ε-PL in CMCS-ε-PL has a deep effect on the structure and functional properties of OPE and film. It successfully improved the encapsulation efficiency of OPE from 49.52 % to 79.83 %. With the observation of AFM images, the augmentation of surface roughness consequent to OPE incorporation can be relieved by the increased contention of ε-PL in CMCS-ε-PL. Meanwhile, the mechanical properties, barrier properties, anti-oxidation, and antibacterial properties of the films were improved with the incorporation of the above OPE. In particular, a synergistic antibacterial activity between ε-PL and OEO in the film was demonstrated in this study and the mechanism of enhanced antibacterial activity was elucidated by examining the integrity of bacteria cell membrane. The film unequivocally demonstrated its ability to appreciably prolong the shelf life of both beef and strawberries with excellent antioxidant and antibacterial properties.
Collapse
Affiliation(s)
- Di Zhuang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Li
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shancan Wang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hafiz Nabeel Ahmad
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|