1
|
Azam M, Zhang S, Qi J, Abdelghany AM, Shaibu AS, Feng Y, Ghosh S, Agyenim-Boateng KG, Liu Y, Yao L, Li J, Li B, Wang B, Sun J. Effect of Origin, Seed Coat Color, and Maturity Group on Seed Isoflavones in Diverse Soybean Germplasm. PLANTS (BASEL, SWITZERLAND) 2024; 13:1774. [PMID: 38999614 PMCID: PMC11243943 DOI: 10.3390/plants13131774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/14/2024]
Abstract
Soybeans are grown worldwide owing to their protein, oil, and beneficial bioactive compounds. Genetic and environmental factors influence soybean seed isoflavones. In the present study, we profiled the seed isoflavones in world diverse soybean germplasm grown in two locations over two years in China. Significant differences (p < 0.001) were observed between the accessions, accession origins, seed coat colors, and maturity groups for individual and total isoflavone (TIF) content. TIF content of the soybean accessions ranged from 677.25 μg g-1 to 5823.29 μg g-1, representing an 8-fold difference. USA soybean accessions showed the highest mean TIF content (3263.07 μg g-1), followed by Japan (2521.26 μg g-1). Soybean with black seed coat showed the highest (3236.08 μg g-1) TIF concentration. Furthermore, isoflavone levels were significantly higher in late-maturity groups. Correlation analysis revealed significant positive associations between individual and TIF content. Malonyldaidzin and malonylgenistin showed higher correlations with TIF content (r = 0.92 and r = 0.94, respectively). The soybean accessions identified as having high and stable TIF content can be utilized in the food and pharmaceutical industries and breeding programs to develop soybean varieties with enhanced isoflavone content.
Collapse
Affiliation(s)
- Muhammad Azam
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Shengrui Zhang
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Jie Qi
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | | | - Abdulwahab Saliu Shaibu
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
- Department of Agronomy, Bayero University, Kano 700001, Nigeria
| | - Yue Feng
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Suprio Ghosh
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Kwadwo Gyapong Agyenim-Boateng
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Yitian Liu
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Luming Yao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Li
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Bin Li
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Biao Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junming Sun
- The State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| |
Collapse
|
2
|
Fang C, Du H, Wang L, Liu B, Kong F. Mechanisms underlying key agronomic traits and implications for molecular breeding in soybean. J Genet Genomics 2024; 51:379-393. [PMID: 37717820 DOI: 10.1016/j.jgg.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Soybean (Glycine max [L.] Merr.) is an important crop that provides protein and vegetable oil for human consumption. As soybean is a photoperiod-sensitive crop, its cultivation and yield are limited by the photoperiodic conditions in the field. In contrast to other major crops, soybean has a special plant architecture and a special symbiotic nitrogen fixation system, representing two unique breeding directions. Thus, flowering time, plant architecture, and symbiotic nitrogen fixation are three critical or unique yield-determining factors. This review summarizes the progress made in our understanding of these three critical yield-determining factors in soybean. Meanwhile, we propose potential research directions to increase soybean production, discuss the application of genomics and genomic-assisted breeding, and explore research directions to address future challenges, particularly those posed by global climate changes.
Collapse
Affiliation(s)
- Chao Fang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Haiping Du
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Lingshuang Wang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
3
|
Fang X, Feng X, Sun X, Yang X, Li Q, Yang X, Xu J, Zhou M, Lin C, Sui Y, Zhao L, Liu B, Kong F, Zhang C, Li M. Natural variation of MS2 confers male fertility and drives hybrid breeding in soybean. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2322-2332. [PMID: 37475199 PMCID: PMC10579707 DOI: 10.1111/pbi.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/14/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Abstract
A complete and genetically stable male sterile line with high outcrossing rate is a prerequisite for the development of commercial hybrid soybean. It was reported in the last century that the soybean male sterile ms2 mutant has the highest record with seed set. Here we report the cloning and characterization of the MS2 gene in soybean, which encodes a protein that is specifically expressed in the anther. MS2 functions in the tapetum and microspore by directly regulating genes involved in the biosynthesis of secondary metabolites and the lipid metabolism, which is essential for the formation of microspore cell wall. Through comparison of the field performance with the widely used male sterile mutants in the same genetic background, we demonstrated that the ms2 mutant conducts the best in outcrossing rate and makes it an ideal tool in building a cost-effective hybrid system for soybean.
Collapse
Affiliation(s)
- Xiaolong Fang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Xiangchi Feng
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Xiaoyuan Sun
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Xiangdong Yang
- Key Laboratory of Hybrid Soybean Breeding of the Ministry of Agriculture and Rural AffairsJilin Academy of Agricultural SciencesChangchunChina
| | - Qing Li
- State Key Laboratory of Rice Biology, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Xulei Yang
- Key Laboratory of Hybrid Soybean Breeding of the Ministry of Agriculture and Rural AffairsJilin Academy of Agricultural SciencesChangchunChina
| | - Jie Xu
- Core Facility and Technical Service Center for SLSB, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Minghui Zhou
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Chunjing Lin
- Key Laboratory of Hybrid Soybean Breeding of the Ministry of Agriculture and Rural AffairsJilin Academy of Agricultural SciencesChangchunChina
| | - Yi Sui
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Limei Zhao
- Key Laboratory of Hybrid Soybean Breeding of the Ministry of Agriculture and Rural AffairsJilin Academy of Agricultural SciencesChangchunChina
| | - Baohui Liu
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Fanjiang Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Chunbao Zhang
- Key Laboratory of Hybrid Soybean Breeding of the Ministry of Agriculture and Rural AffairsJilin Academy of Agricultural SciencesChangchunChina
| | - Meina Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| |
Collapse
|
4
|
Han X, Sun Y, Huangfu B, He X, Huang K. Ultra-high-pressure passivation of soybean agglutinin and safety evaluations. Food Chem X 2023; 18:100726. [PMID: 37397201 PMCID: PMC10314156 DOI: 10.1016/j.fochx.2023.100726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
Soybean agglutinin (SBA) is a heat-sensitive anti-nutritional factor (ANF). It affects nutrient absorption and causes organism poisoning. This study explored the SBA passivation ability and mechanism by ultra-high pressure (HHP), a non-thermal food processing technology. The results indicated that more than 500 MPa HHP treatment reduced the SBA activity by destroying its secondary and tertiary structures. Also, the cell and animal experiments showed that HHP treatment reduced the cytotoxicity of SBA, improved the mice's body weight, and alleviated liver, kidney, and digestive tract damage in Vivo. These results demonstrated that HHP had a high passivation efficiency against the SBA, thereby HHP promoting the safety of soybean products. This study provided supporting evidence for ultra-high-pressure treatment applications in soybean processing.
