1
|
Sousa DLCD, Limeira CH, Casella T, Araújo HGD, Aquino VVFD, Neto DA, Sobrinho JDDS, Azevedo SSD, Santos CDSAB. Pooled prevalence of Escherichia coli phenotypic and genotypic antimicrobial resistance profiles in poultry: systematic review and meta-analysis. Braz J Microbiol 2024:10.1007/s42770-024-01560-2. [PMID: 39556308 DOI: 10.1007/s42770-024-01560-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 10/29/2024] [Indexed: 11/19/2024] Open
Abstract
Escherichia coli is a zoonotic bacterium, and its resistance to antimicrobials has become an increasing problem in global health. This study aimed to determine the phenotypic and genotypic pooled prevalence of E. coli with antimicrobial resistance profiles in poultry through systematic review and meta-analysis. Articles available in scientific databases from years 2017 to 2024 were evaluated. Overall, 18 studies were included in the meta-analysis and prevalence of E. coli resistance in poultry. Estimated by the random effects model, the pooled prevalence of resistance to at least one antibiotic in E. coli isolated from poultry samples was 76.96% (95% CI = 48.74-92.15%), and multidrug-resistant isolates of 89.44% (95% CI = 75.51-95.88%). The highest prevalence was to nalidixic acid (86.67%; 95% CI = 59.32-96.67%), followed by isolates resistant to tetracycline (79.33%; 95% CI = 62.86-89.69%). Tetracycline resistance genes had the highest prevalence, with 29.78% of isolates (498/1076) positive for at least one of the three genes (tetA, tetB and/or tetC). The levels of phenotypic and genotypic prevalence of E. coli in poultry can provide a scientific basis for the control of antibiotic-resistant strains and contribute to the competent authorities to guide the management interventions that best suit the different geographical regions.
Collapse
Affiliation(s)
| | - Clécio Henrique Limeira
- Federal University of Campina Grande, Post-Graduate Program in Animal Science and Health, Patos, PB, Brazil
| | - Tiago Casella
- Paulista State University "Júlio de Mesquita Filho", Base Hospital - Funfarme, São José do Rio Preto, SP, Brazil
| | - Hosaneide Gomes de Araújo
- Federal University of Campina Grande, Post-Graduate Program in Animal Science and Health, Patos, PB, Brazil
| | | | - Domingos Andrade Neto
- Federal University of Campina Grande, Post-Graduate Program in Animal Science and Health, Patos, PB, Brazil
| | | | - Sérgio Santos de Azevedo
- Federal University of Campina Grande, Post-Graduate Program in Animal Science and Health, Patos, PB, Brazil.
| | | |
Collapse
|
2
|
Akkari H, Heleili N, Ozgumus OB, Merradi M, Reis A, Ayachi A, Akarsu N, Tufekci EF, Kiliç AO. Prevalence and molecular characterization of ESBL/pAmpC producing faecal Escherichia coli strains with widespread detection of CTX-M-15 isolated from healthy poultry flocks in Eastern Algeria. Microb Pathog 2024; 196:106973. [PMID: 39313136 DOI: 10.1016/j.micpath.2024.106973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
The intensification of livestock farming has led to the widespread use of massive amounts of antibiotics worldwide. Poultry production, including white meat, eggs and the use of their manure as fertiliser, has been identified as one of the most crucial reservoirs for the emergence and spread of resistant bacteria, including E. coli in poultry as an important opportunistic pathogen representing the greatest biological hazard to human and wildlife health. Thus, this study aimed to analyse E. coli in the faecal carriage of healthy poultry flocks and to investigate the phenotypic and genotypic characteristics of antimicrobial resistance, including integrons genes and phylogenetic groups. A total of 431 cloacal swabs from apparently healthy poultry from four regions in Eastern Algeria from December 2021 to October 2022. 360 E. coli were isolated; from broilers (n = 151), broiler breeders (n = 91), laying hens (n = 72), and breeding hens (n = 46). Among this, 281 isolates exhibited multidrug resistance (MDR) phenotype, 17 of the 360 E. coli isolates exhibited ESBL, and one isolate exhibited both ESBL/pAmpC. A representative collection of 183 among 281 MDR E. coli was selected for further analysis by PCR to detect genes encoding resistance to different antibiotics, and sequencing was performed on all positive PCR products of blaCTX-M and blaCMY-2 genes. Phylogenetic groups were determined in 80 E. coli isolates (20 from each of the four kinds of poultry). The blaCTX-M gene was found in 16 (94.11 %) ESBL-producing E. coli isolates within 11 strains co-expressing the blaSHV gene and 8 strains co-expressing the blaTEM gene. Sequence analysis showed frequent diversity in CTX-M-group-1, with blaCTX-M-15 being the most predominant (n = 11), followed by blaCTX-M-1 (n = 5). The blaCMY-2 gene was detected only in one ESBL/pAmpC isolate. Among the 183 tested isolates, various antimicrobial resistance genes were found (number of strains) blaTEM (n = 121), blaSHV (n = 12), tetA (n = 100), tetB (n = 29), sul1(n = 67), sul2 (n = 32), qnrS (n = 45), qnrB (n = 10), qnrA (n = 1), catA1(n = 13), aac-(6')-Ib (n = 3). Furthermore, class 1 and class 2 integrons were found in 113 and 2 E. coli, respectively. The isolates were classified into multiple phylogroups, including A (35 %), B1 (27.5 %), B2 and D each (18.75 %). The detection of integrons and different classes of resistance genes in the faecal carriage of healthy poultry production indicates that commensal E. coli could potentially act as a reservoir for antimicrobial resistance, posing a significant One Health challenge encompassing the interconnected domains of human, animal health and the environment. Here, we present the first investigation to describe the diversity of blaCTX-M producing E. coli isolates with widespread detection of CTX-M-15 and CTX-M-1 in healthy breeders (Broiler and breeding hens) in Eastern Algeria.
Collapse
Affiliation(s)
- Hafsa Akkari
- ESPA Laboratory, Department of Veterinary Sciences, Institute of Veterinary Sciences and Agronomic Sciences, University of Batna 1, 05000, Batna, Algeria
| | - Nouzha Heleili
- ESPA Laboratory, Department of Veterinary Sciences, Institute of Veterinary Sciences and Agronomic Sciences, University of Batna 1, 05000, Batna, Algeria.
| | - Osman Birol Ozgumus
- Department of Medical Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Manel Merradi
- Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University of Batna 2, 05078, Batna, Algeria
| | - Ahu Reis
- Department of Medical Microbiology, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Ammar Ayachi
- ESPA Laboratory, Department of Veterinary Sciences, Institute of Veterinary Sciences and Agronomic Sciences, University of Batna 1, 05000, Batna, Algeria
| | - Neslihan Akarsu
- Department of Biotechnology, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Enis Fuat Tufekci
- Department of Medical Microbiology, Faculty of Medicine, Kastamonu University, 37200, Kastamonu, Turkey
| | - Ali Osman Kiliç
- Department of Medical Microbiology, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey
| |
Collapse
|
3
|
Miyauchi M, El Garch F, Thériault W, Leclerc BG, Lépine E, Giboin H, Rhouma M. Effect of single parenteral administration of marbofloxacin on bacterial load and selection of resistant Enterobacteriaceae in the fecal microbiota of healthy pigs. BMC Vet Res 2024; 20:492. [PMID: 39468532 PMCID: PMC11520798 DOI: 10.1186/s12917-024-04329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is a global concern impacting both humans, animals and their environment. The use of oral antimicrobials in livestock, particularly in pigs, has been identified as a driver in the selection of AMR bacteria. The aim of the present study was to evaluate the effects of a single intramuscular (IM) dose of marbofloxacin (8 mg/kg) on Enterobacteriaceae and E. coli populations, as well as on fluoroquinolone resistance within the fecal microbiota of pigs. Twenty healthy pigs, 60-days old, were divided into two groups: a treated group (n = 13) and a control group (n = 7) and were monitored over a 28-day experimental period. Fecal samples were collected from all animals for the isolation of E. coli and Salmonella strains. The minimum inhibitory concentration (MIC) of marbofloxacin for the isolates recovered on MacConkey agar supplemented with 1 or 4 µg/mL of marbofloxacin and for some generic E. coli isolates (recovered from MacConkey agar not supplemented with marbofloxacin) was determined using the broth microdilution method. Genomic DNA was extracted from the confirmed bacterial strains and sequenced using the Sanger method to identify mutations in the quinolone resistance determining regions (QRDRs) of the gyrA and parC genes. RESULTS The single IM administration of marbofloxacin resulted in a significant decrease in Enterobacteriaceae and E. coli fecal populations from days 1 to 3 post- treatment. No Salmonella isolates were detected in either group, and no marbofloxacin-resistant E. coli isolates were identified. The MIC of the selected generic E. coli strains (n = 100) showed an increase to up to 0.5 µg/mL between days 1 and 3 post-treatment but remained below the clinical breakpoint of marbofloxacin resistance (4 µg/mL). Sequencing of these isolates revealed no mutations in gyrA and parC genes. CONCLUSIONS The present study showed that this dosing regimen of marbofloxacin significantly decreases the fecal shedding of Enterobacteriaceae and E. coli populations in pigs, while limiting the selection of marbofloxacin-resistant E. coli isolates. These findings warrant validation in sick pigs to support the selective use of this antibiotic solely in cases of clinical disease, thereby minimizing the reliance on conventional (metaphylactic) group treatments in pigs.
Collapse
Affiliation(s)
- Micaela Miyauchi
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, J2S 2M2, Canada
- Groupe de Recherche et d'Enseignement en Salubrité Alimentaire (GRESA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | | | - William Thériault
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, J2S 2M2, Canada
- Groupe de Recherche et d'Enseignement en Salubrité Alimentaire (GRESA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Bruno G Leclerc
- Vetoquinol N.-A. Inc., Scientific Affairs, Lavaltrie, Québec, Canada
| | - Edith Lépine
- Vetoquinol N.-A. Inc., Scientific Affairs, Lavaltrie, Québec, Canada
| | - Henry Giboin
- Scientific Division, Vetoquinol S.A., Lure, France
| | - Mohamed Rhouma
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, J2S 2M2, Canada.
- Groupe de Recherche et d'Enseignement en Salubrité Alimentaire (GRESA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, J2S 2M2, Canada.
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, J2S 2M2, Canada.
| |
Collapse
|
4
|
Bajda T, Grela A, Pamuła J, Kuc J, Klimek A, Matusik J, Franus W, Alagarsamy SKK, Danek T, Gara P. Using Zeolite Materials to Remove Pharmaceuticals from Water. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3848. [PMID: 39124512 PMCID: PMC11313275 DOI: 10.3390/ma17153848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Pharmaceutical drugs, including antibiotics and hormonal agents, pose a significant threat to environmental and public health due to their persistent presence in aquatic environments. Colistin (KOL), fluoxetine (FLUO), amoxicillin (AMO), and 17-alpha-ethinylestradiol (EST) are pharmaceuticals (PhCs) that frequently exceed regulatory limits in water and wastewater. Current removal methods are mainly ineffective, necessitating the development of more efficient techniques. This study investigates the use of synthetic zeolite (NaP1_FA) and zeolite-carbon composites (NaP1_C), both derived from fly ash (FA), for the removal of KOL, FLUO, AMO, and EST from aquatic environments. Batch adsorption experiments assessed the effects of contact time, adsorbent dosage, initial concentration, and pH on the removal efficiency of the pharmaceuticals. The results demonstrated that NaP1_FA and NaP1_C exhibited high removal efficiencies for all tested pharmaceuticals, achieving over 90% removal within 2 min of contact time. The Behnajady-Modirshahla-Ghanbary (BMG) kinetic model best described the adsorption processes. The most effective sorption was observed with a sorbent dose of 1-2 g L-1. Regarding removal efficiency, the substances ranked in this order: EST was the highest, followed by AMO, KOL, and FLUO. Sorption efficiency was influenced by the initial pH of the solutions, with optimal performance observed at pH 2-2.5 for KOL and FLUO. The zeolite-carbon composite NaP1_C, due to its hydrophobic nature, showed superior sorption efficiency for hydrophobic pharmaceuticals like FLUO and EST. The spectral analysis reveals that the primary mechanism for immobilizing the tested PhCs on zeolite sorbents is mainly due to physical sorption. This study underscores the potential of utilizing inexpensive, fly ash-derived zeolites and zeolite-carbon composites to remove pharmaceuticals from water effectively. These findings contribute to developing advanced materials for decentralized wastewater treatment systems, directly addressing pollution sources in various facilities.
