1
|
Hao Q, Zhu X, Huang Y, Song J, Mou C, Zhang F, Miao R, Ma T, Wang P, Zhu Z, Chen C, Tong Q, Hu C, Chen Y, Dong H, Liu X, Jiang L, Wan J. E3 ligase DECREASED GRAIN SIZE 1 promotes degradation of a G-protein subunit and positively regulates grain size in rice. PLANT PHYSIOLOGY 2024; 196:948-960. [PMID: 38888990 DOI: 10.1093/plphys/kiae331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/22/2024] [Accepted: 05/01/2024] [Indexed: 06/20/2024]
Abstract
Grain size is one of the most important traits determining crop yield. However, the mechanism controlling grain size remains unclear. Here, we confirmed the E3 ligase activity of DECREASED GRAIN SIZE 1 (DGS1) in positive regulation of grain size in rice (Oryza sativa) suggested in a previous study. Rice G-protein subunit gamma 2 (RGG2), which negatively regulates grain size, was identified as an interacting protein of DGS1. Biochemical analysis suggested that DGS1 specifically interacts with canonical Gγ subunits (rice G-protein subunit gamma 1 [RGG1] and rice G-protein subunit gamma 2 [RGG2]) rather than non-canonical Gγ subunits (DENSE AND ERECT PANICLE 1 [DEP1], rice G-protein gamma subunit type C 2 [GCC2], GRAIN SIZE 3 [GS3]). We also identified the necessary domains for interaction between DGS1 and RGG2. As an E3 ligase, DGS1 ubiquitinated and degraded RGG2 via a proteasome pathway in several experiments. DGS1 also ubiquitinated RGG2 by its K140, K145, and S147 residues. Thus, this work identified a substrate of the E3 ligase DGS1 and elucidated the post-transcriptional regulatory mechanism of the G-protein signaling pathway in the control of grain size.
Collapse
Affiliation(s)
- Qixian Hao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Xingjie Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunshuai Huang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiawei Song
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Changling Mou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Fulin Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Rong Miao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Tengfei Ma
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziyan Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Qikai Tong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Hu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingying Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Dong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210095, China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210095, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210095, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
2
|
Xu N, Qiu Y, Cui X, Fei C, Xu Q. Enhancing grain shape, thermotolerance, and alkaline tolerance via Gγ protein manipulation in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:154. [PMID: 38856926 DOI: 10.1007/s00122-024-04669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024]
Abstract
KEY MESSAGE Our findings highlight a valuable breeding resource, demonstrating the potential to concurrently enhance grain shape, thermotolerance, and alkaline tolerance by manipulating Gγ protein in rice. Temperate Geng/Japonica (GJ) rice yields have improved significantly, bolstering global food security. However, GJ rice breeding faces challenges, including enhancing grain quality, ensuring stable yields at warmer temperatures, and utilizing alkaline land. In this study, we employed CRISPR/Cas9 gene-editing technology to knock out the GS3 locus in seven elite GJ varieties with superior yield performance. Yield component measurements revealed that GS3 knockout mutants consistently enhanced grain length and reduced plant height in diverse genetic backgrounds. The impact of GS3 on the grain number per panicle and setting rate depended on the genetic background. GS3 knockout did not affect milling quality and minimally altered protein and amylose content but notably influenced chalkiness-related traits. GS3 knockout indiscriminately improved heat and alkali stress tolerance in the GJ varieties studied. Transcriptome analysis indicated differential gene expression between the GS3 mutants and their wild-type counterparts, enriched in biological processes related to photosynthesis, photosystem II stabilization, and pathways associated with photosynthesis and cutin, suberine, and wax biosynthesis. Our findings highlight GS3 as a breeding resource for concurrently improving grain shape, thermotolerance, and alkaline tolerance through Gγ protein manipulation in rice.
Collapse
Affiliation(s)
- Na Xu
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Yuchao Qiu
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Xin Cui
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang, 110866, China
| | - Cheng Fei
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China.
| | - Quan Xu
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
3
|
Yan B, Jiang X, Xu Z, Chen W, Cheng X, Xu H. Analysis of Erect-Panicle Japonica Rice in Northern China: Yield, Quality Status, and Quality Improvement Directions. PLANTS (BASEL, SWITZERLAND) 2024; 13:926. [PMID: 38611456 PMCID: PMC11013581 DOI: 10.3390/plants13070926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 04/14/2024]
Abstract
China is the only country that extensively cultivates the indica and japonica rice varieties, with the largest japonica rice production area being in northeast China. A study of the relationship between the yield and quality of japonica rice and the effect of nitrogen fertilizer application on this relationship is important. In this paper, we aimed to assess the current yield and quality of japonica rice in northeast China. We selected erect-panicle varieties as the test materials. Field experiments were conducted using different nitrogen fertilizer levels for two consecutive years to analyze the rice varieties' yield, quality, interrelationship, and nitrogen fertilizer response. The average yield following high- and low-nitrogen treatments exceeded 10,000.00 kg/hm2, with a maximum of 12,285.63 kg/hm2. The high-yield-high-nitrogen treatment group had more panicles, a higher seed-setting rate, and a higher 1000-grain weight than the other groups. The high-yield-low-nitrogen group had a higher number of panicles and seed-setting rate than the other groups. The low-yield-high-nitrogen group had a lower number of whole grains, grain length-to-width ratio, and taste value than the other groups. The low-yield-low-nitrogen group had fewer primary branches than the other groups; excluding the primary branch-setting rate and 1000-grain weight, the values of the other panicle traits of the group were significantly higher than those of the other groups. The high-nitrogen-high-flavor group had lower panicle and spikelet numbers and higher spikelet fertility rates than the other groups. The low-nitrogen-high-flavor group had higher spikelet fertility rates and 1000-grain weight than the other groups. Compared to the other groups, the low-nitrogen-high-flavor group had a higher head rice yield, and the high-nitrogen-high-flavor group had a lower chalkiness rate. The main goal of the breeding and cultivation of high-yield and high-quality erect-panicle japonica rice in northern China is to achieve "dual high, dual low, and one high and one low" conditions, signifying a high yield with high or low nitrogen levels, low protein and amylose contents, high head rice rates, and low chalkiness. This study provides a new technique for enhancing the taste of northern erect-panicle japonica rice to promote the sustainable, high-yield, and high-quality development of japonica rice in northern China.