Collapse
Affiliation(s)
- Xiao Han
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yu Sun
- Lanzhou Anning District Bureau of Statistics, Gansu 730070, China
| | - Bingxin Huangfu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China
| |
Collapse
|
5
|
Yang Y, Zhao T, Wang F, Liu L, Liu B, Zhang K, Qin J, Yang C, Qiao Y. Identification of candidate genes for soybean seed coat-related traits using QTL mapping and GWAS. FRONTIERS IN PLANT SCIENCE 2023; 14:1190503. [PMID: 37384360 PMCID: PMC10293793 DOI: 10.3389/fpls.2023.1190503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/17/2023] [Indexed: 06/30/2023]
Abstract
Seed coat color is a typical morphological trait that can be used to reveal the evolution of soybean. The study of seed coat color-related traits in soybeans is of great significance for both evolutionary theory and breeding practices. In this study, 180 F10 recombinant inbred lines (RILs) derived from the cross between the yellow-seed coat cultivar Jidou12 (ZDD23040, JD12) and the wild black-seed coat accession Y9 (ZYD02739) were used as materials. Three methods, single-marker analysis (SMA), interval mapping (IM), and inclusive composite interval mapping (ICIM), were used to identify quantitative trait loci (QTLs) controlling seed coat color and seed hilum color. Simultaneously, two genome-wide association study (GWAS) models, the generalized linear model (GLM) and mixed linear model (MLM), were used to jointly identify seed coat color and seed hilum color QTLs in 250 natural populations. By integrating the results from QTL mapping and GWAS analysis, we identified two stable QTLs (qSCC02 and qSCC08) associated with seed coat color and one stable QTL (qSHC08) related to seed hilum color. By combining the results of linkage analysis and association analysis, two stable QTLs (qSCC02, qSCC08) for seed coat color and one stable QTL (qSHC08) for seed hilum color were identified. Upon further investigation using Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, we validated the previous findings that two candidate genes (CHS3C and CHS4A) reside within the qSCC08 region and identified a new QTL, qSCC02. There were a total of 28 candidate genes in the interval, among which Glyma.02G024600, Glyma.02G024700, and Glyma.02G024800 were mapped to the glutathione metabolic pathway, which is related to the transport or accumulation of anthocyanin. We considered the three genes as potential candidate genes for soybean seed coat-related traits. The QTLs and candidate genes detected in this study provide a foundation for further understanding the genetic mechanisms underlying soybean seed coat color and seed hilum color and are of significant value in marker-assisted breeding.
Collapse
Affiliation(s)
- Yue Yang
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Tiantian Zhao
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Fengmin Wang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Luping Liu
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Bingqiang Liu
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Kai Zhang
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jun Qin
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Chunyan Yang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Yake Qiao
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| |
Collapse
|
6
|
Jin H, Yang X, Zhao H, Song X, Tsvetkov YD, Wu Y, Gao Q, Zhang R, Zhang J. Genetic analysis of protein content and oil content in soybean by genome-wide association study. FRONTIERS IN PLANT SCIENCE 2023; 14:1182771. [PMID: 37346139 PMCID: PMC10281628 DOI: 10.3389/fpls.2023.1182771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023]
Abstract
Soybean seed protein content (PC) and oil content (OC) have important economic value. Detecting the loci/gene related to PC and OC is important for the marker-assisted selection (MAS) breeding of soybean. To detect the stable and new loci for PC and OC, a total of 320 soybean accessions collected from the major soybean-growing countries were used to conduct a genome-wide association study (GWAS) by resequencing. The PC ranged from 37.8% to 46.5% with an average of 41.1% and the OC ranged from 16.7% to 22.6% with an average of 21.0%. In total, 23 and 29 loci were identified, explaining 3.4%-15.4% and 5.1%-16.3% of the phenotypic variations for PC and OC, respectively. Of these, eight and five loci for PC and OC, respectively, overlapped previously reported loci and the other 15 and 24 loci were newly identified. In addition, nine candidate genes were identified, which are known to be involved in protein and oil biosynthesis/metabolism, including lipid transport and metabolism, signal transduction, and plant development pathway. These results uncover the genetic basis of soybean protein and oil biosynthesis and could be used to accelerate the progress in enhancing soybean PC and OC.
