1
|
Chen J, Chen Z, Xie Q, Wu X, Pei Q, Lin Y, Chen Q, Wan S. A 2.9 Mb Chromosomal Segment Deletion Is Responsible for Early Ripening and Deep Red Fruit in Citrus sinensis. Int J Mol Sci 2024; 25:12931. [PMID: 39684647 DOI: 10.3390/ijms252312931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/30/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Sweet orange (Citrus sinensis) is an economically important fruit crop worldwide. Mining for genes associated with ripening periods and fruit color traits is crucial for plant genetics and for the improvement of external fruit quality traits. The present study identified a novel navel orange accession, designated as Ganhong, with early ripening and deep red fruit traits. DNA sequence analysis showed a 2.9 Mb deletion in one copy of chromosome 7 in Ganhong navel orange. Flesh samples from Ganhong and its parental variety, Newhall navel orange, were sampled for RNA sequence analysis 200 days after flowering; 958 differentially expressed genes (DEGs) were identified between the two varieties. Functional enrichment analysis indicated that these DEGs were mainly enriched in phytohormones, particularly abscisic acid (ABA), related to fruit ripening. The deletion interval has 343 annotated genes, among which 4 genes (Cs_ont_7g018990, Cs_ont_7g019400, Cs_ont_7g019650, and Cs_ont_7g019820) were inferred to be candidate causal genes for early ripening and deep red fruit traits based on gene functionality and gene expression analysis. The present study laid a foundation for further elucidation of the mechanisms underlying the early ripening and deep red fruit trait in Ganhong navel orange.
Collapse
Affiliation(s)
- Jianmei Chen
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Zhenmin Chen
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Quming Xie
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Xiaotong Wu
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Qingyu Pei
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Yi Lin
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Qiong Chen
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Shubei Wan
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
2
|
Wang T, Li G, Jiang C, Zhou Y, Yang E, Li J, Zhang P, Dundas I, Yang Z. Development of a Set of Wheat-Rye Derivative Lines from Hexaploid Triticale with Complex Chromosomal Rearrangements to Improve Disease Resistance, Agronomic and Quality Traits of Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:3885. [PMID: 38005782 PMCID: PMC10674216 DOI: 10.3390/plants12223885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
An elite hexaploid triticale Yukuri from Australia was used as a bridge for transferring valuable genes from Secale cereale L. into common wheat for enriching the genetic variability of cultivated wheat. Non-denaturing-fluorescence in situ hybridization (ND-FISH) identified that Yukuri was a secondary triticale with a complete set of rye chromosomes and a 6D(6A) substitution. Seed protein electrophoresis showed that Yukuri had a unique composition of glutenin subunits. A set of Yukuri-derived wheat-rye introgression lines were created from a Yukuri x wheat population, and all lines were identified by ND-FISH with multiple probes and validated by diagnostic molecular marker analysis. A total of 59 wheat-rye introgression lines including modified chromosome structural variations of wheat, and new complex recombinant chromosomes of rye were detected through ND-FISH and Oligo-FISH painting based on oligonucleotide pools derived from wheat-barley genome collinear regions. Wheat lines carrying the 1R chromosome from Yukuri displayed resistance to both stripe rust and powdery mildew, while the lines carrying the 3RL and 7RL chromosome arms showed stripe rust resistance. The chromosome 1R-derived lines were found to exhibit a significant effect on most of the dough-related parameters, and chromosome 5R was clearly associated with increased grain weight. The development of the wheat-rye cytogenetic stocks carrying disease resistances and superior agronomic traits, as well as the molecular markers and FISH probes will promote the introgression of abundant variation from rye into wheat improvement programs.
