1
|
Hu Y, Li Y, Cao Y, Shen Y, Zou X, Liu J, Zhao J. Advancements in enzymatic biotransformation and bioactivities of rare ginsenosides: A review. J Biotechnol 2024; 392:78-89. [PMID: 38945483 DOI: 10.1016/j.jbiotec.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Ginsenoside, the principal active constituent of ginseng, exhibits enhanced bioavailability and medicinal efficacy in rare ginsenosides compared to major ginsenosides. Current research is focused on efficiently and selectively removing sugar groups attached to the major ginsenoside sugar chains to convert them into rare ginsenosides that meet the demands of medical industry and functional foods. The methods for preparing rare ginsenosides encompass chemical, microbial, and enzymatic approaches. Among these, the enzyme conversion method is highly favored by researchers due to its exceptional specificity and robust efficiency. This review summarizes the biological activities of different rare ginsenosides, explores the various glycosidases used in the biotransformation of different major ginsenosides as substrates, and elucidates their respective corresponding biotransformation pathways. These findings will provide valuable references for the development, utilization, and industrial production of ginsenosides.
Collapse
Affiliation(s)
- Yanbo Hu
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Yiming Li
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Yi Cao
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Yuzhu Shen
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Xianjun Zou
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China
| | - Jiaxin Liu
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130012, China
| | - Jun Zhao
- School of Food Sciences and Engineering, Changchun University, Changchun 130024, China.
| |
Collapse
|
2
|
Yang L, Lin D, Li F, Cui X, Lou D, Yang X. Production of rare ginsenosides by biotransformation of Panax notoginseng saponins using Aspergillus fumigatus. BIORESOUR BIOPROCESS 2024; 11:81. [PMID: 39133231 PMCID: PMC11319572 DOI: 10.1186/s40643-024-00794-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
Panax notoginseng saponins (PNS) are the main active components of Panax notoginseng. But after oral administration, they need to be converted into rare ginsenosides by human gut microbiota and gastric juice before they can be readily absorbed into the bloodstream and exert their effects. The sources of rare ginsenosides are extremely limited in P. notoginseng and other medical plants, which hinders their application in functional foods and drugs. Therefore, the production of rare ginsenosides by the transformation of PNS using Aspergillus fumigatus was studied in this research. During 50 days at 25 ℃ and 150 rpm, A. fumigatus transformed PNS to 14 products (1-14). They were isolated by varied chromatographic methods, such as silica gel column chromatography, Rp-C18 reversed phase column chromatography, semi-preparative HPLC, Sephadex LH-20 gel column chromatography, and elucidated on the basis of their 1H-NMR, 13C-NMR and ESIMS spectroscopic data. Then, the transformed products (1-14) were isolated and identified as Rk3, Rh4, 20 (R)-Rh1, 20 (S)-Protopanaxatriol, C-K, 20 (R)-Rg3, 20 (S)-Rg3, 20 (S)-Rg2, 20 (R)-R2, Rk1, Rg5, 20 (S)-R2, 20 (R)-Rg2, and 20 (S)-I, respectively. In addition, all transformed products (1-14) were tested for their antimicrobial activity. Among them, compounds 5 (C-K) and 7 [20 (S)-Rg3] showed moderate antimicrobial activities against Staphylococcus aureus and Candida albicans with MIC values of 6.25, 1.25 μg/mL and 1.25, 25 μg/mL, respectively. This study lays the foundation for production of rare ginsenosides.
Collapse
Affiliation(s)
- Lian Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Dongmei Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Feixing Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Dengji Lou
- School of Chemical, Biological and Environmental Sciences, Yuxi Normal University, Yuxi, 653100, People's Republic of China.
| | - Xiaoyan Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| |
Collapse
|
3
|
Fu C, Shen W, Li W, Wang P, Liu L, Dong Y, He J, Fan D. Engineered β-glycosidase from Hyperthermophilic Sulfolobus solfataricus with Improved Rd-hydrolyzing Activity for Ginsenoside Compound K Production. Appl Biochem Biotechnol 2024; 196:3800-3816. [PMID: 37782456 DOI: 10.1007/s12010-023-04745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/03/2023]
Abstract
Hyperthermophilic Sulfolobus solfataricus β-glycosidase (SS-βGly), with higher stability and activity than mesophilic enzymes, has potential for industrial ginsenosides biotransformation. However, its relatively low ginsenoside Rd-hydrolyzing activity limits the production of pharmaceutically active minor ginsenoside compound K (CK). In this study, first, we used molecular docking to predict the key enzyme residues that may hypothetically interact with ginsenoside Rd. Then, based on sequence alignment and alanine scanning mutagenesis approach, key variant sites were identified that might improve the enzyme catalytic efficiency. The enzyme catalytic efficiency (kcat/Km) and substrate affinity (Km) of the N264D variant enzyme for ginsenoside Rd increased by 60% and decreased by 17.9% compared with WT enzyme, respectively, which may be due to a decrease in the binding free energy (∆G) between the variant enzyme and substrate Rd. In addition, Markov state models (MSM) analysis during the whole 1000-ns MD simulations indicated that altering N264 to D made the variant enzyme achieve a more stable SS-βGly conformational state than the wild-type (WT) enzyme and corresponding Rd complex. Under identical conditions, the relative activities and the CK conversion rates of the N264D enzyme were 1.7 and 1.9 folds higher than those of the WT enzyme. This study identified an excellent hyperthermophilic β-glycosidase candidate for industrial biotransformation of ginsenosides.
Collapse
Affiliation(s)
- Chenchen Fu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech. & Biomed. Research Institute, School of Chemical Engineering, Northwest University, Shaanxi, 710069, China
| | - Wenfeng Shen
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech. & Biomed. Research Institute, School of Chemical Engineering, Northwest University, Shaanxi, 710069, China
| | - Weina Li
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech. & Biomed. Research Institute, School of Chemical Engineering, Northwest University, Shaanxi, 710069, China.
| | - Pan Wang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech. & Biomed. Research Institute, School of Chemical Engineering, Northwest University, Shaanxi, 710069, China
| | - Luo Liu
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yangfang Dong
- Shaanxi Giant Biogene Co., Ltd, Xi'an, 710065, Shaanxi, China
| | - Jing He
- Xi'an Giant Biogene Co., Ltd, Xi'an, 710065, Shaanxi, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech. & Biomed. Research Institute, School of Chemical Engineering, Northwest University, Shaanxi, 710069, China.
| |
Collapse
|
4
|
Lim J, Kim H, Kim GHJ, Kim T, Kang CG, Kim SW, Kim D. Enzymatic upcycling of wild-simulated ginseng leaves for enhancing biological activities and compound K. Appl Microbiol Biotechnol 2024; 108:207. [PMID: 38353757 PMCID: PMC10866779 DOI: 10.1007/s00253-024-13028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/09/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
Compound K (CK), a ginsenoside with high bioavailability, is present at low levels in wild-simulated ginseng leaves (WSGL). WSGL contains the CK precursors, Rd and F2, in amounts up to 26.4 ± 0.4 and 24.1 ± 1.9 mg/g extract, respectively. In this study, CK production in WGSL reached 25.9 ± 1.0 mg/g extract following treatment with Viscozyme, Celluclast 1.5 L, Pectinex Ultra SP-L, and their combination. The antioxidant activities indicated by oxygen radical absorbance capacity, ferric reducing antioxidant power, and ABTS- and DPPH radical scavenging activity of enzyme-treated WSGL were enhanced 1.69-, 2.51-, 2.88-, and 1.80-fold, respectively, compared to non-treated WSGL. Furthermore, the CK-enriched WSGL demonstrated a 1.94-fold decrease in SA-β-galactosidase expression in human dermal fibroblasts and a 3.8-fold enhancement of inhibition of nitric oxide release in lipopolysaccharide-induced RAW 264.7 cells relative to non-treated WSGL. Consequently, WSGL subjected to enzymatic upcycling has potential as a functional material in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Juho Lim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354, Republic of Korea
| | - Hayeong Kim
- Institute of Food Industrialization, Institutes of Green Bioscience & Technology, Center for Food and Bioconvergece, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354, Republic of Korea.