Collapse
Affiliation(s)
- Hui Jin
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xue Yang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Haibin Zhao
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xizhang Song
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Yordan Dimitrov Tsvetkov
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - YuE Wu
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Qiang Gao
- Horticultural Branch of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Rui Zhang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Jumei Zhang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
7
|
Zhang J, Ng C, Jiang Y, Wang X, Wang S, Wang S. Genome-wide identification and analysis of LOX genes in soybean cultivar “Zhonghuang 13”. Front Genet 2022; 13:1020554. [PMID: 36276975 PMCID: PMC9585170 DOI: 10.3389/fgene.2022.1020554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Lipoxygenases (LOXs; EC1.13.11.12) are a family of iron- or manganese-containing dioxygenases that catalyze the oxygenation of polyunsaturated fatty acids (PUFAs) and play important roles in plant growth, development, and stress response. In this study, a total of 36 LOX gene family members were identified and annotated in Zhonghuang 13, a soybean cultivar bred by Chinese scientists in 2001. Sanger sequencing of the GmLOX1-coding sequence and colorimetric assays for the GmLOX1 protein showed that Zhonghuang 13 possessed the GmLOX1 gene. These LOX genes are divided into three subfamilies: 9-LOX, type Ⅰ 13-LOX and type II 13-LOX. In the 13-LOX group, the number of GmLOX members was the highest. These GmLOX genes are unevenly distributed on chromosomes 3, 7, 8, 10, 11, 12, 13, 15, 16, 19, and 20. Most of the 13-LOX genes exist in the form of gene clusters, indicating that these genes may originate from tandem duplications. The analysis of duplicated gene pairs showed that GmLOX genes underwent purifying selective pressure during evolution. The gene structures and conserved functional domains of these genes are quite similar. Compared to the orthologous gene pairs of LOX genes between wild soybean (Glycine soja W05) and Zhonghuang 13, the sequences of most gene pairs are relatively conserved. Many cis-elements are present in the promoter region and are involved in stress response, growth and development, hormone response and light response. The tissue-specific gene expression of GmLOX genes was evaluated. Represented by GmLOX1, GmLOX2, and GmLOX3, which were expressed at extremely high levels in seeds, they showed the characteristics of specific expression. This study provides detailed information on soybean lipoxygenase gene family members in Zhonghuang 13, which lays a foundation for further research.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Cheungchuk Ng
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Yan Jiang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Xianxu Wang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Shaodong Wang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
- *Correspondence: Shaodong Wang, ; Sui Wang,
| | - Sui Wang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- *Correspondence: Shaodong Wang, ; Sui Wang,
| |
Collapse
|
8
|
Zhang M, Liu S, Wang Z, Yuan Y, Zhang Z, Liang Q, Yang X, Duan Z, Liu Y, Kong F, Liu B, Ren B, Tian Z. Progress in soybean functional genomics over the past decade. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:256-282. [PMID: 34388296 PMCID: PMC8753368 DOI: 10.1111/pbi.13682] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 05/24/2023]
Abstract
Soybean is one of the most important oilseed and fodder crops. Benefiting from the efforts of soybean breeders and the development of breeding technology, large number of germplasm has been generated over the last 100 years. Nevertheless, soybean breeding needs to be accelerated to meet the needs of a growing world population, to promote sustainable agriculture and to address future environmental changes. The acceleration is highly reliant on the discoveries in gene functional studies. The release of the reference soybean genome in 2010 has significantly facilitated the advance in soybean functional genomics. Here, we review the research progress in soybean omics (genomics, transcriptomics, epigenomics and proteomics), germplasm development (germplasm resources and databases), gene discovery (genes that are responsible for important soybean traits including yield, flowering and maturity, seed quality, stress resistance, nodulation and domestication) and transformation technology during the past decade. At the end, we also briefly discuss current challenges and future directions.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Zhao Wang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yaqin Yuan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhifang Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qianjin Liang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xia Yang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zongbiao Duan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Baohui Liu
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Bo Ren
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
9
|
Liu N, Niu Y, Zhang G, Feng Z, Bo Y, Lian J, Wang B, Gong Y. Genome sequencing and population resequencing provide insights into the genetic basis of domestication and diversity of vegetable soybean. HORTICULTURE RESEARCH 2022; 9:6498278. [PMID: 35031802 PMCID: PMC8788355 DOI: 10.1093/hr/uhab052] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/26/2021] [Accepted: 08/26/2021] [Indexed: 06/01/2023]
Abstract
Vegetable soybean is one of the most important vegetables in China, and the demand for this vegetable has markedly increased worldwide over the past two decades. Here, we present a high-quality de novo genome assembly of the vegetable soybean cultivar Zhenong 6 (ZN6), which is one of the most popular cultivars in China. The 20 pseudochromosomes cover 94.57% of the total 1.01 Gb assembly size, with contig N50 of 3.84 Mb and scaffold N50 of 48.41 Mb. A total of 55 517 protein-coding genes were annotated. Approximately 54.85% of the assembled genome was annotated as repetitive sequences, with the most abundant long terminal repeat transposable elements. Comparative genomic and phylogenetic analyses with grain soybean Williams 82, six other Fabaceae species and Arabidopsis thaliana genomes highlight the difference of ZN6 with other species. Furthermore, we resequenced 60 vegetable soybean accessions. Alongside 103 previously resequenced wild soybean and 155 previously resequenced grain soybean accessions, we performed analyses of population structure and selective sweep of vegetable, grain, and wild soybean. They were clearly divided into three clades. We found 1112 and 1047 genes under selection in the vegetable soybean and grain soybean populations compared with the wild soybean population, respectively. Among them, we identified 134 selected genes shared between vegetable soybean and grain soybean populations. Additionally, we report four sucrose synthase genes, one sucrose-phosphate synthase gene, and four sugar transport genes as candidate genes related to important traits such as seed sweetness and seed size in vegetable soybean. This study provides essential genomic resources to promote evolutionary and functional genomics studies and genomically informed breeding for vegetable soybean.
Collapse
Affiliation(s)
- Na Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yongchao Niu
- Biozeron Shenzhen, Inc., Shenzhen, 518081, China
| | - Guwen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhijuan Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yuanpeng Bo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jinmin Lian
- Biozeron Shenzhen, Inc., Shenzhen, 518081, China
| | - Bin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yaming Gong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
10
|
Azam M, Zhang S, Qi J, Abdelghany AM, Shaibu AS, Ghosh S, Feng Y, Huai Y, Gebregziabher BS, Li J, Li B, Sun J. Profiling and associations of seed nutritional characteristics in Chinese and USA soybean cultivars. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Liu Y, Du H, Li P, Shen Y, Peng H, Liu S, Zhou GA, Zhang H, Liu Z, Shi M, Huang X, Li Y, Zhang M, Wang Z, Zhu B, Han B, Liang C, Tian Z. Pan-Genome of Wild and Cultivated Soybeans. Cell 2020; 182:162-176.e13. [PMID: 32553274 DOI: 10.1016/j.cell.2020.05.023] [Citation(s) in RCA: 427] [Impact Index Per Article: 106.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/07/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022]
Abstract
Soybean is one of the most important vegetable oil and protein feed crops. To capture the entire genomic diversity, it is needed to construct a complete high-quality pan-genome from diverse soybean accessions. In this study, we performed individual de novo genome assemblies for 26 representative soybeans that were selected from 2,898 deeply sequenced accessions. Using these assembled genomes together with three previously reported genomes, we constructed a graph-based genome and performed pan-genome analysis, which identified numerous genetic variations that cannot be detected by direct mapping of short sequence reads onto a single reference genome. The structural variations from the 2,898 accessions that were genotyped based on the graph-based genome and the RNA sequencing (RNA-seq) data from the representative 26 accessions helped to link genetic variations to candidate genes that are responsible for important traits. This pan-genome resource will promote evolutionary and functional genomics studies in soybean.