Collapse
Affiliation(s)
- Bingchun Yan
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China; (B.Y.); (Z.X.); (W.C.)
| | - Xinmei Jiang
- National Institute of Biochar, Shenyang Agricultural University, Shenyang 110866, China;
| | - Zhengjin Xu
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China; (B.Y.); (Z.X.); (W.C.)
| | - Wenfu Chen
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China; (B.Y.); (Z.X.); (W.C.)
| | - Xiaoyi Cheng
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China; (B.Y.); (Z.X.); (W.C.)
| | - Hai Xu
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China; (B.Y.); (Z.X.); (W.C.)
| |
Collapse
|
4
|
Xu D, Tang W, Ma Y, Wang X, Yang Y, Wang X, Xie L, Huang S, Qin T, Tang W, Xu Z, Li L, Tang Y, Chen M, Ma Y. Arabidopsis G-protein β subunit AGB1 represses abscisic acid signaling via attenuation of the MPK3-VIP1 phosphorylation cascade. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1615-1632. [PMID: 37988280 DOI: 10.1093/jxb/erad464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
Heterotrimeric G proteins play key roles in cellular processes. Although phenotypic analyses of Arabidopsis Gβ (AGB1) mutants have implicated G proteins in abscisic acid (ABA) signaling, the AGB1-mediated modules involved in ABA responses remain unclear. We found that a partial AGB1 protein was localized to the nucleus where it interacted with ABA-activated VirE2-interacting protein 1 (VIP1) and mitogen-activated protein kinase 3 (MPK3). AGB1 acts as an upstream negative regulator of VIP1 activity by initiating responses to ABA and drought stress, and VIP1 regulates the ABA signaling pathway in an MPK3-dependent manner in Arabidopsis. AGB1 outcompeted VIP1 for interaction with the C-terminus of MPK3, and prevented phosphorylation of VIP1 by MPK3. Importantly, ABA treatment reduced AGB1 expression in the wild type, but increased in vip1 and mpk3 mutants. VIP1 associates with ABA response elements present in the AGB1 promoter, forming a negative feedback regulatory loop. Thus, our study defines a new mechanism for fine-tuning ABA signaling through the interplay between AGB1 and MPK3-VIP1. Furthermore, it suggests a common G protein mechanism to receive and transduce signals from the external environment.
Collapse
Affiliation(s)
- Dongbei Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Wensi Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Yanan Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Xia Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanzhi Yang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaoting Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Lina Xie
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Suo Huang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Tengfei Qin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Weilin Tang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhaoshi Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yimiao Tang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Ming Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Youzhi Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| |
Collapse
|
5
|
Wang Y, Lv Y, Yu H, Hu P, Wen Y, Wang J, Tan Y, Wu H, Zhu L, Wu K, Chai B, Liu J, Zeng D, Zhang G, Zhu L, Gao Z, Dong G, Ren D, Shen L, Zhang Q, Li Q, Guo L, Xiong G, Qian Q, Hu J. GR5 acts in the G protein pathway to regulate grain size in rice. PLANT COMMUNICATIONS 2024; 5:100673. [PMID: 37596786 PMCID: PMC10811372 DOI: 10.1016/j.xplc.2023.100673] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Grain size is an important determinant of grain yield in rice. Although dozens of grain size genes have been reported, the molecular mechanisms that control grain size remain to be fully clarified. Here, we report the cloning and characterization of GR5 (GRAIN ROUND 5), which is allelic to SMOS1/SHB/RLA1/NGR5 and encodes an AP2 transcription factor. GR5 acts as a transcriptional activator and determines grain size by influencing cell proliferation and expansion. We demonstrated that GR5 physically interacts with five Gγ subunit proteins (RGG1, RGG2, DEP1, GS3, and GGC2) and acts downstream of the G protein complex. Four downstream target genes of GR5 in grain development (DEP2, DEP3, DRW1, and CyCD5;2) were revealed and their core T/CGCAC motif identified by yeast one-hybrid, EMSA, and ChIP-PCR experiments. Our results revealed that GR5 interacts with Gγ subunits and cooperatively determines grain size by regulating the expression of downstream target genes. These findings provide new insight into the genetic regulatory network of the G protein signaling pathway in the control of grain size and provide a potential target for high-yield rice breeding.
Collapse
Affiliation(s)
- Yueying Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Yang Lv
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Haiping Yu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Peng Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Yi Wen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Junge Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Yiqing Tan
- Nanjing Agricultural University, Nan Jing 210000, Jiangsu, China
| | - Hao Wu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Lixin Zhu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Kaixiong Wu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Bingze Chai
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Jialong Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Li Zhu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Deyong Ren
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Lan Shen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Qiang Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Qing Li
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Guosheng Xiong
- Nanjing Agricultural University, Nan Jing 210000, Jiangsu, China.
| | - Qian Qian
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572024, Hainan, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China.
| | - Jiang Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572024, Hainan, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China.
