1
|
Park HR, Cai M, Yang EJ. Herbal Formula Extract Ameliorates Anxiety and Cognitive Impairment via Regulation of the Reelin/Dab-1 Pathway in a Murine Model of Post-Traumatic Stress Disorder. Pharmaceutics 2024; 16:1150. [PMID: 39339187 PMCID: PMC11434737 DOI: 10.3390/pharmaceutics16091150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
We investigated the effects of epigenetic modifications on post-traumatic stress disorder (PTSD) using a novel combination of herbal medicines from Panax ginseng, Astragalus membranaceus, Atractylodes macrocephala, and Glycyrrhiza uralensis. The herbal formula extract (HFE) (250 mg/kg) was administered orally once daily for 14 days to determine its effects on PTSD in mice by combining prolonged stress and foot shock. The open field and Y-maze tests determined the effect of HFE on PTSD-induced anxiety and cognition. Hippocampal neuronal plastic changes and molecular mechanism were verified. Treatment with HFE decreased anxiety-like behavior and enhanced cognition. Moreover, it reduced the number of PTSD-related hilar ectopic granule cells in the dentate gyrus (DG). PTSD mice showed reduced neuronal plasticity of doublecortin+ cells in the DG, which was restored by HFE treatment. HFE reversed PTSD-induced inhibition of the Reelin/Dab1 pathway, a critical signaling cascade involved in brain development, and regulated Reelin methylation. Furthermore, DNA methylation, methyl-CpG binding protein 2, and DNA methyltransferase 1, which were elevated in the hippocampus of PTSD mice, were restored following HFE treatment. HFE increased the expression of synaptic plasticity-related factors in the hippocampus of PTSD mice. Our findings suggest that HFE can facilitate PTSD treatment by alleviating behavioral abnormalities through the restoration of hippocampal dysfunction via regulation of the Reelin/Dab-1 pathway and DNA methylation in the hippocampus.
Collapse
Affiliation(s)
| | | | - Eun Jin Yang
- Department of KM Science Research, Korea Institute of Oriental Medicine (KIOM), Daejeon 34054, Republic of Korea; (H.R.P.); (M.C.)
| |
Collapse
|
2
|
Shi Z, Wen K, Zou Z, Fu W, Guo K, Sammudin NH, Ruan X, Sullere S, Wang S, Zhang X, Thinakaran G, He C, Zhuang X. YTHDF1 mediates translational control by m6A mRNA methylation in adaptation to environmental challenges. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.07.607063. [PMID: 39149343 PMCID: PMC11326287 DOI: 10.1101/2024.08.07.607063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Animals adapt to environmental challenges with long-term changes at the behavioral, circuit, cellular, and synaptic levels which often require new protein synthesis. The discovery of reversible N6-methyladenosine (m6A) modifications of mRNA has revealed an important layer of post-transcriptional regulation which affects almost every phase of mRNA metabolism and therefore translational control. Many in vitro and in vivo studies have demonstrated the significant role of m6A in cell differentiation and survival, but its role in adult neurons is understudied. We used cell-type specific gene deletion of Mettl14, which encodes one of the subunits of the m6A methyltransferase, and Ythdf1, which encodes one of the cytoplasmic m6A reader proteins, in dopamine D1 receptor expressing or D2 receptor expressing neurons. Mettl14 or Ythdf1 deficiency blunted responses to environmental challenges at the behavioral, cellular, and molecular levels. In three different behavioral paradigms, gene deletion of either Mettl14 or Ythdf1 in D1 neurons impaired D1-dependent learning, whereas gene deletion of either Mettl14 or Ythdf1 in D2 neurons impaired D2-dependent learning. At the cellular level, modulation of D1 and D2 neuron firing in response to changes in environments was blunted in all three behavioral paradigms in mutant mice. Ythdf1 deletion resembled impairment caused by Mettl14 deletion in a cell type-specific manner, suggesting YTHDF1 is the main mediator of the functional consequences of m6A mRNA methylation in the striatum. At the molecular level, while striatal neurons in control mice responded to elevated cAMP by increasing de novo protein synthesis, striatal neurons in Ythdf1 knockout mice didn't. Finally, boosting dopamine release by cocaine drastically increased YTHDF1 binding to many mRNA targets in the striatum, especially those that encode structural proteins, suggesting the initiation of long-term neuronal and/or synaptic structural changes. While the m6A-YTHDF1 pathway has similar functional significance at cellular level, its cell type specific deficiency in D1 and D2 neurons often resulted in contrasting behavioral phenotypes, allowing us to cleanly dissociate the opposing yet cooperative roles of D1 and D2 neurons.
Collapse
Affiliation(s)
- Zhuoyue Shi
- The Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Kailong Wen
- Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Zhongyu Zou
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Wenqin Fu
- The Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Kathryn Guo
- The Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Nabilah H Sammudin
- Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Xiangbin Ruan
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Shivang Sullere
- Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Shuai Wang
- Byrd Alzheimer's Center and Research Institute, University of South Florida, Tampa, FL 33613, USA
| | - Xiaochang Zhang
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
- The Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Gopal Thinakaran
- Byrd Alzheimer's Center and Research Institute, University of South Florida, Tampa, FL 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, IL 60637, USA
| | - Xiaoxi Zhuang
- The Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
- The Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
3
|
Radhakrishna U, Nath SK, Uppala LV, Veerappa A, Forray A, Muvvala SB, Metpally RP, Crist RC, Berrettini WH, Mausi LM, Vishweswaraiah S, Bahado-Singh RO. Placental microRNA methylome signatures may serve as biomarkers and therapeutic targets for prenatally opioid-exposed infants with neonatal opioid withdrawal syndrome. Front Genet 2023; 14:1215472. [PMID: 37434949 PMCID: PMC10332887 DOI: 10.3389/fgene.2023.1215472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/01/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction: The neonate exposed to opioids in utero faces a constellation of withdrawal symptoms postpartum commonly called neonatal opioid withdrawal syndrome (NOWS). The incidence of NOWS has increased in recent years due to the opioid epidemic. MicroRNAs (miRNAs) are small non-coding RNA molecules that play a crucial role in gene regulation. Epigenetic variations in microRNAs (miRNAs) and their impact on addiction-related processes is a rapidly evolving area of research. Methods: The Illumina Infinium Methylation EPIC BeadChip was used to analyze DNA methylation levels of miRNA-encoding genes in 96 human placental tissues to identify miRNA gene methylation profiles as-sociated with NOWS: 32 from mothers whose prenatally opioid-exposed infants required pharmacologic management for NOWS, 32 from mothers whose prenatally opioid-exposed infants did not require treat-ment for NOWS, and 32 unexposed controls. Results: The study identified 46 significantly differentially methylated (FDR p-value ≤ 0.05) CpGs associated with 47 unique miRNAs, with a receiver operating characteristic (ROC) area under the curve (AUC) ≥0.75 including 28 hypomethylated and 18 hypermethylated CpGs as potentially associated with NOWS. These dysregulated microRNA methylation patterns may be a contributing factor to NOWS pathogenesis. Conclusion: This is the first study to analyze miRNA methylation profiles in NOWS infants and illustrates the unique role miRNAs might have in diagnosing and treating the disease. Furthermore, these data may provide a step toward feasible precision medicine for NOWS babies as well.
Collapse
Affiliation(s)
- Uppala Radhakrishna
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, United States
| | - Swapan K. Nath
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Lavanya V. Uppala
- College of Information Science and Technology, Peter Kiewit Institute, The University of Nebraska at Omaha, Omaha, NE, United States
| | - Avinash Veerappa
- Department of Genetics, Cell Biology and Anatomy College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Ariadna Forray
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Srinivas B. Muvvala
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Raghu P. Metpally
- Department of Molecular and Functional Genomics, Danville, PA, United States
| | - Richard C. Crist
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Wade H. Berrettini
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Geisinger Clinic, Danville, PA, United States
| | - Lori M. Mausi
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, United States
| | - Sangeetha Vishweswaraiah
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, United States
| | - Ray O. Bahado-Singh
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, United States
| |
Collapse
|
4
|
Domingos LB, Silva NR, Chaves Filho AJM, Sales AJ, Starnawska A, Joca S. Regulation of DNA Methylation by Cannabidiol and Its Implications for Psychiatry: New Insights from In Vivo and In Silico Models. Genes (Basel) 2022; 13:2165. [PMID: 36421839 PMCID: PMC9690868 DOI: 10.3390/genes13112165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2023] Open
Abstract
Cannabidiol (CBD) is a non-psychotomimetic compound present in cannabis sativa. Many recent studies have indicated that CBD has a promising therapeutic profile for stress-related psychiatric disorders, such as anxiety, schizophrenia and depression. Such a diverse profile has been associated with its complex pharmacology, since CBD can target different neurotransmitter receptors, enzymes, transporters and ion channels. However, the precise contribution of each of those mechanisms for CBD effects is still not yet completely understood. Considering that epigenetic changes make the bridge between gene expression and environment interactions, we review and discuss herein how CBD affects one of the main epigenetic mechanisms associated with the development of stress-related psychiatric disorders: DNA methylation (DNAm). Evidence from in vivo and in silico studies indicate that CBD can regulate the activity of the enzymes responsible for DNAm, due to directly binding to the enzymes and/or by indirectly regulating their activities as a consequence of neurotransmitter-mediated signaling. The implications of this new potential pharmacological target for CBD are discussed in light of its therapeutic and neurodevelopmental effects.
Collapse
Affiliation(s)
- Luana B. Domingos
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Nicole R. Silva
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Adriano J. M. Chaves Filho
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Amanda J. Sales
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil
| | - Anna Starnawska
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8000 Aarhus, Denmark
- Center for Genomics and Personalized Medicine, CGPM, Center for Integrative Sequencing, iSEQ, 8000 Aarhus, Denmark
| | - Sâmia Joca
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
5
|
Jiang CC, Lin LS, Long S, Ke XY, Fukunaga K, Lu YM, Han F. Signalling pathways in autism spectrum disorder: mechanisms and therapeutic implications. Signal Transduct Target Ther 2022; 7:229. [PMID: 35817793 PMCID: PMC9273593 DOI: 10.1038/s41392-022-01081-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a prevalent and complex neurodevelopmental disorder which has strong genetic basis. Despite the rapidly rising incidence of autism, little is known about its aetiology, risk factors, and disease progression. There are currently neither validated biomarkers for diagnostic screening nor specific medication for autism. Over the last two decades, there have been remarkable advances in genetics, with hundreds of genes identified and validated as being associated with a high risk for autism. The convergence of neuroscience methods is becoming more widely recognized for its significance in elucidating the pathological mechanisms of autism. Efforts have been devoted to exploring the behavioural functions, key pathological mechanisms and potential treatments of autism. Here, as we highlight in this review, emerging evidence shows that signal transduction molecular events are involved in pathological processes such as transcription, translation, synaptic transmission, epigenetics and immunoinflammatory responses. This involvement has important implications for the discovery of precise molecular targets for autism. Moreover, we review recent insights into the mechanisms and clinical implications of signal transduction in autism from molecular, cellular, neural circuit, and neurobehavioural aspects. Finally, the challenges and future perspectives are discussed with regard to novel strategies predicated on the biological features of autism.