Collapse
Affiliation(s)
- Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huilong Du
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengcheng Li
- Berry Genomics Corporation, Beijing 100015, China
| | - Yanting Shen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hua Peng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Guo-An Zhou
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Zhi Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao Shi
- Berry Genomics Corporation, Beijing 100015, China
| | - Xuehui Huang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yan Li
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Min Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zheng Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Baoge Zhu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Han
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chengzhi Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Liu M, Wang Y, Nie Z, Gai J, Bhat JA, Kong J, Zhao T. Double mutation of two homologous genes YL1 and YL2 results in a leaf yellowing phenotype in soybean [Glycine max (L.) Merr]. PLANT MOLECULAR BIOLOGY 2020; 103:527-543. [PMID: 32323129 DOI: 10.1007/s11103-020-01008-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE Two homologous, chloroplast located CAAX proteases were identified to be functional redundancy in determining soybean leaf color, and they probably play essential roles in regulating light harvesting and absorption during photosynthesis process. Leaf color mutants are ideal materials for studying photosynthesis and chlorophyll metabolism. The soybean [Glycine max (L.) Merr.] yellowing leaf (yl) variation is a recombinant mutant characterized by yellow foliage, which derived from the specific cross between green seed-coated and yellow seed-coated soybean varieties. Molecular cloning and subsequent gene silencing revealed that the yellow leaf trait of yl was controlled by two recessive nuclear genes, glyma11g04660 and glyma01g40650, named as YL1 and YL2 respectively, and the latter was confirmed to be same as the earlier reported green seed-coat gene G. Both YL1 and YL2 belonged to chloroplast-located proteases possessing Abi domain, and these genes were expressed in various tissues, especially in young leaves. In yl, the expression of YL1 and YL2 were suppressed in most tissues, and the young leaf of yl presented an increased maximal photochemical efficiency (Fv/Fm) as well as enhanced net photosynthesis activity (Pn), indicating that YL1 and YL2 are involved in light absorption regulation during photosynthesis process. Collectively, the identification and description of YL1 and YL2 in our study provides insights for the regulatory mechanism of photosynthesis process, and these findings will further assist to clarify the close relationship between photosynthesis and chlorophyll metabolism.
Collapse
Affiliation(s)
- Meifeng Liu
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Yaqi Wang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Zhixing Nie
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Junyi Gai
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Javaid Akhter Bhat
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Jiejie Kong
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
13
|
Gao H, Wang Y, Li W, Gu Y, Lai Y, Bi Y, He C. Transcriptomic comparison reveals genetic variation potentially underlying seed developmental evolution of soybeans. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5089-5104. [PMID: 30113693 PMCID: PMC6184420 DOI: 10.1093/jxb/ery291] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 07/31/2018] [Indexed: 05/22/2023]
Abstract
Soybean (Glycine max) was domesticated from its wild relative Glycine soja. However, the genetic variations underlying soybean domestication are not well known. Comparative transcriptomics revealed that a small portion of the orthologous genes might have been fast evolving. In contrast, three gene expression clusters were identified as divergent by their expression patterns, which occupied 37.44% of the total genes, hinting at an essential role for gene expression alteration in soybean domestication. Moreover, the most divergent stage in gene expression between wild and cultivated soybeans occurred during seed development around the cotyledon stage (15 d after fertilization, G15). A module in which the co-expressed genes were significantly down-regulated at G15 of wild soybeans was identified. The divergent clusters and modules included substantial differentially expressed genes (DEGs) between wild and cultivated soybeans related to cell division, storage compound accumulation, hormone response, and seed maturation processes. Chromosomal-linked DEGs, quantitative trait loci controlling seed weight and oil content, and selection sweeps revealed candidate DEGs at G15 in the fruit-related divergence of G. max and G. soja. Our work establishes a transcriptomic selection mechanism for altering gene expression during soybean domestication, thus shedding light on the molecular networks underlying soybean seed development and breeding strategy.
Collapse
Affiliation(s)
- Huihui Gao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, China
| | - Wei Li
- Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yongzhe Gu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongcai Lai
- Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yingdong Bi
- Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Shen Y, Liu J, Geng H, Zhang J, Liu Y, Zhang H, Xing S, Du J, Ma S, Tian Z. De novo assembly of a Chinese soybean genome. SCIENCE CHINA. LIFE SCIENCES 2018; 61:871-884. [PMID: 30062469 DOI: 10.1007/s11427-018-9360-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/05/2018] [Indexed: 10/28/2022]
Abstract
Soybean was domesticated in China and has become one of the most important oilseed crops. Due to bottlenecks in their introduction and dissemination, soybeans from different geographic areas exhibit extensive genetic diversity. Asia is the largest soybean market; therefore, a high-quality soybean reference genome from this area is critical for soybean research and breeding. Here, we report the de novo assembly and sequence analysis of a Chinese soybean genome for "Zhonghuang 13" by a combination of SMRT, Hi-C and optical mapping data. The assembled genome size is 1.025 Gb with a contig N50 of 3.46 Mb and a scaffold N50 of 51.87 Mb. Comparisons between this genome and the previously reported reference genome (cv. Williams 82) uncovered more than 250,000 structure variations. A total of 52,051 protein coding genes and 36,429 transposable elements were annotated for this genome, and a gene co-expression network including 39,967 genes was also established. This high quality Chinese soybean genome and its sequence analysis will provide valuable information for soybean improvement in the future.