| | - Gha-Hyun J Kim
- Department of Bioengineering and Therapeutic Sciences and Programs in Biological Sciences and Human Genetics, University of California, San Francisco, CA, 94158, USA
| | - Taeyoon Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354, Republic of Korea
| | - Choon Gil Kang
- Ottogi Corporation, Anyang-si, Gyeonggi-do, 14060, Republic of Korea
| | - Seung Wook Kim
- Ottogi Corporation, Anyang-si, Gyeonggi-do, 14060, Republic of Korea
| | - Doman Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354, Republic of Korea.
- Institute of Food Industrialization, Institutes of Green Bioscience & Technology, Center for Food and Bioconvergece, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354, Republic of Korea.
- Fervere Campus Corporation, Pyeongchang-gun, Gangwon-do, 25354, Republic of Korea.
| |
Collapse
|
5
|
Zhang C, Tian J, Zhang J, Liu R, Zhao X, Lu W. Engineering and transcriptome study of Saccharomyces cerevisiae to produce ginsenoside compound K by glycerol. Biotechnol J 2024; 19:e2300383. [PMID: 38403397 DOI: 10.1002/biot.202300383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 02/27/2024]
Abstract
Synthetic biology-based engineering of Saccharomyces cerevisiae to produce terpenoid natural products is an effective strategy for their industrial application. Previously, we observed that glycerol addition was beneficial for ginsenoside compound K (CK) production in a S. cerevisiae when it was fermented using the YPD medium. Here, we reconstructed the CK synthesis and glycerol catabolic pathway in a high-yield protopanaxadiol (PPD) S. cerevisiae strain. Remarkably, our engineered strain exhibited the ability to utilize glycerol as the sole carbon source, resulting in a significantly enhanced production of 433.1 ± 8.3 mg L-1 of CK, which was 2.4 times higher compared to that obtained in glucose medium. Transcriptomic analysis revealed that the transcript levels of several key genes involved in the mevalonate (MVA) pathway and the uridine diphosphate glucose (UDPG) synthesis pathway were up-regulated in response to glycerol. The addition of glycerol enhanced CK titers by augmenting the flux of the terpene synthesis pathway and facilitating the production of glycosyl donors. These results suggest that glycerol is a promising carbon source in S. cerevisiae, especially for the production of triterpenoid saponins.
Collapse
Affiliation(s)
- Chuanbo Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, PR China
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, PR China
| | - Jinping Tian
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Jiale Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Ruixia Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Xiaomeng Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Wenyu Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, PR China
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, PR China
| |
Collapse
|
6
|
Chu LL, Hanh NTY, Quyen ML, Nguyen QH, Lien TTP, Do KV. Compound K Production: Achievements and Perspectives. Life (Basel) 2023; 13:1565. [PMID: 37511939 PMCID: PMC10381408 DOI: 10.3390/life13071565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Compound K (CK) is one of the major metabolites found in mammalian blood and organs following oral administration of Panax plants. CK, also known as minor ginsenoside, can be absorbed in the systemic circulation. It has garnered significant attention in healthcare and medical products due to its pharmacological activities, such as antioxidation, anticancer, antiproliferation, antidiabetics, neuroprotection, and anti-atherogenic activities. However, CK is not found in natural ginseng plants but in traditional chemical synthesis, which uses toxic solvents and leads to environmental pollution during the harvest process. Moreover, enzymatic reactions are impractical for industrial CK production due to low yield and high costs. Although CK could be generated from major ginsenosides, most ginsenosides, including protopanaxatriol-oleanane and ocotillol-type, are not converted into CK by catalyzing β-glucosidase. Therefore, microbial cell systems have been used as a promising solution, providing a safe and efficient approach to CK production. This review provides a summary of various approaches for the production of CK, including chemical and enzymatic reactions, biotransformation by the human intestinal bacteria and endophytes as well as engineered microbes. Moreover, the approaches for CK production have been discussed to improve the productivity of target compounds.
Collapse
Affiliation(s)
- Luan Luong Chu
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Vietnam
| | - Nguyen Trinh Yen Hanh
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Vietnam
| | - My Linh Quyen
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 10000, Vietnam
| | - Quang Huy Nguyen
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 10000, Vietnam
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 10000, Vietnam
| | - Tran Thi Phuong Lien
- Faculty of Biology and Agricultural Engineering, Hanoi Pagadogical University 2, Vinh Yen City 283460, Vietnam
| | - Khanh Van Do
- Faculty of Biomedical Sciences, Phenikaa University, Hanoi 12116, Vietnam
| |
Collapse
|
7
|
Zhu H, Zhang R, Huang Z, Zhou J. Progress in the Conversion of Ginsenoside Rb1 into Minor Ginsenosides Using β-Glucosidases. Foods 2023; 12:foods12020397. [PMID: 36673490 PMCID: PMC9858181 DOI: 10.3390/foods12020397] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
In recent years, minor ginsenosides have received increasing attention due to their outstanding biological activities, yet they are of extremely low content in wild ginseng. Ginsenoside Rb1, which accounts for 20% of the total ginsenosides, is commonly used as a precursor to produce minor ginsenosides via β-glucosidases. To date, many research groups have used different approaches to obtain β-glucosidases that can hydrolyze ginsenoside Rb1. This paper provides a compilation and analysis of relevant literature published mainly in the last decade, focusing on enzymatic hydrolysis pathways, enzymatic characteristics and molecular mechanisms of ginsenoside Rb1 hydrolysis by β-glucosidases. Based on this, it can be concluded that: (1) The β-glucosidases that convert ginsenoside Rb1 are mainly derived from bacteria and fungi and are classified as glycoside hydrolase (GH) families 1 and 3, which hydrolyze ginsenoside Rb1 mainly through the six pathways. (2) Almost all of these β-glucosidases are acidic and neutral enzymes with molecular masses ranging from 44-230 kDa. Furthermore, the different enzymes vary widely in terms of their optimal temperature, degradation products and kinetics. (3) In contrast to the GH1 β-glucosidases, the GH3 β-glucosidases that convert Rb1 show close sequence-function relationships. Mutations affecting the substrate binding site might alter the catalytic efficiency of enzymes and yield different prosapogenins. Further studies should focus on elucidating molecular mechanisms and improving overall performances of β-glucosidases for better application in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Hongrong Zhu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, China
- Key Laboratory of Yunnan Provincial Education, Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming 650500, China
| | - Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, China
- Key Laboratory of Yunnan Provincial Education, Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming 650500, China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, China
- Key Laboratory of Yunnan Provincial Education, Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming 650500, China
| | - Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, China
- College of Life Sciences, Yunnan Normal University, Kunming 650500, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, China
- Key Laboratory of Yunnan Provincial Education, Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming 650500, China
- Correspondence: ; Tel.: +86-871-6592-0830; Fax: +86-871-6592-0952
| |
Collapse
|
8
|
Catalytic hydrolysis of ginsenosides by pectinase immobilized on a covalent organic framework material. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Zhang Y, Qiu Z, Zhu M, Teng Y. Ginsenoside Compound K Assisted G-Quadruplex Folding and Regulated G-Quadruplex-Containing Transcription. Molecules 2021; 26:molecules26237339. [PMID: 34885920 PMCID: PMC8659241 DOI: 10.3390/molecules26237339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022] Open
Abstract
Ginsenoside compound K (CK) is one of the major metabolites of the bioactive ingredients in Panax ginseng, which presents excellent bioactivity and regulates the expression of important proteins. In this work, the effects of CK on G-quadruplexes (G4s) were quantitatively analyzed in the presence and absence of their complementary sequences. CK was demonstrated to facilitate the formation of G4s, and increase the quantity of G4s in the competition with duplex. Thermodynamic experiments suggested that the electrostatic interactions were important for G4 stabilization by CK. CK was further found to regulate the transcription of G4-containing templates, reduce full-length transcripts, and decrease the transcription efficiency. Our results provide new evidence for the pharmacological study of ginsenosides at the gene level.