Collapse
Affiliation(s)
- Chen-Chen Jiang
- International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Li-Shan Lin
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Sen Long
- Department of Pharmacy, Hangzhou Seventh People's Hospital, Mental Health Center Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Xiao-Yan Ke
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Ying-Mei Lu
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Feng Han
- International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China.
| |
Collapse
|
6
|
Buck JM, Yu L, Knopik VS, Stitzel JA. DNA methylome perturbations: an epigenetic basis for the emergingly heritable neurodevelopmental abnormalities associated with maternal smoking and maternal nicotine exposure†. Biol Reprod 2021; 105:644-666. [PMID: 34270696 PMCID: PMC8444709 DOI: 10.1093/biolre/ioab138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/29/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Maternal smoking during pregnancy is associated with an ensemble of neurodevelopmental consequences in children and therefore constitutes a pressing public health concern. Adding to this burden, contemporary epidemiological and especially animal model research suggests that grandmaternal smoking is similarly associated with neurodevelopmental abnormalities in grandchildren, indicative of intergenerational transmission of the neurodevelopmental impacts of maternal smoking. Probing the mechanistic bases of neurodevelopmental anomalies in the children of maternal smokers and the intergenerational transmission thereof, emerging research intimates that epigenetic changes, namely DNA methylome perturbations, are key factors. Altogether, these findings warrant future research to fully elucidate the etiology of neurodevelopmental impairments in the children and grandchildren of maternal smokers and underscore the clear potential thereof to benefit public health by informing the development and implementation of preventative measures, prophylactics, and treatments. To this end, the present review aims to encapsulate the burgeoning evidence linking maternal smoking to intergenerational epigenetic inheritance of neurodevelopmental abnormalities, to identify the strengths and weaknesses thereof, and to highlight areas of emphasis for future human and animal model research therein.
Collapse
Affiliation(s)
- Jordan M Buck
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, USA
| | - Li Yu
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
| | - Valerie S Knopik
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, USA
| |
Collapse
|
7
|
Swaab DF, Wolff SEC, Bao AM. Sexual differentiation of the human hypothalamus: Relationship to gender identity and sexual orientation. HANDBOOK OF CLINICAL NEUROLOGY 2021; 181:427-443. [PMID: 34238476 DOI: 10.1016/b978-0-12-820683-6.00031-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gender identity (an individual's perception of being male or female) and sexual orientation (heterosexuality, homosexuality, or bisexuality) are programmed into our brain during early development. During the intrauterine period in the second half of pregnancy, a testosterone surge masculinizes the fetal male brain. If such a testosterone surge does not occur, this will result in a feminine brain. As sexual differentiation of the brain takes place at a much later stage in development than sexual differentiation of the genitals, these two processes can be influenced independently of each other and can result in gender dysphoria. Nature produces a great variability for all aspects of sexual differentiation of the brain. Mechanisms involved in sexual differentiation of the brain include hormones, genetics, epigenetics, endocrine disruptors, immune response, and self-organization. Furthermore, structural and functional differences in the hypothalamus relating to gender dysphoria and sexual orientation are described in this review. All the genetic, postmortem, and in vivo scanning observations support the neurobiological theory about the origin of gender dysphoria, i.e., it is the sizes of brain structures, the neuron numbers, the molecular composition, functions, and connectivity of brain structures that determine our gender identity or sexual orientation. There is no evidence that one's postnatal social environment plays a crucial role in the development of gender identity or sexual orientation.
Collapse
Affiliation(s)
- Dick F Swaab
- Department Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Samantha E C Wolff
- Department Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Ai-Min Bao
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
8
|
Land MA, Ramesh D, Miller AL, Pyles RB, Cunningham KA, Moeller FG, Anastasio NC. Methylation Patterns of the HTR2A Associate With Relapse-Related Behaviors in Cocaine-Dependent Participants. Front Psychiatry 2020; 11:532. [PMID: 32587535 PMCID: PMC7299072 DOI: 10.3389/fpsyt.2020.00532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/22/2020] [Indexed: 11/16/2022] Open
Abstract
Relapse during abstinence in cocaine use disorder (CUD) is often hastened by high impulsivity (predisposition toward rapid unplanned reactions to stimuli without regard to negative consequences) and high cue reactivity (e.g., attentional bias towards drug reward stimuli). A deeper understanding of the degree to which individual biological differences predict or promote problematic behaviors may afford opportunities for clinical refinement and optimization of CUD diagnostics and/or therapies. Preclinical evidence implicates serotonin (5-HT) neurotransmission through the 5-HT2A receptor (5-HT2AR) as a driver of individual differences in these relapse-related behaviors. Regulation of 5-HT2AR function occurs through many mechanisms, including DNA methylation of the HTR2A gene, an epigenetic modification linked with the memory of gene-environment interactions. In the present study, we tested the hypothesis that methylation of the HTR2A may associate with relapse-related behavioral vulnerability in cocaine-dependent participants versus healthy controls. Impulsivity was assessed by self-report (Barratt Impulsiveness Scale; BIS-11) and the delay discounting task, while levels of cue reactivity were determined by performance in the cocaine-word Stroop task. Genomic DNA was extracted from lymphocytes and the bisulfite-treated DNA was subjected to pyrosequencing to determine degree of methylation at four cytosine residues of the HTR2A promoter (-1439, -1420, -1224, -253). We found that the percent methylation at site -1224 after correction for age trended towards a positive correlation with total BIS-11 scores in cocaine users, but not healthy controls. Percent methylation at site -1420 negatively correlated with rates of delay discounting in healthy controls, but not cocaine users. Lastly, the percent methylation at site -253 positively correlated with attentional bias toward cocaine-associated cues. DNA methylation at these cytosine residues of the HTR2A promoter may be differentially associated with impulsivity or cocaine-associated environmental cues. Taken together, these data suggest that methylation of the HTR2A may contribute to individual differences in relapse-related behaviors in CUD.
Collapse
Affiliation(s)
- Michelle A. Land
- Center for Addiction Research, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Divya Ramesh
- Department of Psychiatry and Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, United States
| | - Aaron L. Miller
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Richard B. Pyles
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Kathryn A. Cunningham
- Center for Addiction Research, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - F. Gerard Moeller
- Department of Psychiatry and Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, United States
| | - Noelle C. Anastasio
- Center for Addiction Research, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
9
|
Buck JM, O'Neill HC, Stitzel JA. Developmental nicotine exposure engenders intergenerational downregulation and aberrant posttranslational modification of cardinal epigenetic factors in the frontal cortices, striata, and hippocampi of adolescent mice. Epigenetics Chromatin 2020; 13:13. [PMID: 32138755 PMCID: PMC7059320 DOI: 10.1186/s13072-020-00332-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/19/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Maternal smoking of traditional or electronic cigarettes during pregnancy, which constitutes developmental nicotine exposure (DNE), heightens the risk of neurodevelopmental disorders including ADHD, autism, and schizophrenia in children. Modeling the intergenerationally transmissible impacts of smoking during pregnancy, we previously demonstrated that both the first- and second-generation adolescent offspring of nicotine-exposed female mice exhibit enhanced nicotine preference, hyperactivity and risk-taking behaviors, aberrant rhythmicity of home cage activity, nicotinic acetylcholine receptor and dopamine transporter dysfunction, impaired furin-mediated proBDNF proteolysis, hypocorticosteronemia-related glucocorticoid receptor hypoactivity, and global DNA hypomethylation in the frontal cortices and striata. This ensemble of multigenerational DNE-induced behavioral, neuropharmacological, neurotrophic, neuroendocrine, and DNA methylomic anomalies recapitulates the pathosymptomatology of neurodevelopmental disorders such as ADHD, autism, and schizophrenia. Further probing the epigenetic bases of DNE-induced multigenerational phenotypic aberrations, the present study examined the expression and phosphorylation of key epigenetic factors via an array of immunoblot experiments. RESULTS Data indicate that DNE confers intergenerational deficits in corticostriatal DNA methyltransferase 3A (DNMT3A) expression accompanied by downregulation of methyl-CpG-binding protein 2 (MeCP2) and histone deacetylase 2 (HDAC2) in the frontal cortices and hippocampi, while the expression of ten-eleven translocase methylcytosine dioxygenase 2 (TET2) is unaltered. Moreover, DNE evokes multigenerational abnormalities in HDAC2 (Ser394) but not MeCP2 (Ser421) phosphorylation in the frontal cortices, striata, and hippocampi. CONCLUSIONS In light of the extensive gene regulatory roles of DNMT3A, MeCP2, and HDAC2, the findings of this study that DNE elicits downregulation and aberrant posttranslational modification of these factors in both first- and second-generation DNE mice suggest that epigenetic perturbations may constitute a mechanistic hub for the intergenerational transmission of DNE-induced neurodevelopmental disorder-like phenotypes.
Collapse
Affiliation(s)
- Jordan M Buck
- Institute for Behavioral Genetics, University of Colorado, 1480 30th Street, Boulder, CO, 80309-0447, USA.