| |
Collapse
|
6
|
Sharma S, Ganotra J, Samantaray J, Sahoo RK, Bhardwaj D, Tuteja N. An emerging role of heterotrimeric G-proteins in nodulation and nitrogen sensing. PLANTA 2023; 258:101. [PMID: 37847414 DOI: 10.1007/s00425-023-04251-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023]
Abstract
MAIN CONCLUSION A comprehensive understanding of nitrogen signaling cascades involving heterotrimeric G-proteins and their putative receptors can assist in the production of nitrogen-efficient plants. Plants are immobile in nature, so they must endure abiotic stresses including nutrient stress. Plant development and agricultural productivity are frequently constrained by the restricted availability of nitrogen in the soil. Non-legume plants acquire nitrogen from the soil through root membrane-bound transporters. In depleted soil nitrogen conditions, legumes are naturally conditioned to fix atmospheric nitrogen with the aid of nodulation elicited by nitrogen-fixing bacteria. Moreover, apart from the symbiotic nitrogen fixation process, nitrogen uptake from the soil can also be a significant secondary source to satisfy the nitrogen requirements of legumes. Heterotrimeric G-proteins function as molecular switches to help plant cells relay diverse stimuli emanating from external stress conditions. They are comprised of Gα, Gβ and Gγ subunits, which cooperate with several downstream effectors to regulate multiple plant signaling events. In the present review, we concentrate on signaling mechanisms that regulate plant nitrogen nutrition. Our review highlights the potential of heterotrimeric G-proteins, together with their putative receptors, to assist the legume root nodule symbiosis (RNS) cascade, particularly during calcium spiking and nodulation. Additionally, the functions of heterotrimeric G-proteins in nitrogen acquisition by plant roots as well as in improving nitrogen use efficiency (NUE) have also been discussed. Future research oriented towards heterotrimeric G-proteins through genome editing tools can be a game changer in the enhancement of the nitrogen fixation process. This will foster the precise manipulation and production of plants to ensure global food security in an era of climate change by enhancing crop productivity and minimizing reliance on external inputs.
Collapse
Affiliation(s)
- Suvriti Sharma
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir, 181143, India
| | - Jahanvi Ganotra
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir, 181143, India
| | - Jyotipriya Samantaray
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir, 181143, India
| | - Ranjan Kumar Sahoo
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneswar, Odisha, 752050, India
| | - Deepak Bhardwaj
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir, 181143, India.
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
7
|
Wu Y, Zhao Y, Yu J, Wu C, Wang Q, Liu X, Gao X, Wu K, Fu X, Liu Q. Heterotrimeric G protein γ subunit DEP1 synergistically regulates grain quality and yield by modulating the TTP (TON1-TRM-PP2A) complex in rice. J Genet Genomics 2023:S1673-8527(23)00048-6. [PMID: 36863686 DOI: 10.1016/j.jgg.2023.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Affiliation(s)
- Yunzhe Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Jianping Yu
- College of Plant Science and Technology, Key Laboratory of New Technology in Agricultural Application, Beijing University of Agriculture, Beijing 102206, China
| | - Chenchen Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xueying Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuhua Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kun Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100101, China.
| | - Qian Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
8
|
Yoon D, Suganami M, Ishiyama K, Kagawa T, Tanaka M, Nagao R, Takagi D, Ishida H, Suzuki Y, Mae T, Makino A, Obara M. The gs3 allele from a large-grain rice cultivar, Akita 63, increases yield and improves nitrogen-use efficiency. PLANT DIRECT 2022; 6:e417. [PMID: 35865075 PMCID: PMC9289216 DOI: 10.1002/pld3.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The Green Revolution allowed a large amount of nitrogen (N) fertilization to increase crop yield but has led to severe environmental pollution. Therefore, increasing the crop grain yield must be achieved without such considerable input of N fertilization. A large-grain japonica rice cultivar, Akita 63, significantly increased grain yield and improved N-use efficiency (NUE) for yield per amount of N absorbed by plants. This study found that the nonsense mutated GS3 gene, the gs3 allele of Akita 63, has a superior yield production with enlarged grain size. The gs3 allele increased the yield with improvements in harvest index and NUE for yields per plant N content by analyzing the near-isogenic line of rice plants with a large grain (LG-Notohikari), which was developed by introducing the gs3 allele of Akita 63 into normal-grain japonica cultivar, Notohikari. Thus, the gs3 allele would be promising for further yield increase without additional large input of N fertilization in non-gs3-allele rice varieties.
Collapse
Affiliation(s)
- Dong‐Kyung Yoon
- Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
- Present address:
Gene Engineering DivisionNational Institute of Agricultural Sciences, Rural Development AdministrationJeonjuSouth Korea
| | - Mao Suganami
- Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
- Present address:
Faculty of Food and Agricultural Sciences, Institute of Fermentation SciencesFukushima UniversityFukushimaJapan
| | - Keiki Ishiyama
- Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Takaaki Kagawa
- Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Marin Tanaka
- Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Rina Nagao
- Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Daisuke Takagi
- Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
- Present address:
Faculty of AgricultureSetsunan UniversityHirakataOsakaJapan
| | - Hiroyuki Ishida
- Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Yuji Suzuki
- Faculty of AgricultureIwate UniversityMoriokaIwateJapan
| | - Tadahiko Mae
- Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Amane Makino
- Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Mitsuhiro Obara
- Japan International Research Center for Agricultural SciencesTsukubaIbarakiJapan
| |
Collapse
|
9
|
Chen S, Chen S, Jiang Y, Lu Q, Liu Z, Liu W, Wang X, Shi W, Xu Q, Sun J, Zhang F, Tang L. Dissecting of the Deterioration in Eating Quality for Erect Panicle (Ep) Type High Yield Japonica Super Rice in Northest China. RICE (NEW YORK, N.Y.) 2022; 15:15. [PMID: 35257269 PMCID: PMC8901826 DOI: 10.1186/s12284-022-00561-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/15/2022] [Indexed: 05/07/2023]
Abstract
Ep type is an important morphological improvement (following dwarf breeding and ideal plant type) that has contributed to breeding super-high yielding, and shows a pleiotropic effect in increasing grain yield and also nitrogen-use efficiency (NUE) in rice. Nevertheless, it remains unclear whether Ep has adverse effects on eating quality and how it affects nitrogen uptake and assimilation. In this study, we developed a pair of near-isogenic lines (NILs) for panicle type (NIL-Ep, NIL-non Ep) in the Liaogeng 5 (LG5) and Akihikari (AKI) backgrounds. Rice plants of the NIL-Ep had higher grain numbers per panicle in the middle to bottom spike positions than plants of the NIL-non Ep. The increased grain number is not only is the key factor leading to increased yield but also is the reason for reduced the eating quality. The content of prolamin and glutelin was significantly higher in NIL-Ep, which resulted in higher hardness and worse viscosity of rice after cooking. In addition, the activity of several essential enzymes catalyzing nitrogen metabolism was higher in the NIL-Ep line grains than in the NIL-non Ep, especially from the mid to late grain filling stage. Based on these results, we conclude that Ep positively regulates grain protein accumulation, primarily through enhancing the activity of enzymes involved in nitrogen assimilation and redistribution during the mid to late grain-filling stage, resulting in excessive accumulation of grain protein and decreased eating quality.