Collapse
Affiliation(s)
| | | | | | - Ye Teng
- Correspondence: ; Tel.: +86-13843132210
| |
Collapse
|
10
|
Antioxidant, Anti-Inflammatory and Antithrombotic Effects of Ginsenoside Compound K Enriched Extract Derived from Ginseng Sprouts. Molecules 2021; 26:molecules26134102. [PMID: 34279442 PMCID: PMC8272189 DOI: 10.3390/molecules26134102] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/25/2021] [Accepted: 07/03/2021] [Indexed: 01/13/2023] Open
Abstract
Partially purified ginsenoside extract (PGE) and compound K enriched extract (CKE) were prepared from ginseng sprouts, and their antioxidant, anti-inflammatory and antithrombotic effects were investigated. Compared to the 6-year-old ginseng roots, ginseng sprouts were found to have a higher content of phenolic compounds, saponin and protopanaxadiol-type ginsenoside by about 56%, 36% and 43%, respectively. PGE was prepared using a macroporous adsorption resin, and compound K(CK) was converted and enriched from the PGE by enzymatic hydrolysis with a conversion rate of 75%. PGE showed higher effects than CKE on radical scavenging activity in antioxidant assays. On the other hand, CKE reduced nitric oxide levels more effectively than PGE in RAW 264.7 cells. CKE also reduced pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-1β and IL-6 than PGE. Tail bleeding time and volume were investigated after administration of CKE at 70–150 mg/kg/day to mice. CKE administered group showed a significant increase or increased tendency in bleeding time than the control group. Bleeding volume in the CKE group increased than the control group, but not as much as in the aspirin group. In conclusion, ginseng sprouts could be an efficient source of ginsenoside, and CKE converted from the ginsenosides showed antioxidant, anti-inflammatory and antithrombotic effects. However, it was estimated that the CKE might play an essential role in anti-inflammatory effects rather than antioxidant effects.
Collapse
|
11
|
Yue H, Liu C, Han Y, Zhuang Z, Yu H, Wang Z, Sun C, Im WT, Jin F. Preparation of minor ginsenosides C-K and C-Mx from protopanaxadiol ginsenosides of American ginseng leaves by a enzyme from Aspergillus sp.agl-84 strain. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Jiang Y, Li W, Fan D. Biotransformation of Ginsenoside Rb1 to Ginsenoside CK by Strain XD101: a Safe Bioconversion Strategy. Appl Biochem Biotechnol 2021; 193:2110-2127. [PMID: 33629278 DOI: 10.1007/s12010-021-03485-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
Ginsenoside Rb1 is the main predominant component in Panax species. In this study, an eco-friendly and convenient preparation method for ginsenoside CK has been established, and five strains of β-glucosidase-producing microorganisms were screened out from the soil of a Panax notoginseng planting field using Esculin-R2A agar. Aspergillus niger XD101 showed that it has excellent biocatalytic activity for ginsenosides; one of the isolates can convert ginsenoside Rb1 to CK using extracellular enzyme from the mycelium. Mycelia of A. niger were cultivated in wheat bran media at 30 °C for 11 days. By the removal of mycelia from cultured broth, enzyme salt fractionation by ammonium sulfate (70%, v/v) precipitation, and dialysis, sequentially, crude enzyme preparations from fermentation liquid supernatant were obtained. The enzymatic transformed Rb1 as the following pathways: Rb1→Rd→F2→CK. The optimized reaction conditions are at reaction time of 72 h, in the range of pH 4-5, and temperature of 50-60 °C. Active minor ginsenosides can be obtained by a specific bioconversion via A. niger XD101 producing the ginsenoside-hydrolyzing β-glucosidase. In addition, the crude enzyme can be resulted in producing ginsenoside CK via conversion of ginsenoside Rb1 at high conversion yield (94.4%). FDA generally regarded, A.niger as safe microorganism. Therefore, these results indicate that A. niger XD10 may provide an alternative method to prepare ginsenoside CK without food safety issues in the pharmaceutical industry.
Collapse
Affiliation(s)
- Yunyun Jiang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, 710069, China
| | - Weina Li
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Daidi Fan
- Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
13
|
Kim SA, Jeong EB, Oh DK. Complete Bioconversion of Protopanaxadiol-Type Ginsenosides to Compound K by Extracellular Enzymes from the Isolated Strain Aspergillus tubingensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:315-324. [PMID: 33372793 DOI: 10.1021/acs.jafc.0c07424] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A compound K-producing fungus was isolated from meju (fermented soybean brick) and identified as the generally recognized as safe (GRAS) strain Aspergillus tubingensis. The extracellular enzymes obtained after the cultivation of 6 days in the medium with 20 g/L citrus pectin as an inducer showed the highest compound K-producing activity among the inducers tested. Under the optimized conditions of 0.05 mM MgSO4, 55 °C, pH 4.0, 13.4 mM protopanaxadiol (PPD)-type ginsenosides, and 11 mg/mL enzymes, the extracellular enzymes from A. tubingensis completely converted PPD-type ginsenosides in the ginseng extract to 13.4 mM (8.35 mg/mL) compound K after 20 h, with the highest concentration and productivity among the results reported so far. As far as we know, this is the first GRAS enzyme to completely convert all PPD-type ginsenosides to compound K.
Collapse
Affiliation(s)
- Se-A Kim
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Eun-Bi Jeong
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
14
|
Amer S, Zarad W, El-Gendy H, Abdel-Salam R, Hadad G, Emara S, Masujima T. Dilute-and-shoot-based direct nano-electrospray ionization tandem mass spectrometry as screening methodology for multivitamins in dietary supplement and human urine. J Adv Res 2020; 26:1-13. [PMID: 33133679 PMCID: PMC7584677 DOI: 10.1016/j.jare.2020.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/25/2020] [Accepted: 06/09/2020] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION In recent years, analytical screening methods for simultaneous detection of multivitamins have gained substantial attention to ensure quality and public confidence in dietary supplements. Even so, few analytical methods have been proposed for simultaneous analysis of multivitamin constituents due to the large divergence in chemical characteristics. OBJECTIVES In the present study, the objective was to develop a simple and rapid direct nano-electrospray ionization-tandem mass spectrometry (DI-nano-ESI-MS/MS) method for targeted detection of water soluble vitamins, fat soluble vitamins, amino acids, royal jelly, ginkgo biloba, and ginseng in a dietary supplement. The applicability of dilute-and-shoot-based DI-nano-ESI-MS/MS to analyze the same tested compounds and their related metabolites in clinical samples was also examined. METHODS Intact urine mixed with the ionization solvent was loaded (4-μL aliquot) into a nanospray (NS) capillary of 1-μm tip diameter. The NS capillary was then fitted into an off-line ion source at a distance of 5 mm from MS aperture. The sample was directly injected by applying a voltage of 1.1 kV, producing a numerous of m/z peaks for analysis in mere minutes. RESULTS The DI-nano-ESI-MS/MS method successfully identified almost all dietary supplement components, as well as a plethora of component-related metabolites in clinical samples. In addition, a new merit of the proposed method for the detection of index marker and chemical contaminants as well as subspecies identification was investigated for further quality evaluation of the dietary supplement. CONCLUSIONS The previous findings illustrated that DI-nano-ESI-MS/MS approach can emerge as a powerful, high throughput, and promising analytical tool for screening and accurate detection of various pharmaceuticals and ingredient in dietary supplements as well as biological fluids.