Collapse
Affiliation(s)
- Tingting Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (T.W.); (G.L.); (C.J.); (Y.Z.)
| | - Guangrong Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (T.W.); (G.L.); (C.J.); (Y.Z.)
| | - Chengzhi Jiang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (T.W.); (G.L.); (C.J.); (Y.Z.)
| | - Yuwei Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (T.W.); (G.L.); (C.J.); (Y.Z.)
| | - Ennian Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China;
| | - Jianbo Li
- School of Life and Environmental Sciences, Plant Breeding Institute, The University of Sydney, Cobbitty, NSW 2570, Australia; (J.L.); (P.Z.)
| | - Peng Zhang
- School of Life and Environmental Sciences, Plant Breeding Institute, The University of Sydney, Cobbitty, NSW 2570, Australia; (J.L.); (P.Z.)
| | - Ian Dundas
- Formerly of School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia;
| | - Zujun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (T.W.); (G.L.); (C.J.); (Y.Z.)
| |
Collapse
|
3
|
Isolation and Sequencing of Chromosome Arm 7RS of Rye, Secale cereale. Int J Mol Sci 2022; 23:ijms231911106. [PMID: 36232406 PMCID: PMC9569962 DOI: 10.3390/ijms231911106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
Rye (Secale cereale) is a climate-resilient cereal grown extensively as grain or forage crop in Northern and Eastern Europe. In addition to being an important crop, it has been used to improve wheat through introgression of genomic regions for improved yield and disease resistance. Understanding the genomic diversity of rye will assist both the improvement of this crop and facilitate the introgression of more valuable traits into wheat. Here, we isolated and sequenced the short arm of rye chromosome 7 (7RS) from Triticale 380SD using flow cytometry and compared it to the public Lo7 rye whole genome reference assembly. We identify 2747 Lo7 genes present on the isolated chromosome arm and two clusters containing seven and sixty-five genes that are present on Triticale 380SD 7RS, but absent from Lo7 7RS. We identified 29 genes that are not assigned to chromosomal locations in the Lo7 assembly but are present on Triticale 380SD 7RS, suggesting a chromosome arm location for these genes. Our study supports the Lo7 reference assembly and provides a repertoire of genes on Triticale 7RS.
Collapse
|
4
|
Liu C, Wang J, Fu S, Wang L, Li H, Wang M, Huang Y, Shi Q, Zhou Y, Guo X, Zhu C, Zhang J, Han F. Establishment of a set of wheat-rye addition lines with resistance to stem rust. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2469-2480. [PMID: 35676422 DOI: 10.1007/s00122-022-04127-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Complete new wheat-rye disomic, telosomic addition lines and various chromosomal aberrations were developed and characterized by molecular cytogenetic method as novel chromosome engineering materials. A new stem rust resistance (Ug99) gene was located on 3RL. Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a devastating fungal disease worldwide. A recently emerged great threat to global wheat production is Pgt strain Ug99 and its derivatives, which have overcome most of the commonly used resistance genes. Rye (Secale cereale L.), closely related to wheat (Triticum aestivum L.), is a significant and valuable resource of resistance genes for wheat germplasm improvement. It is of great importance and urgency to identify new resistance gene sources of rye and transfer them into wheat. In this study, two complete sets of wheat-rye addition lines were established through wide hybridization, chromosome doubling and backcrossing. A wheat-rye 3RL telosomic addition line was identified with high resistance to stem rust strain Ug99. PCR-based markers specific for the rye chromosome were developed. Furthermore, abundant chromosomal aberrations such as minichromosomes, ring chromosomes as well as centromere reduction and expansion were identified in the progeny of wheat-rye addition lines by multicolor GISH and FISH. The line carrying a novel resistance gene to stem rust can be utilized as a bridge material for wheat disease resistance breeding. The chromosomal and centromeric variation within the wheat-rye hybrids can further contribute to genetic diversity of their offspring.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Wang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
| | - Shulan Fu