- Department of Integrative Physiology, University of Colorado, Boulder, USA.
| | - Heidi C O'Neill
- Institute for Behavioral Genetics, University of Colorado, 1480 30th Street, Boulder, CO, 80309-0447, USA
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado, 1480 30th Street, Boulder, CO, 80309-0447, USA
- Department of Integrative Physiology, University of Colorado, Boulder, USA
| |
Collapse
|
10
|
Khalid M, Abdollahi M. Epigenetic modifications associated with pathophysiological effects of lead exposure. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2019; 37:235-287. [PMID: 31402779 DOI: 10.1080/10590501.2019.1640581] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lead (Pb) exposure during different stages of development has demonstrated dose, duration, sex, and tissue-specific pathophysiological outcomes due to altered epigenetic regulation via (a) DNA methylation, (b) histone modifications, (c) miRNAs, and (d) chromatin accessibility. Pb-induced alteration of epigenetic regulation causes neurotoxic and extra-neurotoxic pathophysiological outcomes. Neurotoxic effects of Pb include dysfunction of memory and learning, behavioral disorder, attention deficit hyperactivity disorder, autism spectrum disorder, aging, Alzheimer's disease, tauopathy, and neurodegeneration. Extra-neurotoxic effects of Pb include altered body weight, metabolic disorder, cardiovascular disorders, hematopoietic disorder, and reproductive impairment. Pb exposure either early in life or at any stage of development results in undesirable pathophysiological outcomes that tends to sustain and maintain for a lifetime.
Collapse
Affiliation(s)
- Madiha Khalid
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Bludau A, Royer M, Meister G, Neumann ID, Menon R. Epigenetic Regulation of the Social Brain. Trends Neurosci 2019; 42:471-484. [PMID: 31103351 DOI: 10.1016/j.tins.2019.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/17/2022]
Abstract
Social behavior, a highly adaptive and crucial component of mammalian life, is regulated by particularly sensitive regulatory brain mechanisms. Substantial evidence implicates classical epigenetic mechanisms including histone modifications, DNA methylation, and nucleosome remodeling as well as nonclassical mechanisms mediated by noncoding RNA in the regulation of social behavior. These mechanisms collectively form the 'epigenetic network' that orchestrates genomic integration of salient and transient social experiences. Consequently, its dysregulation has been linked to behavioral deficits and psychopathologies. This review focuses on the role of the epigenetic network in regulating the enduring effects of social experiences during early-life, adolescence, and adulthood. We discuss research in animal models, primarily rodents, and associations between dysregulation of epigenetic mechanisms and human psychopathologies, specifically autism spectrum disorder (ASD) and schizophrenia.
Collapse
Affiliation(s)
- Anna Bludau
- Department of Behavioral and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Melanie Royer
- Department of Behavioral and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany; Biochemistry Center Regensburg (BZR), Laboratory of RNA Biology, University of Regensburg, Regensburg, Germany
| | - Gunter Meister
- Biochemistry Center Regensburg (BZR), Laboratory of RNA Biology, University of Regensburg, Regensburg, Germany
| | - Inga D Neumann
- Department of Behavioral and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Rohit Menon
- Department of Behavioral and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
12
|
Lee LC, Su MT, Cho YC, Lee-Chen GJ, Yeh TK, Chang CY. Multiple epigenetic biomarkers for evaluation of students' academic performance. GENES BRAIN AND BEHAVIOR 2019; 18:e12559. [PMID: 30806012 DOI: 10.1111/gbb.12559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/18/2019] [Accepted: 02/07/2019] [Indexed: 11/28/2022]
Abstract
Several reports have shown that methyl CpG-binding protein 2 (MeCP2), brain-derived neurotrophic factor (BDNF), phospho-cAMP response element-binding protein (p-CREB) and microRNAs may be important in regulating academic performance because of their roles in neuropsychiatry and cognitive diseases. The first goal of this study was to explore the associations among MeCP2, BDNF, CREB and academic performance. This study also examined the pathway responsible for the effects of MeCP2, BDNF, p-CREB and microRNAs on academic performance. Scores from the basic competency test, an annual national competitive entrance examination, were used to evaluate academic performance. Subjects' plasma RNA was extracted and analyzed. This study determined that participants in the higher academic performance group had a significant difference in MECP2 mRNA expression compared with the lower academic performance group. We then used neuronal human derived neuroblastoma cell line (SH-SY5Y) cells with inducible MeCP2 expression from a second copy of the gene as a gain-of-function model and found that MeCP2 overexpression positively affected p-CREB and BDNF expression initially. After negative feedback, the p-CREB and BDNF levels subsequently decreased. In the neuronal phenotype examination, we found a significant reduction in total outgrowth and branches in MeCP2-induced cells compared with noninduced cells. This work describes pathways that may be responsible for the effects of MeCP2, BDNF, p-CREB and microRNAs on academic performance. These results may shed light on the development of promising clinical treatment strategies in the area of neuropsychological adjustment.
Collapse
Affiliation(s)
- Li-Ching Lee
- Science Education Center and Graduate Institute of Science Education, National Taiwan Normal University, Taipei, Taiwan
| | - Ming-Tsan Su
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ying-Chun Cho
- Science Education Center and Graduate Institute of Science Education, National Taiwan Normal University, Taipei, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ting-Kuang Yeh
- Science Education Center and Graduate Institute of Science Education, National Taiwan Normal University, Taipei, Taiwan.,Institute of Marine Environment Science and Technology, National Taiwan Normal University, Taipei, Taiwan.,Department of Earth Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chun-Yen Chang
- Science Education Center and Graduate Institute of Science Education, National Taiwan Normal University, Taipei, Taiwan.,Department of Earth Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
13
|
Childebayeva A, Jones TR, Goodrich JM, Leon-Velarde F, Rivera-Chira M, Kiyamu M, Brutsaert TD, Dolinoy DC, Bigham AW. LINE-1 and EPAS1 DNA methylation associations with high-altitude exposure. Epigenetics 2019; 14:1-15. [PMID: 30574831 DOI: 10.1080/15592294.2018.1561117] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent discoveries indicate a genetic basis for high-altitude adaptation among human groups who have resided at high altitude for millennia, including Andeans, Tibetans, and Ethiopians. Yet, genetics alone does not explain the extent of variation in altitude-adaptive phenotypes. Current and past environments may also play a role, and one way to determine the effect of the environment is through the epigenome. To characterize if Andean adaptive responses to high altitude have an epigenetic component, we analyzed DNA methylation of the promoter region of EPAS1 and LINE-1 repetitive element among 572 Quechua individuals from high- (4,388 m) and low-altitude (0 m) in Peru. Participants recruited at high altitude had lower EPAS1 DNA methylation and higher LINE-1 methylation. Altitude of birth was associated with higher LINE-1 methylation, not with EPAS1 methylation. The number of years lived at high altitude was negatively associated with EPAS1 methylation and positively associated with LINE-1 methylation. We found four one-carbon metabolism SNPs (MTHFD1 rs2236225, TYMS rs502396, FOLH1 rs202676, GLDC rs10975681) that cumulatively explained 11.29% of the variation in average LINE-1 methylation. And identified an association between LINE-1 methylation and genome-wide SNP principal component 1 that distinguishes European from Indigenous American ancestry suggesting that European admixture decreases LINE-1 methylation. Our results indicate that both current and lifetime exposure to high-altitude hypoxia have an effect on EPAS1 and LINE-1 methylation among Andean Quechua, suggesting that epigenetic modifications may play a role in high-altitude adaptation.
Collapse
Affiliation(s)
- Ainash Childebayeva
- a Department of Anthropology , University of Michigan , Ann Arbor , MI , USA.,b Department of Environmental Health Sciences , School of Public Health, University of Michigan , Ann Arbor , MI , USA
| | - Tamara R Jones
- b Department of Environmental Health Sciences , School of Public Health, University of Michigan , Ann Arbor , MI , USA
| | - Jaclyn M Goodrich
- b Department of Environmental Health Sciences , School of Public Health, University of Michigan , Ann Arbor , MI , USA
| | - Fabiola Leon-Velarde
- c Departamento de Ciencias Biológicas y Fisiológicas , Universidad Peruana Cayetano Heredia , Lima , Peru
| | - Maria Rivera-Chira
- c Departamento de Ciencias Biológicas y Fisiológicas , Universidad Peruana Cayetano Heredia , Lima , Peru
| | - Melisa Kiyamu
- c Departamento de Ciencias Biológicas y Fisiológicas , Universidad Peruana Cayetano Heredia , Lima , Peru
| | - Tom D Brutsaert
- d Department of Exercise Science , Syracuse University , Syracuse , NY , USA
| | - Dana C Dolinoy
- b Department of Environmental Health Sciences , School of Public Health, University of Michigan , Ann Arbor , MI , USA.,e Department of Nutritional Sciences , School of Public Health, University of Michigan , Ann Arbor , MI , USA
| | - Abigail W Bigham
- a Department of Anthropology , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
14
|
Alterations in the MicroRNA of the Blood of Autism Spectrum Disorder Patients: Effects on Epigenetic Regulation and Potential Biomarkers. Behav Sci (Basel) 2018; 8:bs8080075. [PMID: 30111726 PMCID: PMC6115946 DOI: 10.3390/bs8080075] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/31/2018] [Accepted: 08/11/2018] [Indexed: 12/27/2022] Open
Abstract
Aims: Autism spectrum disorder (ASD) refers to a group of heterogeneous brain-based neurodevelopmental disorders with different levels of symptom severity. Given the challenges, the clinical diagnosis of ASD is based on information gained from interviews with patients’ parents. The heterogeneous pathogenesis of this disorder appears to be driven by genetic and environmental interactions, which also plays a vital role in predisposing individuals to ASD with different commitment levels. In recent years, it has been proposed that epigenetic modifications directly contribute to the pathogenesis of several neurodevelopmental disorders, such as ASD. The microRNAs (miRNAs) comprises a species of short noncoding RNA that regulate gene expression post-transcriptionally and have an essential functional role in the brain, particularly in neuronal plasticity and neuronal development, and could be involved in ASD pathophysiology. The aim of this study is to evaluate the expression of blood miRNA in correlation with clinical findings in patients with ASD, and to find possible biomarkers for the disorder. Results: From a total of 26 miRNA studied, seven were significantly altered in ASD patients, when compared to the control group: miR34c-5p, miR92a-2-5p, miR-145-5p and miR199a-5p were up-regulated and miR27a-3p, miR19-b-1-5p and miR193a-5p were down-regulated in ASD patients. Discussion: The main targets of these miRNAs are involved in immunological developmental, immune response and protein synthesis at transcriptional and translational levels. The up-regulation of both miR-199a-5p and miR92a-2a and down-regulation of miR-193a and miR-27a was observed in AD patients, and may in turn affect the SIRT1, HDAC2, and PI3K/Akt-TSC:mTOR signaling pathways. Furthermore, MeCP2 is a target of miR-199a-5p, and is involved in Rett Syndrome (RTT), which possibly explains the autistic phenotype in male patients with this syndrome.