Collapse
Affiliation(s)
- Tomasz Bajda
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland; (A.K.); (J.M.); (T.D.)
| | - Agnieszka Grela
- Faculty of Environmental and Power Engineering, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland; (A.G.); (J.P.)
| | - Justyna Pamuła
- Faculty of Environmental and Power Engineering, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland; (A.G.); (J.P.)
| | - Joanna Kuc
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland;
| | - Agnieszka Klimek
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland; (A.K.); (J.M.); (T.D.)
| | - Jakub Matusik
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland; (A.K.); (J.M.); (T.D.)
| | - Wojciech Franus
- Faculty of Civil Engineering and Architecture, Lublin University of Technology, ul. Nadbystrzycka 40, 20-618 Lublin, Poland;
| | | | - Tomasz Danek
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland; (A.K.); (J.M.); (T.D.)
| | - Paweł Gara
- Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland;
| |
Collapse
|
5
|
Wang T, Zhang L, Zhang Y, Tong P, Ma W, Wang Y, Liu Y, Su Z. Isolation and identification of specific Enterococcus faecalis phage C-3 and G21-7 against Avian pathogenic Escherichia coli and its application to one-day-old geese. Front Microbiol 2024; 15:1385860. [PMID: 38962142 PMCID: PMC11221357 DOI: 10.3389/fmicb.2024.1385860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/24/2024] [Indexed: 07/05/2024] Open
Abstract
Colibacillosis caused by Avian pathogenic Escherichia coli (APEC), including peritonitis, respiratory tract inflammation and ovaritis, is recognized as one of the most common and economically destructive bacterial diseases in poultry worldwide. In this study, the characteristics and inhibitory potential of phages were investigated by double-layer plate method, transmission electron microscopy, whole genome sequencing, bioinformatics analysis and animal experiments. The results showed that phages C-3 and G21-7 isolated from sewage around goose farms infected multiple O serogroups (O1, O2, O18, O78, O157, O26, O145, O178, O103 and O104) Escherichia coli (E.coli) with a multiplicity of infection (MOI) of 10 and 1, respectively. According to the one-step growth curve, the incubation time of both bacteriophage C-3 and G21-7 was 10 min. Sensitivity tests confirmed that C-3 and G21-6 are stable at 4 to 50 °C and pH in the range of 4 to 11. Based on morphological and phylogenetic analysis, phages C-3 and G21-7 belong to Enterococcus faecalis (E. faecalis) phage species of the genus Saphexavirus of Herelleviridae family. According to genomic analysis, phage C-3 and G21-7 were 58,097 bp and 57,339 bp in size, respectively, with G+C content of 39.91% and 39.99%, encoding proteins of 97 CDS (105 to 3,993 bp) and 96 CDS (105 to 3,993 bp), and both contained 2 tRNAs. Both phages contained two tail proteins and holin-endolysin system coding genes, and neither carried resistance genes nor virulence factors. Phage mixture has a good safety profile and has shown good survival probability and feed efficiency in both treatment and prophylaxis experiments with one-day-old goslings. These results suggest that phage C-3 and G21-7 can be used as potential antimicrobials for the prevention and treatment of APEC.
Collapse
Affiliation(s)
- Tianli Wang
- College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, China
- Xinjiang Key Laboratory of Herbivore Drug Research and Creation, College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, China
| | - Ling Zhang
- College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, China
- Xinjiang Key Laboratory of Herbivore Drug Research and Creation, College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, China
| | - Yi Zhang
- College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, China
- Xinjiang Key Laboratory of Herbivore Drug Research and Creation, College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, China
| | - Panpan Tong
- College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, China
- Xinjiang Key Laboratory of Herbivore Drug Research and Creation, College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, China
| | - Wanpeng Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, China
- Xinjiang Key Laboratory of Herbivore Drug Research and Creation, College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, China
| | - Yan Wang
- College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, China
- Xinjiang Key Laboratory of Herbivore Drug Research and Creation, College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, China
| | - Yifan Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, China
- Xinjiang Key Laboratory of Herbivore Drug Research and Creation, College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, China
| | - Zhanqiang Su
- College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, China
- Xinjiang Key Laboratory of Herbivore Drug Research and Creation, College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, China
| |
Collapse
|
6
|
Vougat Ngom R, Jajere SM, Ayissi GJ, Tanyienow A, Moffo F, Watsop HM, Mimboe LM, Mouiche MM, Schüpbach-Regula G, Carmo LP. Unveiling the landscape of resistance against high priority critically important antimicrobials in food-producing animals across Africa: A scoping review. Prev Vet Med 2024; 226:106173. [PMID: 38503073 DOI: 10.1016/j.prevetmed.2024.106173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/10/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
The rapid population growth in Africa is associated with an increasing demand for livestock products which in turn can lead to antimicrobial use. Antimicrobial usage in animals contributes to the emergence and selection of resistant bacteria which constitutes a serious public health threat. This study aims to review and summarize the available information on highest priority critically important antimicrobials (HPCIAs) resistance in livestock production in Africa. This work will help to inform future policies for controlling antimicrobial resistance (AMR) in the food production chain. A scoping review was conducted according to the Cochrane handbook and following PRISMA 2020 guidelines for reporting. Primary research studies published after 1999 and reporting resistance of Escherichia coli, Enterococcus spp, Staphylococcus aureus, Salmonella spp, and Campylobacter spp to HPCIAs in poultry, cattle, pigs, goats, and sheep in Africa were searched in four databases. A total of 312 articles were included in the review. The majority of the studies (40.7) were conducted in North African countries. More than 49.0% of included studies involved poultry and 26.2% cattle. Cephalosporins and quinolones were the most studied antimicrobial classes. Of the bacteria investigated in the current review, E. coli (41.7%) and Salmonella spp (24.9%) represented the most commonly studied. High levels of resistance against erythromycin in E. coli were found in poultry (MR 96.1%, IQR 83.3-100.0%), cattle (MR 85.7%, IQR 69.2-100.0%), and pigs (MR 94.0%, IQR 86.2-94.0%). In sheep, a high level of resistance was observed in E. coli against nalidixic acid (MR 87.5%, IQR 81.3-93.8%). In goats, the low level of sensibility was noted in S. aureus against streptomycin (MR 86.8%, IQR 19.4-99.0%). The study provides valuable information on HPCIAs resistance in livestock production in Africa and highlights the need for further research and policies to address the public health risk of AMR. This will likely require an investment in diagnostic infrastructure across the continent. Awareness on the harmful impact of AMR in African countries is a requirement to produce more effective and sustainable measures to curb AMR.
Collapse
Affiliation(s)
- Ronald Vougat Ngom
- School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Saleh M Jajere
- Faculty of Veterinary Medicine, University of Maiduguri, Borno State, Nigeria
| | - Gaspard Ja Ayissi
- School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Akenghe Tanyienow
- School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Frédéric Moffo
- School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Hippolyte M Watsop
- School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Leina M Mimboe
- School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Mohamed Mm Mouiche
- School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | | | - Luís Pedro Carmo
- Veterinary Public Health Institute, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Norwegian Veterinary Institute, Elizabeth Stephansens vei 1, Ås 1433, Norway
| |
Collapse
|
7
|
Zhang S, Guo X, Wang Y, Zhong Z, Wang M, Jia R, Chen S, Liu M, Zhu D, Zhao X, Wu Y, Yang Q, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, Cheng A. Implications of different waterfowl farming on cephalosporin resistance: Investigating the role of bla CTX-M-55. Poult Sci 2023; 102:102929. [PMID: 37562134 PMCID: PMC10432832 DOI: 10.1016/j.psj.2023.102929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
We investigated the cephalosporin resistance of Escherichia coli from waterfowl among different breeding mode farms. In 2021, we isolated 200 strains of E. coli from waterfowl feces samples collected from Sichuan, Heilongjiang, and Anhui provinces. The key findings are: Out of the 200 strains, 80, 80, and 40 strains were isolated from waterfowl feces samples in intensive, courtyard, and outdoor breeding mode farms, respectively. The overall positive rate of the ESBL phenotype, detecting by the double disk diffusion method, was 68.00% (136/200). In particular, the rates for intensive, courtyard, and outdoor breeding modes were 98.75%, 36.25%, and 70.00%, respectively. Results of MIC test showed drug resistance rates in the intensive breeding mode: 100.00% for cephalothin, 38.75% for cefoxitin, 100.00% for cefotaxime, and 100.00% for cefepime. In courtyard breeding mode, the corresponding rates were 100.00%, 40.00%, 63.75%, and 45.00%, respectively. In outdoor breeding mode, the corresponding rates were 100.00%, 52.50%, 82.50%, and 77.50%, respectively. The PCR results for blaCTX-M, blaTEM, blaOXA, and blaSHV showed the detection rate of blaCTX-M was highest at 75.50%, with blaCTX-M-55 is the main subtype gene, followed by blaTEM at 73.50%. We screened 58 donor strains carrying blaCTX-M-55, including 52 strains from the intensive breeding mode. These donor bacteria can transfer different plasmids to recipient E. coli J53, resulting in recipient bacteria acquiring cephalosporin resistance, and the conjugational transfer frequency ranged from 1.01 × 10-5 to 6.56 × 10-2. The transferred plasmids remained stable in recipient bacteria for up to several days without significant adaptation costs observed. During molecular typing of E. coli with conjugational transfer ability, the blaCTX-M-55 was found to be widely present in different ST strains with several phylogenetic groups. In summary, cephalosporin resistance of E. coli carried by waterfowl birds in intensive breeding mode farm was significantly higher than in courtyard and outdoor mode farms. The blaCTX-M-55 subtype gene was the prevalent ARGs and can be horizontally transferred through plasmids, which plays a key role in the spread of cephalosporin drug resistance.
Collapse
Affiliation(s)
- Shaqiu Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Xiangyuan Guo
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Yuwei Wang
- Mianyang Academy of Agricultural Sciences, Mianyang 621023, P.R. China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Xinxin Zhao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Ying Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Qiao Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Xumin Ou
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Sai Mao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Qun Gao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Di Sun
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, P.R. China.
| |
Collapse
|
8
|
Sarr H, Niang AA, Diop A, Mediannikov O, Zerrouki H, Diene SM, Lo S, Dia ML, Sow AI, Fenollar F, Rolain JM, Hadjadj L. The Emergence of Carbapenem- and Colistin-Resistant Enterobacteria in Senegal. Pathogens 2023; 12:974. [PMID: 37623934 PMCID: PMC10459028 DOI: 10.3390/pathogens12080974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Antibiotic resistance is a public health problem. The emergence of carbapenemase-producing Enterobacterales (CPE) infections is a concern, particularly in Senegal. (1) Methods: Between January 2019 and July 2022, 240 isolates of enterobacteria resistant to third-generation cephalosporins and imipenem from biological samples from Fann Hospital (Dakar) and Hôpital Paix (Ziguinchor) were selected. The isolates were identified by MALDI-TOF mass spectrometry, and susceptibility tests were performed by the disk diffusion method. Antibiotic-resistance genes for class A beta-lactamases, carbapenemases, and plasmid resistance to colistin resistance (mcr-1-8) were screened by RT-PCR. (2) Results: The 240 enterobacteria were composed of: Escherichia coli (60.83%), Klebsiella pneumoniae (21.67%), Enterobacter cloacae (13.75%), Citrobacter freundii (2.08%), Serratia marcescens (0.83%), Klebsiella aerogenes (0.42%), and Proteus mirabilis (0.42%). Class A beta-lactamase genes were found in 229 isolates (70.41% blaTEM, 37.5% blaSHV, 83.75% blaCTX-A, and 0.42% blaCTX-B). The carbapenemase genes blaOXA-48 and blaNDM were found in 25 isolates, including 14 isolates with blaOXA-48, 13 isolates with blaNDM, and 2 isolates with both genes simultaneously. The mcr-8 gene was found in one isolate of E. cloacae. (3) Conclusions: The epidemiology of antibiotic-resistance genes in enterobacteria in Senegal shows the emergence of CPEs. This phenomenon is worrying, and rigorous surveillance is necessary to avoid further spread.