- Key Laboratory for Plant Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Long Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Hongwei Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mian Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhong Huang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinghua Shi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xianrui Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Congle Zhu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Feng Z, Song L, Song W, Qi Z, Yuan J, Li R, Han H, Wang H, Chen Z, Guo W, Xin M, Liu J, Hu Z, Peng H, Yao Y, Sun Q, Ni Z, Xing J. The decreased expression of GW2 homologous genes contributed to the increased grain width and thousand‑grain weight in wheat-Dasypyrum villosum 6VS·6DL translocation lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3873-3894. [PMID: 34374829 DOI: 10.1007/s00122-021-03934-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/02/2021] [Indexed: 05/12/2023]
Abstract
This study demonstrated that the aberrant transcription of DvGW2 contributed to the increased grain width and thousand-grain weight in wheat-Dasypyrum villosum T6VS·6DL translocation lines. Due to the high immunity to powdery mildew, Dasypyrum villosum 6VS has been one of the most successful applications of the wild relatives in modern wheat breeding. Along with the desired traits, side-effects could be brought when large alien chromosome fragments are introduced into wheat, but little is known about effects of 6VS on agronomic traits. Here, we found that T6VS·6DL translocation had significantly positive effects on grain weight, plant heightand spike length, and small negative effects on total spikelet number and spikelet compactness using recipient and wheat-D. villosum T6VS·6DL allohexaploid wheats, Wan7107 and Pm97033. Further analysis showed that the 6VS segment might exert direct genetic effect on grain width, then driving the increase of thousand-grain weight. Furthermore, comparative transcriptome analysis identified 2549 and 1282 differentially expressed genes (DEGs) and 2220 and 1496 specifically expressed genes (SEGs) at 6 days after pollination (DAP) grains and 15 DAP endosperms, respectively. Enrichment analysis indicated that the process of cell proliferation category was over-represented in the DEGs. Notably, two homologous genes, TaGW2-D1 and DvGW2, were identified as putative candidate genes associated with grain weight and yield. The expression analysis showed that DvGW2 had an aberrant expression in Pm97033, resulting in significantly lower total expression level of GW2 than Wan7107, which drives the increase of grain weight and width in Pm97033. Collectively, our data indicated that the compromised expression of DvGW2 is critical for increased grain width and weight in T6VS·6DL translocation lines.
Collapse
Affiliation(s)
- Zhiyu Feng
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China
| | - Long Song
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Wanjun Song
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongqi Qi
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jun Yuan
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Run Li
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Haiming Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Huifang Wang
- Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Zhaoyan Chen
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Weilong Guo
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jie Liu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| | - Jiewen Xing
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Karyotype Reorganization in Wheat-Rye Hybrids Obtained via Unreduced Gametes: Is There a Limit to the Chromosome Number in Triticale? PLANTS 2021; 10:plants10102052. [PMID: 34685861 PMCID: PMC8538156 DOI: 10.3390/plants10102052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022]
Abstract
To date, few data have been accumulated on the contribution of meiotic restitution to the formation of Triticum aestivum hybrid karyotypes. In this study, based on FISH and C-banding, karyotype reorganization was observed in three groups of F5 wheat–rye hybrids 1R(1A) × R. Aberrations, including aneuploidy, telocentrics, and Robertsonian translocations, were detected in all groups. Some of the Group 1 plants and all of the Group 2 plants only had a 4R4R pair (in addition to 1R1R), which was either added or substituted for its homeolog in ABD subgenomes. In about 82% of meiocytes, 4R4R formed bivalents, which indicates its competitiveness. The rest of the Group 1 plants had 2R and 7R chromosomes in addition to 1R1R. Group 3 retained all their rye chromosomes, with a small aneuploidy on the wheat chromosomes. A feature of the meiosis in the Group 3 plants was asynchronous cell division and omission of the second division. Diploid gametes did not form because of the significant disturbances during gametogenesis. As a result, the frequency of occurrence of the formed dyads was negatively correlated (r = −0.73) with the seed sets. Thus, meiotic restitution in the 8n triticale does not contribute to fertility or increased ploidy in subsequent generations.