Collapse
|
15
|
Symmank J, Bayer C, Schmidt C, Hahn A, Pensold D, Zimmer-Bensch G. DNMT1 modulates interneuron morphology by regulating Pak6 expression through crosstalk with histone modifications. Epigenetics 2018; 13:536-556. [PMID: 29912614 DOI: 10.1080/15592294.2018.1475980] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Epigenetic mechanisms of gene regulation, including DNA methylation and histone modifications, call increasing attention in the context of development and human health. Thereby, interactions between DNA methylating enzymes and histone modifications tremendously multiply the spectrum of potential regulatory functions. Epigenetic networks are critically involved in the establishment and functionality of neuronal circuits that are composed of gamma-aminobutyric acid (GABA)-positive inhibitory interneurons and excitatory principal neurons in the cerebral cortex. We recently reported a crucial role of the DNA methyltransferase 1 (DNMT1) during the migration of immature POA-derived cortical interneurons by promoting the migratory morphology through repression of Pak6. However, the DNMT1-dependent regulation of Pak6 expression appeared to occur independently of direct DNA methylation. Here, we show that in addition to its DNA methylating activity, DNMT1 can act on gene transcription by modulating permissive H3K4 and repressive H3K27 trimethylation in developing inhibitory interneurons, similar to what was found in other cell types. In particular, the transcriptional control of Pak6, interactions of DNMT1 with the Polycomb-repressor complex 2 (PCR2) core enzyme EZH2, mediating repressive H3K27 trimethylations at regulatory regions of the Pak6 gene locus. Similar to what was observed upon Dnmt1 depletion, inhibition of EZH2 caused elevated Pak6 expression levels accompanied by increased morphological complexity, which was rescued by siRNA-mediated downregulation of Pak6 expression. Together, our data emphasise the relevance of DNMT1-dependent crosstalk with histone tail methylation for transcriptional control of genes like Pak6 required for proper cortical interneuron migration.
Collapse
Affiliation(s)
- Judit Symmank
- a Institute of Human Genetics , University Hospital Jena , Jena , Germany
| | - Cathrin Bayer
- a Institute of Human Genetics , University Hospital Jena , Jena , Germany
| | - Christiane Schmidt
- a Institute of Human Genetics , University Hospital Jena , Jena , Germany
| | - Anne Hahn
- a Institute of Human Genetics , University Hospital Jena , Jena , Germany
| | - Daniel Pensold
- a Institute of Human Genetics , University Hospital Jena , Jena , Germany
| | - Geraldine Zimmer-Bensch
- a Institute of Human Genetics , University Hospital Jena , Jena , Germany.,b Institute for Biology II , Division of Functional Epigenetics in the Animal Model, RWTH Aachen University , Aachen , Germany
| |
Collapse
|
16
|
Hadders-Algra M. Early human motor development: From variation to the ability to vary and adapt. Neurosci Biobehav Rev 2018; 90:411-427. [PMID: 29752957 DOI: 10.1016/j.neubiorev.2018.05.009] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/01/2018] [Accepted: 05/04/2018] [Indexed: 12/17/2022]
Abstract
This review summarizes early human motor development. From early fetal age motor behavior is based on spontaneous neural activity: activity of networks in the brainstem and spinal cord that is modulated by supraspinal activity. The supraspinal activity, first primarily brought about by the cortical subplate, later by the cortical plate, induces movement variation. Initially, movement variation especially serves exploration; its associated afferent information is primarily used to sculpt the developing nervous system, and less to adapt motor behavior. In the next phase, beginning at function-specific ages, movement variation starts to serve adaptation. In sucking and swallowing, this phase emerges shortly before term age. In speech, gross and fine motor development, it emerges from 3 to 4 months post-term onwards, i.e., when developmental focus in the primary sensory and motor cortices has shifted to the permanent cortical circuitries. With increasing age and increasing trial-and-error exploration, the infant improves its ability to use adaptive and efficicient forms of upright gross motor behavior, manual activities and vocalizations belonging to the native language.
Collapse
Affiliation(s)
- Mijna Hadders-Algra
- University of Groningen, University Medical Center Groningen, Dept. Pediatrics - Section Developmental Neurology, Groningen, The Netherlands.
| |
Collapse
|
17
|
Chen YC, Sudre G, Sharp W, Donovan F, Chandrasekharappa SC, Hansen N, Elnitski L, Shaw P. Neuroanatomic, epigenetic and genetic differences in monozygotic twins discordant for attention deficit hyperactivity disorder. Mol Psychiatry 2018; 23:683-690. [PMID: 28322272 PMCID: PMC5914518 DOI: 10.1038/mp.2017.45] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 01/10/2017] [Accepted: 01/17/2017] [Indexed: 12/18/2022]
Abstract
The study of monozygotic twins discordant for attention deficit hyperactivity disorder can elucidate mechanisms that contribute to the disorder, which affects ~7% of children. First, using in vivo neuroanatomic imaging on 14 pairs of monozygotic twins (mean age 9.7, s.d. 1.9 years), we found that discordance for the disorder is mirrored by differing dimensions of deep brain structures (the striatum and cerebellum), but not the cerebral cortex. Next, using whole-blood DNA from the same twins, we found a significant enrichment of epigenetic differences in genes expressed in these 'discordant' brain structures. Specifically, there is differential methylation of probes lying in the shore and shelf and enhancer regions of striatal and cerebellar genes. Notably, gene sets pertaining to the cerebral cortex (which did not differ in volume between affected and unaffected twins) were not enriched by differentially methylated probes. Genotypic differences between the twin pairs-such as copy number and rare, single-nucleotide variants-did not contribute to phenotypic discordance. Pathway analyses of the genes implicated by the most differentially methylated probes implicated γ-aminobutyric acid (GABA), dopamine and serotonin neurotransmitter systems. The study illustrates how neuroimaging can help guide the search for epigenomic mechanisms in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yun-Ching Chen
- Genomic Functional Analysis Section, Translational and Functional Genomics Branch, NHGRI/NIH, Bethesda
| | - Gustavo Sudre
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, NHGRI/NIH, Bethesda
| | - Wendy Sharp
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, NHGRI/NIH, Bethesda
| | - Frank Donovan
- Genomics Core and Cancer Genomics Unit, Cancer Genetics and Comparative Genomics Branch, NHGRI/NIH, Bethesda
| | | | | | - Laura Elnitski
- Genomic Functional Analysis Section, Translational and Functional Genomics Branch, NHGRI/NIH, Bethesda
| | - Philip Shaw
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, NHGRI/NIH, Bethesda
| |
Collapse
|
18
|
Szutorisz H, Hurd YL. High times for cannabis: Epigenetic imprint and its legacy on brain and behavior. Neurosci Biobehav Rev 2018; 85:93-101. [PMID: 28506926 PMCID: PMC5682234 DOI: 10.1016/j.neubiorev.2017.05.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/22/2022]
Abstract
Extensive debates continue regarding marijuana (Cannabis spp), the most commonly used illicit substance in many countries worldwide. There has been an exponential increase of cannabis studies over the past two decades but the drug's long-term effects still lack in-depth scientific data. The epigenome is a critical molecular machinery with the capacity to maintain persistent alterations of gene expression and behaviors induced by cannabinoids that have been observed across the individual's lifespan and even into the subsequent generation. Though mechanistic investigations regarding the consequences of developmental cannabis exposure remain sparse, human and animal studies have begun to reveal specific epigenetic disruptions in the brain and the periphery. In this article, we focus attention on long-term disturbances in epigenetic regulation in relation to prenatal, adolescent and parental germline cannabinoid exposure. Expanding knowledge about the protracted molecular memory could help to identify novel targets to develop preventive strategies and treatments for behaviors relevant to neuropsychiatric risks associated with developmental cannabis exposure.
Collapse
Affiliation(s)
- Henrietta Szutorisz
- Friedman Brain Institute, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yasmin L Hurd
- Friedman Brain Institute, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Addiction Institute at Mount Sinai, New York, NY, USA.
| |
Collapse
|
19
|
Wang Y, Liu X, Zhou L, Duong D, Bhuripanyo K, Zhao B, Zhou H, Liu R, Bi Y, Kiyokawa H, Yin J. Identifying the ubiquitination targets of E6AP by orthogonal ubiquitin transfer. Nat Commun 2017; 8:2232. [PMID: 29263404 PMCID: PMC5738348 DOI: 10.1038/s41467-017-01974-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 10/27/2017] [Indexed: 01/06/2023] Open
Abstract
E3 ubiquitin (UB) ligases are the ending modules of the E1–E2-E3 cascades that transfer UB to cellular proteins and regulate their biological functions. Identifying the substrates of an E3 holds the key to elucidate its role in cell regulation. Here, we construct an orthogonal UB transfer (OUT) cascade to identify the substrates of E6AP, a HECT E3 also known as Ube3a that is implicated in cancer and neurodevelopmental disorders. We use yeast cell surface display to engineer E6AP to exclusively transfer an affinity-tagged UB variant (xUB) to its substrate proteins. Proteomic identification of xUB-conjugated proteins in HEK293 cells affords 130 potential E6AP targets. Among them, we verify that MAPK1, CDK1, CDK4, PRMT5, β-catenin, and UbxD8 are directly ubiquitinated by E6AP in vitro and in the cell. Our work establishes OUT as an efficient platform to profile E3 substrates and reveal the cellular circuits mediated by the E3 enzymes. E3 ubiquitin ligases regulate biological functions by ubiquitinating defined substrate proteins but overlapping specificities complicate the identification of E3-substrate relationships. Here, the authors construct an orthogonal UB transfer cascade and identify specific substrates of the E3 enzyme E6AP.
Collapse
Affiliation(s)
- Yiyang Wang
- Department of Chemistry, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Xianpeng Liu
- Department of Pharmacology, Northwestern University, Chicago, IL, 60611, USA
| | - Li Zhou
- Department of Chemistry, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Duc Duong
- Integrated Proteomics Core, Emory University, Atlanta, GA, 30322, USA
| | - Karan Bhuripanyo
- Department of Chemistry, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30303, USA.,Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| | - Bo Zhao
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Han Zhou
- Department of Chemistry, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Ruochuan Liu
- Department of Chemistry, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Yingtao Bi
- Department of Preventive Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Hiroaki Kiyokawa
- Department of Pharmacology, Northwestern University, Chicago, IL, 60611, USA.
| | - Jun Yin
- Department of Chemistry, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
20
|
Growth Arrest and DNA-damage–inducible Protein 45β-mediated DNA Demethylation of Voltage-dependent T-type Calcium Channel 3.2 Subunit Enhances Neuropathic Allodynia after Nerve Injury in Rats. Anesthesiology 2017; 126:1077-1095. [DOI: 10.1097/aln.0000000000001610] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Abstract
Background
Growth arrest and DNA-damage–inducible protein 45β reactivates methylation-silenced neural plasticity-associated genes through DNA demethylation. However, growth arrest and DNA-damage–inducible protein 45β–dependent demethylation contributes to neuropathic allodynia-associated spinal plasticity remains unclear.