Collapse
Affiliation(s)
- Sibo Chen
- Rice Research Institute, Shenyang Agricultural University/Key Laboratory of Northern Japonica Super Rice Breeding, Ministry of Education, Shenyang, 110866, China
| | - Shuangjie Chen
- Rice Research Institute, Shenyang Agricultural University/Key Laboratory of Northern Japonica Super Rice Breeding, Ministry of Education, Shenyang, 110866, China
| | - Yihui Jiang
- Rice Research Institute, Shenyang Agricultural University/Key Laboratory of Northern Japonica Super Rice Breeding, Ministry of Education, Shenyang, 110866, China
| | - Qing Lu
- Rice Research Institute, Shenyang Agricultural University/Key Laboratory of Northern Japonica Super Rice Breeding, Ministry of Education, Shenyang, 110866, China
| | - Zhongyuan Liu
- Rice Research Institute, Shenyang Agricultural University/Key Laboratory of Northern Japonica Super Rice Breeding, Ministry of Education, Shenyang, 110866, China
| | - Wanying Liu
- Rice Research Institute, Shenyang Agricultural University/Key Laboratory of Northern Japonica Super Rice Breeding, Ministry of Education, Shenyang, 110866, China
| | - Xuhong Wang
- Rice Research Institute, Shenyang Agricultural University/Key Laboratory of Northern Japonica Super Rice Breeding, Ministry of Education, Shenyang, 110866, China
| | - Wenhua Shi
- Rice Research Institute, Shenyang Agricultural University/Key Laboratory of Northern Japonica Super Rice Breeding, Ministry of Education, Shenyang, 110866, China
| | - Quan Xu
- Rice Research Institute, Shenyang Agricultural University/Key Laboratory of Northern Japonica Super Rice Breeding, Ministry of Education, Shenyang, 110866, China
| | - Jian Sun
- Rice Research Institute, Shenyang Agricultural University/Key Laboratory of Northern Japonica Super Rice Breeding, Ministry of Education, Shenyang, 110866, China
| | - Fan Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing, 100081, China
| | - Liang Tang
- Rice Research Institute, Shenyang Agricultural University/Key Laboratory of Northern Japonica Super Rice Breeding, Ministry of Education, Shenyang, 110866, China.
| |
Collapse
|
10
|
Huang H, Ye Y, Song W, Li Q, Han R, Wu C, Wang S, Yu J, Liu X, Fu X, Liu Q, Wu K. Modulating the C-terminus of DEP1 synergistically enhances grain quality and yield in rice. J Genet Genomics 2022; 49:506-509. [PMID: 35182790 DOI: 10.1016/j.jgg.2022.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Haixiang Huang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; Jiaxing Academy of Agricultural Sciences, Jiaxing 314024, Zhejiang, China
| | - Yafeng Ye
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Wenzhen Song
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruixi Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenchen Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuoxun Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianping Yu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xueying Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| | - Kun Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
11
|
Simultaneous Improvement of Grain Yield and Quality through Manipulating Two Type C G Protein Gamma Subunits in Rice. Int J Mol Sci 2022; 23:ijms23031463. [PMID: 35163383 PMCID: PMC8835848 DOI: 10.3390/ijms23031463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
Heterotrimeric G protein signaling is an evolutionarily conserved mechanism in diverse organisms that mediates intracellular responses to external stimuli. In rice, the G proteins are involved in the regulation of multiple important agronomic traits. In this paper, we present our finding that two type C G protein gamma subunits, DEP1 and GS3, antagonistically regulated grain yield and grain quality. The DEP1 gene editing we conducted, significantly increased the grain number per panicle but had a negative impact on taste value, texture properties, and chalkiness-related traits. The GS3 gene editing decreased grain number per panicle but significantly increased grain length. In addition, the GS3 gene-edited plants showed improved taste value, appearance, texture properties, and Rapid Visco Analyser (RVA) profiles. To combine the advantages of both gs3 and dep1, we conducted a molecular design breeding at the GS3 locus of a “super rice” variety, SN265, which has a truncated dep1 allele with erect panicle architecture, high-yield performance, and which is of mediocre eating quality. The elongated grain size of the sn265/gs3 gene-edited plants further increased the grain yield. More importantly, the texture properties and RVA profiles were significantly improved, and the taste quality was enhanced. Beyond showcasing the combined function of dep1 and gs3, this paper presents a strategy for the simultaneous improvement of rice grain yield and quality through manipulating two type C G protein gamma subunits in rice.
Collapse
|
12
|
Ramasamy M, Damaj MB, Vargas-Bautista C, Mora V, Liu J, Padilla CS, Irigoyen S, Saini T, Sahoo N, DaSilva JA, Mandadi KK. A Sugarcane G-Protein-Coupled Receptor, ShGPCR1, Confers Tolerance to Multiple Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2021; 12:745891. [PMID: 35295863 PMCID: PMC8919185 DOI: 10.3389/fpls.2021.745891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/14/2021] [Indexed: 06/14/2023]
Abstract
Sugarcane (Saccharum spp.) is a prominent source of sugar and serves as bioenergy/biomass feedstock globally. Multiple biotic and abiotic stresses, including drought, salinity, and cold, adversely affect sugarcane yield. G-protein-coupled receptors (GPCRs) are components of G-protein-mediated signaling affecting plant growth, development, and stress responses. Here, we identified a GPCR-like protein (ShGPCR1) from sugarcane and energy cane (Saccharum spp. hybrids) and characterized its function in conferring tolerance to multiple abiotic stresses. ShGPCR1 protein sequence contained nine predicted transmembrane (TM) domains connected by four extracellular and four intracellular loops, which could interact with various ligands and heterotrimeric G proteins in the cells. ShGPCR1 sequence displayed other signature features of a GPCR, such as a putative guanidine triphosphate (GTP)-binding domain, as well as multiple myristoylation and protein phosphorylation sites, presumably important for its biochemical function. Expression of ShGPCR1 was upregulated by drought, salinity, and cold stresses. Subcellular imaging and calcium (Ca2+) measurements revealed that ShGPCR1 predominantly localized to the plasma membrane and enhanced intracellular Ca2+ levels in response to GTP, respectively. Furthermore, constitutive overexpression of ShGPCR1 in sugarcane conferred tolerance to the three stressors. The stress-tolerance phenotype of the transgenic lines corresponded with activation of multiple drought-, salinity-, and cold-stress marker genes, such as Saccharum spp. LATE EMBRYOGENESIS ABUNDANT, DEHYDRIN, DROUGHT RESPONSIVE 4, GALACTINOL SYNTHASE, ETHYLENE RESPONSIVE FACTOR 3, SALT OVERLY SENSITIVE 1, VACUOLAR Na+/H+ ANTIPORTER 1, NAM/ATAF1/2/CUC2, COLD RESPONSIVE FACTOR 2, and ALCOHOL DEHYDROGENASE 3. We suggest that ShGPCR1 plays a key role in conferring tolerance to multiple abiotic stresses, and the engineered lines may be useful to enhance sugarcane production in marginal environments with fewer resources.