Collapse
Affiliation(s)
- Sara Amer
- Faculty of Pharmacy, Misr International University, Km 28 Ismailia Road, Cairo, Egypt
- Quantitative Biology Center (QBiC), RIKEN, 6-2-3 Furuedai, Suita, Osaka 565–0874, Japan
| | - Walaa Zarad
- Faculty of Pharmacy, Misr International University, Km 28 Ismailia Road, Cairo, Egypt
| | - Heba El-Gendy
- Faculty of Pharmacy, Misr International University, Km 28 Ismailia Road, Cairo, Egypt
| | - Randa Abdel-Salam
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Canal Suez University, Ismailia, Egypt
| | - Ghada Hadad
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Canal Suez University, Ismailia, Egypt
| | - Samy Emara
- Faculty of Pharmacy, Misr International University, Km 28 Ismailia Road, Cairo, Egypt
| | - Tsutomu Masujima
- Quantitative Biology Center (QBiC), RIKEN, 6-2-3 Furuedai, Suita, Osaka 565–0874, Japan
| |
Collapse
|
15
|
Jeong EB, Kim SA, Shin KC, Oh DK. Biotransformation of Protopanaxadiol-Type Ginsenosides in Korean Ginseng Extract into Food-Available Compound K by an Extracellular Enzyme from Aspergillus niger. J Microbiol Biotechnol 2020; 30:1560-1567. [PMID: 32807754 PMCID: PMC9728230 DOI: 10.4014/jmb.2007.07003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022]
Abstract
Compound K (C-K) is one of the most pharmaceutically effective ginsenosides, but it is absent in natural ginseng. However, C-K can be obtained through the hydrolysis of protopanaxadiol-type ginsenosides (PPDGs) in natural ginseng. The aim of this study was to obtain the high concentration of food-available C-K using PPDGs in Korean ginseng extract by an extracellular enzyme from Aspergillus niger KACC 46495. A. niger was cultivated in the culture medium containing the inducer carboxymethyl cellulose (CMC) for 6 days. The extracellular enzyme extracted from A. niger was prepared from the culture broth by filtration, ammonium sulfate, and dialysis. The extracellular enzyme was used for C-K production using PPDGs. The glycoside-hydrolyzing pathways for converting PPDGs into C-K by the extracellular enzyme were Rb1 → Rd → F2 → C-K, Rb2 → Rd or compound O → F2 or compound Y → C-K, and Rc → Rd or compound Mc1 → F2 or compound Mc → C-K. The extracellular enzyme from A. niger at 8.0 mg/ml, which was obtained by the induction of CMC during the cultivation, converted 6.0 mg/ml (5.6 mM) PPDGs in Korean ginseng extract into 2.8 mg/ml (4.5 mM) food-available C-K in 9 h, with a productivity of 313 mg/l/h and a molar conversion of 80%. To the best of our knowledge, the productivity and concentration of C-K of the extracellular enzyme are the highest among those by crude enzymes from wild-type microorganisms.
Collapse
Affiliation(s)
- Eun-Bi Jeong
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Se-A Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyung-Chul Shin
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea,Corresponding author Phone: +82-2-454-3118 Fax: +82-2-444-5518 E-mail:
| |
Collapse
|
16
|
Fang H, Wei Y, Li Y, Zhou G. One-Pot Process for the Production of Ginsenoside Rd by Coupling Enzyme-Assisted Extraction with Selective Enzymolysis. Biol Pharm Bull 2020; 43:1443-1447. [PMID: 32999154 DOI: 10.1248/bpb.b19-01127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One-pot process for the production of ginsenoside Rd by coupling enzyme-assisted extraction with selective enzymolysis was explored in this paper. Several detection methods including HPLC-MS were used to identify and quantify the products in the enzymolysis solution of pectinase. Results showed that ginsenoside Rd was the main component in enzymolysis solution, pectinase specifically hydrolyzes protopanaxadiol (PPD)-type ginsenoside and was a selective enzyme to convert ginsenoside Rb1 to Rd in a way. In addition the influencing factors on the yield of ginsenoside Rb1 and Rd were optimized using L9(34) orthogonal design data. The enzymolysis conditions for the higher yield of Rd were 52.5 °C, pH 6 and 1 h with a yield of 0.8314 from 50 mg drug material. The controllable transformation hypothesis of the PPD-type ginsenoside was also explored from the perspective of the molecular steric hindrance. Pectinase could be used as an efficient enzyme for one-pot producing ginsenoside Rd.
Collapse
Affiliation(s)
- Haiyan Fang
- School of Biological Engineering, School of Chemical and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences)
| | - Yingqin Wei
- School of Biological Engineering, School of Chemical and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences)
| | - Yaqi Li
- School of Biological Engineering, School of Chemical and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences)
| | - Guowei Zhou
- School of Biological Engineering, School of Chemical and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences)
| |
Collapse
|
17
|
Hsu WH, Hua KF, Tuan LH, Tsai YL, Chu LJ, Lee YC, Wong WT, Lee SL, Lai JH, Chu CL, Ho LJ, Chiu HW, Hsu YJ, Chen CH, Ka SM, Chen A. Compound K inhibits priming and mitochondria-associated activating signals of NLRP3 inflammasome in renal tubulointerstitial lesions. Nephrol Dial Transplant 2020; 35:74-85. [PMID: 31065699 DOI: 10.1093/ndt/gfz073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/08/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Renal tubulointerstitial lesions (TILs), a key pathological hallmark for chronic kidney disease to progress to end-stage renal disease, feature renal tubular atrophy, interstitial mononuclear leukocyte infiltration and fibrosis in the kidney. Our study tested the renoprotective and therapeutic effects of compound K (CK), as described in our US patent (US7932057B2), on renal TILs using a mouse unilateral ureteral obstruction (UUO) model. METHODS Renal pathology was performed and renal draining lymph nodes were subjected to flow cytometry analysis. Mechanism-based experiments included the analysis of mitochondrial dysfunction, a model of tubular epithelial cells (TECs) under mechanically induced constant pressure (MICP) and tandem mass tags (TMT)-based proteomics analysis. RESULTS Administration of CK ameliorated renal TILs by reducing urine levels of proinflammatory cytokines, and preventing mononuclear leukocyte infiltration and fibrosis in the kidney. The beneficial effects clearly correlated with its inhibition of: (i) NF-κB-associated priming and the mitochondria-associated activating signals of the NLRP3 inflammasome; (ii) STAT3 signalling, which in part prevents NLRP3 inflammasome activation; and (iii) the TGF-β-dependent Smad2/Smad3 fibrotic pathway, in renal tissues, renal TECs under MICP and/or activated macrophages, the latter as a major inflammatory player contributing to renal TILs. Meanwhile, TMT-based proteomics analysis revealed downregulated renal NLRP3 inflammasome activation-associated signalling pathways in CK-treated UUO mice. CONCLUSIONS The present study, for the first time, presents the potent renoprotective and therapeutic effects of CK on renal TILs by targeting the NLRP3 inflammasome and STAT3 signalling.