Collapse
Affiliation(s)
- Yanting Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jing Liu
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Haiying Geng
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Jixiang Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | | | - Shilai Xing
- Berry Genomics Corporation, Beijing, 100015, China
| | - Jianchang Du
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Shisong Ma
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100039, China.
| |
Collapse
|
15
|
Lu X, Xiong Q, Cheng T, Li QT, Liu XL, Bi YD, Li W, Zhang WK, Ma B, Lai YC, Du WG, Man WQ, Chen SY, Zhang JS. A PP2C-1 Allele Underlying a Quantitative Trait Locus Enhances Soybean 100-Seed Weight. MOLECULAR PLANT 2017; 10:670-684. [PMID: 28363587 DOI: 10.1016/j.molp.2017.03.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 05/21/2023]
Abstract
Cultivated soybeans may lose some useful genetic loci during domestication. Introgression of genes from wild soybeans could broaden the genetic background and improve soybean agronomic traits. In this study, through whole-genome sequencing of a recombinant inbred line population derived from a cross between a wild soybean ZYD7 and a cultivated soybean HN44, and mapping of quantitative trait loci for seed weight, we discovered that a phosphatase 2C-1 (PP2C-1) allele from wild soybean ZYD7 contributes to the increase in seed weight/size. PP2C-1 may achieve this function by enhancing cell size of integument and activating a subset of seed trait-related genes. We found that PP2C-1 is associated with GmBZR1, a soybean ortholog of Arabidopsis BZR1, one of key transcription factors in brassinosteroid (BR) signaling, and facilitate accumulation of dephosphorylated GmBZR1. In contrast, the PP2C-2 allele with variations of a few amino acids at the N-terminus did not exhibit this function. Moreover, we showed that GmBZR1 could promote seed weight/size in transgenic plants. Through analysis of cultivated soybean accessions, we found that 40% of the examined accessions do not have the PP2C-1 allele, suggesting that these accessions can be improved by introduction of this allele. Taken together, our study identifies an elite allele PP2C-1, which can enhance seed weight and/or size in soybean, and pinpoints that manipulation of this allele by molecular-assisted breeding may increase production in soybean and other legumes/crops.
Collapse
Affiliation(s)
- Xiang Lu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Xiong
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Cheng
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing-Tian Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Lei Liu
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China
| | - Ying-Dong Bi
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China
| | - Wei Li
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong-Cai Lai
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China
| | - Wei-Guang Du
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China
| | - Wei-Qun Man
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin 150086, China.
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Zaheer K, Humayoun Akhtar M. An updated review of dietary isoflavones: Nutrition, processing, bioavailability and impacts on human health. Crit Rev Food Sci Nutr 2017; 57:1280-1293. [PMID: 26565435 DOI: 10.1080/10408398.2014.989958] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Isoflavones (genistein, daidzein, and glycitein) are bioactive compounds with mildly estrogenic properties and often referred to as phytoestrogen. These are present in significant quantities (up to 4-5 mg·g-1 on dry basis) in legumes mainly soybeans, green beans, mung beans. In grains (raw materials) they are present mostly as glycosides, which are poorly absorbed on consumption. Thus, soybeans are processed into various food products for digestibility, taste and bioavailability of nutrients and bioactives. Main processing steps include steaming, cooking, roasting, microbial fermentation that destroy protease inhibitors and also cleaves the glycoside bond to yield absorbable aglycone in the processed soy products, such as miso, natto, soy milk, tofu; and increase shelf lives. Processed soy food products have been an integral part of regular diets in many Asia-Pacific countries for centuries, e.g. China, Japan and Korea. However, in the last two decades, there have been concerted efforts to introduce soy products in western diets for their health benefits with some success. Isoflavones were hailed as magical natural component that attribute to prevent some major prevailing health concerns. Consumption of soy products have been linked to reduction in incidence or severity of chronic diseases such as cardiovascular, breast and prostate cancers, menopausal symptoms, bone loss, etc. Overall, consuming moderate amounts of traditionally prepared and minimally processed soy foods may offer modest health benefits while minimizing potential for any adverse health effects.
Collapse
Affiliation(s)
| | - M Humayoun Akhtar
- b Guelph Research and Development Centre, Agriculture and Agri-Food Canada , Guelph , Ontario , Canada
| |
Collapse
|
17
|
Lambirth KC, Whaley AM, Schlueter JA, Piller KJ, Bost KL. Transcript Polymorphism Rates in Soybean Seed Tissue Are Increased in a Single Transformant of Glycine max. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2016; 2016:1562041. [PMID: 28025595 PMCID: PMC5153505 DOI: 10.1155/2016/1562041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/05/2016] [Accepted: 10/17/2016] [Indexed: 06/06/2023]
Abstract
Transgenic crops have been utilized for decades to enhance agriculture and more recently have been applied as bioreactors for manufacturing pharmaceuticals. Recently, we investigated the gene expression profiles of several in-house transgenic soybean events, finding one transformant group to be consistently different from our controls. In the present study, we examined polymorphisms and sequence variations in the exomes of the same transgenic soybean events. We found that the previously dissimilar soybean line also exhibited markedly increased levels of polymorphisms within mRNA transcripts from seed tissue, many of which are classified as gene expression modifiers. The results from this work will direct future investigations to examine novel SNPs controlling traits of great interest for breeding and improving transgenic soybean crops. Further, this study marks the first work to investigate SNP rates in transgenic soybean seed tissues and demonstrates that while transgenesis may induce abundant unanticipated changes in gene expression and nucleotide variation, phenotypes and overall health of the plants examined remained unaltered.
Collapse
Affiliation(s)
- Kevin C. Lambirth
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Adam M. Whaley
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Jessica A. Schlueter
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Kenneth J. Piller
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Kenneth L. Bost
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
18
|
Xavier A, Muir WM, Rainey KM. Assessing Predictive Properties of Genome-Wide Selection in Soybeans. G3 (BETHESDA, MD.) 2016; 6:2611-6. [PMID: 27317786 PMCID: PMC4978914 DOI: 10.1534/g3.116.032268] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/16/2016] [Indexed: 11/30/2022]
Abstract
Many economically important traits in plant breeding have low heritability or are difficult to measure. For these traits, genomic selection has attractive features and may boost genetic gains. Our goal was to evaluate alternative scenarios to implement genomic selection for yield components in soybean (Glycine max L. merr). We used a nested association panel with cross validation to evaluate the impacts of training population size, genotyping density, and prediction model on the accuracy of genomic prediction. Our results indicate that training population size was the factor most relevant to improvement in genome-wide prediction, with greatest improvement observed in training sets up to 2000 individuals. We discuss assumptions that influence the choice of the prediction model. Although alternative models had minor impacts on prediction accuracy, the most robust prediction model was the combination of reproducing kernel Hilbert space regression and BayesB. Higher genotyping density marginally improved accuracy. Our study finds that breeding programs seeking efficient genomic selection in soybeans would best allocate resources by investing in a representative training set.