Collapse
Affiliation(s)
- Manikandan Ramasamy
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Mona B. Damaj
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | | | - Victoria Mora
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Jiaxing Liu
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Carmen S. Padilla
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Sonia Irigoyen
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Tripti Saini
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Nirakar Sahoo
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Jorge A. DaSilva
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Kranthi K. Mandadi
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
13
|
Yang W, Wu K, Wang B, Liu H, Guo S, Guo X, Luo W, Sun S, Ouyang Y, Fu X, Chong K, Zhang Q, Xu Y. The RING E3 ligase CLG1 targets GS3 for degradation via the endosome pathway to determine grain size in rice. MOLECULAR PLANT 2021; 14:1699-1713. [PMID: 34216830 DOI: 10.1016/j.molp.2021.06.027] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 05/02/2023]
Abstract
G-protein signaling and ubiquitin-dependent degradation are both involved in grain development in rice, but how these pathways are coordinated in regulating this process is unknown. Here, we show that Chang Li Geng 1 (CLG1), which encodes an E3 ligase, regulates grain size by targeting the Gγ protein GS3, a negative regulator of grain length, for degradation. Overexpression of CLG1 led to increased grain length, while overexpression of mutated CLG1 with changes in three conserved amino acids decreased grain length. We found that CLG1 physically interacts with and ubiquitinats GS3which is subsequently degraded through the endosome degradation pathway, leading to increased grain size. Furthermore, we identified a critical SNP in the exon 3 of CLG1 that is significantly associated with grain size variation in a core collection of cultivated rice. This SNP results in an amino acid substitution from Arg to Ser at position 163 of CLG1 that enhances the E3 ligase activity of CLG1 and thus increases rice grain size. Both the expression level of CLG1 and the SNP CLG1163S may be useful variations for manipulating grain size in rice.
Collapse
Affiliation(s)
- Wensi Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Wu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huanhuan Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyi Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Luo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shengyuan Sun
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangdong Fu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; Innovation Academy for Seed Design, CAS, Beijing 100101, China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yunyuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; Innovation Academy for Seed Design, CAS, Beijing 100101, China.
| |
Collapse
|
14
|
Li S, Zhang C, Li J, Yan L, Wang N, Xia L. Present and future prospects for wheat improvement through genome editing and advanced technologies. PLANT COMMUNICATIONS 2021; 2:100211. [PMID: 34327324 PMCID: PMC8299080 DOI: 10.1016/j.xplc.2021.100211] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/15/2021] [Accepted: 06/03/2021] [Indexed: 05/03/2023]
Abstract
Wheat (Triticum aestivum, 2n = 6x = 42, AABBDD) is one of the most important staple food crops in the world. Despite the fact that wheat production has significantly increased over the past decades, future wheat production will face unprecedented challenges from global climate change, increasing world population, and water shortages in arid and semi-arid lands. Furthermore, excessive applications of diverse fertilizers and pesticides are exacerbating environmental pollution and ecological deterioration. To ensure global food and ecosystem security, it is essential to enhance the resilience of wheat production while minimizing environmental pollution through the use of cutting-edge technologies. However, the hexaploid genome and gene redundancy complicate advances in genetic research and precision gene modifications for wheat improvement, thus impeding the breeding of elite wheat cultivars. In this review, we first introduce state-of-the-art genome-editing technologies in crop plants, especially wheat, for both functional genomics and genetic improvement. We then outline applications of other technologies, such as GWAS, high-throughput genotyping and phenotyping, speed breeding, and synthetic biology, in wheat. Finally, we discuss existing challenges in wheat genome editing and future prospects for precision gene modifications using advanced genome-editing technologies. We conclude that the combination of genome editing and other molecular breeding strategies will greatly facilitate genetic improvement of wheat for sustainable global production.
Collapse
Affiliation(s)
- Shaoya Li
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Chen Zhang
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Jingying Li
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Lei Yan
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Ning Wang
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Lanqin Xia
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| |
Collapse
|
15
|
Han X, Wu K, Fu X, Liu Q. Improving coordination of plant growth and nitrogen metabolism for sustainable agriculture. ABIOTECH 2020; 1:255-275. [PMID: 36304130 PMCID: PMC9590520 DOI: 10.1007/s42994-020-00027-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/20/2020] [Indexed: 01/25/2023]
Abstract
The agricultural green revolution of the 1960s boosted cereal crop yield was in part due to cultivation of semi-dwarf green revolution varieties. The semi-dwarf plants resist lodging and require high nitrogen (N) fertilizer inputs to maximize yield. To produce higher grain yield, inorganic fertilizer has been overused by Chinese farmers in intensive crop production. With the ongoing increase in the food demand of global population and the environmental pollution, improving crop productivity with reduced N supply is a pressing challenge. Despite a great deal of research efforts, to date only a few genes that improve N use efficiency (NUE) have been identified. The molecular mechanisms underlying the coordination of plant growth, carbon (C) and N assimilation is still not fully understood, thus preventing significant improvement. Recent advances have shed light on how explore NUE within an overall plant biology system that considered the co-regulation of plant growth, C and N metabolisms as a whole, rather than focusing specifically on N uptake and assimilation. There are several potential approaches to improve NUE discussed in this review. Increasing knowledge of how plants sense and respond to changes in N availability, as well as identifying new targets for breeding strategies to simultaneously improve NUE and grain yield, could usher in a new green revolution.