Collapse
|
7
|
Evolution of the parthenogenetic rock lizard hybrid karyotype: Robertsonian translocation between two maternal chromosomes in Darevskia rostombekowi. Chromosoma 2020; 129:275-283. [DOI: 10.1007/s00412-020-00744-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/26/2020] [Accepted: 10/26/2020] [Indexed: 02/08/2023]
|
8
|
Evtushenko EV, Lipikhina YA, Stepochkin PI, Vershinin AV. Cytogenetic and molecular characteristics of rye genome in octoploid triticale (× Triticosecale Wittmack). COMPARATIVE CYTOGENETICS 2019; 13:423-434. [PMID: 31879548 PMCID: PMC6928076 DOI: 10.3897/compcytogen.v13i4.39576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
Alloploidization resulting from remote (interspecific or intergeneric) hybridization is one of the main factors in plant evolution, leading to the formation of new species. Triticale (× Triticosecale Wittmack, 1889) is the first artificial species created by crossing wheat (Triticum spp.) and rye (Secale cereale Linnaeus, 1753) and has a great potential as a grain and forage crop. Remote hybridization is a stress factor that causes a rapid reorganization of the parental genomes in hybrid progeny ("genomic shock") and is accompanied by abnormalities in the chromosome set of hybrids. The formation of the hybrid genome and its subsequent stabilization are directly related to the normalization of meiosis and the correct chromosome segregation. The aim of this work was to cytogenetically characterize triticale (× Triticosecale rimpaui Wittmack, 1899, AABBDDRR) obtained by crossing Triticum aestivum Linnaeus, 1753. Triple Dirk D × Secale cereale L. Korotkostebel'naya 69 in F3-F6 generations of hybrids, and to trace the process of genetic stabilization of hybrid genomes. Also, a comparative analysis of the nucleotide sequences of the centromeric histone CENH3 genes was performed in wheat-rye allopolyploids of various ploidy as well as their parental forms. In the hybrid genomes of octoploid triticale an increased expression of the rye CENH3 variants was detected. The octoploid triticale plants contain complete chromosome sets of the parental subgenomes maintaining the chromosome balance and meiotic stability. For three generations the percentage of aneuploids in the progeny of such plants has been gradually decreasing, and they maintain a complete set of the paternal rye chromosomes. However, the emergence of hexaploid and new aneuploid plants in F5 and F6 generations indicates that stabilization of the hybrid genome is not complete yet. This conclusion was confirmed by the analysis of morphological features in hybrid plants: the progeny of one plant having the whole chromosome sets of parental subgenomes showed significant morphological variations in awn length and spike density. Thus, we expect that the results of our karyotyping of octoploid triticales obtained by crossing hexaploid wheat to diploid rye supplemented by comparative analysis of CENH3 sequences will be applicable to targeted breeding of stable octo- and hexaploid hybrids.
Collapse
Affiliation(s)
- Elena V. Evtushenko
- Institute of Molecular and Cellular Biology SB RAS, acad. Lavrentiev ave. 8/2, Novosibirsk, 630090, RussiaInstitute of Molecular and Cellular Biology SB RASNovosibirskRussia
| | - Yulia A. Lipikhina
- Institute of Molecular and Cellular Biology SB RAS, acad. Lavrentiev ave. 8/2, Novosibirsk, 630090, RussiaInstitute of Molecular and Cellular Biology SB RASNovosibirskRussia
| | - Petr I. Stepochkin
- Institute of Cytology and Genetics SB RAS, acad. Lavrentiev ave. 10, Novosibirsk, 630090, RussiaInstitute of Cytology and Genetics SB RASNovosibirskRussia
| | - Alexander V. Vershinin
- Institute of Molecular and Cellular Biology SB RAS, acad. Lavrentiev ave. 8/2, Novosibirsk, 630090, RussiaInstitute of Molecular and Cellular Biology SB RASNovosibirskRussia
| |
Collapse
|
9
|
Effect of Hybridization on Somatic Mutations and Genomic Rearrangements in Plants. Int J Mol Sci 2018; 19:ijms19123758. [PMID: 30486351 PMCID: PMC6320998 DOI: 10.3390/ijms19123758] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 11/16/2022] Open
Abstract
Hybridization has been routinely practiced in agriculture to enhance the crop yield. Principally, it can cause hybrid vigor where hybrid plants display increased size, biomass, fertility, and resistance to diseases, when compared to their parents. During hybridization, hybrid offspring receive a genomic shock due to mixing of distant parental genomes, which triggers a myriad of genomic rearrangements, e.g., transpositions, genome size changes, chromosomal rearrangements, and other effects on the chromatin. Recently, it has been reported that, besides genomic rearrangements, hybridization can also alter the somatic mutation rates in plants. In this review, we provide in-depth insights about hybridization triggered genomic rearrangements and somatic mutations in plants.