Collapse
Affiliation(s)
- Alencar Xavier
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - William M Muir
- Department of Animal Science, Purdue University, West Lafayette, Indiana 47907
| | - Katy Martin Rainey
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
19
|
Lu X, Li QT, Xiong Q, Li W, Bi YD, Lai YC, Liu XL, Man WQ, Zhang WK, Ma B, Chen SY, Zhang JS. The transcriptomic signature of developing soybean seeds reveals the genetic basis of seed trait adaptation during domestication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:530-44. [PMID: 27062090 DOI: 10.1111/tpj.13181] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/21/2016] [Accepted: 03/30/2016] [Indexed: 05/22/2023]
Abstract
Cultivated soybean has undergone many transformations during domestication. In this paper we report a comprehensive assessment of the evolution of gene co-expression networks based on the analysis of 40 transcriptomes from developing soybean seeds in cultivated and wild soybean accessions. We identified 2680 genes that are differentially expressed during seed maturation and established two cultivar-specific gene co-expression networks. Through analysis of the two networks and integration with quantitative trait locus data we identified two potential key drivers for seed trait formation, GA20OX and NFYA. GA20OX encodes an enzyme in a rate-limiting step of gibberellin biosynthesis, and NFYA encodes a transcription factor. Overexpression of GA20OX and NFYA enhanced seed size/weight and oil content, respectively, in seeds of transgenic plants. The two genes showed significantly higher expression in cultivated than in wild soybean, and the increases in expression were associated with genetic variations in the promoter region of each gene. Moreover, the expression of GA20OX and NFYA in seeds of soybean accessions correlated with seed weight and oil content, respectively. Our study reveals transcriptional adaptation during soybean domestication and may identify a mechanism of selection by expression for seed trait formation, providing strategies for future breeding practice.
Collapse
Affiliation(s)
- Xiang Lu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing-Tian Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Xiong
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Li
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Ying-Dong Bi
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Yong-Cai Lai
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Xin-Lei Liu
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Wei-Qun Man
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
20
|
Fercha A, Capriotti AL, Caruso G, Cavaliere C, Stampachiacchiere S, Zenezini Chiozzi R, Laganà A. Shotgun proteomic analysis of soybean embryonic axes during germination under salt stress. Proteomics 2016; 16:1537-46. [PMID: 26969838 DOI: 10.1002/pmic.201500283] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 01/19/2016] [Accepted: 03/08/2016] [Indexed: 12/21/2022]
Abstract
Seed imbibition and radicle emergence are generally less affected by salinity in soybean than in other crop plants. In order to unveil the mechanisms underlying this remarkable salt tolerance of soybean at seed germination, a comparative label-free shotgun proteomic analysis of embryonic axes exposed to salinity during germination sensu stricto (GSS) was conducted. The results revealed that the application of 100 and 200 mmol/L NaCl stress was accompanied by significant changes (>2-fold, P<0.05) of 97 and 75 proteins, respectively. Most of these salt-responsive proteins (70%) were classified into three major functional categories: disease/defense response, protein destination and storage and primary metabolism. The involvement of these proteins in salt tolerance of soybean was discussed, and some of them were suggested to be potential salt-tolerant proteins. Furthermore, our results suggest that the cross-protection against aldehydes, oxidative as well as osmotic stress, is the major adaptive response to salinity in soybean.
Collapse
Affiliation(s)
- Azzedine Fercha
- Department of Biology, University of Abbès Laghrour Khenchela, Khenchela, Algeria
| | | | - Giuseppe Caruso
- Department of Chemistry, Sapienza Università di Roma, Rome, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza Università di Roma, Rome, Italy
| | | | | | - Aldo Laganà
- Department of Chemistry, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
21
|
Teixeira RN, Ligterink W, França-Neto JDB, Hilhorst HWM, da Silva EAA. Gene expression profiling of the green seed problem in Soybean. BMC PLANT BIOLOGY 2016; 16:37. [PMID: 26829931 PMCID: PMC4736698 DOI: 10.1186/s12870-016-0729-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/28/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Due to the climate change of the past few decades, some agricultural areas in the world are now experiencing new climatic extremes. For soybean, high temperatures and drought stress can potentially lead to the "green seed problem", which is characterized by chlorophyll retention in mature seeds and is associated with lower oil and seed quality, thus negatively impacting the production of soybean seeds. RESULTS Here we show that heat and drought stress result in a "mild" stay-green phenotype and impaired expression of the STAY-GREEN 1 and STAY-GREEN 2 (D1, D2), PHEOPHORBIDASE 2 (PPH2) and NON-YELLOW COLORING 1 (NYC1_1) genes in soybean seeds of a susceptible soybean cultivar. We suggest that the higher expression of these genes in fully mature seeds of a tolerant cultivar allows these seeds to cope with stressful conditions and complete chlorophyll degradation. CONCLUSIONS The gene expression results obtained in this study represent a significant advance in understanding chlorophyll retention in mature soybean seeds produced under stressful conditions. This will open new research possibilities towards finding molecular markers for breeding programs to produce cultivars which are less susceptible to chlorophyll retention under the hot and dry climate conditions which are increasingly common in the largest soybean production areas of the world.
Collapse
Affiliation(s)
- Renake N Teixeira
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands.