Collapse
Affiliation(s)
- Xiang Han
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Kun Wu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xiangdong Fu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101 China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qian Liu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
16
|
Oligomerization of A. thaliana Heterotrimeric G Protein Subunits AGB1 and AGG2 In Vitro. Protein J 2020; 39:563-573. [PMID: 32772216 DOI: 10.1007/s10930-020-09914-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Plant heterotrimeric G proteins are a major group of signaling molecules involved in regulation of critical processes including stress adaptation, seed size, grain quality and immune responses. Despite an abundance of in situ functional studies; purification of the individual subunits of the plant heterotrimer for biophysical and structural characterization and for studies on their interactions are lacking. In this study cloning of the genes encoding the β subunit AGB1 of A. thaliana and its γ-subunits AGG1 and AGG2 using different E. coli expression vectors and screening of expression in several strains are reported. AGB1 could be expressed albeit at very low levels and in all cases it was accompanied by overexpression of E. coli chaperone proteins. AGG1 could only be detected in inclusion body fractions, whereas AGG2 was obtained in soluble fractions and was purified. Purified AGB1 and AGG2 subunits were shown to dimerize in vitro. Further characterization of AGG2 by small angle X-ray scattering measurements and by dynamic light scattering revealed that AGG2 formed homodimers with extended shape in solution. These results are also consistent with those from circular dichroism spectroscopy which yielded 39.4% helical and 50% random coil content for AGG2. This is the first study showing heterologous expression of a plant heterotrimeric G protein β subunit individually and presenting its interaction with a plant γ-subunit in vitro. Results also show that the AGG2 subunit has a disordered structure, which would account for its role in diverse interactions for establishing selectivity in signal propagation.
Collapse
|
17
|
Pandey S. Plant receptor-like kinase signaling through heterotrimeric G-proteins. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1742-1751. [PMID: 31930311 PMCID: PMC7242010 DOI: 10.1093/jxb/eraa016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/10/2020] [Indexed: 05/06/2023]
Abstract
Heterotrimeric G-proteins regulate multiple aspects of plant growth, development, and response to biotic and abiotic stresses. While the core components of heterotrimeric G-proteins and their basic biochemistry are similar in plants and metazoans, key differences exist in their regulatory mechanisms. In particular, the activation mechanisms of plant G-proteins appear diverse and may include both canonical and novel modes. Classical G-protein-coupled receptor-like proteins exist in plants and interact with Gα proteins, but their ability to activate Gα by facilitating GDP to GTP exchange has not been demonstrated. Conversely, there is genetic and functional evidence that plant G-proteins interact with the highly prevalent receptor-like kinases (RLKs) and are phosphorylated by them. This suggests the exciting scenario that in plants the G-proteins integrate RLK-dependent signal perception at the plasma membrane with downstream effectors. Because RLKs are active kinases, it is also likely that the activity of plant G-proteins is regulated via phosphorylation/dephosphorylation rather than GTP-GDP exchange as in metazoans. This review discusses our current knowledge of the possible RLK-dependent regulatory mechanisms of plant G-protein signaling in the context of several biological systems and outlines the diversity that might exist in such regulation.
Collapse
Affiliation(s)
- Sona Pandey
- Donald Danforth Plant Science Center, St Louis, MO, USA
- Correspondence:
| |
Collapse
|
18
|
Cui Y, Jiang N, Xu Z, Xu Q. Heterotrimeric G protein are involved in the regulation of multiple agronomic traits and stress tolerance in rice. BMC PLANT BIOLOGY 2020; 20:90. [PMID: 32111163 PMCID: PMC7048073 DOI: 10.1186/s12870-020-2289-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/13/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND The heterotrimeric G protein complex, consisting of Gα, Gβ, and Gγ subunits, are conserved signal transduction mechanism in eukaryotes. Recent molecular researches had demonstrated that G protein signaling participates in the regulation of yield related traits. However, the effects of G protein genes on yield components and stress tolerance are not well characterized. RESULTS In this study, we generated heterotrimeric G protein mutants in rice using CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats) gene-editing technology. The effects of heterotrimeric G proteins on the regulation of yield components and stress tolerance were investigated. The mutants of gs3 and dep1 generated preferable agronomic traits compared to the wild-type, whereas the mutants of rga1 showed an extreme dwarf phenotype, which led to a dramatic decrease in grain production. The mutants showed improved stress tolerance, especially under salinity treatment. We found four putative extra-large G proteins (PXLG)1-4 that also participate in the regulation of yield components and stress tolerance. A yeast two hybrid showed that the RGB1 might interact with PXLG2 but not with PXLG1, PXLG3 or PXLG4. CONCLUSION These findings will not only improve our understanding of the repertoire of heterotrimeric G proteins in rice but also contribute to the application of heterotrimeric G proteins in rice breeding.