Collapse
|
10
|
Lipikhina YA, Evtushenko EV, Lyusikov OM, Gordei IS, Gordei IA, Vershinin AV. Dynamics of the Centromeric Histone CENH3 Structure in Rye-Wheat Amphidiploids (Secalotriticum). BIOMED RESEARCH INTERNATIONAL 2018; 2018:2097845. [PMID: 30598989 PMCID: PMC6287162 DOI: 10.1155/2018/2097845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/25/2018] [Accepted: 11/04/2018] [Indexed: 11/17/2022]
Abstract
The centromeres perform integral control of the cell division process and proper distribution of chromosomes into daughter cells. The correct course of this process is often disrupted in case of remote hybridization, which is a stress factor. The combination of parental genomes of different species in a hybrid cell leads to a "genomic shock" followed by loss of genes, changes in gene expression, deletions, inversions, and translocations of chromosome regions. The created rye-wheat allopolyploid hybrids, which were collectively called secalotriticum, represent a new interesting model for studying the effect of remote hybridization on the centromere and its components. The main feature of an active centromere is the presence of a specific histone H3 modification in the centromeric nucleosomes, which is referred to as CENH3 in plants. In this paper the results of cytogenetic analysis of the secalotriticum hybrid karyotypes and the comparison of the CENH3 N-terminal domain structure of parent and hybrid forms are presented. It is shown that the karyotypes of the created secalotriticum forms are stable balanced hexaploids not containing minichromosomes with deleted arms, in full or in part. A high level of homology between rye and wheat enables to express both parental forms of CENH3 gene in the hybrid genomes of secalotriticum cultivars. The CENH3 structure in hybrids in each crossing combination has some specific features. The percentage of polymorphisms at several amino acid positions is much higher in one of the secalotriticum hybrids, STr VD, than in parental forms, whereas the other hybrid, STr VM, inherits a high level of amino acid substitutions at the position 25 from the maternal parent.
Collapse
Affiliation(s)
- Yulia A. Lipikhina
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk 630090, Russia
| | - Elena V. Evtushenko
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk 630090, Russia
| | - Oleg M. Lyusikov
- Institute of Genetics and Cytology, NAS of Belarus, Minsk 220072, Belarus
| | - Igor S. Gordei
- Institute of Genetics and Cytology, NAS of Belarus, Minsk 220072, Belarus
| | - Ivan A. Gordei
- Institute of Genetics and Cytology, NAS of Belarus, Minsk 220072, Belarus
| | | |
Collapse
|
11
|
Said M, Hřibová E, Danilova TV, Karafiátová M, Čížková J, Friebe B, Doležel J, Gill BS, Vrána J. The Agropyron cristatum karyotype, chromosome structure and cross-genome homoeology as revealed by fluorescence in situ hybridization with tandem repeats and wheat single-gene probes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2213-2227. [PMID: 30069594 PMCID: PMC6154037 DOI: 10.1007/s00122-018-3148-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 07/23/2018] [Indexed: 05/04/2023]
Abstract
Fluorescence in situ hybridization with probes for 45 cDNAs and five tandem repeats revealed homoeologous relationships of Agropyron cristatum with wheat. The results will contribute to alien gene introgression in wheat improvement. Crested wheatgrass (Agropyron cristatum L. Gaertn.) is a wild relative of wheat and a promising source of novel genes for wheat improvement. To date, identification of A. cristatum chromosomes has not been possible, and its molecular karyotype has not been available. Furthermore, homoeologous relationship between the genomes of A. cristatum and wheat has not been determined. To develop chromosome-specific landmarks, A. cristatum genomic DNA was sequenced, and new tandem repeats were discovered. Their distribution on mitotic chromosomes was studied by fluorescence in situ hybridization (FISH), which revealed specific patterns for five repeats in addition to 5S and 45S ribosomal DNA and rye subtelomeric repeats pSc119.2 and pSc200. FISH with one tandem repeat together with 45S rDNA enabled identification of all A. cristatum chromosomes. To analyze the structure