1
|
Yu Z, Cui B, Xiao J, Jiao W, Wang H, Wang Z, Sun L, Song Q, Yuan J, Wang X. Dosage effect genes modulate grain development in synthesized Triticum durum-Haynaldia villosa allohexaploid. J Genet Genomics 2024; 51:1089-1100. [PMID: 38670432 DOI: 10.1016/j.jgg.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Polyploidization in plants often leads to increased cell size and grain size, which may be affected by the increased genome dosage and transcription abundance. The synthesized Triticum durum (AABB)-Haynaldia villosa (VV) amphiploid (AABBVV) has significantly increased grain size, especially grain length, than the tetraploid and diploid parents. To investigate how polyploidization affects grain development at the transcriptional level, we perform transcriptome analysis using the immature seeds of T. durum, H. villosa, and the amphiploid. The dosage effect genes are contributed more by differentially expressed genes from genome V of H. villosa. The dosage effect genes overrepresent grain development-related genes. Interestingly, the vernalization gene TaVRN1 is among the positive dosage effect genes in the T. durum‒H. villosa and T. turgidum‒Ae. tauschii amphiploids. The expression levels of TaVRN1 homologs are positively correlated with the grain size and weight. The TaVRN1-B1 or TaVRN1-D1 mutation shows delayed florescence, decreased cell size, grain size, and grain yield. These data indicate that dosage effect genes could be one of the important explanations for increased grain size by regulating grain development. The identification and functional validation of dosage effect genes may facilitate the finding of valuable genes for improving wheat yield.
Collapse
Affiliation(s)
- Zhongyu Yu
- State Key Lab of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP/Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210095, China
| | - Baofeng Cui
- State Key Lab of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP/Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210095, China
| | - Jin Xiao
- State Key Lab of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP/Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210095, China
| | - Wu Jiao
- State Key Lab of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP/Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210095, China
| | - Haiyan Wang
- State Key Lab of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP/Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210095, China
| | - Zongkuan Wang
- State Key Lab of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP/Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210095, China
| | - Li Sun
- State Key Lab of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP/Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210095, China
| | - Qingxin Song
- State Key Lab of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP/Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210095, China
| | - Jingya Yuan
- State Key Lab of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP/Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210095, China.
| | - Xiue Wang
- State Key Lab of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP/Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
2
|
Liu J, Wei L, Wu Y, Wang Z, Wang H, Xiao J, Wang X, Sun L. Characterization of sucrose nonfermenting-1-related protein kinase 2 (SnRK2) gene family in Haynaldia villosa demonstrated SnRK2.9-V enhances drought and salt stress tolerance of common wheat. BMC Genomics 2024; 25:209. [PMID: 38408894 PMCID: PMC10895793 DOI: 10.1186/s12864-024-10114-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/12/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND The sucrose nonfermenting-1-related protein kinase 2 (SnRK2) plays a crucial role in responses to diverse biotic/abiotic stresses. Currently, there are reports on these genes in Haynaldia villosa, a diploid wild relative of wheat. RESULTS To understand the evolution of SnRK2-V family genes and their roles in various stress conditions, we performed genome-wide identification of the SnRK2-V gene family in H. villosa. Ten SnRK2-V genes were identified and characterized for their structures, functions and spatial expressions. Analysis of gene exon/intron structure further revealed the presence of evolutionary paths and replication events of SnRK2-V gene family in the H. villosa. In addition, the features of gene structure, the chromosomal location, subcellular localization of the gene family were investigated and the phylogenetic relationship were determined using computational approaches. Analysis of cis-regulatory elements of SnRK2-V gene members revealed their close correlation with different phytohormone signals. The expression profiling revealed that ten SnRK2-V genes expressed at least one tissue (leave, stem, root, or grain), or in response to at least one of the biotic (stripe rust or powdery mildew) or abiotic (drought or salt) stresses. Moreover, SnRK2.9-V was up-regulated in H. villosa under the drought and salt stress and overexpressing of SnRK2.9-V in wheat enhanced drought and salt tolerances via enhancing the genes expression of antioxidant enzymes, revealing a potential value of SnRK2.9-V in wheat improvement for salt tolerance. CONCLUSION Our present study provides a basic genome-wide overview of SnRK2-V genes in H. villosa and demonstrates the potential use of SnRK2.9-V in enhancing the drought and salt tolerances in common wheat.