- Departamento de Produção e Melhoramento Vegetal, Faculdade de Ciências Agronômicas-UNESP, Universidade Estadual Paulista, Botucatu, SP, 18.610-307, Brazil.
| | - Wilco Ligterink
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands.
| | - José de B França-Neto
- Empresa Brasileira de Pesquisa Agropecuária, Centro Nacional de Pesquisa de Soja, EMBRAPA Soja, Caixa-postal 231, Londrina, PR, 86001970, Brazil.
| | - Henk W M Hilhorst
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands.
| | - Edvaldo A A da Silva
- Departamento de Produção e Melhoramento Vegetal, Faculdade de Ciências Agronômicas-UNESP, Universidade Estadual Paulista, Botucatu, SP, 18.610-307, Brazil.
| |
Collapse
|
22
|
Zhao YY, Cheng XL, Lin RC, Wei F. Lipidomics applications for disease biomarker discovery in mammal models. Biomark Med 2015; 9:153-68. [PMID: 25689902 DOI: 10.2217/bmm.14.81] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lipidomics is a lipid-targeted metabolomics approach focusing on comprehensive analysis of all lipids with which they interact in biology systems. Recent technological advances in MS and chromatography have greatly enhanced the developments and applications of metabolic profiling of diverse lipids in complex biological samples. Lipidomics will not only provide insights into the specific functions of lipid species in health and disease, but will also identify potential biomarkers for establishing preventive or therapeutic programs for human disease. In this review, recent applications of lipidomics to understand animal models of disease such as metabolic syndromes, neurodegenerative diseases, cancer and infectious diseases are considered. We also discuss the lipidomics for the future perspectives and their potential problems.
Collapse
Affiliation(s)
- Ying-Yong Zhao
- Key Laboratory of Resource Biology & Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | | | | | | |
Collapse
|
23
|
Zhao YY, Miao H, Cheng XL, Wei F. Lipidomics: Novel insight into the biochemical mechanism of lipid metabolism and dysregulation-associated disease. Chem Biol Interact 2015; 240:220-38. [PMID: 26358168 DOI: 10.1016/j.cbi.2015.09.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 05/15/2015] [Accepted: 09/03/2015] [Indexed: 12/15/2022]
Abstract
The application of lipidomics, after genomics, proteomics and metabolomics, offered largely opportunities to illuminate the entire spectrum of lipidome based on a quantitative or semi-quantitative level in a biological system. When combined with advances in proteomics and metabolomics high-throughput platforms, lipidomics provided the opportunity for analyzing the unique roles of specific lipids in complex cellular processes. Abnormal lipid metabolism was demonstrated to be greatly implicated in many human lifestyle-related diseases. In this review, we focused on lipidomic applications in brain injury disease, cancer, metabolic disease, cardiovascular disease, respiratory disease and infectious disease to discover disease biomarkers and illustrate biochemical metabolic pathways. We also discussed the analytical techniques, future perspectives and potential problems of lipidomic applications. The application of lipidomics in disease biomarker discovery provides the opportunity for gaining novel insights into biochemical mechanism.
Collapse
Affiliation(s)
- Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, PR China.
| | - Hua Miao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, PR China
| | - Xian-Long Cheng
- National Institutes for Food and Drug Control, State Food and Drug Administration, No. 2 Tiantan Xili, Beijing, 100050, PR China
| | - Feng Wei
- National Institutes for Food and Drug Control, State Food and Drug Administration, No. 2 Tiantan Xili, Beijing, 100050, PR China
| |
Collapse
|
24
|
Wang Z, Tian Z. Genomics progress will facilitate molecular breeding in soybean. SCIENCE CHINA. LIFE SCIENCES 2015; 58:813-5. [PMID: 26187410 DOI: 10.1007/s11427-015-4908-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/08/2015] [Indexed: 01/25/2023]
Affiliation(s)
- Zheng Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | | |
Collapse
|
25
|
Nie WX, Xu L, Yu BJ. A putative soybean GmsSOS1 confers enhanced salt tolerance to transgenic Arabidopsis sos1-1 mutant. PROTOPLASMA 2015; 252:127-34. [PMID: 24934653 DOI: 10.1007/s00709-014-0663-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/02/2014] [Indexed: 05/11/2023]
Abstract
The cDNA of GmsSOS1, a putative plasma membrane Na(+)/H(+) antiporter gene isolated from Glycine max, Glycine soja, and their hybrid, was constructed into plant expression vector pCAMBIA 1300 and then transformed with Agrobacterium tumefaciens under the control of CaMV 35S promoter to Arabidopsis thaliana wild-type (WT) and mutant (atsos1-1) plants. By hygromycin resistance detection and PCR analysis, transgenic plants (WT35S:GmsSOS1 and atsos1-1 35S:GmsSOS1) were obtained. Seed germination, seedling growth, and Na(+) contents in roots and shoots were analytically compared among WT, atsos1-1 mutant, and their transgenic lines under salt stress. The results showed that when GmsSOS1 was integrated into the genome of A. thaliana, the inhibitions of salt stress on seed germination and seedling growth were all significantly improved, and enhanced salt tolerance was displayed, which may be attributed to the decrease of Na(+) absorption in roots and transportation in shoots of the transgenic lines, especially for that of atsos1-1 mutant.
Collapse
Affiliation(s)
- Wang-Xing Nie
- Lab of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | | | | |
Collapse
|
26
|
Sherman-Broyles S, Bombarely A, Powell AF, Doyle JL, Egan AN, Coate JE, Doyle JJ. The wild side of a major crop: soybean's perennial cousins from Down Under. AMERICAN JOURNAL OF BOTANY 2014; 101:1651-65. [PMID: 25326613 DOI: 10.3732/ajb.1400121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The accumulation of over 30 years of basic research on the biology, genetic variation, and evolution of the wild perennial relatives of soybean (Glycine max) provides a foundation to improve cultivated soybean. The cultivated soybean and its wild progenitor, G. soja, have a center of origin in eastern Asia and are the only two species in the annual subgenus Soja. Systematic and evolutionary studies of the ca. 30 perennial species of subgenus Glycine, native to Australia, have benefited from the availability of the G. max genomic sequence. The perennial species harbor many traits of interest to soybean breeders, among them resistance to major soybean pathogens such as cyst nematode and leaf rust. New species in the Australian subgenus continue to be described, due to the collection of new material and to insights gleaned through systematic studies of accessions in germplasm collections. Ongoing studies in perennial species focus on genomic regions that contain genes for key traits relevant to soybean breeding. These comparisons also include the homoeologous regions that are the result of polyploidy in the common ancestor of all Glycine species. Subgenus Glycine includes a complex of recently formed allopolyploids that are the focus of studies aimed at elucidating genomic, transcriptomic, physiological, taxonomic, morphological, developmental, and ecological processes related to polyploid evolution. Here we review what has been learned over the past 30 years and outline ongoing work on photosynthesis, nitrogen fixation, and floral biology, much of it drawing on new technologies and resources.