and cross-species homoeology of A. cristatum chromosomes with wheat, probes for 45 mapped wheat cDNAs covering all seven chromosome groups were localized by FISH. Thirty-four cDNAs hybridized to homoeologous chromosomes of A. cristatum, nine hybridized to homoeologous and non-homoeologous chromosomes, and two hybridized to unique positions on non-homoeologous chromosomes. FISH using single-gene probes revealed that the wheat-A. cristatum collinearity was distorted, and important structural rearrangements were observed for chromosomes 2P, 4P, 5P, 6P and 7P. Chromosomal inversions were found for pericentric region of 4P and whole chromosome arm 6PL. Furthermore, reciprocal translocations between 2PS and 4PL were detected. These results provide new insights into the genome evolution within Triticeae and will facilitate the use of crested wheatgrass in alien gene introgression into wheat.
Collapse
Affiliation(s)
- Mahmoud Said
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
- Field Crops Research Institute, Agricultural Research Centre, 9 Gamma Street, Giza, Cairo, 12619, Egypt
| | - Eva Hřibová
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Tatiana V Danilova
- Wheat Genetics Resource Center, Kansas State University, 1712 Claflin Road, 4024 Throckmorton PSC, Manhattan, KS, 66506, USA
| | - Miroslava Karafiátová
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Jana Čížková
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Bernd Friebe
- Wheat Genetics Resource Center, Kansas State University, 1712 Claflin Road, 4024 Throckmorton PSC, Manhattan, KS, 66506, USA
| | - Jaroslav Doležel
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Bikram S Gill
- Wheat Genetics Resource Center, Kansas State University, 1712 Claflin Road, 4024 Throckmorton PSC, Manhattan, KS, 66506, USA
| | - Jan Vrána
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic.
| |
Collapse
|
12
|
Zhang J, Jiang Y, Wang Y, Guo Y, Long H, Deng G, Chen Q, Xuan P. Molecular markers and cytogenetics to characterize a wheat-Dasypyrum villosum 3V (3D) substitution line conferring resistance to stripe rust. PLoS One 2018; 13:e0202033. [PMID: 30157196 PMCID: PMC6114523 DOI: 10.1371/journal.pone.0202033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/26/2018] [Indexed: 11/24/2022] Open
Abstract
Dasypyrum villosum has been used as a valuable gene resource for disease resistances, yield increase and quality improvement in wheat. A novel wheat-D. villosum alien introgression line CD-3 was generated through hybridization between the common wheat Chinese Spring (CS) and a CS- D. villosum 3V addition line having considerably high stripe rust resistance, which enable the characterization of a potential new stripe rust resistance gene (s) derived from D. villosum. The results of non-denaturing fluorescent in situ hybridization (ND-FISH) showed that CD-3 contained 42 chromosomes, including a 3V chromosome pair, and the absence of both of the 3D chromosomes. PCR-based Landmark Unique Gene (PLUG) molecular marker analysis supported results from the FISH analysis, revealing CD-3 was a wheat-D. villosum 3V (3D) disomic substitution line. Resistant test of stripe rust on 52 plants of F2 generation (CD-3/CS), CD-3, CS and D.villosum have been conducted at seedling stage. 7 plants of F2 generation possessing two 3V chromosomes exhibited high resistance to stripe rust as CD-3 and D.villosum, 10 plants carrying one 3V chromosome and 35 plants without 3V chromosome were susceptive to stripe rust as CS. The result implied the high stripe rust resistance of CD-3 should be controlled by recessive gene(s) originating from D.villosum. To rapidly detect chromosome 3V in the genetic background of wheat, we developed a novel Sequence Characterized Amplified Region (SCAR) marker specific for 3V chromosome based on the sequence of a grain size-related gene DvGS5 in D. villosum, an orthologue of TaGS5 from wheat. The SCAR marker was designated DvGS5-1443, which could successfully amplify a unique 3V-specific fragment in CD-3 and D. villosum, suggesting that this SCAR marker could facilitate targeting the chromosome 3V in the genetic background of wheat for wheat improvement.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Biotechnology and Nuclear Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture), Chengdu, Sichuan, China