Methods
Adult male Sprague–Dawley rats (654 out of 659) received a spinal nerve ligation or a sham operation with or without intrathecal application of one of the following: growth arrest and DNA-damage–inducible protein 45β messenger RNA–targeted small interfering RNA, lentiviral vector expressing growth arrest and DNA-damage–inducible protein 45β, Ro 25–6981 (an NR2B-bearing N-methyl-d-aspartate receptor antagonist), or KN-93 (a calmodulin-dependent protein kinase II antagonist) were used for behavioral measurements, Western blotting, immunofluorescence, dot blots, detection of unmodified cytosine enrichment at cytosine-phosphate-guanine site, chromatin immunoprecipitation quantitative polymerase chain reaction analysis, and slice recordings.
Results
Nerve ligation-enhanced growth arrest and DNA-damage–inducible protein 45β expression (n = 6) in ipsilateral dorsal horn neurons accompanied with behavioral allodynia (n = 7). Focal knockdown of growth arrest and DNA-damage–inducible protein 45β expression attenuated ligation-induced allodynia (n = 7) by reducing the binding of growth arrest and DNA-damage–inducible protein 45β to the voltage-dependent T-type calcium channel 3.2 subunit promoter (n = 6) that decreased expression of and current mediated by the voltage-dependent T-type calcium channel 3.2 subunit (both n = 6). In addition, NR2B-bearing N-methyl-d-aspartate receptors and calmodulin-dependent protein kinase II act in an upstream cascade to increase growth arrest and DNA-damage–inducible protein 45β expression, hence enhancing demethylation at the voltage-dependent T-type calcium channel 3.2 subunit promoter and up-regulating voltage-dependent T-type calcium channel 3.2 subunit expression. Intrathecal administration of Ro 25–6981, KN-93, or a growth arrest and DNA-damage–inducible protein 45β–targeting small interfering RNA (n = 6) reversed the ligation-induced enrichment of unmodified cytosine at the voltage-dependent T-type calcium channel 3.2 subunit promoter by increasing the associated 5-formylcytosine and 5-carboxylcytosine levels.
Conclusions
By converting 5-formylcytosine or 5-carboxylcytosine to unmodified cytosine, the NR2B-bearing N-methyl-d-aspartate receptor, calmodulin-dependent protein kinase II, or growth arrest and DNA-damage–inducible protein 45β pathway facilitates voltage-dependent T-type calcium channel 3.2 subunit gene demethylation to mediate neuropathic allodynia.
Collapse
|
21
|
Pons-Espinal M, de Luca E, Marzi MJ, Beckervordersandforth R, Armirotti A, Nicassio F, Fabel K, Kempermann G, De Pietri Tonelli D. Synergic Functions of miRNAs Determine Neuronal Fate of Adult Neural Stem Cells. Stem Cell Reports 2017; 8:1046-1061. [PMID: 28330621 PMCID: PMC5390108 DOI: 10.1016/j.stemcr.2017.02.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 02/04/2023] Open
Abstract
Adult neurogenesis requires the precise control of neuronal versus astrocyte lineage determination in neural stem cells. While microRNAs (miRNAs) are critically involved in this step during development, their actions in adult hippocampal neural stem cells (aNSCs) has been unclear. As entry point to address that question we chose DICER, an endoribonuclease essential for miRNA biogenesis and other RNAi-related processes. By specific ablation of Dicer in aNSCs in vivo and in vitro, we demonstrate that miRNAs are required for the generation of new neurons, but not astrocytes, in the adult murine hippocampus. Moreover, we identify 11 miRNAs, of which 9 have not been previously characterized in neurogenesis, that determine neurogenic lineage fate choice of aNSCs at the expense of astrogliogenesis. Finally, we propose that the 11 miRNAs sustain adult hippocampal neurogenesis through synergistic modulation of 26 putative targets from different pathways. Dicer depletion in aNSCs impairs neurogenesis and stimulates astrogliogenesis Synergy of 11 miRNAs sustains neuronal fate of aNSCs miRNA converge on multiple targets in different pathways to induce neurogenesis
Collapse
Affiliation(s)
- Meritxell Pons-Espinal
- Neurobiology of miRNA Lab, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Emanuela de Luca
- Neurobiology of miRNA Lab, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Matteo Jacopo Marzi
- Center for Genomic Science, Istituto Italiano di Tecnologia, IFOM-IEO CAMPUS, Via Adamello 16, 20139 Milan, Italy
| | - Ruth Beckervordersandforth
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Andrea Armirotti
- D3 PharmaChemistry, Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Francesco Nicassio
- Center for Genomic Science, Istituto Italiano di Tecnologia, IFOM-IEO CAMPUS, Via Adamello 16, 20139 Milan, Italy
| | - Klaus Fabel
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Arnoldstraße 18/18b, 01307 Dresden, Germany; CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Arnoldstraße 18/18b, 01307 Dresden, Germany; CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Davide De Pietri Tonelli
- Neurobiology of miRNA Lab, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy.
| |
Collapse
|
22
|
Liu FG, Hu WF, Wang JL, Wang P, Gong Y, Tong LJ, Jiang B, Zhang W, Qin YB, Chen Z, Yang RR, Huang C. Z-Guggulsterone Produces Antidepressant-Like Effects in Mice through Activation of the BDNF Signaling Pathway. Int J Neuropsychopharmacol 2017; 20:485-497. [PMID: 28339691 PMCID: PMC5458345 DOI: 10.1093/ijnp/pyx009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/17/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Z-guggulsterone, an active compound extracted from the gum resin of the tree Commiphora mukul, has been shown to improve animal memory deficits via activating the brain-derived neurotrophic factor signaling pathway. Here, we investigated the antidepressant-like effect of Z-guggulsterone in a chronic unpredictable stress mouse model of depression. METHODS The effects of Z-guggulsterone were assessed in mice with the tail suspension test and forced swimming test. Z-guggulsterone was also investigated in the chronic unpredictable stress model of depression with fluoxetine as the positive control. Changes in hippocampal neurogenesis as well as the brain-derived neurotrophic factor signaling pathway after chronic unpredictable stress/Z-guggulsterone treatment were investigated. The tryptophan hydroxylase inhibitor and the tyrosine kinase B inhibitor were also used to explore the antidepressant-like mechanisms of Z-guggulsterone. RESULTS Z-guggulsterone (10, 30 mg/kg) administration protected the mice against the chronic unpredictable stress-induced increases in the immobile time in the tail suspension test and forced swimming test and also reversed the reduction in sucrose intake in sucrose preference experiment. Z-guggulsterone (10, 30 mg/kg) administration prevented the reductions in brain-derived neurotrophic factor protein expression levels as well as the phosphorylation levels of cAMP response element binding protein, extracellular signal-regulated kinase 1/2, and protein kinase B in the hippocampus and cortex induced by chronic unpredictable stress. Z-guggulsterone (10, 30 mg/kg) treatment also improved hippocampal neurogenesis in chronic unpredictable stress-treated mice. Blockade of the brain-derived neurotrophic factor signal, but not the monoaminergic system, attenuated the antidepressant-like effects of Z-guggulsterone. CONCLUSIONS Z-guggulsterone exhibits antidepressant activity via activation of the brain-derived neurotrophic factor signaling pathway and upregulation of hippocampal neurogenesis.
Collapse
Affiliation(s)
- Feng-Guo Liu
- Department of Neurology, Danyang People’s Hospital, Danyang, Jiangsu, China (Mr Liu); Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Drs Qin and Yang); Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Tong, Jiang, and Zhang); Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Gong, Tong, Jiang, and Zhang); Invasive Technology Department, Nantong First People’s Hospital, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Dr Chen)
| | - Wen-Feng Hu
- Department of Neurology, Danyang People’s Hospital, Danyang, Jiangsu, China (Mr Liu); Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Drs Qin and Yang); Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Tong, Jiang, and Zhang); Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Gong, Tong, Jiang, and Zhang); Invasive Technology Department, Nantong First People’s Hospital, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Dr Chen)
| | - Ji-Li Wang
- Department of Neurology, Danyang People’s Hospital, Danyang, Jiangsu, China (Mr Liu); Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Drs Qin and Yang); Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Tong, Jiang, and Zhang); Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Gong, Tong, Jiang, and Zhang); Invasive Technology Department, Nantong First People’s Hospital, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Dr Chen)
| | - Peng Wang
- Department of Neurology, Danyang People’s Hospital, Danyang, Jiangsu, China (Mr Liu); Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Drs Qin and Yang); Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Tong, Jiang, and Zhang); Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Gong, Tong, Jiang, and Zhang); Invasive Technology Department, Nantong First People’s Hospital, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Dr Chen)
| | - Yu Gong
- Department of Neurology, Danyang People’s Hospital, Danyang, Jiangsu, China (Mr Liu); Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Drs Qin and Yang); Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Tong, Jiang, and Zhang); Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Gong, Tong, Jiang, and Zhang); Invasive Technology Department, Nantong First People’s Hospital, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Dr Chen)
| | - Li-Juan Tong
- Department of Neurology, Danyang People’s Hospital, Danyang, Jiangsu, China (Mr Liu); Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Drs Qin and Yang); Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Tong, Jiang, and Zhang); Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Gong, Tong, Jiang, and Zhang); Invasive Technology Department, Nantong First People’s Hospital, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Dr Chen)
| | - Bo Jiang
- Department of Neurology, Danyang People’s Hospital, Danyang, Jiangsu, China (Mr Liu); Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Drs Qin and Yang); Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Tong, Jiang, and Zhang); Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Gong, Tong, Jiang, and Zhang); Invasive Technology Department, Nantong First People’s Hospital, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Dr Chen)
| | - Wei Zhang
- Department of Neurology, Danyang People’s Hospital, Danyang, Jiangsu, China (Mr Liu); Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Drs Qin and Yang); Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Tong, Jiang, and Zhang); Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Gong, Tong, Jiang, and Zhang); Invasive Technology Department, Nantong First People’s Hospital, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Dr Chen)
| | - Yi-Bin Qin
- Department of Neurology, Danyang People’s Hospital, Danyang, Jiangsu, China (Mr Liu); Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Drs Qin and Yang); Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Tong, Jiang, and Zhang); Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Gong, Tong, Jiang, and Zhang); Invasive Technology Department, Nantong First People’s Hospital, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Dr Chen)
| | - Zhuo Chen
- Department of Neurology, Danyang People’s Hospital, Danyang, Jiangsu, China (Mr Liu); Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Drs Qin and Yang); Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Tong, Jiang, and Zhang); Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Gong, Tong, Jiang, and Zhang); Invasive Technology Department, Nantong First People’s Hospital, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Dr Chen)
| | - Rong-Rong Yang
- Department of Neurology, Danyang People’s Hospital, Danyang, Jiangsu, China (Mr Liu); Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Drs Qin and Yang); Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Tong, Jiang, and Zhang); Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Gong, Tong, Jiang, and Zhang); Invasive Technology Department, Nantong First People’s Hospital, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Dr Chen)
| | - Chao Huang
- Department of Neurology, Danyang People’s Hospital, Danyang, Jiangsu, China (Mr Liu); Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Drs Qin and Yang); Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Tong, Jiang, and Zhang); Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China (Drs Huang, Hu, J.-L. Wang, P. Wang, Gong, Tong, Jiang, and Zhang); Invasive Technology Department, Nantong First People’s Hospital, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (Dr Chen)
| |
Collapse
|
23
|
Abstract
The limited regenerative capacity of neuronal cells requires tight orchestration of cell death and survival regulation in the context of longevity, age-associated diseases as well as during the development of the nervous system. Subordinate to genetic networks epigenetic mechanisms like DNA methylation and histone modifications are involved in the regulation of neuronal development, function and aging. DNA methylation by DNA methyltransferases (DNMTs), mostly correlated with gene silencing, is a dynamic and reversible process. In addition to their canonical actions performing cytosine methylation, DNMTs influence gene expression by interactions with histone modifying enzymes or complexes increasing the complexity of epigenetic transcriptional networks. DNMTs are expressed in neuronal progenitors, post-mitotic as well as adult neurons. In this review, we discuss the role and mode of actions of DNMTs including downstream networks in the regulation of neuronal survival in the developing and aging nervous system and its relevance for associated disorders.