Collapse
Affiliation(s)
- Habibou Sarr
- UFR des Sciences de la Santé, Université Assane Seck de Ziguinchor, Ziguinchor BP 523, Senegal;
- Unité de Bactériologie, Hôpital de la Paix de Ziguinchor, Ziguinchor BP 523, Senegal
- Faculté de Médecine et de Pharmacie, MEPHI IRD, APHM, Aix Marseille Université, 13005 Marseille, France; (O.M.); (H.Z.); (S.M.D.); (J.-M.R.)
- IHU Méditerranée Infection, 13005 Marseille, France;
| | - Aissatou Ahmet Niang
- Faculté de Médecine, Pharmacie et Odonto-Stomatologie, Université Cheikh-Anta-Diop, Dakar BP 5005, Senegal; (A.A.N.); (A.D.); (M.L.D.); (A.I.S.)
| | - Amadou Diop
- Faculté de Médecine, Pharmacie et Odonto-Stomatologie, Université Cheikh-Anta-Diop, Dakar BP 5005, Senegal; (A.A.N.); (A.D.); (M.L.D.); (A.I.S.)
| | - Oleg Mediannikov
- Faculté de Médecine et de Pharmacie, MEPHI IRD, APHM, Aix Marseille Université, 13005 Marseille, France; (O.M.); (H.Z.); (S.M.D.); (J.-M.R.)
- IHU Méditerranée Infection, 13005 Marseille, France;
| | - Hanane Zerrouki
- Faculté de Médecine et de Pharmacie, MEPHI IRD, APHM, Aix Marseille Université, 13005 Marseille, France; (O.M.); (H.Z.); (S.M.D.); (J.-M.R.)
- IHU Méditerranée Infection, 13005 Marseille, France;
| | - Seydina M. Diene
- Faculté de Médecine et de Pharmacie, MEPHI IRD, APHM, Aix Marseille Université, 13005 Marseille, France; (O.M.); (H.Z.); (S.M.D.); (J.-M.R.)
- IHU Méditerranée Infection, 13005 Marseille, France;
| | - Seynabou Lo
- UFR des Sciences de la Santé, Université Gaston Berger, Saint Louis BP 234, Senegal;
| | - Mouhamadou Lamine Dia
- Faculté de Médecine, Pharmacie et Odonto-Stomatologie, Université Cheikh-Anta-Diop, Dakar BP 5005, Senegal; (A.A.N.); (A.D.); (M.L.D.); (A.I.S.)
| | - Ahmad Iyane Sow
- Faculté de Médecine, Pharmacie et Odonto-Stomatologie, Université Cheikh-Anta-Diop, Dakar BP 5005, Senegal; (A.A.N.); (A.D.); (M.L.D.); (A.I.S.)
| | - Florence Fenollar
- IHU Méditerranée Infection, 13005 Marseille, France;
- VITROME, IRD, APHM, SSA, Aix Marseille Université, 13005 Marseille, France
| | - Jean-Marc Rolain
- Faculté de Médecine et de Pharmacie, MEPHI IRD, APHM, Aix Marseille Université, 13005 Marseille, France; (O.M.); (H.Z.); (S.M.D.); (J.-M.R.)
- IHU Méditerranée Infection, 13005 Marseille, France;
| | - Linda Hadjadj
- Faculté de Médecine et de Pharmacie, MEPHI IRD, APHM, Aix Marseille Université, 13005 Marseille, France; (O.M.); (H.Z.); (S.M.D.); (J.-M.R.)
- IHU Méditerranée Infection, 13005 Marseille, France;
| |
Collapse
|
9
|
Anyanwu MU, Jaja IF, Okpala COR, Njoga EO, Okafor NA, Oguttu JW. Mobile Colistin Resistance ( mcr) Gene-Containing Organisms in Poultry Sector in Low- and Middle-Income Countries: Epidemiology, Characteristics, and One Health Control Strategies. Antibiotics (Basel) 2023; 12:1117. [PMID: 37508213 PMCID: PMC10376608 DOI: 10.3390/antibiotics12071117] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
Mobile colistin resistance (mcr) genes (mcr-1 to mcr-10) are plasmid-encoded genes that threaten the clinical utility of colistin (COL), one of the highest-priority critically important antibiotics (HP-CIAs) used to treat infections caused by multidrug-resistant and extensively drug-resistant bacteria in humans and animals. For more than six decades, COL has been used largely unregulated in the poultry sector in low- and middle-income countries (LMICs), and this has led to the development/spread of mcr gene-containing bacteria (MGCB). The prevalence rates of mcr-positive organisms from the poultry sector in LMICs between January 1970 and May 2023 range between 0.51% and 58.8%. Through horizontal gene transfer, conjugative plasmids possessing insertion sequences (ISs) (especially ISApl1), transposons (predominantly Tn6330), and integrons have enhanced the spread of mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, mcr-7, mcr-8, mcr-9, and mcr-10 in the poultry sector in LMICs. These genes are harboured by Escherichia, Klebsiella, Proteus, Salmonella, Cronobacter, Citrobacter, Enterobacter, Shigella, Providencia, Aeromonas, Raoultella, Pseudomonas, and Acinetobacter species, belonging to diverse clones. The mcr-1, mcr-3, and mcr-10 genes have also been integrated into the chromosomes of these bacteria and are mobilizable by ISs and integrative conjugative elements. These bacteria often coexpress mcr with virulence genes and other genes conferring resistance to HP-CIAs, such as extended-spectrum cephalosporins, carbapenems, fosfomycin, fluoroquinolone, and tigecycline. The transmission routes and dynamics of MGCB from the poultry sector in LMICs within the One Health triad include contact with poultry birds, feed/drinking water, manure, poultry farmers and their farm workwear, farming equipment, the consumption and sale of contaminated poultry meat/egg and associated products, etc. The use of pre/probiotics and other non-antimicrobial alternatives in the raising of birds, the judicious use of non-critically important antibiotics for therapy, the banning of nontherapeutic COL use, improved vaccination, biosecurity, hand hygiene and sanitization, the development of rapid diagnostic test kits, and the intensified surveillance of mcr genes, among others, could effectively control the spread of MGCB from the poultry sector in LMICs.
Collapse
Affiliation(s)
| | - Ishmael Festus Jaja
- Department of Livestock and Pasture Science, University of Fort Hare, Alice 5700, South Africa
| | - Charles Odilichukwu R Okpala
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
- UGA Cooperative Extension, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Emmanuel Okechukwu Njoga
- Department of Veterinary Public Health and Preventive Medicine, University of Nigeria, Nsukka 400001, Nigeria
| | | | - James Wabwire Oguttu
- Department of Agriculture and Animal Health, Florida Campus, University of South Africa, Johannesburg 1709, South Africa
| |
Collapse
|
10
|
Schumann A, Cohn AR, Gaballa A, Wiedmann M. Escherichia coli B-Strains Are Intrinsically Resistant to Colistin and Not Suitable for Characterization and Identification of mcr Genes. Microbiol Spectr 2023; 11:e0089423. [PMID: 37199645 PMCID: PMC10269513 DOI: 10.1128/spectrum.00894-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
Antimicrobial resistance is an increasing threat to human and animal health. Due to the rise of multi-, extensive, and pandrug resistance, last resort antibiotics, such as colistin, are extremely important in human medicine. While the distribution of colistin resistance genes can be tracked through sequencing methods, phenotypic characterization of putative antimicrobial resistance (AMR) genes is still important to confirm the phenotype conferred by different genes. While heterologous expression of AMR genes (e.g., in Escherichia coli) is a common approach, so far, no standard methods for heterologous expression and characterization of mcr genes exist. E. coli B-strains, designed for optimum protein expression, are frequently utilized. Here, we report that four E. coli B-strains are intrinsically resistant to colistin (MIC 8-16 μg/mL). The three tested B-strains that encode T7 RNA polymerase show growth defects when transformed with empty or mcr-expressing pET17b plasmids and grown in the presence of IPTG; K-12 or B-strains without T7 RNA polymerase do not show these growth defects. E. coli SHuffle T7 express carrying empty pET17b also skips wells in colistin MIC assays in the presence of IPTG. These phenotypes could explain why B-strains were erroneously reported as colistin susceptible. Analysis of existing genome data identified one nonsynonymous change in each pmrA and pmrB in all four E. coli B-strains; the E121K change in PmrB has previously been linked to intrinsic colistin resistance. We conclude that E. coli B-strains are not appropriate heterologous expression hosts for identification and characterization of mcr genes. IMPORTANCE Given the rise in multidrug, extensive drug, and pandrug resistance in bacteria and the increasing use of colistin to treat human infections, occurrence of mcr genes threatens human health, and characterization of these resistance genes becomes more important. We show that three commonly used heterologous expression strains are intrinsically resistant to colistin. This is important because these strains have previously been used to characterize and identify new mobile colistin resistance (mcr) genes. We also show that expression plasmids (i.e., pET17b) without inserts cause cell viability defects when carried by B-strains with T7 RNA polymerase and grown in the presence of IPTG. Our findings are important as they will facilitate improved selection of heterologous strains and plasmid combinations for characterizing AMR genes, which will be particularly important with a shift to Culture-independent diagnostic tests where bacterial isolates become increasingly less available for characterization.
Collapse
Affiliation(s)
- Anna Schumann
- Department of Food Science, Cornell University, Ithaca, New York, USA
- Graduate Field of Biomedical and Biological Sciences, Cornell University, Ithaca, New York, USA
| | - Alexa R. Cohn
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Ahmed Gaballa
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
11
|
Ahmad N, Joji RM, Shahid M. Evolution and implementation of One Health to control the dissemination of antibiotic-resistant bacteria and resistance genes: A review. Front Cell Infect Microbiol 2023; 12:1065796. [PMID: 36726644 PMCID: PMC9884834 DOI: 10.3389/fcimb.2022.1065796] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/16/2022] [Indexed: 01/19/2023] Open
Abstract
Antibiotic resistance is a serious threat to humanity and its environment. Aberrant usage of antibiotics in the human, animal, and environmental sectors, as well as the dissemination of resistant bacteria and resistance genes among these sectors and globally, are all contributing factors. In humans, antibiotics are generally used to treat infections and prevent illnesses. Antibiotic usage in food-producing animals has lately emerged as a major public health concern. These medicines are currently being utilized to prevent and treat infectious diseases and also for its growth-promoting qualities. These methods have resulted in the induction and spread of antibiotic resistant infections from animals to humans. Antibiotics can be introduced into the environment from a variety of sources, including human wastes, veterinary wastes, and livestock husbandry waste. The soil has been recognized as a reservoir of ABR genes, not only because of the presence of a wide and varied range of bacteria capable of producing natural antibiotics but also for the usage of natural manure on crop fields, which may contain ABR genes or antibiotics. Fears about the human health hazards of ABR related to environmental antibiotic residues include the possible threat of modifying the human microbiota and promoting the rise and selection of resistant bacteria, and the possible danger of generating a selection pressure on the environmental microflora resulting in environmental antibiotic resistance. Because of the connectivity of these sectors, antibiotic use, antibiotic residue persistence, and the existence of antibiotic-resistant bacteria in human-animal-environment habitats are all linked to the One Health triangle. The pillars of support including rigorous ABR surveillance among different sectors individually and in combination, and at national and international level, overcoming laboratory resource challenges, and core plan and action execution should be strictly implemented to combat and contain ABR under one health approach. Implementing One Health could help to avoid the emergence and dissemination of antibiotic resistance while also promoting a healthier One World. This review aims to emphasize antibiotic resistance and its regulatory approaches from the perspective of One Health by highlighting the interconnectedness and multi-sectoral nature of the human, animal, and environmental health or ill-health facets.