| | - Yun Jiang
- Institute of Biotechnology and Nuclear Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Ying Wang
- Institute of Biotechnology and Nuclear Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Yuanlin Guo
- Institute of Biotechnology and Nuclear Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Hai Long
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Guangbing Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Qian Chen
- Institute of Biotechnology and Nuclear Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Pu Xuan
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| |
Collapse
|
13
|
De Novo Centromere Formation and Centromeric Sequence Expansion in Wheat and its Wide Hybrids. PLoS Genet 2016; 12:e1005997. [PMID: 27110907 PMCID: PMC4844185 DOI: 10.1371/journal.pgen.1005997] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/28/2016] [Indexed: 11/19/2022] Open
Abstract
Centromeres typically contain tandem repeat sequences, but centromere function does not necessarily depend on these sequences. We identified functional centromeres with significant quantitative changes in the centromeric retrotransposons of wheat (CRW) contents in wheat aneuploids (Triticum aestivum) and the offspring of wheat wide hybrids. The CRW signals were strongly reduced or essentially lost in some wheat ditelosomic lines and in the addition lines from the wide hybrids. The total loss of the CRW sequences but the presence of CENH3 in these lines suggests that the centromeres were formed de novo. In wheat and its wide hybrids, which carry large complex genomes or no sequenced genome, we performed CENH3-ChIP-dot-blot methods alone or in combination with CENH3-ChIP-seq and identified the ectopic genomic sequences present at the new centromeres. In adcdition, the transcription of the identified DNA sequences was remarkably increased at the new centromere, suggesting that the transcription of the corresponding sequences may be associated with de novo centromere formation. Stable alien chromosomes with two and three regions containing CRW sequences induced by centromere breakage were observed in the wheat-Th. elongatum hybrid derivatives, but only one was a functional centromere. In wheat-rye (Secale cereale) hybrids, the rye centromere-specific sequences spread along the chromosome arms and may have caused centromere expansion. Frequent and significant quantitative alterations in the centromere sequence via chromosomal rearrangement have been systematically described in wheat wide hybridizations, which may affect the retention or loss of the alien chromosomes in the hybrids. Thus, the centromere behavior in wide crosses likely has an important impact on the generation of biodiversity, which ultimately has implications for speciation. Chromosomal rearrangements during the formation of wheat aneuploids and their wide hybrids caused reduction, elimination or expansion of the centromeric retrotransposon sequences and the formation of multiple centromeres. Centromere function was not affected by centromeric sequence elimination, which was revealed by the de novo formation of centromeres on the rearranged chromosomes. Several retrotransposon-like elements near the former centromeres were embedded in the newly formed centromeres, and there were no obvious changes in six histone modifications between normal and new centromeres. The DNA sequences associated with the new centromeres are transcribed at a higher level after centromere formation. Chromosomes containing the neocentromeres can be stably transferred to the next generation. Chromosomes carrying two- or three-locus centromeres are unstable, which induces the formation of novel chromosomes through centromere breakage in wheat-Th. elongatum hybrid derivatives. The centromere-specific sequences on dicentric chromosomes are expanded to the chromosome arms in wheat-rye hybrids, and these sequences may function as a part of the active centromere to cause chromosome breakage in the next generation. Centromere variation and activity in wheat aneuploids and its wide hybrids may be associated with chromosome stability, rearrangements, and novel chromosome formations.