Collapse
Affiliation(s)
- Judit Symmank
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Geraldine Zimmer
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| |
Collapse
|
24
|
Gigek CO, Chen ES, Smith MAC. Methyl-CpG-Binding Protein (MBD) Family: Epigenomic Read-Outs Functions and Roles in Tumorigenesis and Psychiatric Diseases. J Cell Biochem 2016. [PMID: 26205787 DOI: 10.1002/jcb.25281] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epigenetics is the study of the heritable changes on gene expression that are responsible for the regulation of development and that have an impact on several diseases. However, it is of equal importance to understand how epigenetic machinery works. DNA methylation is the most studied epigenetic mark and is generally associated with the regulation of gene expression through the repression of promoter activity and by affecting genome stability. Therefore, the ability of the cell to interpret correct methylation marks and/or the correct interpretation of methylation plays a role in many diseases. The major family of proteins that bind methylated DNA is the methyl-CpG binding domain proteins, or the MBDs. Here, we discuss the structure that makes these proteins a family, the main functions and interactions of all protein family members and their role in human disease such as psychiatric disorders and cancer.
Collapse
Affiliation(s)
- Carolina Oliveira Gigek
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitão da Cunha, 1, ° andar, CEP 04023-900, São Paulo, SP, Brazil.,Disciplina de Gastroenterologia Cirúrgica, Departamento de Cirurgia, Universidade Federal de São Paulo (UNIFESP), R. Napoleão de Barros, 715, 2º andar, CEP:04024-002, São Paulo, Brazil
| | - Elizabeth Suchi Chen
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitão da Cunha, 1, ° andar, CEP 04023-900, São Paulo, SP, Brazil
| | - Marilia Arruda Cardoso Smith
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitão da Cunha, 1, ° andar, CEP 04023-900, São Paulo, SP, Brazil
| |
Collapse
|
25
|
Gupta T, Morgan HR, Bailey JA, Certel SJ. Functional conservation of MBD proteins: MeCP2 and Drosophila MBD proteins alter sleep. GENES BRAIN AND BEHAVIOR 2016; 15:757-774. [PMID: 27489246 DOI: 10.1111/gbb.12314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 01/01/2023]
Abstract
Proteins containing a methyl-CpG-binding domain (MBD) bind 5mC and convert the methylation pattern information into appropriate functional cellular states. The correct readout of epigenetic marks is of particular importance in the nervous system where abnormal expression or compromised MBD protein function, can lead to disease and developmental disorders. Recent evidence indicates that the genome of Drosophila melanogaster is methylated and two MBD proteins, dMBD2/3 and dMBD-R2, are present. Are Drosophila MBD proteins required for neuronal function, and as MBD-containing proteins have diverged and evolved, does the MBD domain retain the molecular properties required for conserved cellular function across species? To address these questions, we expressed the human MBD-containing protein, hMeCP2, in distinct amine neurons and quantified functional changes in sleep circuitry output using a high throughput assay in Drosophila. hMeCP2 expression resulted in phase-specific sleep loss and sleep fragmentation with the hMeCP2-mediated sleep deficits requiring an intact MBD domain. Reducing endogenous dMBD2/3 and dMBD-R2 levels also generated sleep fragmentation, with an increase in sleep occurring upon dMBD-R2 reduction. To examine if hMeCP2 and dMBD-R2 are targeting common neuronal functions, we reduced dMBD-R2 levels in combination with hMeCP2 expression and observed a complete rescue of sleep deficits. Furthermore, chromosomal binding experiments indicate MBD-R2 and MeCP2 associate on shared genomic loci. Our results provide the first demonstration that Drosophila MBD-containing family members are required for neuronal function and suggest that the MBD domain retains considerable functional conservation at the whole organism level across species.
Collapse
Affiliation(s)
- T Gupta
- Neuroscience Graduate Program
| | - H R Morgan
- Division of Biological Sciences and Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT, USA
| | - J A Bailey
- Division of Biological Sciences and Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT, USA
| | - S J Certel
- Neuroscience Graduate Program.,Division of Biological Sciences and Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT, USA
| |
Collapse
|
26
|
Bueno D, Garcia-Fernàndez J. Evolutionary development of embryonic cerebrospinal fluid composition and regulation: an open research field with implications for brain development and function. Fluids Barriers CNS 2016; 13:5. [PMID: 26979569 PMCID: PMC4793645 DOI: 10.1186/s12987-016-0029-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/10/2016] [Indexed: 12/29/2022] Open
Abstract
Within the consolidated field of evolutionary development, there is emerging research on evolutionary aspects of central nervous system development and its implications for adult brain structure and function, including behaviour. The central nervous system is one of the most intriguing systems in complex metazoans, as it controls all body and mind functions. Its failure is responsible for a number of severe and largely incurable diseases, including neurological and neurodegenerative ones. Moreover, the evolution of the nervous system is thought to be a critical step in the adaptive radiation of vertebrates. Brain formation is initiated early during development. Most embryological, genetic and evolutionary studies have focused on brain neurogenesis and regionalisation, including the formation and function of organising centres, and the comparison of homolog gene expression and function among model organisms from different taxa. The architecture of the vertebrate brain primordium also reveals the existence of connected internal cavities, the cephalic vesicles, which in fetuses and adults become the ventricular system of the brain. During embryonic and fetal development, brain cavities and ventricles are filled with a complex, protein-rich fluid called cerebrospinal fluid (CSF). However, CSF has not been widely analysed from either an embryological or evolutionary perspective. Recently, it has been demonstrated in higher vertebrates that embryonic cerebrospinal fluid has key functions in delivering diffusible signals and nutrients to the developing brain, thus contributing to the proliferation, differentiation and survival of neural progenitor cells, and to the expansion and patterning of the brain. Moreover, it has been shown that the composition and homeostasis of CSF are tightly controlled in a time-dependent manner from the closure of the anterior neuropore, just before the initiation of primary neurogenesis, up to the formation of functional choroid plexuses. In this review, we draw together existing literature about the formation, function and homeostatic regulation of embryonic cerebrospinal fluid, from the closure of the anterior neuropore to the formation of functional fetal choroid plexuses, from an evolutionary perspective. The relevance of these processes to the normal functions and diseases of adult brain will also be discussed.
Collapse
Affiliation(s)
- David Bueno
- Department of Genetics, Microbiology and Statistics, Unit of Biomedical, Evolutionary and Developmental Genetics, Faculty of Biological Sciences, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain.
| | - Jordi Garcia-Fernàndez
- Department of Genetics, Microbiology and Statistics, Unit of Biomedical, Evolutionary and Developmental Genetics, Faculty of Biological Sciences, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain
| |
Collapse
|
27
|
Gene-Stress-Epigenetic Regulation of FKBP5: Clinical and Translational Implications. Neuropsychopharmacology 2016; 41:261-74. [PMID: 26250598 PMCID: PMC4677131 DOI: 10.1038/npp.2015.235] [Citation(s) in RCA: 391] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 12/13/2022]
Abstract
Stress responses and related outcomes vary markedly across individuals. Elucidating the molecular underpinnings of this variability is of great relevance for developing individualized prevention strategies and treatments for stress-related disorders. An important modulator of stress responses is the FK506-binding protein 51 (FKBP5/FKBP51). FKBP5 acts as a co-chaperone that modulates not only glucocorticoid receptor activity in response to stressors but also a multitude of other cellular processes in both the brain and periphery. Notably, the FKBP5 gene is regulated via complex interactions among environmental stressors, FKBP5 genetic variants, and epigenetic modifications of glucocorticoid-responsive genomic sites. These interactions can result in FKBP5 disinhibition that has been shown to contribute to a number of aberrant phenotypes in both rodents and humans. Consequently, FKBP5 blockade may hold promise as treatment intervention for stress-related disorders, and recently developed selective FKBP5 blockers show encouraging results in vitro and in rodent models. Although risk for stress-related disorders is conferred by multiple environmental and genetic factors, the findings related to FKBP5 illustrate how a deeper understanding of the molecular and systemic mechanisms underlying specific gene-environment interactions may provide insights into the pathogenesis of stress-related disorders.