Collapse
Affiliation(s)
- Wan-Han Hsu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Li-Heng Tuan
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Ling Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Lichieh Julie Chu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chieh Lee
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Wei-Ting Wong
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Sheau-Long Lee
- Department of Chemistry, R.O.C. Military Academy, Kaohsiung, Taiwan
| | - Jenn-Haung Lai
- Department of Internal Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Liang Chu
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ling-Jun Ho
- Institute of Cellular and System Medicine, National Health Research Institute, Miaoli, Taiwan
| | - Hsiao-Wen Chiu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Hsu Chen
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Life Science, Tunghai University, Taichung, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Shuk-Man Ka
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Aerospace and Undersea Medicine, Department of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Ann Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
18
|
Sharma A, Lee HJ. Ginsenoside Compound K: Insights into Recent Studies on Pharmacokinetics and Health-Promoting Activities. Biomolecules 2020; 10:E1028. [PMID: 32664389 PMCID: PMC7407392 DOI: 10.3390/biom10071028] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
Ginseng (Panax ginseng) is an herb popular for its medicinal and health properties. Compound K (CK) is a secondary ginsenoside biotransformed from major ginsenosides. Compound K is more bioavailable and soluble than its parent ginsenosides and hence of immense importance. The review summarizes health-promoting in vitro and in vivo studies of CK between 2015 and 2020, including hepatoprotective, anti-inflammatory, anti-atherosclerosis, anti-diabetic, anti-cancer, neuroprotective, anti-aging/skin protective, and others. Clinical trial data are minimal and are primarily based on CK-rich fermented ginseng. Besides, numerous preclinical and clinical studies indicating the pharmacokinetic behavior of CK, its parent compound (Rb1), and processed ginseng extracts are also summarized. With the limited evidence available from animal and clinical studies, it can be stated that CK is safe and well-tolerated. However, lower water solubility, membrane permeability, and efflux significantly diminish the efficacy of CK and restrict its clinical application. We found that the use of nanocarriers and cyclodextrin for CK delivery could overcome these limitations as well as improve the health benefits associated with them. However, these derivatives have not been clinically evaluated, thus requiring a safety assessment for human therapy application. Future studies should be aimed at investigating clinical evidence of CK.
Collapse
Affiliation(s)
- Anshul Sharma
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Korea;
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Korea;
- Institute for Aging and Clinical Nutrition Research, Gachon University, Gyeonggi-do 13120, Korea
| |
Collapse
|
19
|
Jo H, Jang D, Park SK, Lee MG, Cha B, Park C, Shin YS, Park H, Baek JM, Heo H, Brito S, Hwan HG, Chae S, Yan SW, Lee C, Min CK, Bin BH. Ginsenoside 20(S)-protopanaxadiol induces cell death in human endometrial cancer cells via apoptosis. J Ginseng Res 2020; 45:126-133. [PMID: 33437164 PMCID: PMC7790893 DOI: 10.1016/j.jgr.2020.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 12/20/2019] [Accepted: 02/21/2020] [Indexed: 12/01/2022] Open
Abstract
Background 20(S)-protopanaxadiol (20(S)-PPD), one of the aglycone derivatives of major ginsenosides, has been shown to have an anticancer activity toward a variety of cancers. This study was initiated with an attempt to evaluate its anti-cancer activity toward human endometrial cancer by cell and xenograft mouse models. Methods Human endometrial cancer (HEC)-1A cells were incubated with different 20(S)-PPD concentrations. 20(S)-PPD cytotoxicity was evaluated using MTT assay. Apoptosis was detected using the annexin V binding assay and cell cycle analysis. Cleaved poly (ADP-ribose) polymerase (PARP) and activated caspase-9 were assessed using western blotting. HEC-1A cell tumor xenografts in athymic mice were generated by inoculating HEC-1A cells into the flank of BALB/c female mice and explored to validate 20(S)-PPD anti-endometrial cancer toxicity. Results 20(S)-PPD inhibited HEC-1A cell proliferation in a dose-dependent manner with an IC50 value of 3.5 μM at 24 h. HEC-1A cells morphologically changed after 20(S)-PPD treatment, bearing resemblance to Taxol-treated cells. Annexin V-positive cell percentages were 0%, 10.8%, and 58.1% in HEC-1A cells when treated with 0, 2.5, and 5 μM of 20(S)-PPD, respectively, for 24 h. 20(S)-PPD subcutaneously injected into the HEC-1A cell xenograft-bearing mice three times a week for 17 days manifested tumor growth inhibition by as much as 18% at a dose of 80 mg/kg, which sharply contrasted to controls that showed an approximately 2.4-fold tumor volume increase. These events paralleled caspase-9 activation and PARP cleavage. Conclusion 20(S)-PPD inhibits endometrial cancer cell proliferation by inducing cell death via a caspase-mediated apoptosis pathway. Therefore, the 20(S)-PPD-like ginsenosides are endowed with ample structural information that could be utilized to develop other ginsenoside-based anticancer agents.
Collapse
Affiliation(s)
- Hantae Jo
- Department of Biological Sciences, Ajou University, Suwon, Republic of Korea
| | - Dongmin Jang
- Department of Biomedical Sciences, Graduate Program of Molecular Medicine, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Sun Kyu Park
- Department of Conservative Dentistry, Gangnam Severance Hospital, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Mi-Gi Lee
- Gyeonggido Business and Science Accelerator, Suwon, Republic of Korea
| | - Byungsun Cha
- Department of Applied Biotechnology, Ajou University Graduate School, Suwon, Republic of Korea
| | - Chaewon Park
- Department of Applied Biotechnology, Ajou University Graduate School, Suwon, Republic of Korea
| | - Yong Sub Shin
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Hyein Park
- Department of Applied Biotechnology, Ajou University Graduate School, Suwon, Republic of Korea
| | - Jin-Myoung Baek
- Department of Applied Biotechnology, Ajou University Graduate School, Suwon, Republic of Korea
| | - Hyojin Heo
- Department of Applied Biotechnology, Ajou University Graduate School, Suwon, Republic of Korea
| | - Sofia Brito
- Department of Applied Biotechnology, Ajou University Graduate School, Suwon, Republic of Korea
| | - Hyun Gyu Hwan
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Sehyun Chae
- Korea Brain Bank, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Shao-Wei Yan
- Department of Applied Biotechnology, Ajou University Graduate School, Suwon, Republic of Korea
| | - Changho Lee
- Department of Pharmacology and Biomedical Science, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Churl K Min
- Department of Biological Sciences, Ajou University, Suwon, Republic of Korea
| | - Bum-Ho Bin
- Department of Biological Sciences, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
20
|
Wu CY, Hua KF, Hsu WH, Suzuki Y, Chu LJ, Lee YC, Takahata A, Lee SL, Wu CC, Nikolic-Paterson DJ, Ka SM, Chen A. IgA Nephropathy Benefits from Compound K Treatment by Inhibiting NF-κB/NLRP3 Inflammasome and Enhancing Autophagy and SIRT1. THE JOURNAL OF IMMUNOLOGY 2020; 205:202-212. [PMID: 32482710 DOI: 10.4049/jimmunol.1900284] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/24/2020] [Indexed: 12/15/2022]
Abstract
IgA nephropathy (IgAN), the most common primary glomerular disorder, has a relatively poor prognosis yet lacks a pathogenesis-based treatment. Compound K (CK) is a major absorbable intestinal bacterial metabolite of ginsenosides, which are bioactive components of ginseng. The present study revealed promising therapeutic effects of CK in two complementary IgAN models: a passively induced one developed by repeated injections of IgA immune complexes and a spontaneously occurring model of spontaneous grouped ddY mice. The potential mechanism for CK includes 1) inhibiting the activation of NLRP3 inflammasome in renal tissues, macrophages and bone marrow-derived dendritic cells, 2) enhancing the induction of autophagy through increased SIRT1 expression, and 3) eliciting autophagy-mediated NLRP3 inflammasome inhibition. The results support CK as a drug candidate for IgAN.