Collapse
Affiliation(s)
- Jia Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Zhongshan Biological Breeding Laboratory, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, China
- Jinhua Academy, Zhejiang Chinese Medical University, Jinhua, 321000, China
| | - Luyang Wei
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Zhongshan Biological Breeding Laboratory, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, China
| | - Yirong Wu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Zhongshan Biological Breeding Laboratory, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, China
| | - Zongkuan Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Zhongshan Biological Breeding Laboratory, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, China
| | - Haiyan Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Zhongshan Biological Breeding Laboratory, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, China
| | - Jin Xiao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Zhongshan Biological Breeding Laboratory, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, China
| | - Xiue Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Zhongshan Biological Breeding Laboratory, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, China.
| | - Li Sun
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Cytogenetics Institute, Zhongshan Biological Breeding Laboratory, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, China.
| |
Collapse
|
3
|
Kroupin PY, Ulyanov DS, Karlov GI, Divashuk MG. The launch of satellite: DNA repeats as a cytogenetic tool in discovering the chromosomal universe of wild Triticeae. Chromosoma 2023:10.1007/s00412-023-00789-4. [PMID: 36905415 DOI: 10.1007/s00412-023-00789-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/16/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023]
Abstract
Fluorescence in situ hybridization is a powerful tool that enables plant researchers to perform systematic, evolutionary, and population studies of wheat wild relatives as well as to characterize alien introgression into the wheat genome. This retrospective review reflects on progress made in the development of methods for creating new chromosomal markers since the launch of this cytogenetic satellite instrument to the present day. DNA probes based on satellite repeats have been widely used for chromosome analysis, especially for "classical" wheat probes (pSc119.2 and Afa family) and "universal" repeats (45S rDNA, 5S rDNA, and microsatellites). The rapid development of new-generation sequencing and bioinformatical tools, and the application of oligo- and multioligonucleotides has resulted in an explosion in the discovery of new genome- and chromosome-specific chromosome markers. Owing to modern technologies, new chromosomal markers are appearing at an unprecedented velocity. The present review describes the specifics of localization when employing commonly used vs. newly developed probes for chromosomes in J, E, V, St, Y, and P genomes and their diploid and polyploid carriers Agropyron, Dasypyrum, Thinopyrum, Pseudoroegneria, Elymus, Roegneria, and Kengyilia. Particular attention is paid to the specificity of probes, which determines their applicability for the detection of alien introgression to enhance the genetic diversity of wheat through wide hybridization. The information from the reviewed articles is summarized into the TRepeT database, which may be useful for studying the cytogenetics of Triticeae. The review describes the trends in the development of technology used in establishing chromosomal markers that can be used for prediction and foresight in the field of molecular biology and in methods of cytogenetic analysis.
Collapse
Affiliation(s)
- Pavel Yu Kroupin
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550, Moscow, Russia.
| | - Daniil S Ulyanov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550, Moscow, Russia
| | - Gennady I Karlov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550, Moscow, Russia
| | - Mikhail G Divashuk
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550, Moscow, Russia
| |
Collapse
|
4
|
Wu N, He Z, Fang J, Liu X, Shen X, Zhang J, Lei Y, Xia Y, He H, Liu W, Chu C, Wang C, Qi Z. Chromosome diversity in Dasypyrum villosum, an important genetic and trait resource for hexaploid wheat engineering. ANNALS OF BOTANY 2023; 131:185-198. [PMID: 35451455 PMCID: PMC9904354 DOI: 10.1093/aob/mcac054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/20/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Dasypyrum villosum (2n = 2x = 14) harbours potentially beneficial genes for hexaploid and tetraploid wheat improvement. Highly diversified chromosome variation exists among and within accessions due to its open-pollination nature. The wheat-D. villosum T6VS·6AL translocation was widely used in breeding mainly because gene Pm21 in the 6VS segment conferred high and lasting powdery mildew resistance. However, the widespread use of this translocation may narrow the genetic base of wheat. A better solution is to utilize diversified D. villosum accessions as the genetic source for wheat breeding. Analysis of cytological and genetic polymorphisms among D. villosum accessions also provides genetic evolution information on the species. Using cytogenetic and molecular tools we analysed genetic polymorphisms among D. villosum accessions and developed consensus karyotypes to assist the introgression of beneficial genes from D. villosum into wheat. METHODS A multiplex probe of repeats for FISH, GISH and molecular markers were used to detect chromosome polymorphisms among D. villosum accessions. Polymorphic signal block types, chromosome heterogeneity and heterozygosity, and chromosome polymorphic information content were used in genetic diversity analysis. KEY RESULTS Consensus karyotypes of D. villosum were developed, and the homoeologous statuses of individual D. villosum chromosomes relative to wheat were determined. Tandem repeat probes of pSc119.2, (GAA)10 and the AFA family produced high-resolution signals and not only showed different signal patterns in D. villosum chromosomes but also revealed the varied distribution of tandem repeats among chromosomes and accessions. A total of 106 polymorphic chromosomes were identified from 13 D. villosum accessions and high levels of chromosomal heterozygosity and heterogeneity were observed. A subset of 56 polymorphic chromosomes was transferred into durum wheat through wide crosses, and seven polymorphic chromosomes are described in two newly developed durum-D. villosum amphidiploids. CONCLUSIONS Consensus karyotypes of D. villosum and oligonucleotide FISH facilitated identification of polymorphic signal blocks and a high level of chromosomal heterozygosity and heterogeneity among D. villosum accessions, seen in newly developed amphiploids. The abundant genetic diversity of D. villosum and range of alleles, exploitable through interploid crosses, backcrosses and recombination (chromosome engineering), allow introduction of biotic and abiotic stress resistances into wheat, translating into increasing yield, end-use quality and crop sustainability.