Collapse
Affiliation(s)
| | | | - Mohammad Shahid
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
12
|
Hu J, Afayibo DJA, Zhang B, Zhu H, Yao L, Guo W, Wang X, Wang Z, Wang D, Peng H, Tian M, Qi J, Wang S. Characteristics, pathogenic mechanism, zoonotic potential, drug resistance, and prevention of avian pathogenic Escherichia coli (APEC). Front Microbiol 2022; 13:1049391. [PMID: 36583051 PMCID: PMC9793750 DOI: 10.3389/fmicb.2022.1049391] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Although most Escherichia coli (E. coli) strains are commensal and abundant, certain pathogenic strains cause severe diseases from gastroenteritis to extraintestinal infections. Extraintestinal pathogenic E. coli (ExPEC) contains newborn meningitis E. coli (NMEC), uropathogenic E. coli (UPEC), avian pathogenic E. coli (APEC), and septicemic E. coli (SEPEC) based on their original host and clinical symptom. APEC is a heterogeneous group derived from human ExPEC. APEC causes severe respiratory and systemic diseases in a variety of avians, threatening the poultry industries, food security, and avian welfare worldwide. APEC has many serotypes, and it is a widespread pathogenic bacterium in poultry. In addition, ExPEC strains share significant genetic similarities and similar pathogenic mechanisms, indicating that APEC potentially serves as a reservoir of virulence and resistance genes for human ExPEC, and the virulence and resistance genes can be transferred to humans through food animals. Due to economic losses, drug resistance, and zoonotic potential, APEC has attracted heightened awareness. Various virulence factors and resistance genes involved in APEC pathogenesis and drug resistance have been identified. Here, we review the characteristics, epidemiology, pathogenic mechanism zoonotic potential, and drug resistance of APEC, and summarize the current status of diagnosis, alternative control measures, and vaccine development, which may help to have a better understanding of the pathogenesis and resistance of APEC, thereby reducing economic losses and preventing the spread of multidrug-resistant APEC to humans.
Collapse
|
13
|
Phu DH, Wongtawan T, Truong DB, Van Cuong N, Carrique-Mas J, Thomrongsuwannakij T. A systematic review and meta-analysis of integrated studies on antimicrobial resistance in Vietnam, with a focus on Enterobacteriaceae, from a One Health perspective. One Health 2022; 15:100465. [PMID: 36561710 PMCID: PMC9767812 DOI: 10.1016/j.onehlt.2022.100465] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022] Open
Abstract
Vietnam is a low- and middle-income country (LMIC), a primary food producer, and an antimicrobial resistance (AMR) hotspot. AMR is recognized as a One Health challenge since it may transfer between humans, animals and the environment. This study aimed to apply systematic review and meta-analysis to investigate the phenotypic profiles and correlations of antimicrobial-resistant Enterobacteriaceae across three compartments: humans, animals and the environment in Vietnam. A total of 89 articles found in PubMed, Science Direct, and Google Scholar databases were retrieved for qualitative synthesis. E. coli and non-typhoidal Salmonella (NTS) were the most common bacterial species in studies of all compartments (60/89 studies). Among antimicrobials classified as critically important, the resistance levels were observed to be highest to quinolones, 3rd generation of cephalosporins, penicillins, and aminoglycosides. Of 89 studies, 55 articles reported the resistance prevalence of E. coli and NTS in healthy humans, animals and the environment against ciprofloxacin, ceftazidime, ampicillin, gentamicin, sulfamethoxazole-trimethoprim, chloramphenicol was used for meta-analysis. The pooled prevalence was found highest in E. coli against ampicillin 84.0% (95% CI 73.0-91.0%) and sulfamethoxazole-trimethoprim 66.0% (95% CI 56.0-75.0%) while in NTS they were 34.0% (95% CI 24.0-46.0%), 33.0% (95% CI 25.0-42.0%), respectively. There were no significant differences in the pooled prevalence of E. coli and NTS to these antimicrobials across healthy humans, animals and the environment, except for ceftazidime-resistant E. coli (χ2 = 8.29, p = 0.02), chloramphenicol-resistant E.coli (χ2 = 9.65, p < 0.01) and chloramphenicol-resistant NTS (χ2 = 7.51, p = 0.02). Findings from the multiple meta-regression models indicated that the AMR levels in E. coli (β = 1.887, p < 0.001) and the North (β = 0.798, p = 0.047) had a higher fraction of AMR than NTS and other regions of Vietnam. The outcomes of this study play an important role as the baseline information for further investigation and follow-up intervention strategies to tackle AMR in Vietnam, and more generally, can be adapted to other LMICs.
Collapse
Affiliation(s)
- Doan Hoang Phu
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand,College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand,Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City 70000, Viet Nam
| | - Tuempong Wongtawan
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand,Centre for One Health, Walailak University, Nakhon Si Thammarat 80160, Thailand,Centre of Excellence Research for Melioidosis and other Microorganism, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Dinh Bao Truong
- Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City 70000, Viet Nam
| | - Nguyen Van Cuong
- Oxford University Clinical Research Unit, Ho Chi Minh City 70000, Viet Nam,Ausvet PTY LTD, Bruce ACT 2617, Canberra, Australia
| | - Juan Carrique-Mas
- Food and Agriculture Organization of the United Nations, Ha Noi 10000, Viet Nam
| | - Thotsapol Thomrongsuwannakij
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand,Centre for One Health, Walailak University, Nakhon Si Thammarat 80160, Thailand,Corresponding author at: Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand.
| |
Collapse
|
14
|
Obaidat MM, Tarazi YH, AlSmadi WM. Sheep and goats are reservoirs of colistin resistant
Escherichia coli
that co‐resist critically important antimicrobials: First study from Jordan. J Food Saf 2022. [DOI: 10.1111/jfs.13023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mohammad M. Obaidat
- Department of Veterinary Pathology and Public Health, Faculty of Veterinary Medicine Jordan University of Science and Technology Ar‐Ramtha, Irbid Jordan
| | - Yaser H. Tarazi
- Department of Basic Veterinary Medical Sciences, Faculty of Veterinary Medicine Jordan University of Science and Technology Ar‐Ramtha, Irbid Jordan
| | - Walaa M. AlSmadi
- Department of Veterinary Pathology and Public Health, Faculty of Veterinary Medicine Jordan University of Science and Technology Ar‐Ramtha, Irbid Jordan
| |
Collapse
|
15
|
Peng L, Peng C, Fu S, Qiu Y. Adsorption-desorption and degradation of colistin in soils under aerobic conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113989. [PMID: 35994905 DOI: 10.1016/j.ecoenv.2022.113989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/11/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Colistin has broad-spectrum activity against Gram-negative bacteria and has been considered as the last-resort treatment for multiantibiotic-resistant Gram-negative bacteria infections in human. And it is also world widely utilized as a veterinary medicine for the promotion of growth, prevention and control of diseases in livestock and poultry. Extensive use of colistin in husbandry results in the introduction of large amounts of colistin to the surrounding environment via animals' urine and feces, potentially inducing the prevalence of colistin resistance bacteria and the impact of the ecological environment. The study investigated the adsorption, desorption and degradation of colistin in soils using high sensitivity UPLC-MS/MS assays. An MS based assay was established to directly determine colistin in the soil. It was observed that the moderate adsorption affinity of colistin to the three soils with adsorption strength (1/n) ranging from 0.6897 to 1.3333. Colistin exhibited the highest adsorption affinity to the sandy loam, followed by the sand and loam. Despite of different characteristics of three soils, the adsorption capacity of the three soils was comparable. The adsorption of colistin to the three types of soils analyzed was irreversible. The degradation experiments showed that the degradation of colistin in the sandy loam was relatively slow with a degradation half-life in a range of 13.2-29.7 days when colistin was applied to the sandy loam at a level of 10 ~ 40 µg/g. The degradation of colistin occurred in the mixture of the sandy loam and feces recovered from the colistin treated broiler as well. 25% of colistin remained in the mixture under environmental conditions after 14 days. Composting the sandy loam by directly covering the soil surface with colistin treated broilers' feces resulted in the introduction of colistin to the sandy loam. Colistin was observed in both the topsoil from the contact surface and sandy loam samples collected 20 cm below the contact surface. The understanding of adsorption-desorption behaviors, degradation and mobility of colistin in soils might offer insights into the potential impact of colistin on the emergence and prevalence of resistant bacteria and the ecological environment.
Collapse
Affiliation(s)
- Lijuan Peng
- School of Food Science and Engineering, Wuhan Polytechnic University, n ChangQing Garden, Hankou, Wuhan 430023, PR China.
| | - Chun Peng
- School of Animal Science, Wuhan Polytechnic University, ChangQing Garden, Hankou, Wuhan 430023, PR China.
| | - Shulin Fu
- School of Animal Science, Wuhan Polytechnic University, ChangQing Garden, Hankou, Wuhan 430023, PR China.
| | - Yinsheng Qiu
- School of Animal Science, Wuhan Polytechnic University, ChangQing Garden, Hankou, Wuhan 430023, PR China.
| |
Collapse
|
16
|
Farooq M, Smoglica C, Ruffini F, Soldati L, Marsilio F, Di Francesco CE. Antibiotic Resistance Genes Occurrence in Conventional and Antibiotic-Free Poultry Farming, Italy. Animals (Basel) 2022; 12:ani12182310. [PMID: 36139170 PMCID: PMC9495165 DOI: 10.3390/ani12182310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance is a complex and widespread problem threatening human and animal health. In poultry farms, a wide distribution of resistant bacteria and their relative genes is described worldwide, including in Italy. In this paper, a comparison of resistance gene distribution in litter samples, recovered from four conventional and four antibiotic-free broiler flocks, was performed to highlight any influence of farming systems on the spreading and maintenance of resistance determinants. Conventional PCR tests, targeting the resistance genes related to the most used antibiotics in poultry farming, along with some critically important antibiotics for human medicine, were applied. In conventional farms, n. 10 out of n. 30 investigated genes were present in at least one sample, the most abundant fragments being the tet genes specific for tetracyclines, followed by those for aminoglycosides and chloramphenicol. All conventional samples resulted negative for colistin, carbapenems, and vancomycin resistance genes. A similar trend was observed for antibiotic-free herds, with n. 13 out of n. 30 amplified genes, while a positivity for the mcr-1 gene, specific for colistin, was observed in one antibiotic-free flock. The statistical analysis revealed a significant difference for the tetM gene, which was found more frequently in the antibiotic-free category. The analysis carried out in this study allowed us to obtain new data about the distribution of resistance patterns in the poultry industry in relation to farming types. The PCR test is a quick and non-expensive laboratory tool for the environmental monitoring of resistance determinants identifying potential indicators of AMR dissemination.
Collapse
Affiliation(s)
- Muhammad Farooq
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano D’Accio, 64100 Teramo, Italy
| | - Camilla Smoglica
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano D’Accio, 64100 Teramo, Italy
| | | | - Lidia Soldati
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano D’Accio, 64100 Teramo, Italy
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano D’Accio, 64100 Teramo, Italy
| | - Cristina E. Di Francesco
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano D’Accio, 64100 Teramo, Italy
- Correspondence: ; Tel.: +39-0861-266869
| |
Collapse
|
17
|
Worldwide Prevalence of mcr-mediated Colistin-Resistance Escherichia coli in Isolates of Clinical Samples, Healthy Humans, and Livestock-A Systematic Review and Meta-Analysis. Pathogens 2022; 11:pathogens11060659. [PMID: 35745513 PMCID: PMC9230117 DOI: 10.3390/pathogens11060659] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Antimicrobial resistance is a serious public-health problem throughout the world. Escherichia coli, the most common Gram-negative microorganism, has developed different resistance mechanisms, making treating infections difficult. Colistin is considered a last-resort drug in the treatment of infections caused by E. coli. Plasmid-mediated mobile-colistin-resistant (mcr) genes in E. coli, now disseminated globally, are considered a major public-health threat. Humans, chickens, and pigs are the main reservoirs for E. coli and the sources of antibiotic resistance. Hence, an up-to-date and precise estimate of the global prevalence of mcr resistance genes in these reservoirs is necessary to understand more precisely the worldwide spread and to more effectively implement control and prevention strategies. Methodology: Publications were identified in the PubMed database on the basis of the PRISMA guidelines. English full-text articles were selected from December 2014 to March 2021. Descriptive statistics and a meta-analysis were performed in Excel and R software, respectively. Colistin resistance was defined as the molecular-genetic detection of the mcr genes. The crude and estimated prevalence were calculated for each host and continent. The studies were divided into two groups; community-based when they involved isolates from healthy humans, chickens, or pigs, and clinical studies when they involved only hospital, outpatient, or laboratory isolates. Results: A total of 1278 studies were identified and 218 were included in this systematic review and meta-analysis, divided into community studies (159 studies) and clinical studies (59 studies). The general prevalence of mcr-mediated colistin-resistant E. coli (mcrMCRE) was 6.51% (n = 11,583/177,720), reported in 54 countries and on five continents; Asia with 119 studies followed by Europe with 61 studies registered the most articles. Asia reported the major diversity of mcr-variants (eight of nine, except mcr-2). Worldwide, chickens and pigs proved to be the principal reservoir of mcr with an estimated prevalence of 15.8% and 14.9%, respectively. Healthy humans and clinical isolates showed a lower prevalence with 7.4% and 4.2% respectively. Conclusions: In this systematic review and meta-analysis, the worldwide prevalence of mcr in E. coli isolated from healthy humans, chickens, and pigs was investigated. A wide prevalence and distribution of mcr genes was demonstrated on all continents in E. coli isolates from the selected reservoirs. Understanding the epidemiology and occurrence in the reservoirs of mcr in E. coli on different continents of the world facilitates tracing how mcr genes are transmitted and determining the infection risks for humans. This knowledge can be used to reduce the incidence of zoonotic transmission by implementing the appropriate control programs.