Collapse
Affiliation(s)
- Yue Cui
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866 China
| | - Nan Jiang
- Shenyang Research and Development Service Center of Modern Agriculture, Shenyang, 110866 China
| | - Zhengjin Xu
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866 China
| | - Quan Xu
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866 China
| |
Collapse
|
19
|
Li S, Xia L. Precise gene replacement in plants through CRISPR/Cas genome editing technology: current status and future perspectives. ABIOTECH 2020; 1:58-73. [PMID: 36305005 PMCID: PMC9590512 DOI: 10.1007/s42994-019-00009-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/08/2019] [Indexed: 12/01/2022]
Abstract
CRISPR/Cas, as a simple, versatile, robust and cost-effective system for genome manipulation, has dominated the genome editing field over the past few years. The application of CRISPR/Cas in crop improvement is particularly important in the context of global climate change, as well as diverse agricultural, environmental and ecological challenges. Various CRISPR/Cas toolboxes have been developed and allow for targeted mutagenesis at specific genome loci, transcriptome regulation and epigenome editing, base editing, and precise targeted gene/allele replacement or tagging in plants. In particular, precise replacement of an existing allele with an elite allele in a commercial variety through homology-directed repair (HDR) is a holy grail in genome editing for crop improvement as it has been very difficult, laborious and time-consuming to introgress the elite alleles into commercial varieties without any linkage drag from parental lines within a few generations in crop breeding practice. However, it still remains very challenging in crop plants. This review intends to provide an informative summary of the latest development and breakthroughs in gene replacement using CRISPR/Cas technology, with a focus on achievements, potential mechanisms and future perspectives in plant biological science as well as crop improvement.
Collapse
Affiliation(s)
- Shaoya Li
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
| | - Lanqin Xia
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
| |
Collapse
|
20
|
Fei C, Geng X, Xu Z, Xu Q. Multiple areas investigation reveals the genes related to vascular bundles in rice. RICE (NEW YORK, N.Y.) 2019; 12:17. [PMID: 30900100 PMCID: PMC6428884 DOI: 10.1186/s12284-019-0278-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/14/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND The vascular bundle in the panicle neck is a crucial trait in rice (Oryza sativa) production that differs between the indica and japonica subspecies. However, the effect of indica/japonica genetic background on the vascular bundles remains unknown. RESULTS A series of recombinant inbred lines (RILs) derived from a cross between japonica and indica were planted in three areas. High-throughput sequencing was conducted to determine the indica pedigree percentage and for quantitative trait locus (QTL) analysis. The indica pedigree affected the number of large vascular bundles (LVBs), but not the number of small vascular bundles (SVBs). QTL analysis identified a locus (qLVB9) that was pleiotropic for both LVBs and SVBs in all three areas, and qLVB9 appeared synonymous with DENSE AND ERECT PANICLE 1 (DEP1). Using CRISPR/Cas9 gene editing and gene overexpression technology, we confirmed that the truncated dep1 allele increased the number of LVBs, and resulted in LVBs more closely associated to the indica pedigree. RNA sequencing showed that the truncated dep1 allele downregulated the AP2-like gene family. The double mutant for the DEP1 and AP2-like genes (OsAP2-39) showed decreased endogenous abscisic acid (ABA) level and insensitivity to exogenous ABA treatment, confirming that both DEP1 and OsAP2-39 are involved in the ABA response mechanism. CONCLUSIONS The present study showed the qLVB9/DEP1 affects LVBs, and involved in ABA signaling via regulating the AP2-like gene family. These results offer new insights into the function of qLVB9/DEP1 in rice.
Collapse
Affiliation(s)
- Cheng Fei
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Xin Geng
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhengjin Xu
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Quan Xu
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
21
|
Zhong CL, Zhang C, Liu JZ. Heterotrimeric G protein signaling in plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1109-1118. [PMID: 30481338 DOI: 10.1093/jxb/ery426] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/22/2018] [Indexed: 05/26/2023]
Abstract
In animals, heterotrimeric guanine nucleotide-binding proteins (G proteins) transduce signals perceived by numerous G protein-coupled receptors (GPCRs). However, no canonical GPCRs with guanine nucleotide exchange factor (GEF) activity are present in plant genomes. Accumulated evidence indicates that, instead of GPCRs, the receptor-like kinases (RLKs) function upstream of G proteins in plants. Regulator of G protein signaling 1 (RGS1) functions to convert the GTP-bound Gα to the GDP-bound form through its GTPase-accelerating protein (GAP) activity. Because of the intrinsic differences in the biochemical properties between Arabidopsis and animal Gα, the actions of animal and Arabidopsis RGS1 result in contrasting outcomes in G signaling activation/deactivation. Animal RGSs accelerate the deactivation of the activated G signaling, whereas Arabidopsis RGS1 prevents the activation of G signaling in the resting state. Phosphorylation of Arabidopsis RGS1 triggered by ligand-RLK recognition results in the endocytosis or degradation of RGS1, leading to the separation of RGS1 from Gα and thus the derepression of G signaling. Here, we summarize the involvement of the G proteins in plant immunity, with a special focus on the molecular mechanism of G signaling activation/deactivation regulated by RLKs and RGS1. We also provide a brief perspective on the outstanding questions that need to be addressed to fully understand G signaling in plant immunity.
Collapse
Affiliation(s)
- Chen-Li Zhong
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Chi Zhang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Jian-Zhong Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| |
Collapse
|
22
|
Li X, Tao Q, Miao J, Yang Z, Gu M, Liang G, Zhou Y. Evaluation of differential qPE9-1/DEP1 protein domains in rice grain length and weight variation. RICE (NEW YORK, N.Y.) 2019; 12:5. [PMID: 30706248 PMCID: PMC6357212 DOI: 10.1186/s12284-019-0263-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/06/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND qPE9-1/DEP1, encoding a G protein γ subunit, has multiple effects on plant architecture, grain size, and yield in rice. The qPE9-1 protein contains an N-terminal G gamma-like (GGL) domain, a putative transmembrane domain, and a C-terminal cysteine-rich domain. However, the roles of each domain remain unclear. RESULTS In the present study, we focused on the genetic effects of different domains of qPE9-1 in the regulation of grain length and weight. We generated a series of transgenic plants expressing different truncated qPE9-1 proteins through constitutive expression and clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 strategies. Phenotypic analysis indicated that the complete or long-tailed qPE9-1 contributed to the elongation of grains, while the GGL domain alone and short-tailed qPE9-1 led to short grains. The long C-terminus of qPE9-1 including two or three C-terminal von Willebrand factor type C domains effectively repressed the negative effects of the GGL domain on grain length and weight. qPE9-1-overexpressing lines in a Wuxianggeng 9 (carrying a qpe9-1 allele) background showed increased grain yield per plant, but lodging occurred in some years. CONCLUSIONS Manipulation of the C-terminal length of qPE9-1 through genetic engineering can be used to generate varieties with various grain lengths and weights according to different requirements in rice breeding. The genetic effects of qPE9-1/qpe9-1 are multidimensional, and breeders should take into account other factors including genetic backgrounds and planting conditions in the use of qPE9-1/qpe9-1.