Collapse
Affiliation(s)
- Nan Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziming He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaxin Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xia Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanhong Lei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yating Xia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Huagang He
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wenxuan Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Chenggen Chu
- USDA-ARS, Sugarbeet & Potato Research Unit, Fargo, ND 58102, USA
| | - Conglei Wang
- Tianjin Crops Research Institute, Tianjin 300384, China
| | - Zengjun Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Zhang X, Wang H, Sun H, Li Y, Feng Y, Jiao C, Li M, Song X, Wang T, Wang Z, Yuan C, Sun L, Lu R, Zhang W, Xiao J, Wang X. A chromosome-scale genome assembly of Dasypyrum villosum provides insights into its application as a broad-spectrum disease resistance resource for wheat improvement. MOLECULAR PLANT 2023; 16:432-451. [PMID: 36587241 DOI: 10.1016/j.molp.2022.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Dasypyrum villosum is one of the most valuable gene resources in wheat improvement, especially for disease resistance. The mining of favorable genes from D. villosum is frustrated by the lack of a whole genome sequence. In this study, we generated a doubled-haploid line, 91C43DH, using microspore culture and obtained a 4.05-GB high-quality, chromosome-scale genome assembly for D. villosum. The assembly contains39 727 high-confidence genes, and 85.31% of the sequences are repetitive. Two reciprocal translocation events were detected, and 7VS-4VL is a unique translocation in D. villosum. The prolamin seed storage protein-coding genes were found to be duplicated; in particular, the genes encoding low-molecular-weight glutenin at the Glu-V3 locus were significantly expanded. RNA sequencing (RNA-seq) analysis indicated that, after Blumeria graminearum f.sp tritici (Bgt) inoculation, there were more upregulated genes involved in the pattern-triggered immunity and effector-triggered immunity defense pathways in D. villosum than in Triticum urartu. MNase hypersensitive sequencing (MH-seq) identified two Bgt-inducible MH sites (MHSs), one in the promoter and one in the 3' terminal region of the powdery mildew resistance (Pm) gene NLR1-V. Each site had two subpeaks and they were termed MHS1 (MHS1.1/1.2) and MHS2 (MHS2.1/2.2). Bgt-inducible MHS2.2 was uniquely present in D. villosum, and MHS1.1 was more inducible in D. villosum than in wheat, suggesting that MHSs may be critical for regulation of NLR1-V expression and plant defense. In summary, this study provides a valuable genome resource for functional genomics studies and wheat-D. villosum introgression breeding. The identified regulatory mechanisms may also be exploited to develop new strategies for enhancing Pm resistance by optimizing gene expression in wheat.
Collapse
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Haiyan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Haojie Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Yingbo Li
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Yilong Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Chengzhi Jiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Mengli Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Xinying Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Tong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Zongkuan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Chunxia Yuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Li Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Ruiju Lu
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Jin Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China.