Collapse
|
18
|
Sundaramoorthy NS, Shankaran P, Gopalan V, Nagarajan S. New tools to mitigate drug resistance in Enterobacteriaceae - Escherichia coli and Klebsiella pneumoniae. Crit Rev Microbiol 2022:1-20. [PMID: 35649163 DOI: 10.1080/1040841x.2022.2080525] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Treatment to common bacterial infections are becoming ineffective of late, owing to the emergence and dissemination of antibiotic resistance globally. Escherichia coli and Klebsiella pneumoniae are the most notorious microorganisms and are among the critical priority pathogens listed by WHO in 2017. These pathogens are the predominant cause of sepsis, urinary tract infections (UTIs), pneumonia, meningitis and pyogenic liver abscess. Concern arises due to the resistance of bacteria to most of the beta lactam antibiotics like penicillin, cephalosporin, monobactams and carbapenems, even to the last resort antibiotics like colistin. Preventing influx by modulation of porins, extruding the antibiotics by overexpression of efflux pumps, mutations of drug targets/receptors, biofilm formation, altering the drug molecules and rendering them ineffective are few resistance mechanisms that are adapted by Enterobacteriaeceae upon exposure to antibiotics. The situation is exacerbated due to the process of horizontal gene transfer (HGT), wherein the genes encoding resistance mechanisms are transferred to the neighbouring bacteria through plasmids/phages/uptake of free DNA. Carbapenemases, other beta lactamases and mcr genes coding for colistin resistance are widely disseminated leading to limited/no therapeutic options against those infections. Development of new antibiotics can be viewed as a possible solution but it involves major investment, time and labour despite which, the bacteria can easily adapt to the new antibiotic and evolve resistance in a relatively short time. Targeting the resistance mechanisms can be one feasible alternative to tackle these multidrug resistant (MDR) pathogens. Removal of plasmid (plasmid curing) causing resistance, use of bacteriophages and bacteriotherapy can be other potential approaches to combat infections caused by MDR E. coli and K. pneumoniae. The present review discusses the efficacies of these therapies in mitigating these infections, which can be potentially used as an adjuvant therapy along with existing antibiotics.
Collapse
Affiliation(s)
- Niranjana Sri Sundaramoorthy
- Center for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA deemed University, Thanjavur, Tamil Nadu, India
| | - Prakash Shankaran
- Center for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA deemed University, Thanjavur, Tamil Nadu, India
| | - Vidhya Gopalan
- Department of Virology, Kings Institute of Preventative Medicine, Guindy, Chennai, Tamil Nadu, India
| | - Saisubramanian Nagarajan
- Center for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA deemed University, Thanjavur, Tamil Nadu, India
| |
Collapse
|
19
|
Zhang W, Zhang T, Wang C, Liang G, Lu Q, Wen G, Guo Y, Cheng Y, Wang Z, Shao H, Luo Q. Prevalence of colistin resistance gene mcr-1 in Escherichia coli isolated from chickens in central China, 2014 to 2019. J Glob Antimicrob Resist 2022; 29:241-246. [DOI: 10.1016/j.jgar.2022.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022] Open
|
20
|
Britton BC, Sarr I, Oliver HF. Enterobacteriaceae, coliform, yeast, and mold contamination patterns in peanuts compared to production, storage, use practices, and knowledge of food safety among growers in Senegal. Int J Food Microbiol 2021; 360:109437. [PMID: 34673328 DOI: 10.1016/j.ijfoodmicro.2021.109437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
Peanuts and peanut products are significant revenue sources for smallholder farmers in the Senegalese peanut basin. However, microbial contamination during production and storage can greatly affect market access for producers. Peanut products have emerged as possible sources of foodborne illness, encouraging discussions on international standards for peanuts. In this study, we interviewed 198 households throughout the Senegalese peanut basin to assess current production practices, storage methods, and producers' prior knowledge of microbial contamination using a 162-question survey. A member of each household orally completed the survey with a trained enumerator and the results were compared to microbiological results obtained from peanut samples collected at the time of the interview using linear regression and an analysis of variance model. Samples were collected from stored peanuts at each household; peanuts were shelled and total Enterobacteriaceae, coliform, and yeast and mold populations were enumerated. Of the 198 samples analyzed, 13.0% and 13.6% were greater than the upper detection limits for Enterobacteriaceae and coliforms, respectively. A total of 21.2% of samples were above the detection limit for yeast and mold populations. Only 22.7% and 18.7% of producers were aware of pathogenic bacteria or aflatoxins, respectively; there were no significant differences in observed microbial populations between household who took preventative measures against microbial contamination and those who did not. Additionally, four households reported washing their kitchen utensils before using them to eat and 60.1% reported always washing their hands before eating. Enumerators were asked to report peanut storage container type and if the containers were stored off the ground at the time of collection. While the interaction between storage container type and if the container was stored off the ground was significant for Enterobacteriaceae and coliforms, it was not significant for yeast and mold. Additionally, when storage container type and if peanuts were stored off the ground were included in the regression model, these methods were predictive of contamination levels for Enterobacteriaceae and coliforms. To our knowledge, this is the first study to analyze the relationship among Enterobacteriaceae, coliforms, and yeast and mold contamination and producer knowledge of Senegalese peanuts. These results provide preliminary data to inform future studies to determine pathogen prevalence and impactful preventative measures to minimize microbial contamination of peanuts produced in Senegal.
Collapse
Affiliation(s)
- Brianna C Britton
- Department of Food Science, Purdue University, College of Agriculture, West Lafayette, IN, United States of America
| | - Ibrahima Sarr
- Institut Senegalais de Recherches Agricoles (ISRA), Dakar, Senegal
| | - Haley F Oliver
- Department of Food Science, Purdue University, College of Agriculture, West Lafayette, IN, United States of America.
| |
Collapse
|
21
|
Truong DTQ, Hounmanou YMG, Dang STT, Olsen JE, Truong GTH, Tran NT, Scheutz F, Dalsgaard A. Genetic Comparison of ESBL-Producing Escherichia coli from Workers and Pigs at Vietnamese Pig Farms. Antibiotics (Basel) 2021; 10:1165. [PMID: 34680746 PMCID: PMC8532784 DOI: 10.3390/antibiotics10101165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022] Open
Abstract
We analyzed and compared genomes of Extended Spectrum Beta-Lactamase (ESBL)-producing Escherichia coli from pigs and pig farm workers at 116 farms in Vietnam. Analyses revealed the presence of blaCTX-M-55, blaCTX-M-27, blaCTX-M-15, blaCTX-M-14, blaCTX-M-3, blaCTX-M-65, blaCTX-M-24, blaDHA-1, and blaCMY2 in both hosts. Most strains from pigs contained quinolones (qnr) and colistin resistance genes (mcr-1 and mcr-3). Isolates predominantly harbored more than one plasmid replicon and some harbored plasmid replicons on the same contigs as the ESBL genes. Five strains from farm workers of ST38 (2), ST69 (1), and ST1722 (2) were classified as either uropathogenic E. coli (UPECHM)/extraintestinal pathogenic E. coli (ExPECJJ) or UPECHM, and the remaining were genetically distinct commensals. A high heterogeneity was found among the ESBL-producing E. coli from pigs and workers, with most isolates belonging to unrelated phylogroups, serogroups, and sequence types with >4046 Single-Nucleotide Polymorphisms-(SNPs). In comparing the genomes of pig isolates to those from humans, it appeared that ESBL-producing E. coli in workers did not predominantly originate from pigs but were rather host-specific. Nevertheless, the occurrence of ESBL-producing E. coli carrying plasmid-mediated colistin and quinolone resistance genes in pigs could represent a potential source for horizontal transmission to humans through food rather than direct contact.
Collapse
Affiliation(s)
- Duong Thi Quy Truong
- National Institute of Veterinary Research, Hanoi 10000, Vietnam; (D.T.Q.T.); (S.T.T.D.); (G.T.H.T.); (N.T.T.)
| | | | - Son Thi Thanh Dang
- National Institute of Veterinary Research, Hanoi 10000, Vietnam; (D.T.Q.T.); (S.T.T.D.); (G.T.H.T.); (N.T.T.)
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark;
| | - Giang Thi Huong Truong
- National Institute of Veterinary Research, Hanoi 10000, Vietnam; (D.T.Q.T.); (S.T.T.D.); (G.T.H.T.); (N.T.T.)
| | - Nhat Thi Tran
- National Institute of Veterinary Research, Hanoi 10000, Vietnam; (D.T.Q.T.); (S.T.T.D.); (G.T.H.T.); (N.T.T.)
| | - Flemming Scheutz
- Department of Bacteria, Parasites and Fungi, Statens Serum Institute, 2300 Copenhagen S, Denmark;
| | - Anders Dalsgaard
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark;
| |
Collapse
|
22
|
Makumi A, Mhone AL, Odaba J, Guantai L, Svitek N. Phages for Africa: The Potential Benefit and Challenges of Phage Therapy for the Livestock Sector in Sub-Saharan Africa. Antibiotics (Basel) 2021; 10:antibiotics10091085. [PMID: 34572667 PMCID: PMC8470919 DOI: 10.3390/antibiotics10091085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/26/2022] Open
Abstract
One of the world’s fastest-growing human populations is in Sub-Saharan Africa (SSA), accounting for more than 950 million people, which is approximately 13% of the global population. Livestock farming is vital to SSA as a source of food supply, employment, and income. With this population increase, meeting this demand and the choice for a greater income and dietary options come at a cost and lead to the spread of zoonotic diseases to humans. To control these diseases, farmers have opted to rely heavily on antibiotics more often to prevent disease than for treatment. The constant use of antibiotics causes a selective pressure to build resistant bacteria resulting in the emergence and spread of multi-drug resistant (MDR) organisms in the environment. This necessitates the use of alternatives such as bacteriophages in curbing zoonotic pathogens. This review covers the underlying problems of antibiotic use and resistance associated with livestock farming in SSA, bacteriophages as a suitable alternative, what attributes contribute to making bacteriophages potentially valuable for SSA and recent research on bacteriophages in Africa. Furthermore, other topics discussed include the creation of phage biobanks and the challenges facing this kind of advancement, and the regulatory aspects of phage development in SSA with a focus on Kenya.