Collapse
|
28
|
Autism-Like Behavior and Epigenetic Changes Associated with Autism as Consequences of In Utero Exposure to Environmental Pollutants in a Mouse Model. Behav Neurol 2015; 2015:426263. [PMID: 26586927 PMCID: PMC4637446 DOI: 10.1155/2015/426263] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/01/2015] [Accepted: 10/01/2015] [Indexed: 12/31/2022] Open
Abstract
We tested the hypothesis that in utero exposure to heavy metals increases autism-like behavioral phenotypes in adult animals and induces epigenetic changes in genes that have roles in the etiology of autism. Mouse dams were treated with cadmium, lead, arsenate, manganese, and mercury via drinking water from gestational days (E) 1–10. Valproic acid (VPA) injected intraperitoneally once on (E) 8.5 served as a positive control. Young male offspring were tested for behavioral deficits using four standardized behavioral assays. In this study, in utero exposure to heavy metals resulted in multiple behavioral abnormalities that persisted into adulthood. VPA and manganese induced changes in perseverative/impulsive behavior and social dominance behavior, arsenic caused changes only in perseverative/impulsive behavior, and lead induced abnormalities in social interaction in comparison to the control animals. Brain samples from Mn, Pb, and VPA treated and control animals were evaluated for changes in CpG island methylation in promoter regions and associated changes in gene expression. The Chd7 gene, essential for neural crest cell migration and patterning, was found to be hypomethylated in each experimental animal tested compared to water-treated controls. Furthermore, distinct patterns of CpG island methylation yielded novel candidate genes for further investigation.
Collapse
|
29
|
Hitchcock LN, Lattal KM. Histone-mediated epigenetics in addiction. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 128:51-87. [PMID: 25410541 DOI: 10.1016/b978-0-12-800977-2.00003-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many of the brain regions, neurotransmitter systems, and behavioral changes that occur after occasional drug use in healthy subjects and after chronic drug abuse in addicted patients are well characterized. An emerging literature suggests that epigenetic processes, those processes that regulate the accessibility of DNA to regulatory proteins within the nucleus, are keys to how addiction develops and how it may be treated. Investigations of the regulation of chromatin, the organizational system of DNA, by histone modification are leading to a new understanding of the cellular and behavioral alterations that occur after drug use. We will describe how, when, and where histone tails are modified and how some of the most recognized histone regulation patterns are involved in the cycle of addiction, including initial and chronic drug intake, withdrawal, abstinence, and relapse. Finally, we consider how an approach that targets histone modifications may promote successful treatment.
Collapse
Affiliation(s)
- Leah N Hitchcock
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
30
|
Wu MV, Sahay A, Duman RS, Hen R. Functional differentiation of adult-born neurons along the septotemporal axis of the dentate gyrus. Cold Spring Harb Perspect Biol 2015; 7:a018978. [PMID: 26238355 DOI: 10.1101/cshperspect.a018978] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Over the past several decades, the proliferation and integration of adult-born neurons into existing hippocampal circuitry has been implicated in a wide range of behaviors, including novelty recognition, pattern separation, spatial learning, anxiety behaviors, and antidepressant response. In this review, we suggest that the diversity in behavioral requirements for new neurons may be partly caused by separate functional roles of individual neurogenic niches. Growing evidence shows that the hippocampal formation can be compartmentalized not only along the classic trisynaptic circuit, but also along a longitudinal septotemporal axis. We suggest that subpopulations of hippocampal adult-born neurons may be specialized for distinct mnemonic- or mood-related behavioral tasks. We will examine the literature supporting a functional and anatomical dissociation of the hippocampus along the longitudinal axis and discuss techniques to functionally dissect the roles of adult-born hippocampal neurons in these distinct subregions.
Collapse
Affiliation(s)
- Melody V Wu
- Department of Psychiatry, Columbia University, New York, New York 10027 Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York 10032
| | - Amar Sahay
- Center for Regenerative Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts 02114 Harvard Stem Cell Institute and Harvard Medical School, Boston, Massachusetts 02115
| | - Ronald S Duman
- Department of Psychiatry, Yale University, New Haven, Connecticut 06520 Department of Neurobiology, Yale University, New Haven, Connecticut 06520
| | - René Hen
- Department of Psychiatry, Columbia University, New York, New York 10027 Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York 10032 Department of Neuroscience, Columbia University, New York, New York 10027 Department of Pharmacology, Columbia University, New York, New York 10027
| |
Collapse
|
31
|
Su M, Hong J, Zhao Y, Liu S, Xue X. MeCP2 controls hippocampal brain-derived neurotrophic factor expression via homeostatic interactions with microRNA‑132 in rats with depression. Mol Med Rep 2015; 12:5399-406. [PMID: 26239616 DOI: 10.3892/mmr.2015.4104] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 06/03/2015] [Indexed: 11/06/2022] Open
Abstract
Major depressive disorder (MDD) is a considerable public health concern, which affects patients worldwide. MDD is associated with psychosocial impairment, poor quality of life, and significant disability, morbidity and mortality. Stress is a major factor in depression, which impairs the structural and functional plasticity of the hippocampus. Previous studies have demonstrated that chronic unpredictable mild stress is able to downregulate the expression of brain‑derived neurotrophic factor (BDNF) and methyl‑CpG‑binding protein 2 (MeCP2), and alter the expression levels of certain microRNAs (miR). The aim of the present study was to investigate the regulatory association between BDNF, MeCP2 and miR-132 in an animal model of chronic stress‑induced depression. ELISA, western blot and qPCR were used to detect the expression levels of BDNF, MeCP2 and miR-132 in the peripheral blood samples of patients with MDD and in the hippocampi of depressed animals. In addition, a dual luciferase reporter gene system was used to determine whether miR-132 directly targets BDNF or MeCP2. The present study demonstrated that, as compared with normal subjects, miR‑132 expression was increased in the peripheral blood samples of patients with MDD, whereas the expression of MeCP2 and BDNF was decreased; thus, the expression levels of MeCP2 and BDNF were negatively correlated with those of miR‑132. In addition, in an animal model of chronic stress‑induced depression, increased expression levels of miR‑132, and decreased levels of MeCP2 and BDNF were detected in the hippocampi. Furthermore, knockdown of MeCP2 expression in primary hippocampal neurons increased the expression of miR‑132 and decreased the expression levels of BDNF. The results of the present study demonstrated that miR‑132 may directly target MeCP2, but not BDNF, and control its expression at the transcriptional and translational level. miR‑132 was also shown to negatively regulate BDNF expression. The reduced expression levels of BDNF, as induced by MeCP2 knockdown, were enhanced by miR‑132 mimics, and were rescued by miR‑132 inhibitors. These results suggested that homeostatic interactions between MeCP2 and miR‑132 may regulate hippocampal BDNF levels, which may have a role in the pathogenesis of MDD.
Collapse
Affiliation(s)
- Meilei Su
- Department of Psychology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jun Hong
- Department of Psychology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yongzhi Zhao
- Department of Psychology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shuai Liu
- Department of Psychology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiang Xue
- Department of Psychology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
32
|
In Pursuit of New Imprinting Syndromes by Epimutation Screening in Idiopathic Neurodevelopmental Disorder Patients. BIOMED RESEARCH INTERNATIONAL 2015; 2015:341986. [PMID: 26106604 PMCID: PMC4461700 DOI: 10.1155/2015/341986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 05/04/2015] [Accepted: 05/11/2015] [Indexed: 12/19/2022]
Abstract
Alterations of epigenetic mechanisms, and more specifically imprinting modifications, could be responsible of neurodevelopmental disorders such as intellectual disability (ID) or autism together with other associated clinical features in many cases. Currently only eight imprinting syndromes are defined in spite of the fact that more than 200 genes are known or predicted to be imprinted. Recent publications point out that some epimutations which cause imprinting disorders may affect simultaneously different imprinted loci, suggesting that DNA-methylation may have been altered more globally. Therefore, we hypothesised that the detection of altered methylation patterns in known imprinting loci will indirectly allow identifying new syndromes due to epimutations among patients with unexplained ID. In a screening for imprinting alterations in 412 patients with syndromic ID/autism we found five patients with altered methylation in the four genes studied: MEG3, H19, KCNQ1OT1, and SNRPN. Remarkably, the cases with partial loss of methylation in KCNQ1OT1 and SNRPN present clinical features different to those associated with the corresponding imprinting syndromes, suggesting a multilocus methylation defect in accordance with our initial hypothesis. Consequently, our results are a proof of concept that the identification of epimutations in known loci in patients with clinical features different from those associated with known syndromes will eventually lead to the definition of new imprinting disorders.
Collapse
|
33
|
Love CE, Prince VE. Rest represses maturation within migrating facial branchiomotor neurons. Dev Biol 2015; 401:220-35. [PMID: 25769695 DOI: 10.1016/j.ydbio.2015.02.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/04/2015] [Accepted: 02/28/2015] [Indexed: 10/23/2022]
Abstract
The vertebrate brain arises from the complex organization of millions of neurons. Neurogenesis encompasses not only cell fate specification from neural stem cells, but also the terminal molecular and morphological maturation of neurons at correct positions within the brain. RE1-silencing transcription factor (Rest) is expressed in non-neural tissues and neuronal progenitors where it inhibits the terminal maturation of neurons by repressing hundreds of neuron-specific genes. Here we show that Rest repression of maturation is intimately linked with the migratory capability of zebrafish facial branchiomotor neurons (FBMNs), which undergo a characteristic tangential migration from hindbrain rhombomere (r) 4 to r6/r7 during development. We establish that FBMN migration is increasingly disrupted as Rest is depleted in zebrafish rest mutant embryos, such that around two-thirds of FBMNs fail to complete migration in mutants depleted of both maternal and zygotic Rest. Although Rest is broadly expressed, we show that de-repression or activation of Rest target genes only within FBMNs is sufficient to disrupt their migration. We demonstrate that this migration defect is due to precocious maturation of FBMNs, based on both morphological and molecular criteria. We further show that the Rest target gene and alternative splicing factor srrm4 is a key downstream regulator of maturation; Srrm4 knockdown partially restores the ability of FBMNs to migrate in rest mutants while preventing their precocious morphological maturation. Rest must localize to the nucleus to repress its targets, and its subcellular localization is highly regulated: we show that targeting Rest specifically to FBMN nuclei rescues FBMN migration in Rest-deficient embryos. We conclude that Rest functions in FBMN nuclei to inhibit maturation until the neurons complete their migration.