| | - Xiue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
6
|
Xing L, Yuan L, Lv Z, Wang Q, Yin C, Huang Z, Liu J, Cao S, Zhang R, Chen P, Karafiátová M, Vrána J, Bartoš J, Doležel J, Cao A. Long-range assembly of sequences helps to unravel the genome structure and small variation of the wheat-Haynaldia villosa translocated chromosome 6VS.6AL. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1567-1578. [PMID: 33606347 PMCID: PMC8384597 DOI: 10.1111/pbi.13570] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/06/2021] [Indexed: 05/07/2023]
Abstract
Genomics studies in wild species of wheat have been limited due to the lack of references; however, new technologies and bioinformatics tools have much potential to promote genomic research. The wheat-Haynaldia villosa translocation line T6VS·6AL has been widely used as a backbone parent of wheat breeding in China. Therefore, revealing the genome structure of translocation chromosome 6VS·6AL will clarify how this chromosome formed and will help to determine how it affects agronomic traits. In this study, chromosome flow sorting, NGS sequencing and Chicago long-range linkage assembly were innovatively used to produce the assembled sequences of 6VS·6AL, and gene prediction and genome structure characterization at the molecular level were effectively performed. The analysis discovered that the short arm of 6VS·6AL was actually composed of a large distal segment of 6VS, a small proximal segment of 6AS and the centromere of 6A, while the collinear region in 6VS corresponding to 230-260 Mb of 6AS-Ta was deleted when the recombination between 6VS and 6AS occurred. In addition to the molecular mechanism of the increased grain weight and enhanced spike length produced by the translocation chromosome, it may be correlated with missing GW2-V and an evolved NRT-V cluster. Moreover, a fine physical bin map of 6VS was constructed by the high-throughput developed 6VS-specific InDel markers and a series of newly identified small fragment translocation lines involving 6VS. This study will provide essential information for mining of new alien genes carried by the 6VS·6AL translocation chromosome.
Collapse
Affiliation(s)
- Liping Xing
- National Key Laboratory of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingChina
| | - Lu Yuan
- National Key Laboratory of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingChina
| | - Zengshuai Lv
- National Key Laboratory of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingChina
| | - Qiang Wang
- National Key Laboratory of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingChina
| | - Chunhong Yin
- National Key Laboratory of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingChina
| | - Zhenpu Huang
- National Key Laboratory of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingChina
| | - Jiaqian Liu
- National Key Laboratory of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingChina
| | - Shuqi Cao
- National Key Laboratory of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingChina
| | - Ruiqi Zhang
- National Key Laboratory of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingChina
| | - Peidu Chen
- National Key Laboratory of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingChina
| | - Miroslava Karafiátová
- Institute of Experimental Botany of the Czech Academy of SciencesCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | - Jan Vrána
- Institute of Experimental Botany of the Czech Academy of SciencesCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | - Jan Bartoš
- Institute of Experimental Botany of the Czech Academy of SciencesCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of SciencesCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | - Aizhong Cao
- National Key Laboratory of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingChina
| |
Collapse
|
7
|
Yu Z, Wang H, Jiang W, Jiang C, Yuan W, Li G, Yang Z. Karyotyping Dasypyrum breviaristatum chromosomes with multiple oligonucleotide probes reveals the genomic divergence in Dasypyrum. Genome 2021; 64:789-800. [PMID: 33513072 DOI: 10.1139/gen-2020-0147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The perennial species Dasypyrum breviaristatum (genome Vb) contains many potentially valuable genes for the improvement of common wheat. Construction of a detailed karyotype of D. breviaristatum chromosomes will be useful for the detection of Dasypyrum chromatin in wheat background. We established the standard karyotype of 1Vb-7Vb chromosomes through nondenaturing fluorescence in situ hybridization (ND-FISH) technique using 28 oligonucleotide probes from the wheat - D. breviaristatum partial amphiploid TDH-2 (AABBVbVb) and newly identified wheat - D. breviaristatum disomic translocation and addition lines D2138 (6VbS.2VbL), D2547 (4Vb), and D2532 (3VbS.6VbL) by comparative molecular marker analysis. The ND-FISH with multiple oligo probes was conducted on the durum wheat - D. villosum amphiploid TDV-1 and large karyotype differences between D. breviaristatum and D. villosum was revealed. These ND-FISH probes will be valuable for screening the wheat - Dasypyrum derivative lines for chromosome identification, and the newly developed wheat - D. breviaristatum addition lines may broaden the gene pool of wheat breeding. The differences between D. villosum and D. breviaristatum chromosomes revealed by ND-FISH will help us understand evolutionary divergence of repetitive sequences within the genus Dasypyrum.