Collapse
Affiliation(s)
- Chung-Yao Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan 260, Taiwan
| | - Wan-Han Hsu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Lichieh Julie Chu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan.,Liver Research Center, Chang Gung Memorial Hospital at Linkou, Gueishan, Taoyuan 333, Taiwan
| | - Yu-Chieh Lee
- Department of Biotechnology and Animal Science, National Ilan University, Ilan 260, Taiwan
| | - Akiko Takahata
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Sheau-Long Lee
- Department of Chemistry, R.O.C. Military Academy, Kaohsiung 830, Taiwan
| | - Chia-Chao Wu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - David J Nikolic-Paterson
- Department of Nephrology and Monash University Centre for Inflammatory Diseases, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Shuk-Man Ka
- Graduate Institute of Aerospace and Undersea Medicine, Department of Medicine, National Defense Medical Center, Taipei 114, Taiwan; and
| | - Ann Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan; .,Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
21
|
Osman YA, Aldesuquy HS, Younis SA, Hussein S. Characterization and optimization of abamectin-a powerful antiparasitic from a local Streptomyces avermitilis isolate. Folia Microbiol (Praha) 2020:10.1007/s12223-020-00779-4. [PMID: 32323213 DOI: 10.1007/s12223-020-00779-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 02/10/2020] [Indexed: 11/30/2022]
Abstract
Abamectin (ABA) constitutes a big commodity for pharmaceutical companies because it generates about one billion dollar annual sale. Avermectins (AVMs) and their naturally occurring analogues, milbemycins (MILs), meilingmycins (MEIs), ivermectin (IVE), abamectin (ABA), and nemadectin (NEM), represent one of the most developed antiparasitic agents. Abamectin is a mixture of avermectin B1a and avermectin B1b. The production of abamectin by Streptomyces avermitilis is a complicated process and separation of two fractions is quite difficult; commercial product contains more than 80% of Bla and less than 20% of B1b components. The main goal of the study was the identification and optimization of fermentation conditions to raise the production of abamectin from Egyptian S. avermitilis. The qualitative and quantitative analysis of avermectins was carried out by thin layer chromatography (TLC) and 6538 Q-TOF with Agilent 1290 UHPLC. The process of identification was carried out by using production medium containing 30 g/L corn starch, and 0.725 g/L CaCO3, pH 7, 8% inoculum size and incubated at 32.5 °C. The enhancement of the production of abamectin is a big challenge with commercial and industrial importance, as its output is insufficient for human consumption.
Collapse
Affiliation(s)
- Yehia A Osman
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Heshmat S Aldesuquy
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Sadia A Younis
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Suzan Hussein
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
22
|
Ma Z, Mi Y, Han X, Li H, Tian M, Duan Z, Fan D, Ma P. Transformation of ginsenoside via deep eutectic solvents based on choline chloride as an enzymatic reaction medium. Bioprocess Biosyst Eng 2020; 43:1195-1208. [DOI: 10.1007/s00449-020-02314-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/17/2020] [Indexed: 01/01/2023]
|
23
|
Li WN, Fan DD. Biocatalytic strategies for the production of ginsenosides using glycosidase: current state and perspectives. Appl Microbiol Biotechnol 2020; 104:3807-3823. [DOI: 10.1007/s00253-020-10455-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 12/22/2022]
|
24
|
Zhang F, Tang S, Zhao L, Yang X, Yao Y, Hou Z, Xue P. Stem-leaves of Panax as a rich and sustainable source of less-polar ginsenosides: comparison of ginsenosides from Panax ginseng, American ginseng and Panax notoginseng prepared by heating and acid treatment. J Ginseng Res 2020; 45:163-175. [PMID: 33437168 PMCID: PMC7790872 DOI: 10.1016/j.jgr.2020.01.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 11/28/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
Background Ginsenosides, which have strong biological activities, can be divided into polar or less-polar ginsenosides. Methods This study evaluated the phytochemical diversity of the saponins in Panax ginseng (PG) root, American ginseng (AG) root, and Panax notoginseng (NG) root; the stem-leaves from Panax ginseng (SPG) root, American ginseng (SAG) root, and Panax notoginseng (SNG) root as well as the saponins obtained following heating and acidification [transformed Panax ginseng (TPG), transformed American ginseng (TAG), transformed Panax notoginseng (TNG), transformed stem-leaves from Panax ginseng (TSPG), transformed stem-leaves from American ginseng (TSAG), and transformed stem-leaves from Panax notoginseng (TSNG)]. The diversity was determined through the simultaneous quantification of the 16 major ginsenosides. Results The content of ginsenosides in NG was found to be higher than those in AG and PG, and the content in SPG was greater than those in SNG and SAG. After transformation, the contents of polar ginsenosides in the raw saponins decreased, and contents of less-polar compounds increased. TNG had the highest levels of ginsenosides, which is consistent with the transformation of ginseng root. The contents of saponins in the stem-leaves were higher than those in the roots. The transformation rate of SNG was higher than those of the other samples, and the loss ratios of total ginsenosides from NG (6%) and SNG (4%) were the lowest among the tested materials. In addition to the conversion temperature, time, and pH, the crude protein content also affects the conversion to rare saponins. The proteins in Panax notoginseng allowed the highest conversion rate. Conclusion Thus, the industrial preparation of less-polar ginsenosides from SNG is more efficient and cheaper.
Collapse
Key Words
- AG, American ginseng
- NG, Panax notoginseng
- PG, Panax ginseng
- SAG, the stem-leaves from American ginseng
- SNG, the stem-leaves from Panax notoginseng
- SPG, the stem-leaves from Panax ginseng
- TAG, transformed American ginseng
- TNG, transformed Panax notoginseng
- TPG, transformed Panax ginseng
- TSAG, transformed stem-leaves from American ginseng
- TSNG, transformed stem-leaves from Panax notoginseng
- TSPG, transformed stem-leaves from Panax ginseng
- acid transformation
- less-polar ginsenosides
- root ginsenosides
- stem-leaf ginsenosides
Collapse
Affiliation(s)
- Fengxiang Zhang
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Shaojian Tang
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Lei Zhao
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Xiushi Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Yao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaohua Hou
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Peng Xue
- School of Public Health and Management, Weifang Medical University, Weifang, China
| |
Collapse
|
25
|
Retention behavior of ginsenosides in a sulfo-based high performance liquid chromatography column. J Chromatogr A 2020; 1610:460542. [PMID: 31558273 DOI: 10.1016/j.chroma.2019.460542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/11/2019] [Accepted: 09/14/2019] [Indexed: 12/22/2022]
Abstract
We herein report the use of a sulfo-based column and hydrophilic interaction chromatography (HILIC) to separate 14 ginsenosides, namely Rb1, Rb2, Rb3, Rc, Rd, Rf, Re, Rg1, Rg2, Rg3, Rh1, Rh2, F2, and C-K. In addition to its rapid and efficient ability to separate these ginsenosides, the sulfo-based column exhibited a good relationship between the ginsenoside capacity factor (k') and molecular weight (Mw) and a strict elution order corresponding to the polarity (P) of the ginsenosides, as confirmed by thin layer chromatography.