Collapse
|
14
|
Molecular characterization of Sec2 loci in wheat--Secale africanum derivatives demonstrates genomic divergence of Secale species. Int J Mol Sci 2015; 16:8324-36. [PMID: 25874759 PMCID: PMC4425083 DOI: 10.3390/ijms16048324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 11/16/2022] Open
Abstract
The unique 75 K γ-secalins encoded by Sec2 loci in Secale species is composed of almost half rye storage proteins. The chromosomal location of Sec2 loci in wild Secale species, Secale africanum, was carried out by the wheat—S. africanum derivatives, which were identified by genomic in situ hybridization and multi-color fluorescence in situ hybridization. The Sec2 gene-specific PCR analysis indicated that the S. cereale Sec2 was located onchromosome 2R, while the S. africanum Sec2 was localized on chromosome 6Rafr of S. africanum. A total of 38 Sec2 gene sequences were isolated from S. africanum, S. cereale and S. sylvestre by PCR-based cloning. Phylogenetic analysis showed that S. africanum Sec2 diverged from S. cereale Sec2 approximately 2–3 million years ago. The illegitimate recombination of chromosome 2R–6R involving the Sec2 loci region may accelerate sequence variation during evolutionary process from wild to cultivated Secale species.
Collapse
|
15
|
New types of wheat chromosomal structural variations in derivatives of wheat-rye hybrids. PLoS One 2014; 9:e110282. [PMID: 25302962 PMCID: PMC4193885 DOI: 10.1371/journal.pone.0110282] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/15/2014] [Indexed: 11/25/2022] Open
Abstract
Background Chromosomal rearrangements induced by wheat-rye hybridization is a very well investigated research topic. However, the structural alterations of wheat chromosomes in wheat-rye hybrids are seldom reported. Methodology/Principal Findings Octoploid triticale lines were derived from common wheat Triticum. aestivum L. ‘Mianyang11’×rye Secale cereale L. ‘Kustro’. Some progeny were obtained by the controlled backcrossing of triticale with ‘Mianyang11’ and common wheat T. aestivum L. ‘Chuannong27’ followed by self-fertilization. Fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH) using Oligo-pSc119.2-1, Oligo-pTa535-1 and rye genomic DNA as probes were used to analyze the mitotic chromosomes of these progeny. Alterations of wheat chromosomes including 5A, 6A, 1B, 2B, 6B, 7B, 1D, 3D and 7D were observed. 5AL arm carrying intercalary Oligo-pSc119.2-1, Oligo-pTa535-1 or both Oligo-pSc119.2-1 and Oligo-pTa535-1 signals, 6AS, 1BS and 1DL arms containing terminal Oligo-pSc119.2-1 signal, 6BS and 3DS arms without terminal Oligo-pSc119.2-1 signal, 7BS without subtelomeric Oligo-pSc119.2-1 signal and 7DL with intercalary Oligo-pSc119.2-1 signal have been observed. However, these changed wheat chromosomes have not been detected in ‘Mianyang11’ and Chuannong 27. The altered 5A, 6A, 7B and 7D chromosomes in this study have not been reported and represent several new karyotype structures of common wheat chromosomes. Conclusions/Significance These rearranged wheat chromosomes in the present study afford some new genetic variations for wheat breeding program and are valuable materials for studying the biological function of tandem repetitive DNA sequences.
Collapse
|
16
|
Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J Appl Genet 2014; 55:313-8. [DOI: 10.1007/s13353-014-0215-z] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/04/2014] [Accepted: 04/04/2014] [Indexed: 10/25/2022]
|