Collapse
Affiliation(s)
- Xiangbo Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Quandan Tao
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Jun Miao
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Minghong Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Guohua Liang
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
23
|
Liu Q, Han R, Wu K, Zhang J, Ye Y, Wang S, Chen J, Pan Y, Li Q, Xu X, Zhou J, Tao D, Wu Y, Fu X. G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice. Nat Commun 2018; 9:852. [PMID: 29487282 PMCID: PMC5829230 DOI: 10.1038/s41467-018-03047-9] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 01/12/2018] [Indexed: 01/16/2023] Open
Abstract
The simultaneous improvement of grain quality and yield of cereal crops is a major challenge for modern agriculture. Here we show that a rice grain yield quantitative trait locus qLGY3 encodes a MADS-domain transcription factor OsMADS1, which acts as a key downstream effector of G-protein βγ dimers. The presence of an alternatively spliced protein OsMADS1lgy3 is shown to be associated with formation of long and slender grains, resulting in increases in both grain quality and yield potential of rice. The Gγ subunits GS3 and DEP1 interact directly with the conserved keratin-like domain of MADS transcription factors, function as cofactors to enhance OsMADS1 transcriptional activity and promote the co-operative transactivation of common target genes, thereby regulating grain size and shape. We also demonstrate that combining OsMADS1 lgy3 allele with high-yield-associated dep1-1 and gs3 alleles represents an effective strategy for simultaneously improving both the productivity and end-use quality of rice.
Collapse
Affiliation(s)
- Qian Liu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Ruixi Han
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.,Development Center for Science and Technology, Ministry of Agriculture, 100122, Beijing, China
| | - Kun Wu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.,Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China
| | - Jianqing Zhang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yafeng Ye
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Shuansuo Wang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jianfeng Chen
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yajun Pan
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Qi Li
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Xiaopeng Xu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.,Root Biology Center, South China Agricultural University, 510642, Guangzhou, China
| | - Jiawu Zhou
- Food Crops Research, Institute Yunnan Academy of Agricultural Sciences, 650200, Kunming, China
| | - Dayun Tao
- Food Crops Research, Institute Yunnan Academy of Agricultural Sciences, 650200, Kunming, China
| | - Yuejin Wu
- Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China
| | - Xiangdong Fu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China. .,College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
24
|
Vavilova V, Konopatskaia I, Kuznetsova AE, Blinov A, Goncharov NP. DEP1 gene in wheat species with normal, compactoid and compact spikes. BMC Genet 2017; 18:106. [PMID: 29297308 PMCID: PMC5751790 DOI: 10.1186/s12863-017-0583-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND In rice, a variant of DEP1 gene results in erect panicle architecture, well-developed vascular bundles, an increase in the number of grains per panicle and a consequent increase in the grain yield. Interestingly, DEP1 homologs are present in the other cereals including species of wheat and barley (Hordeum vulgare), even though they do not produce panicles but spikes. In barley, HvDEP1 alleles do not differ between strains of various ear types and geographic origins, while in at least three OsDEP1 variants have been described. RESULTS In this work, we have studied the DEP1 gene from eight accessions which belong to four wheat species, T. monococcum, T. durum, T. compactum, and T. spelta, with either compact, compactoid or normal spike phenotypes. The nucleotide sequences of the 5th exon of DEP1 were determined for all eight accessions. Obtained sequences were species specific. Despite the interspecies diversity, all wheat sequences encoded polypeptides of the same size, similarly to the 5th exons of the DEP1 homologs in T. aestivum, T. urartu, and H. vulgare. For further study, the full-length sequences of the DEP1 gene for all four species were studied. The full-length DEP1 genomic copies were isolated from the genomic sequences of T. aestivum, T. urartu, and Aegilops tauschii. The genome of tetraploid wheat T. durum contains two variants of the DEP1 originating from A and B genomes. In the hexaploid wheats T. aestivum, T. compactum, and T. spelta, three variants of this gene originating from A, B, and D genomes were detected. DEP1 genes of the diploid wheats T. monococcum and T. urartu differ. It seems that a precursor of the DEP1 gene in T. monococcum originates from the wild progenitor T. boeoticum. CONCLUSION No DEP1-related differences of nucleotide sequences between the compact (or compactoid) and normal spike phenotypes in the tested wheat species were detected. Therefore, DEP1 gene does not directly participate in the control of the spike architecture in wheats.
Collapse
Affiliation(s)
| | | | | | - Alexandr Blinov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | | |
Collapse
|
25
|
Xu H, Zhao M, Zhang Q, Xu Z, Xu Q. The DENSE AND ERECT PANICLE 1 ( DEP1) gene offering the potential in the breeding of high-yielding rice. BREEDING SCIENCE 2016; 66:659-667. [PMID: 28163581 PMCID: PMC5282764 DOI: 10.1270/jsbbs.16120] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/19/2016] [Indexed: 05/09/2023]
Abstract
The erect panicle model super-rice can rationally transform the solar energy into accumulated organic matter (biomass) and increase grain yield. The phenotype of erect panicle architecture controlled by DENSE AND ERECT PANICLE 1 (DEP1) has been used in rice breeding for nearly a century owing to its high-yield, lodging tolerance with strong stem, reasonable population structure and high nitrogen use efficiency. DEP1 is a G protein γ subunit that is involved in the regulation of erect panicle, number of grains per panicle, nitrogen uptake, and stress-tolerance through the G protein signal pathway. Here we review the development of erect panicle rice varieties, DEP1 alleles and regulatory network, and its physiological and morphological functions. Additionally, the further increasing the yield potential of erect-panicle super-rice, and the development of molecular designing breeding for indica-japonica hybrid rice with the dep1 gene are also prospected.
Collapse
Affiliation(s)
| | | | | | | | - Quan Xu
- Corresponding author (e-mail: )
| |
Collapse
|