Collapse
Affiliation(s)
| | | | - Adrian F Powell
- Cornell University, 412 Mann Library Building, Ithaca, New York 14853 USA
| | - Jane L Doyle
- Cornell University, 412 Mann Library Building, Ithaca, New York 14853 USA
| | - Ashley N Egan
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington D.C. 20013-7012 USA
| | - Jeremy E Coate
- Reed College, Department of Biology, 3203 SE Woodstock Blvd., Portland, Oregon 97202 USA
| | - Jeff J Doyle
- Cornell University, 412 Mann Library Building, Ithaca, New York 14853 USA
| |
Collapse
|
27
|
Fang C, Li C, Li W, Wang Z, Zhou Z, Shen Y, Wu M, Wu Y, Li G, Kong LA, Liu C, Jackson SA, Tian Z. Concerted evolution of D1 and D2 to regulate chlorophyll degradation in soybean. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:700-12. [PMID: 24372721 DOI: 10.1111/tpj.12419] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/06/2013] [Accepted: 12/17/2013] [Indexed: 05/19/2023]
Abstract
Polyploidy is a common phenomenon, particularly in plants. The soybean (Glycine max [L.] Merr.) genome has undergone two whole genome duplication (WGD) events. The conservation and divergence of duplicated gene pairs are major contributors to genome evolution. D1 and D2 are two unlinked, paralogous nuclear genes, whose double-recessive mutant (d1d1d2d2) results in chlorophyll retention, called 'stay-green'. Through molecular cloning and functional analyses, we demonstrated that D1 and D2 are homologs of the STAY-GREEN (SGR) genes from other plant species and were duplicated as a result of the most recent WGD in soybean. Transcriptional analysis showed that both D1 and D2 were more highly expressed in older tissues, and chlorophyll degradation and programmed cell death-related genes were suppressed in a d1d2 double mutant, this situation indicated that these genes are probably involved in the early stages of tissue senescence. Investigation of genes that flank D1 and D2 revealed that evolution within collinear duplicated blocks may affect the conservation of individual gene pairs within the blocks. Moreover, we found that a long terminal repeat retrotransposon, GmD2IN, resulted in the d2 mutation. Further analysis of this retrotransposon family showed that insertion in or near the coding regions can affect gene expression or splicing patterns, and may be an important force to promote the divergence of duplicated gene pairs.
Collapse
Affiliation(s)
- Chao Fang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Soybean, one of the world's most important sources of animal feed and vegetable oil, can be infected by numerous viruses. However, only a small number of the viruses that can potentially infect soybean are considered as major economic problems to soybean production. Therefore, we consider management options available to control diseases caused by eight viruses that cause, or have the potential to cause, significant economic loss to producers. We summarize management tactics in use and suggest direction for the future. Clearly, the most important tactic is disease resistance. Several resistance genes are available for three of the eight viruses discussed. Other options include use of virus-free seed and avoidance of alternative virus hosts when planting. Attempts at arthropod vector control have generally not provided consistent disease management. In the future, disease management will be considerably enhanced by knowledge of the interaction between soybean and viral proteins. Identification of genes required for soybean defense may represent key regulatory hubs that will enhance or broaden the spectrum of basal resistance to viruses. It may be possible to create new recessive or dominant negative alleles of host proteins that do not support viral functions but perform normal cellular function. The future approach to virus control based on gene editing or exploiting allelic diversity points to necessary research into soybean-virus interactions. This will help to generate the knowledge needed for rational design of durable resistance that will maximize global production.
Collapse
Affiliation(s)
- John H Hill
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA.
| | - Steven A Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
29
|
Valdés A, Ibáñez C, Simó C, García-Cañas V. Recent transcriptomics advances and emerging applications in food science. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.06.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
30
|
Zhou Z, Wang Z, Li W, Fang C, Shen Y, Li C, Wu Y, Tian Z. Comprehensive analyses of microRNA gene evolution in paleopolyploid soybean genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:332-44. [PMID: 23876088 DOI: 10.1111/tpj.12293] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 07/16/2013] [Indexed: 06/02/2023]
Abstract
miRNA genes are thought to undergo quick birth and death processes in genomes and the emergence of a MIRNA-like hairpin provides the base for functional miRNA gene formation. However, the factors affecting the formation of an active miRNA gene from a MIRNA-like hairpin within a genome remain unclear. We performed a genome-wide investigation of MIRNA-like hairpin accumulation, expression, structural changes and relationships with annotated genomic features in the paleopolyploid soybean genome. Our results showed that adjacent gene and transposable element content, rates of genetic recombination at location of emergence, along with its own gene structure divergence greatly affected miRNA gene evolution. Further investigation suggested that miRNA genes from different duplication sources followed distinct evolutionary trajectories and that the accumulation of MIRNA-like hairpins might be an important factor in causing long terminal repeat retrotransposons to lose activity during genome evolution.
Collapse
Affiliation(s)
- Zhengkui Zhou
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Lam SM, Shui G. Lipidomics as a Principal Tool for Advancing Biomedical Research. J Genet Genomics 2013; 40:375-90. [DOI: 10.1016/j.jgg.2013.06.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/04/2013] [Accepted: 06/19/2013] [Indexed: 01/22/2023]
|
32
|
Fang C, Li W, Li G, Wang Z, Zhou Z, Ma Y, Shen Y, Li C, Wu Y, Zhu B, Yang W, Tian Z. Cloning of Ln gene through combined approach of map-based cloning and association study in soybean. J Genet Genomics 2013; 40:93-6. [PMID: 23439408 DOI: 10.1016/j.jgg.2013.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 01/15/2013] [Accepted: 01/15/2013] [Indexed: 11/16/2022]
|