Collapse
|
23
|
Moser AI, Kuenzli E, Campos-Madueno EI, Büdel T, Rattanavong S, Vongsouvath M, Hatz C, Endimiani A. Antimicrobial-Resistant Escherichia coli Strains and Their Plasmids in People, Poultry, and Chicken Meat in Laos. Front Microbiol 2021; 12:708182. [PMID: 34381435 PMCID: PMC8350485 DOI: 10.3389/fmicb.2021.708182] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/05/2021] [Indexed: 01/05/2023] Open
Abstract
Antimicrobial resistant (AMR) Enterobacterales are widely distributed among the healthy population of the Indochinese peninsula, including Laos. However, the local reservoir of these pathogens are currently not known and possible sources such as agricultural settings and food have rarely been analyzed. In this work, we investigated the extended-spectrum cephalosporin- (ESC-) and colistin-resistant Escherichia coli strains (CST-R-Ec) isolated from the gut of local people, feces of poultry, and from chicken meat (60 samples each group) in Laos. Whole-genome sequencing (WGS) analysis based on both short- and long-read sequencing approaches were implemented. The following prevalence of ESC-R-Ec and CST-R-Ec were recorded, respectively: local people (70 and 15%), poultry (20 and 23.3%), and chicken meat (21.7 and 13.3%). Core-genome analysis, coupled with sequence type (ST)/core-genome ST (cgST) definitions, indicated that no common AMR-Ec clones were spreading among the different settings. ESC-R-Ec mostly possessed blaCTX–M–15 and blaCTX–M–55 associated to ISEcp1 or IS26. The majority of CST-R-Ec carried mcr-1 on IncX4, IncI2, IncP1, and IncHI1 plasmids similar or identical to those described worldwide; strains with chromosomal mcr-1 or possessing plasmid-mediated mcr-3 were also found. These results indicate a high prevalence of AMR-Ec in the local population, poultry, and chicken meat. While we did not observe the same clones among the three settings, most of the blaCTX–Ms and mcr-1/-3 were associated with mobile-genetic elements, indicating that horizontal gene transfer may play an important role in the dissemination of AMR-Ec in Laos. More studies should be planned to better understand the extent and dynamics of this phenomenon.
Collapse
Affiliation(s)
- Aline I Moser
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Esther Kuenzli
- Department of Public Health, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | | | - Thomas Büdel
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | | | - Christoph Hatz
- Department of Public Health, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Andrea Endimiani
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
24
|
Di KN, Pham DT, Tee TS, Binh QA, Nguyen TC. Antibiotic usage and resistance in animal production in Vietnam: a review of existing literature. Trop Anim Health Prod 2021; 53:340. [PMID: 34089130 DOI: 10.1007/s11250-021-02780-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 05/23/2021] [Indexed: 01/21/2023]
Abstract
Inappropriate use of antibiotics in animal production system is one of the major factors leading to the antibiotic resistance (ABR) development. In Vietnam, the ABR situation is crucial as antibiotics have been used indiscriminately for disease prevention and as growth promoters in animals. Thus, a thorough understanding on the ABR in veterinary settings would be beneficial to the Vietnam public health authority in formulating timely interventions. This review aimed to provide information on the current status of antibiotic usage in animal husbandry in Vietnam, identified gaps in research, and suggested possible solutions to tackle ABR. To this end, data on ABR in animals were extracted from 3 major electronic databases (PubMed, Web of Science, and ScienceDirect) in the period of January 2013-December 2020. The review findings were reported according to PRISMA, which highlighted the emergence and persistence of ABR in bacterial isolates, including Escherichia coli, Enterococcus spp., and Salmonella species, obtained from pigs and poultry. The lack of awareness of Vietnamese farmers on the antibiotic utilization guidelines was one of the main causes driving the animal ABR. Hence, this paper calls for interventions to restrict antibiotics use in food-producing animals by national action plan and antibiotics control programs. Additionally, studies to evaluate knowledge, attitude, and practice (KAP) of the community are required to promote rational use of antibiotics in all sectors.
Collapse
Affiliation(s)
- Khanh Nguyen Di
- Department of Academic Affairs - Testing, Dong Nai Technology University, Nguyen Khuyen Street, Trang Dai Ward, Bien Hoa City, Dong Nai, 810000, Vietnam. .,Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Duy Toan Pham
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho, 900000, Vietnam.
| | - Tay Sun Tee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Quach An Binh
- Department of Academic Affairs - Testing, Dong Nai Technology University, Nguyen Khuyen Street, Trang Dai Ward, Bien Hoa City, Dong Nai, 810000, Vietnam
| | - Thanh Cong Nguyen
- Faculty of Applied Science and Health, Dong Nai Technology University, Nguyen Khuyen Street, Trang Dai Ward, Bien Hoa City, Dong Nai, 810000, Vietnam
| |
Collapse
|
25
|
Assoumy MA, Bedekelabou AP, Teko-Agbo A, Ossebi W, Akoda K, Nimbona F, Zeba SH, Zobo AA, Tiecoura RCT, Kallo V, Dagnogo K, Bada-Alambédji R. Antibiotic resistance of Escherichia coli and Salmonella spp. strains isolated from healthy poultry farms in the districts of Abidjan and Agnibilékrou (Côte d'Ivoire). Vet World 2021; 14:1020-1027. [PMID: 34083955 PMCID: PMC8167535 DOI: 10.14202/vetworld.2021.1020-1027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/03/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Antimicrobial resistance (AMR) is a serious challenge to animal and human health worldwide. Therefore, this study aims to determine levels and patterns of AMR of Escherichia coli and Salmonella spp. strains isolated from poultry farms in Côte d'Ivoire. Materials and Methods A cross-sectional study was conducted in two districts of Côte d'Ivoire with high poultry production: Abidjan and Agnibilékrou. A total of 231 fecal samples were collected in 124 poultry farms in both districts. Enterobacteria were isolated and tested for susceptibility to 14 antimicrobial agents using the disk-diffusion method. Results A total of 212 E. coli and 36 Salmonella strains were isolated. In Abidjan, 139 collected samples generated 101 E. coli and 23 Salmonella strains, whereas in Agnibilékrou, 92 collected samples generated 111 E. coli and 13 Salmonella strains. Variable resistance levels were recorded for the antibiotics tested. The resistance prevalence of E. coli and Salmonella, respectively, was high: Doxycycline (98%/94%), sulfonamide (84%/86%), trimethoprim-sulfamethoxazole (80%/41%), and streptomycin (71%/52%). Average resistance rates were recorded for flumequine (38%/66%), ampicillin (49%/33%), amoxicillin (25%/44%), colistin (26%/2%), chloramphenicol (21%/2%), and gentamicin (4%/47%). The antibiotics least affected by resistance were cefuroxime (4%/5%), ceftriaxone (2%/0.00%), and nitrofurantoin (1%/0.00%). Conclusion In this study, it was observed that resistance to important antibiotics is emerging in poultry production in Côte d'Ivoire. Policies promoting the rational use of antibiotics should be implemented to manage antibiotic resistance in animal production.
Collapse
Affiliation(s)
- Moumouni A Assoumy
- Pharmacy-toxicology service, Department of Public Health and Environment, Inter-State School of Veterinary Sciences and Medicine (EISMV), BP 5077 Dakar, Senegal
| | - André P Bedekelabou
- Microbiology, Immunology and Infectious Pathology Service, Department of Public Health and Environment, EISMV of Dakar, Senegal
| | - Assiongbon Teko-Agbo
- Pharmacy-toxicology service, Department of Public Health and Environment, Inter-State School of Veterinary Sciences and Medicine (EISMV), BP 5077 Dakar, Senegal
| | - Walter Ossebi
- Rural Economy and Management Service, Department of Biological Sciences and Animal Productions, EISMV of Dakar, Senegal
| | - Komlan Akoda
- Pharmacy-toxicology service, Department of Public Health and Environment, Inter-State School of Veterinary Sciences and Medicine (EISMV), BP 5077 Dakar, Senegal
| | - Félix Nimbona
- Microbiology, Immunology and Infectious Pathology Service, Department of Public Health and Environment, EISMV of Dakar, Senegal
| | - Stanislas H Zeba
- Microbiology, Immunology and Infectious Pathology Service, Department of Public Health and Environment, EISMV of Dakar, Senegal
| | - Anicet A Zobo
- Microbiology, Immunology and Infectious Pathology Service, Department of Public Health and Environment, EISMV of Dakar, Senegal
| | - Raoul C T Tiecoura
- Pharmacy-toxicology service, Department of Public Health and Environment, Inter-State School of Veterinary Sciences and Medicine (EISMV), BP 5077 Dakar, Senegal.,Directorate of Veterinary Services, Abidjan, Côte d'Ivoire
| | - Vessaly Kallo
- Animal Health and Veterinary Public Hygiene Improvement Project (PASA-HPV), Abidjan, Côte d'Ivoire
| | - Komissiri Dagnogo
- Animal Health and Veterinary Public Hygiene Improvement Project (PASA-HPV), Abidjan, Côte d'Ivoire
| | - Rianatou Bada-Alambédji
- Microbiology, Immunology and Infectious Pathology Service, Department of Public Health and Environment, EISMV of Dakar, Senegal
| |
Collapse
|
26
|
Peng C, Zuo S, Qiu Y, Fu S, Peng L. Determination of Colistin in Contents Derived from Gastrointestinal Tract of Feeding Treated Piglet and Broiler. Antibiotics (Basel) 2021; 10:422. [PMID: 33921200 PMCID: PMC8070394 DOI: 10.3390/antibiotics10040422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022] Open
Abstract
Colistin is considered as the last-resort treatment for multiantibiotic-resistant Gram-negative bacterial infections in humans. However, the oral administration of colistin to livestock and poultry results in the introduction of large amounts of colistin to the surrounding environment via urine and feces, potentially inducing the prevalence of colistin-resistant bacteria and the impact on the ecological environment. We established a quantitative mass spectrometry (MS) based method to measure colistin in contents recovered from the gastrointestinal segments of piglets and broilers, as well as colistin in feces from the animals. The mean recoveries of colistin from different matrices were between 73.2% and 103.9%. The quantitation limit values for different matrices ranged from 0.37 to 1.85 ng/g. In colistin-treated swine samples, the highest concentration of colistin was detected in feces samples at a level of 1248.3 ng/g. However, the highest concentration of colistin in broiler samples was around 4882.9 ng/g, which was found in the contents derived from broilers' ceca. The employment of the proposed method to assess colistin in animals' gastrointestinal tracts might help to understand the colistin absorption in animals' guts and the potential impact of colistin on the emergence of resistant bacteria in animals' gut flora and the ecological environment.
Collapse
Affiliation(s)
- Chun Peng
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Changqing Garden, Hankou, Wuhan 430023, China; (C.P.); (S.Z.); (Y.Q.); (S.F.)
| | - Sanling Zuo
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Changqing Garden, Hankou, Wuhan 430023, China; (C.P.); (S.Z.); (Y.Q.); (S.F.)
| | - Yinsheng Qiu
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Changqing Garden, Hankou, Wuhan 430023, China; (C.P.); (S.Z.); (Y.Q.); (S.F.)
| | - Shulin Fu
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Changqing Garden, Hankou, Wuhan 430023, China; (C.P.); (S.Z.); (Y.Q.); (S.F.)
| | - Lijuan Peng
- School of Food Science and Engineering, Wuhan Polytechnic University, Changqing Garden, Hankou, Wuhan 430023, China
| |
Collapse
|
27
|
Sánchez F, Fuenzalida V, Ramos R, Escobar B, Neira V, Borie C, Lapierre L, López P, Venegas L, Dettleff P, Johnson T, Fuentes-Castillo D, Lincopan N, Galarce N. Genomic features and antimicrobial resistance patterns of Shiga toxin-producing Escherichia coli strains isolated from food in Chile. Zoonoses Public Health 2021; 68:226-238. [PMID: 33619864 DOI: 10.1111/zph.12818] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/18/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a zoonotic pathogen that causes severe illness in humans, often associated with foodborne outbreaks. Antimicrobial resistance among foodborne E. coli has increased over the last decades becoming a public health issue. In this study, the presence and features of STEC were investigated in samples of meat, seafood, vegetables and ready-to-eat street-vended food collected in Chile, using a genomic and microbiological approach. Phenotypic and genotypic antimicrobial resistance profiles were determined, and serotype, phylogroup, sequence type (ST) and phylogenomics were predicted using bioinformatic tools. Three thousand three hundred samples collected in 2019 were screened, of which 18 were positive for STEC strains (0.5%), with stx2a (61.1%) being the predominant stx subtype. The presence of the virulence genes lpfA (100%), iha and ehaA (94.4%), and ehxA, hlyA and saa (83.3%) was confirmed among the STEC strains; the Locus of adhesion and autoaggregation (LAA) was predicted in 14 (77.8%) strains. Strains displayed resistance to colistin (100%), and intermediate resistance to enrofloxacin (11.1%) and chloramphenicol (5.6%). In this regard, mutations in the two-component regulatory system genes pmrA (S29G), pmrB (D283G) and phoP (I44L), and the presence of the qnrB19 gene were confirmed. STEC strains belonged to ST11231 (38.9%), ST297 and ST58 (16.7% each), and ST1635, ST11232, ST446, ST442 and ST54 (5.6% each), and the most frequently detected serotypes were O113:H21 (44.4%), O130:H11 and O116:H21 (16.7% each), and O174:H21 (11.1%). Strains belonging to the international ST58 showed genomic relatedness with worldwide strains from human and non-human sources. Our study reports for the first time the genomic profile of STEC strains isolated from food in Chile, highlighting the presence of international clones and sequence types commonly associated with human infections in different geographical regions, as well as the convergence of virulence and resistance in STEC lineages circulating in this country.