Collapse
|
26
|
Zhang S, Luo J, Xie J, Wang Z, Xiao W, Zhao L. Cooperated biotransformation of ginsenoside extracts into ginsenoside 20(
S
)‐Rg3 by three thermostable glycosidases. J Appl Microbiol 2019; 128:721-734. [DOI: 10.1111/jam.14513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/29/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022]
Affiliation(s)
- S. Zhang
- Co‐Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing China
- College of Chemical Engineering Nanjing Forestry University Nanjing China
| | - J. Luo
- Co‐Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing China
- College of Chemical Engineering Nanjing Forestry University Nanjing China
| | - J. Xie
- Co‐Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing China
- College of Chemical Engineering Nanjing Forestry University Nanjing China
| | - Z. Wang
- Jiangsu Kanion Pharmaceutical Co. Ltd Lianyungang China
| | - W. Xiao
- Jiangsu Kanion Pharmaceutical Co. Ltd Lianyungang China
| | - L. Zhao
- Co‐Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing China
- College of Chemical Engineering Nanjing Forestry University Nanjing China
| |
Collapse
|
27
|
Lin TJ, Wu CY, Tsai PY, Hsu WH, Hua KF, Chu CL, Lee YC, Chen A, Lee SL, Lin YJ, Hsieh CY, Yang SR, Liu FC, Ka SM. Accelerated and Severe Lupus Nephritis Benefits From M1, an Active Metabolite of Ginsenoside, by Regulating NLRP3 Inflammasome and T Cell Functions in Mice. Front Immunol 2019; 10:1951. [PMID: 31475012 PMCID: PMC6702666 DOI: 10.3389/fimmu.2019.01951] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/01/2019] [Indexed: 12/11/2022] Open
Abstract
Chinese herbal medicines used in combination have long-term been shown to be mild remedies with “integrated effects.” However, our study provides the first demonstration that M1, an active metabolite of ginsenoside, exerted its dramatic therapeutic effects on accelerated and severe lupus nephritis (ASLN) mice, featuring acute renal function impairment, heavy proteinuria, high serum levels of anti-dsDNA, and high-grade, diffuse proliferative renal lesions. In the present study, NZB/WF1 mice were given injections of lipopolysaccharide to induce the ASLN model. M1 (30 mg/kg) was then administered to the mice by gavage daily, and the mice were sacrificed on week 3 and week 5 after the induction of disease. To identify the potential mechanism of action for the pure compound, levels of NLRP3 inflammasome activation in bone marrow-derived dendritic cells (BMDCs), podocytes and macrophages, and antigen-specific T cell activation in BMDCs were determined in addition to mechanistic experiments in vivo. Treatment with M1 dramatically improved renal function, albuminuria and renal lesions and reduced serum levels of anti-dsDNA in the ASLN mice. These beneficial effects with M1 treatment involved the following cellular and molecular mechanistic events: [1] inhibition of NLRP3 inflammasome associated with autophagy induction, [2] modulation of T help cell activation, and [3] induction of regulatory T cell differentiation. M1 improved the ASLN mice by blunting NLRP3 inflammasome activation and differentially regulating T cell functions, and the results support M1 as a new therapeutic candidate for LN patients with a status of abrupt transformation of lower-grade (mesangial) to higher-grade (diffuse proliferative) nephritis.
Collapse
Affiliation(s)
- Tsai-Jung Lin
- Department of Pathology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Chung-Yao Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Pei-Yi Tsai
- Department of Pathology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Wan-Han Hsu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Ching-Liang Chu
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Chieh Lee
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Ann Chen
- Department of Pathology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Sheau-Long Lee
- Department of Chemistry, R.O.C. Military Academy, Kaohsiung, Taiwan
| | - Yi-Jin Lin
- Department of Pathology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Chih-Yu Hsieh
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, Taiwan.,Renal Care Joint Foundation, New Taipei City, Taiwan
| | - Shin-Ruen Yang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Feng-Cheng Liu
- Division of Rheumatology/Immunology and Allergy, Department of Internal Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Shuk-Man Ka
- Graduate Institute of Aerospace and Undersea Medicine, Department of Medicine, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
28
|
Ding M, Wang X, Zhang Y, Yuan W, Zhang H, Xu L, Wang Z, Lu J, Li W, Zhao Y. New perspective on the metabolism of AD-1 in vivo: Characterization of a series of dammarane-type derivatives with novel metabolic sites and anticancer mechanisms of active oleanane-type metabolites. Bioorg Chem 2019; 88:102961. [PMID: 31075741 DOI: 10.1016/j.bioorg.2019.102961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/19/2019] [Accepted: 04/28/2019] [Indexed: 12/17/2022]
Abstract
20(R)-25-methoxyl-dammarane-3β,12β,20-triol (AD-1, CN Patent: 201010107476.7) is a novel derivative of dammarane-type ginsenoside. AD-1 has been shown to inhibit cancer cell proliferation without significant host toxicity in vivo, and has excellent development potential as a new anti-cancer agent. This study was designed systematically to explore the metabolic pathway of ginseng sapogenins. The metabolism of drugs in the body is a complex biotransformation process where drugs are structurally modified to different molecules (metabolites) through various metabolizing enzymes. The compounds responsible for the effects of orally administered ginseng are believed to be metabolites produced in the gastrointestinal tract, so understanding the metabolism of the drug candidate can help to optimize its pharmacokinetics. In this study, faeces samples were collected and extracted after oral administration of AD-1. The 16 metabolites of AD-1 were isolated and identified for the first time with various chromatographic techniques, including semi-preparative high performance liquid chromatography, nuclear magnetic resonance spectroscopy, and mass spectrometry; of these 16 metabolites, 10 were novel compounds. We first discovered the biotransformation of dammarane-type sapogenins into oleanane-type sapogenins in rats and found a series of metabolites that changed, mainly at C-25 and C-29. This study provides new ideas for the metabolic pathway of ginseng sapogenins. The isolated compounds were screened for their effect on the viability and proliferation against cancer cell lines (Human A549, MCF-7, HELA, HO-8901 and U87). The discovery of novel active metabolites 3β,12β,21α,22β-Hydroxy-24-norolean-12-ene (M6) may lead to a new or improved drug candidate. For one, M6 could inhibit the growth of all the tested cancer cells. Among the tested cell lines, M6 exhibited the most remarkable inhibitory effect on ovarian cancer HO-8901 cells, with IC50 value of 2.086 μM. On this basis, we studied the anticancer mechanisms of M6. The results indicated that the pro-apoptotic feature of M6 acts via a mitochondrial pathway. Our results indicated that M6 exhibited a higher inhibitory effect on cancer-cell proliferation than AD-1 by inducing cell apoptosis. Our work provides data for future investigations on the metabolic mechanism of AD-1 in vivo and the potential for future research on developing a new drug.