Collapse
Affiliation(s)
- Crystal E Love
- Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60615, USA
| | - Victoria E Prince
- Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60615, USA; Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
34
|
Dempster EL, Wong CC, Lester KJ, Burrage J, Gregory AM, Mill J, Eley TC. Genome-wide methylomic analysis of monozygotic twins discordant for adolescent depression. Biol Psychiatry 2014; 76:977-83. [PMID: 24929637 PMCID: PMC4252163 DOI: 10.1016/j.biopsych.2014.04.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/14/2014] [Accepted: 04/13/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND Adolescent depression is a common neuropsychiatric disorder that often continues into adulthood and is associated with a wide range of poor outcomes including suicide. Although numerous studies have looked at genetic markers associated with depression, the role of epigenetic variation remains relatively unexplored. METHODS Monozygotic (MZ) twins were selected from an adolescent twin study designed to investigate the interplay of genetic and environmental factors in the development of emotional and behavioral difficulties. There were 18 pairs of MZ twins identified in which one member scored consistently higher (group mean within the clinically significant range) on self-rated depression than the other. We assessed genome-wide patterns of DNA methylation in twin buccal cell DNA using the Infinium HumanMethylation450 BeadChip from Illumina. Quality control and data preprocessing was undertaken using the wateRmelon package. Differentially methylated probes (DMPs) were identified using an analysis strategy taking into account both the significance and the magnitude of DNA methylation differences. The top differentially methylated DMP was successfully validated by bisulfite-pyrosequencing, and identified DMPs were tested in postmortem brain samples obtained from patients with major depressive disorder (n = 14) and matched control subjects (n = 15). RESULTS Two reproducible depression-associated DMPs were identified, including the top-ranked DMP that was located within STK32C, which encodes a serine/threonine kinase, of unknown function. CONCLUSIONS Our data indicate that DNA methylation differences are apparent in MZ twins discordant for adolescent depression and that some of the disease-associated variation observed in buccal cell DNA is mirrored in adult brain tissue obtained from individuals with clinical depression.
Collapse
Affiliation(s)
- Emma L. Dempster
- University of Exeter Medical School, Exeter University, Exeter,Address correspondence to Emma L. Dempster, Ph.D., University of Exeter Medical School, Exeter University, RILD-Medical Research, Level 4, Royal Devon and Exeter Hospital, Barrack Rd, Exeter EX2 5DW, United Kingdom
| | - Chloe C.Y. Wong
- Social Genetic Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London
| | - Kathryn J. Lester
- Social Genetic Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London
| | - Joe Burrage
- University of Exeter Medical School, Exeter University, Exeter
| | - Alice M. Gregory
- Department of Psychology, Goldsmiths, University of London, London, United Kingdom
| | - Jonathan Mill
- University of Exeter Medical School, Exeter University, Exeter,Social Genetic Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London
| | - Thalia C. Eley
- Social Genetic Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London
| |
Collapse
|
35
|
Berbel P, Navarro D, Román GC. An evo-devo approach to thyroid hormones in cerebral and cerebellar cortical development: etiological implications for autism. Front Endocrinol (Lausanne) 2014; 5:146. [PMID: 25250016 PMCID: PMC4158880 DOI: 10.3389/fendo.2014.00146] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 08/25/2014] [Indexed: 12/11/2022] Open
Abstract
The morphological alterations of cortical lamination observed in mouse models of developmental hypothyroidism prompted the recognition that these experimental changes resembled the brain lesions of children with autism; this led to recent studies showing that maternal thyroid hormone deficiency increases fourfold the risk of autism spectrum disorders (ASD), offering for the first time the possibility of prevention of some forms of ASD. For ethical reasons, the role of thyroid hormones on brain development is currently studied using animal models, usually mice and rats. Although mammals have in common many basic developmental principles regulating brain development, as well as fundamental basic mechanisms that are controlled by similar metabolic pathway activated genes, there are also important differences. For instance, the rodent cerebral cortex is basically a primary cortex, whereas the primary sensory areas in humans account for a very small surface in the cerebral cortex when compared to the associative and frontal areas that are more extensive. Associative and frontal areas in humans are involved in many neurological disorders, including ASD, attention deficit-hyperactive disorder, and dyslexia, among others. Therefore, an evo-devo approach to neocortical evolution among species is fundamental to understand not only the role of thyroid hormones and environmental thyroid disruptors on evolution, development, and organization of the cerebral cortex in mammals but also their role in neurological diseases associated to thyroid dysfunction.
Collapse
Affiliation(s)
- Pere Berbel
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel Hernández, Alicante, Spain
| | - Daniela Navarro
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel Hernández, Alicante, Spain
| | - Gustavo C. Román
- Department of Neurology, Weill Cornell Medical College, Cornell University, New York, NY, USA
- Methodist Neurological Institute, Houston, TX, USA
| |
Collapse
|
36
|
Hodgson NW, Waly MI, Al-Farsi YM, Al-Sharbati MM, Al-Farsi O, Ali A, Ouhtit A, Zang T, Zhou ZS, Deth RC. Decreased glutathione and elevated hair mercury levels are associated with nutritional deficiency-based autism in Oman. Exp Biol Med (Maywood) 2014; 239:697-706. [DOI: 10.1177/1535370214527900] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Genetic, nutrition, and environmental factors have each been implicated as sources of risk for autism. Oxidative stress, including low plasma levels of the antioxidant glutathione, has been reported by numerous autism studies, which can disrupt methylation-dependent epigenetic regulation of gene expression with neurodevelopmental consequences. We investigated the status of redox and methylation metabolites, as well as the level of protein homocysteinylation and hair mercury levels, in autistic and neurotypical control Omani children, who were previously shown to exhibit significant nutritional deficiencies in serum folate and vitamin B12. The serum level of glutathione in autistic subjects was significantly below control levels, while levels of homocysteine and S-adenosylhomocysteine were elevated, indicative of oxidative stress and decreased methionine synthase activity. Autistic males had lower glutathione and higher homocysteine levels than females, while homocysteinylation of serum proteins was increased in autistic males but not females. Mercury levels were markedly elevated in the hair of autistic subjects vs. control subjects, consistent with the importance of glutathione for its elimination. Thus, autism in Oman is associated with decreased antioxidant resources and decreased methylation capacity, in conjunction with elevated hair levels of mercury.
Collapse
Affiliation(s)
- Nathaniel W Hodgson
- Department of Pharmaceutical Sciences, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | - Mostafa I Waly
- Department of Food Science and Nutrition, Sultan Qaboos University, P.O.Box 34, P.C. 123, Al-Khoud, Muscat, Sultanate of Oman
- Nutrition Department, High Institute of Public Health, Alexandria University, P.C. 165, El-Hadra, Alexandria, Egypt
| | - Yahya M Al-Farsi
- Department of Family Medicine and Public Health, College of Medicine and Health Sciences, Sultan Qaboos University, P.O.Box 35, P.C. 123, Al-Khoud, Muscat, Sultanate of Oman
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA 02118, USA
| | - Marwan M Al-Sharbati
- Department of Behavioral Medicine, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khoud 123, Muscat, Sultanate of Oman
| | - Omar Al-Farsi
- Department of Family Medicine and Public Health, College of Medicine and Health Sciences, Sultan Qaboos University, P.O.Box 35, P.C. 123, Al-Khoud, Muscat, Sultanate of Oman
| | - Amanat Ali
- Department of Food Science and Nutrition, Sultan Qaboos University, P.O.Box 34, P.C. 123, Al-Khoud, Muscat, Sultanate of Oman
| | - Allal Ouhtit
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khoud 123, Muscat, Sultanate of Oman
| | - Tianzhu Zang
- Barnett Institute of Chemical and Biological Analysis, College of Science, Northeastern University, Boston, MA 02115, USA
| | - Zhaohui Sunny Zhou
- Barnett Institute of Chemical and Biological Analysis, College of Science, Northeastern University, Boston, MA 02115, USA
| | - Richard C Deth
- Department of Pharmaceutical Sciences, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
37
|
Saab BJ, Mansuy IM. Neuroepigenetics of memory formation and impairment: the role of microRNAs. Neuropharmacology 2014; 80:61-9. [PMID: 24486712 DOI: 10.1016/j.neuropharm.2014.01.026] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/19/2014] [Accepted: 01/20/2014] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are a class of short non-coding RNAs that primarily regulate protein synthesis through reversible translational repression or mRNA degradation. MiRNAs can act by translational control of transcription factors or via direct action on the chromatin, and thereby contribute to the non-genetic control of gene-environment interactions. MiRNAs that regulate components of pathways required for learning and memory further modulate the influence of epigenetics on cognition in the normal and diseased brain. This review summarizes recent data exemplifying the known roles of miRNAs in memory formation in different model organisms, and describes how neuronal plasticity regulates miRNA biogenesis, activity and degradation. It also examines the relevance of miRNAs for memory impairment in human, using recent clinical observations related to neurodevelopmental and neurodegenerative diseases, and discusses the potential mechanisms by which these miRNAs may contribute to memory disorders.
Collapse
Affiliation(s)
- Bechara J Saab
- Brain Research Institute, Neuroscience Center Zürich, Faculty of Medicine of the University of Zürich and Department of Health Sciences and Technology of the Swiss Federal Institute of Technology, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Isabelle M Mansuy
- Brain Research Institute, Neuroscience Center Zürich, Faculty of Medicine of the University of Zürich and Department of Health Sciences and Technology of the Swiss Federal Institute of Technology, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| |
Collapse
|
38
|
Saab BJ, Mansuy IM. Neurobiological disease etiology and inheritance: an epigenetic perspective. J Exp Biol 2014; 217:94-101. [DOI: 10.1242/jeb.089995] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epigenetic marks in mammals are essential to properly control the activity of the genome. They are dynamically regulated during development and adulthood, and can be modulated by environmental factors throughout life. Changes in the epigenetic profile of a cell can be positive and favor the expression of advantageous genes such as those linked to cell signaling and tumor suppression. However, they can also be detrimental and alter the functions of important genes, thereby leading to disease. Recent evidence has further highlighted that some epigenetic marks can be maintained across meiosis and be transmitted to the subsequent generation to reprogram developmental and cellular features. This short review describes current knowledge on the potential impact of epigenetic processes activated by environmental factors on the inheritance of neurobiological disease risk. In addition, the potential adaptive value of epigenetic inheritance, and relevant current and future questions are discussed.
Collapse
Affiliation(s)
- Bechara J. Saab
- Brain Research Institute, University of Zurich/ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Isabelle M. Mansuy
- Brain Research Institute, University of Zurich/ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|