Collapse
Affiliation(s)
- Fernando Sánchez
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva Animal, Universidad de Chile, Santiago, Chile.,Programa de Magíster en Ciencias Animales y Veterinarias, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Verónica Fuenzalida
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva Animal, Universidad de Chile, Santiago, Chile
| | - Romina Ramos
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva Animal, Universidad de Chile, Santiago, Chile
| | - Beatriz Escobar
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva Animal, Universidad de Chile, Santiago, Chile
| | - Víctor Neira
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva Animal, Universidad de Chile, Santiago, Chile
| | - Consuelo Borie
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva Animal, Universidad de Chile, Santiago, Chile
| | - Lisette Lapierre
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva Animal, Universidad de Chile, Santiago, Chile
| | - Paulina López
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva Animal, Universidad de Chile, Santiago, Chile
| | - Lucas Venegas
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva Animal, Universidad de Chile, Santiago, Chile
| | - Phillip Dettleff
- Laboratorio FAVET-INBIOGEN, Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Fomento de la Producción Animal, Universidad de Chile, Santiago, Chile.,Escuela de Medicina Veterinaria, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomás, Santiago, Chile
| | - Timothy Johnson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, MI, USA
| | - Danny Fuentes-Castillo
- Faculdade de Medicina Veterinária e Zootecnia, Departamento de Patología, Universidade de São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Departamento de Microbiología, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Nicolás Galarce
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva Animal, Universidad de Chile, Santiago, Chile
| |
Collapse
|
28
|
Anyanwu MU, Okpala COR, Chah KF, Shoyinka VS. Prevalence and Traits of Mobile Colistin Resistance Gene Harbouring Isolates from Different Ecosystems in Africa. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6630379. [PMID: 33553426 PMCID: PMC7847340 DOI: 10.1155/2021/6630379] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
The mobile colistin resistance (mcr) gene threatens the efficacy of colistin (COL), a last-line antibiotic used in treating deadly infections. For more than six decades, COL is used in livestock around the globe, including Africa. The use of critically important antimicrobial agents, like COL, is largely unregulated in Africa, and many other factors militate against effective antimicrobial stewardship in the continent. Currently, ten mcr genes (mcr-1 to mcr-10) have been described. In Africa, mcr-1, mcr-2, mcr-3, mcr-5, mcr-8, and mcr-9 have been detected in isolates from humans, animals, foods of animal origin, and the environment. These genes are harboured by Escherichia coli, Klebsiella, Salmonella, Citrobacter, Enterobacter, Pseudomonas, Aeromonas, Alcaligenes, and Acinetobacter baumannii isolates. Different conjugative and nonconjugative plasmids form the backbone for mcr in these isolates; however, mcr-1 and mcr-3 have also been integrated into the chromosome of some African strains. Insertion sequences (ISs) (especially ISApl1), either located upstream or downstream of mcr, class 1 integrons, and transposons, are drivers of mcr in Africa. Genes coding multi/extensive drug resistance and virulence are colocated with mcr on plasmids in African strains. Transmission of mcr to/among African strains is nonclonal. Contact with mcr-habouring reservoirs, the consumption of contaminated foods of animal/plant origin or fluid, animal-/plant-based food trade and travel serve as exportation, importation, and transmission routes of mcr gene-containing bacteria in Africa. Herein, the current status of plasmid-mediated COL resistance in humans, food-producing animals, foods of animal origin, and environment in Africa is discussed.
Collapse
Affiliation(s)
- Madubuike Umunna Anyanwu
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka 400001, Nigeria
| | - Charles Odilichukwu R. Okpala
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Kennedy Foinkfu Chah
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka 400001, Nigeria
| | | |
Collapse
|
29
|
Ayoub Moubareck C. Polymyxins and Bacterial Membranes: A Review of Antibacterial Activity and Mechanisms of Resistance. MEMBRANES 2020; 10:membranes10080181. [PMID: 32784516 PMCID: PMC7463838 DOI: 10.3390/membranes10080181] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022]
Abstract
Following their initial discovery in the 1940s, polymyxin antibiotics fell into disfavor due to their potential clinical toxicity, especially nephrotoxicity. However, the dry antibiotic development pipeline, together with the rising global prevalence of infections caused by multidrug-resistant (MDR) Gram-negative bacteria have both rejuvenated clinical interest in these polypeptide antibiotics. Parallel to the revival of their use, investigations into the mechanisms of action and resistance to polymyxins have intensified. With an initial known effect on biological membranes, research has uncovered the detailed molecular and chemical interactions that polymyxins have with Gram-negative outer membranes and lipopolysaccharide structure. In addition, genetic and epidemiological studies have revealed the basis of resistance to these agents. Nowadays, resistance to polymyxins in MDR Gram-negative pathogens is well elucidated, with chromosomal as well as plasmid-encoded, transferrable pathways. The aims of the current review are to highlight the important chemical, microbiological, and pharmacological properties of polymyxins, to discuss their mechanistic effects on bacterial membranes, and to revise the current knowledge about Gram-negative acquired resistance to these agents. Finally, recent research, directed towards new perspectives for improving these old agents utilized in the 21st century, to combat drug-resistant pathogens, is summarized.
Collapse
|
30
|
Adiguzel MC, Baran A, Wu Z, Cengiz S, Dai L, Oz C, Ozmenli E, Goulart DB, Sahin O. Prevalence of Colistin Resistance in Escherichia coli in Eastern Turkey and Genomic Characterization of an mcr-1 Positive Strain from Retail Chicken Meat. Microb Drug Resist 2020; 27:424-432. [PMID: 32721263 DOI: 10.1089/mdr.2020.0209] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Colistin is one of the most effective antibiotics against multidrug resistant Gram-negative bacteria. However, the recent emergence of plasmid-borne mobilized colistin resistance (mcr) genes is considered a serious antimicrobial resistance challenge worldwide. In this study, we report detection of an mcr-1 carrying Escherichia coli isolate (named ATAVET mcr-1 Turkey) from retail raw chicken meat in Turkey. Of the 11 (from 500 total tested) phenotypically colistin-resistant isolates, 1 was shown to carry the mcr-1 gene by PCR. Whole-genome sequencing indicated that mcr-1 was located on a ∼13 kb-long contig that was almost identical to the corresponding part in pZJ1635, an IncI2 plasmid encoding mcr-1 in the same genetic context in another E. coli strain. In addition, ATAVET mcr-1 Turkey harbored blaCTX-M-8, qnrB19, mdf(A), tet(A), sul2, aph(3″)-Ib, aph(6)-Id, and floR resistance genes. Phylogenetic analysis based on whole genome and multilocus sequence typing indicated that ATAVET mcr-1 Turkey was more closely related to mcr-1 carrying E. coli isolates from food and human clinical samples previously reported from different parts of the world than to those from Turkey. These findings further emphasize the worldwide emergence and spread of mcr meditated colistin resistance in bacteria with zoonotic potential within animals and the food chain.
Collapse
Affiliation(s)
- Mehmet Cemal Adiguzel
- Department of Microbiology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey.,Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Alper Baran
- Department of Food Quality Control and Analysis, Erzurum Vocational School, Ataturk University, Erzurum, Turkey
| | - Zuowei Wu
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Seyda Cengiz
- Department of Microbiology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Lei Dai
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Cihan Oz
- Department of Microbiology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Esma Ozmenli
- Department of Microbiology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Debora Brito Goulart
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
31
|
Kathayat D, Antony L, Deblais L, Helmy YA, Scaria J, Rajashekara G. Small Molecule Adjuvants Potentiate Colistin Activity and Attenuate Resistance Development in Escherichia coli by Affecting pmrAB System. Infect Drug Resist 2020; 13:2205-2222. [PMID: 32764996 PMCID: PMC7360418 DOI: 10.2147/idr.s260766] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022] Open
Abstract
Background Colistin is one of the last-resort antibiotics to treat multi-drug resistant (MDR) Gram-negative bacterial infections in humans. Further, colistin has been also used to prevent and treat Enterobacteriaceae infections in food animals. However, chromosomal mutations and mobile colistin resistance (mcr) genes, which confer resistance to colistin, have been detected in bacterial isolates from food animals and humans worldwide; thus, limiting the use of colistin. Therefore, strategies that could aid in ameliorating colistin resistance are critically needed. Objective Investigate the adjuvant potential of novel small molecules (SMs) on colistin. Materials and Methods Previously, we identified 11 membrane-affecting SMs with bactericidal activity against avian pathogenic Escherichia coli (APEC). Here, we investigated the potentiation effect of those SMs on colistin using checkerboard assays and wax moth (Galleria mellonella) larval model. The impact of the SM combination on colistin resistance evolution was also investigated by analyzing whole genome sequences of APEC isolates passaged with colistin alone or in combination with SMs followed by quantitating pmrCAB and pmrH expression in those isolates. Results The SM combination synergistically reduced the minimum bactericidal concentration of colistin by at least 10-fold. In larvae, the SM combination increased the efficacy of colistin by two-fold with enhanced (>50%) survival and reduced (>4 logs) APEC load. Further, the SM combination decreased the frequency (5/6 to 1/6) of colistin resistance evolution and downregulated the pmrCAB and pmrH expression. Previously unknown mutations in pmrB (L14Q, T92P) and pmrA (A80V), which were predicted deleterious, were identified in the colistin-resistant (ColR) APEC isolates when passaged with colistin alone but not in combination with SMs. Our study also identified mutations in hypothetical and several phage-related proteins in ColR APEC isolates in concurrent with pmrAB mutations. Conclusion Our study identified two SMs (SM2 and SM3) that potentiated the colistin activity and attenuated the development of colistin resistance in APEC. These SMs can be developed as anti-evolution drugs that can slow down colistin resistance development.
Collapse
Affiliation(s)
- Dipak Kathayat
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Linto Antony
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Loic Deblais
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Yosra A Helmy
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Joy Scaria
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Gireesh Rajashekara
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA
| |
Collapse
|
32
|
Li X, Li L, Yu L, Liu S, Liu L, Wei X, Song Y, Liu C, Jiang M, Wang F. Prevalence of avian-origin mcr-1-positive Escherichia coli with a potential risk to humans in Tai'an, China. Poult Sci 2020; 99:5118-5126. [PMID: 32988550 PMCID: PMC7598320 DOI: 10.1016/j.psj.2020.06.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 01/21/2023] Open
Abstract
Multidrug-resistant (MDR) Escherichia coli are responsible for difficult-to-treat infections. We sought to determine the prevalence and characteristics of MDR E. coli strains isolated from poultry and clinical patients in the same geographical region. Eighty-seven E. coli strains were isolated from poultry with perihepatitis lesions at different slaughterhouses, and 356 nonrepetitive E. coli strains were isolated from clinical patients. All samples were continuously collected from October to December 2017 in Tai'an, China. The presence of the mcr-1 gene in the strains was assessed by PCR. The genetic relationships of the polymyxin (POL)-resistant E. coli strains were analyzed by pulsed-field gel electrophoresis and multilocus sequence typing. The results indicate that the POL resistance rate for the E. coli isolates from poultry was 31.03% (27 of 87), whereas the human-origin E. coli isolates were 100% sensitive to POL. The mcr-1 gene and extended-spectrum β-lactamase blaCTX-M-14 genes were identified in all 27 POL-resistant avian-origin E. coli isolates. Our pulsed-field gel electrophoresis analysis suggested that the 27 strains were represented by 14 pulsotypes, among which there were 3 strains each with A, E, I, and K pulsotypes, and 1 to 2 strains represented by the other 10 pulsotypes. Furthermore, multilocus sequence typing molecular typing identified 16 sequence types, including 4 ST156 strains, 3 ST533 strains, and 1 to 2 strains represented by the remaining 14 sequence types. In summary, the E. coli strains isolated in the Tai'an area all showed the MDR phenotype, the rate of which for poultry was higher than that for humans. No POL-resistant human-origin E. coli strains were identified in the clinical patients. Our study reveals that poultry-derived MDR mcr-1-positive E. coli strains may pose a potential risk to humans, and the surveillance findings presented herein will be conducive to our understanding of the prevalence and characteristics of mcr-1-positive E. coli strains in the Tai'an area.