Collapse
Affiliation(s)
- Zhihui Yu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China.,Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China
| | - Hongjin Wang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China.,Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China
| | - Wenxi Jiang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China.,Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China
| | - Chengzhi Jiang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China.,Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China
| | - Weiguang Yuan
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China.,Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China
| | - Guangrong Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China.,Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China
| | - Zujun Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China.,Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 611731, China
| |
Collapse
|
8
|
Zhang H, Zhang X, Liu J, Niu Y, Chen Y, Hao Y, Zhao J, Sun L, Wang H, Xiao J, Wang X. Characterization of the Heavy-Metal-Associated Isoprenylated Plant Protein ( HIPP) Gene Family from Triticeae Species. Int J Mol Sci 2020; 21:E6191. [PMID: 32867204 PMCID: PMC7504674 DOI: 10.3390/ijms21176191] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Heavy-metal-associated (HMA) isoprenylated plant proteins (HIPPs) only exist in vascular plants. They play important roles in responses to biotic/abiotic stresses, heavy-metal homeostasis, and detoxification. However, research on the distribution, diversification, and function of HIPPs in Triticeae species is limited. In this study, a total of 278 HIPPs were identified from a database from five Triticeae species, and 13 were cloned from Haynaldia villosa. These genes were classified into five groups by phylogenetic analysis. Most HIPPs had one HMA domain, while 51 from Clade I had two, and all HIPPs had good collinear relationships between species or subgenomes. In silico expression profiling revealed that 44 of the 114 wheat HIPPs were dominantly expressed in roots, 43 were upregulated under biotic stresses, and 29 were upregulated upon drought or heat treatment. Subcellular localization analysis of the cloned HIPPs from H. villosa showed that they were expressed on the plasma membrane. HIPP1-V was upregulated in H. villosa after Cd treatment, and transgenic wheat plants overexpressing HIPP1-V showed enhanced Cd tolerance, as shown by the recovery of seed-germination and root-growth inhibition by supplementary Cd. This research provides a genome-wide overview of the Triticeae HIPP genes and proved that HIPP1-V positively regulates Cd tolerance in common wheat.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Xu Zhang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Jia Liu
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Ying Niu
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Yiming Chen
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Yongli Hao
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Jia Zhao
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
- College of Agriculture, South China Agriculture University, Guangzhou 510642, China
| | - Li Sun
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Haiyan Wang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Jin Xiao
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Xiue Wang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| |
Collapse
|
9
|
Development of oligonucleotide probes for FISH karyotyping in Haynaldia villosa, a wild relative of common wheat. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.cj.2020.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Dai K, Zhao R, Shi M, Xiao J, Yu Z, Jia Q, Wang Z, Yuan C, Sun H, Cao A, Zhang R, Chen P, Li Y, Wang H, Wang X. Dissection and cytological mapping of chromosome arm 4VS by the development of wheat-Haynaldia villosa structural aberration library. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:217-226. [PMID: 31587088 DOI: 10.1007/s00122-019-03452-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/28/2019] [Indexed: 05/19/2023]
Abstract
A cytological map of Haynaldia villosa chromosome arm 4VS was constructed to facilitate the identification and utilization of beneficial genes on 4VS. Induction of wheat-alien chromosomal structure aberrations not only provides new germplasm for wheat improvement, but also allows assignment of favorable genes to define physical regions. Especially, the translocation or introgression lines carrying alien chromosomal fragments with different sizes are useful for breeding and alien gene mapping. Chromosome arm 4VS of Haynaldia villosa (L.) Schur (syn. Dasypyrum villosum (L.) P. Candargy) confers resistances to eyespot and wheat yellow mosaic virus (WYMV). In this research, we used both irradiation and the pairing homoeologous gene (Ph) mutant to induce chromosomal aberrations or translocations. By using the two approaches, a structural aberration library of chromosome arm 4VS was constructed. In this library, there are 57 homozygous structural aberrations, in which, 39 were induced by the Triticum aestivum cv. Chinese Spring (CS) ph1b mutant (CS ph1b) and 18 were induced by irradiation. The aberrations included four types, i.e., terminal translocation, interstitial translocation, deletion and complex structural aberration. The 4VS cytological map was constructed by amplification in the developed homozygous aberrations using 199 4VS-specific markers, which could be allocated into 39 bins on 4VS. These bins were further assigned to their corresponding physical regions of chromosome arm 4DS based on BLASTn search of the marker sequences against the reference sequence of Aegilops tauschii Cosson. The developed genetic stocks and cytological map provide genetic stocks for wheat breeding as well as alien gene tagging.
Collapse
Affiliation(s)
- Keli Dai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Renhui Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Miaomiao Shi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Jin Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Zhongyu Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Qi Jia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Zongkuan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Chunxia Yuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Haojie Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Aizhong Cao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Ruiqi Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Peidu Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Yingbo Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Haiyan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Xiue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
11
|
Wang J, Shi Q, Guo X, Han F. Establishment and characterization of a complete set of Triticum durum-Thinopyrum elongatum monosomic addition lines with resistance to Fusarium head blight in wheat. J Genet Genomics 2019; 46:547-549. [PMID: 31866163 DOI: 10.1016/j.jgg.2019.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/20/2019] [Accepted: 09/29/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Jing Wang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Qinghua Shi
- State Kay Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianrui Guo
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangpu Han
- State Kay Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|