Collapse
Affiliation(s)
- Xiaozhe Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China; Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Lin Li
- Taian City Central Hospital, Taian City, Shandong Province, China
| | - Lanping Yu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Shuang Liu
- Taian City Central Hospital, Taian City, Shandong Province, China
| | - Lijuan Liu
- Department of Laboratory Medicine, Jinan People's Hospital, Jinan, Shandong Province, China
| | - Xuting Wei
- Taian City Central Hospital, Taian City, Shandong Province, China
| | - Yanying Song
- Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Cong Liu
- Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Meijie Jiang
- Taian City Central Hospital, Taian City, Shandong Province, China.
| | - Fangkun Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China.
| |
Collapse
|
33
|
Andrei S, Droc G, Stefan G. FDA approved antibacterial drugs: 2018-2019. Discoveries (Craiova) 2019; 7:e102. [PMID: 32309620 PMCID: PMC7086080 DOI: 10.15190/d.2019.15] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 12/15/2022] Open
Abstract
Bacterial resistance to existent antibiotherapy is a perpetual internationally-recognized problem. Year after year, there is a continuous need for novel antibacterial drugs and this research and development efforts recently resulted in few new drugs or combination of drugs proposed for the use into the clinic. This review focuses on the novel US FDA approved antibacterial agents in the last two years (2018-2019). Plazomicin, eravacycline, sarecycline, omadacycline, rifamycin (2018) and imipenem, cilastatin and relebactam combination, pretomanid, lefamulin, cefiderocol (2019) are new therapeutic options. Plazomicin aminoglycoside antibiotic targets Enterobacteriaceae infections, being mainly used for the complicated urinary tract infections. The fully synthetic fluorocycline eravacycline gained approval for the complicated intra-abdominal infections. The tetracycline-derived antibiotic sarecycline might be a useful strategy for the management of non-nodular moderate to severe acne, while the other tetracycline-derived antibiotic approved, omadacycline, may be used for the patients with acute bacterial skin and skin structure infections and community-acquired bacterial pneumonia. The already-known RNA-synthesis suppressor rifamycin is now also approved for noninvasive Escherichia Coli-caused travelers' diarrhea. Two combinatorial strategies were approved for complicated urinary tract infections, complicated intra-abdominal infections (imipenem, cilastatin and relebactam) and lung tuberculosis (pretomanid in combination with bedaquiline and linezolid). Lefamulin is a semisynthetic pleuromutilin antibiotic for community-acquired bacterial pneumonia, while cefiderocol, a cephalosporin antibiotic is the last antibacterial drug approved in 2019, for the use in complicated urinary tract infections. Despite of these new developments, there is an ongoing need and urgency to develop novel antibiotic strategies and drugs to overrun the bacterial resistance to antibiotics.
Collapse
Affiliation(s)
- Stefan Andrei
- Department of Anesthesia and Intensive Care, Fundeni Clinical Institute, Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Université Paris Sud XI, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Gabriela Droc
- Department of Anesthesia and Intensive Care, Fundeni Clinical Institute, Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Gabriel Stefan
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Dr. Davila Teaching Hospital of Nephrology, Bucharest, Romania
| |
Collapse
|
34
|
Sundaramoorthy NS, Suresh P, Selva Ganesan S, GaneshPrasad A, Nagarajan S. Restoring colistin sensitivity in colistin-resistant E. coli: Combinatorial use of MarR inhibitor with efflux pump inhibitor. Sci Rep 2019; 9:19845. [PMID: 31882661 PMCID: PMC6934491 DOI: 10.1038/s41598-019-56325-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023] Open
Abstract
Antibiotics like colistin are the last resort to deal with infections by carbapenem-resistant Enterobacteriaceae (CREB). Resistance to colistin severely restricts therapeutic options. To tackle this dire situation, urgent measures to restore colistin sensitivity are needed. In this study, whole-genome sequencing of colistin-resistant E. coli strain was performed and the genome analysis revealed that the strain belonged to the sequence type ST405. Multiple mutations were observed in genes implicated in colistin resistance, especially those related to the L-Ara-4-N pathway but mgrB was unmutated and mcr1-9 genes were missing. MarR inhibitor salicylate was used to re-sensitize this strain to colistin, which increased the negative charge on the cell surface especially in colistin resistant E. coli (U3790 strain) and thereby facilitated a decrease in colistin MIC by 8 fold. It is indeed well known that MarR inhibition by salicylate triggers the expression of AcrAB efflux pumps through MarA. So, in order to fully restore colistin sensitivity, a potent efflux pump inhibitor (BC1), identified earlier by this group was employed. The combination of colistin with both salicylate and BC1 caused a remarkable 6 log reduction in cell counts of U3790 in time-kill assay. Infection of muscle tissue of zebrafish with U3790 followed by various treatments showed that the combination of colistin + salicylate + BC1 was highly effective in reducing bioburden in infected muscle tissue by 4 log fold. Thus, our study shows that a combination of MarR inhibitor to enhance colistin binding and efflux pump inhibitor to reduce colistin extrusion was highly effective in restoring colistin sensitivity in colistin-resistant clinical isolate of E. coli in vitro and in vivo.
Collapse
Affiliation(s)
- Niranjana Sri Sundaramoorthy
- Center for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
| | - Pavithira Suresh
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
| | - Subramaniapillai Selva Ganesan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
| | - ArunKumar GaneshPrasad
- Center for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
| | - Saisubramanian Nagarajan
- Center for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India.
| |
Collapse
|
35
|
Song Y, Yu L, Zhang Y, Dai Y, Wang P, Feng C, Liu M, Sun S, Xie Z, Wang F. Prevalence and characteristics of multidrug-resistant mcr-1-positive Escherichia coli isolates from broiler chickens in Tai'an, China. Poult Sci 2019; 99:1117-1123. [PMID: 32029147 PMCID: PMC7587627 DOI: 10.1016/j.psj.2019.10.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 01/03/2023] Open
Abstract
Colibacillosis, caused by Escherichia coli, is one of the most common bacterial diseases of chickens. The high incidence and considerable economic losses associated with colibacillosis make it a significant concern worldwide. In recent years, the efficacy of colistin has been severely impacted by the emergence of plasmid-mediated colistin resistance genes, especially mcr-1. Therefore, monitoring of antibiotic resistance, particularly colistin resistance, amongst E. coli strains is vitally important to the future growth and sustainability of the poultry industry. In this study, a total of 130 E. coli strains were isolated from the livers of chickens displaying symptoms of colibacillosis in Tai'an, China. Isolates were screened for their susceptibility to various antibiotics and for the presence of mobile colistin resistance genes and other antibiotic resistance genes. Overall, 75 (57.7%) isolates showed resistance to colistin and were positive for mcr-1. The mobile colistin resistance genes, mcr-2, -3, and -4, were not detected in this study. Of the 75 mcr-1-positive isolates, all (100%) also carried tetracycline resistance genes, 71 (94.7%) also contained genes associated with β-lactam resistance, 59 (78.7%) contained aminoglycoside resistance genes, and 57 (76%) contained sulfonamide resistance genes. This high prevalence of multidrug resistance among mcr-1-positive E. coli isolates, including the production of extended-spectrum β-lactamases, is highly concerning. The surveillance findings presented here will be conducive to our understanding of the prevalence and characteristics of multidrug-resistance in E. coli in the Tai'an area and will provide a better scientific basis for the clinical treatment of colibacillosis in chickens.
Collapse
Affiliation(s)
- Yanying Song
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, China
| | - Lanping Yu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Yu Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, China
| | - Yu Dai
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, China
| | - Peng Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Mengda Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, China
| | - Shuhong Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, China
| | - Zhijing Xie
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, China
| | - Fangkun Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| |
Collapse
|
36
|
Shafiq M, Huang J, Ur Rahman S, Shah JM, Chen L, Gao Y, Wang M, Wang L. High incidence of multidrug-resistant Escherichia coli coharboring mcr-1 and bla CTX-M-15 recovered from pigs. Infect Drug Resist 2019; 12:2135-2149. [PMID: 31410033 PMCID: PMC6643958 DOI: 10.2147/idr.s209473] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/18/2019] [Indexed: 12/29/2022] Open
Abstract
PURPOSE The coexistence of mobile colistin (COL)-resistant gene mcr-1 with extended-spectrum beta-lactamase (ESBL) gene in Escherichia coli has become a serious threat globally. The aim of this study was to investigate the increasing resistance to COL and in particular its coexistence with ESBL-producing E. coli recovered from pig farms in China. MATERIALS AND METHODS E. coli were isolated from 14 pig farms in Jiangsu China. Susceptibility testing was identified by micro-dilution method. PCR assay and nucleotide sequencing were used to detect COL-resistant genes, mcr-1 to -5, as well as ESBL genes, bla CTX-M, bla SHV and bla TEM. Conjugation experiment, plasmid replicon typing of the multidrug resistance (MDR), S1-PFGE and DNA southern hybridization were performed to study the transferability of these genes. RESULTS Overall, 275 E. coli isolates were recovered from a total of 432 cloacal and nasal swabs. More than 90% of the isolates were MDR, of which 70.18% were resistant to COL. Of these 275 isolates, mcr-1 was identified as the most predominant gene carried by 71.63% (197/275) of isolates, 39.59% (78/197) of the isolates were harboring both mcr-1 and ESBL genes (bla CTX-M, bla SHV and bla TEM). ESBL genotyping showed that bla CTX-M was the most predominant ESBL (68.49%) followed by bla SHV (16.4%) and bla TEM (15%). Sequencing revealed that the most common variants of bla CTX-M identified were, bla CTX-M-15 (69%), bla CTX-M-55 (29%) and bla CTX-M-1 (1.8%). IncHI2, IncFIB, IncFIC, IncN and IncX4 were found to be the most common Inc-types found both in donors and in transconjugants and were associated with the transfer of the mcr-1 and ESBL encoding genes. Six strains carried a total of five different plasmids: approximately 97-, 130-, 160-, 227- and 242-kb plasmids. CONCLUSION The coexistence of the mcr-1- and bla CTX-M-15-carrying isolates displaying high MDR, recovered from E. coli of pig origin, is a major concern for both humans and veterinary medicine.
Collapse
Affiliation(s)
- Muhammad Shafiq
- Moe Joint International Research Laboratory of Animal Health and Food Safety, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Jinhu Huang
- Moe Joint International Research Laboratory of Animal Health and Food Safety, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Sadeeq Ur Rahman
- College of Veterinary Sciences and Animal Husbandry, Section Microbiology, Abdul Wali Khan University, Mardan, KP, Pakistan
| | - Jan Mohammad Shah
- Moe Joint International Research Laboratory of Animal Health and Food Safety, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Li Chen
- Moe Joint International Research Laboratory of Animal Health and Food Safety, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Yi Gao
- Moe Joint International Research Laboratory of Animal Health and Food Safety, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Mengli Wang
- Moe Joint International Research Laboratory of Animal Health and Food Safety, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Liping Wang
- Moe Joint International Research Laboratory of Animal Health and Food Safety, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| |
Collapse
|