Collapse
Affiliation(s)
- Meng Ding
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xude Wang
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yumeng Zhang
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Weihui Yuan
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huixing Zhang
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lei Xu
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ziyi Wang
- Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Jincai Lu
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Wei Li
- Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Structure-based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yuqing Zhao
- Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Structure-based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
29
|
Wang YS, Zhu H, Li H, Li Y, Zhao B, Jin YH. Ginsenoside compound K inhibits nuclear factor-kappa B by targeting Annexin A2. J Ginseng Res 2019; 43:452-459. [PMID: 31308817 PMCID: PMC6606818 DOI: 10.1016/j.jgr.2018.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 04/04/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Ginsenoside compound K(C-K), a major metabolite of ginsenoside, exhibits anticancer activity in various cancer cells and animal models. A cell signaling study has shown that C-K inhibited nuclear factor-kappa B (NF-κB) pathway in human astroglial cells and liver cancer cells. However, the molecular targets of C-K and the initiating events were not elucidated. METHODS Interaction between C-K and Annexin A2 was determined by molecular docking and thermal shift assay. HepG2 cells were treated with C-K, followed by a luciferase reporter assay for NF-кB, immunofluorescence imaging for the subcellular localization of Annexin A2 and NF-кB p50 subunit, coimmunoprecipitation of Annexin A2 and NF-кB p50 subunit, and both cell viability assay and plate clone formation assay to determine the cell viability. RESULTS Both molecular docking and thermal shift assay positively confirmed the interaction between Annexin A2 and C-K. This interaction prevented the interaction between Annexin A2 and NF-кB p50 subunit and their nuclear colocalization, which attenuated the activation of NF-кB and the expression of its downstream genes, followed by the activation of caspase 9 and 3. In addition, the overexpression of Annexin A2-K320A, a C-K binding-deficient mutant of Annexin A2, rendered cells to resist C-K treatment, indicating that C-K exerts its cytotoxic activity mainly by targeting Annexin A2. CONCLUSION This study for the first time revealed a cellular target of C-K and the molecular mechanism for its anticancer activity.
Collapse
Affiliation(s)
- Yu-Shi Wang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, China
| | - Hongyan Zhu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, China
| | - He Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, China
| | - Yang Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Ying-Hua Jin
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, China
| |
Collapse
|
30
|
Efficient separation determination of protopanaxatriol ginsenosides Rg1, Re, Rf, Rh1, Rg2 by HPLC. J Pharm Biomed Anal 2019; 170:48-53. [DOI: 10.1016/j.jpba.2019.03.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 12/28/2022]
|
31
|
Dou TY, Chen J, Qian XK, Li K, Ge GB. Biotransformation of Glycoginsenosides to Intermediate Products and Aglycones using a Hemicellulosome Produced by Cellulosimicrobium cellulan. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819020054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Chen C, Zhang D, Zhao Y, Cai E, Zhu H, Gao Y. A new 3,4-seco-lupane triterpenene glycosyl ester from the leaves of Eleutherococcus sessiliflorus. Nat Prod Res 2019; 34:1927-1930. [PMID: 30672331 DOI: 10.1080/14786419.2018.1564292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A new minor 3,4-seco-lupane triterpenene glycosyl ester, named sessiloside-A1 (1), along with three known 3,4-seco-lupane triterpenenes were isolated from the which alcohol extract of the leaves of Eleutherococcus sessiliflorus (Rupr. & Maxim.) S.Y. Hu by silica gel column chromatography, and their structures were determined by spectroscopic methods (UV, IR, NMR and HRMS). Compound 1 was elucidated to be β-D-glucopyranosyl ester of chiisanogenin. At the same time, a new efficient two-step enzymatic hydrolysis method was established to transform chiisanoside (2) → divaroside (3) → 1.
Collapse
Affiliation(s)
- Chen Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Danfeng Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Enbo Cai
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Hongyan Zhu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Yugang Gao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| |
Collapse
|
33
|
Production of Minor Ginenosides from Panax notoginseng by Microwave Processing Method and Evaluation of Their Blood-Enriching and Hemostatic Activity. Molecules 2018; 23:molecules23061243. [PMID: 29882854 PMCID: PMC6099712 DOI: 10.3390/molecules23061243] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 05/19/2018] [Accepted: 05/20/2018] [Indexed: 01/21/2023] Open
Abstract
A green solvent extraction technology involving a microwave processing method was used to increase the content of minor ginsenosides from Panax notoginseng. This article aims to investigate the optimization of preparation of the minor ginsenosides by this microwave processing method using single-factor experiments and response surface methodology (RSM), and discuss the blood-enriching activity and hemostatic activity of the extract of microwave processed P. notoginseng (EMPN) The RSM for production of the minor ginsenosides was based on a three-factor and three-level Box-Behnken design. When the optimum conditions of microwave power, temperature and time were 495.03 W, 150.68 °C and 20.32 min, respectively, results predicted that the yield of total minor ginsenosides (Y9) would be 93.13%. The actual value of Y9 was very similar to the predicted value. In addition, the pharmacological results of EMPN in vivo showed that EMPN had the effect of enriching blood in N-acetylphenylhydrazine (APH) and cyclophosphamide (CTX)-induced blood deficient mice because of the increasing content of white blood cells (WBCs) and hemoglobin (HGB) in blood. Hemostatic activity in vitro of EMPN showed that it had significantly shortened the clotting time in PT testing (p < 0.05). The hemostatic effect of EMPN was mainly caused by its components of Rh4, 20(S)-Rg3 and 20(R)-Rg3. This microwave processing method is simple and suitable to mass-produce the minor ginsenosides from P. notoginseng.
Collapse
|
34
|
Kim E, Kim D, Yoo S, Hong YH, Han SY, Jeong S, Jeong D, Kim JH, Cho JY, Park J. The skin protective effects of compound K, a metabolite of ginsenoside Rb1 from Panax ginseng. J Ginseng Res 2018; 42:218-224. [PMID: 29719469 PMCID: PMC5925615 DOI: 10.1016/j.jgr.2017.03.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/07/2017] [Accepted: 03/17/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Compound K (CK) is a ginsenoside, a metabolite of Panax ginseng. There is interest both in increasing skin health and antiaging using natural skin care products. In this study, we explored the possibility of using CK as a cosmetic ingredient. METHODS To assess the antiaging effect of CK, RT-PCR was performed, and expression levels of matrix metalloproteinase-1, cyclooxygenase-2, and type I collagen were measured under UVB irradiation conditions. The skin hydrating effect of CK was tested by RT-PCR, and its regulation was explored through immunoblotting. Melanin content, melanin secretion, and tyrosinase activity assays were performed. RESULTS CK treatment reduced the production of matrix metalloproteinase-1 and cyclooxygenase-2 in UVB irradiated NIH3T3 cells and recovered type I collagen expression level. Expression of skin hydrating factors-filaggrin, transglutaminase, and hyaluronic acid synthases-1 and -2-were augmented by CK and were modulated through the inhibitor of κBα, c-Jun N-terminal kinase, or extracellular signal-regulated kinases pathway. In the melanogenic response, CK did not regulate tyrosinase activity and melanin secretion, but increased melanin content in B16F10 cells was observed. CONCLUSION Our data showed that CK has antiaging and hydrating effects. We suggest that CK could be used in cosmetic products to protect the skin from UVB rays and increase skin moisture level.
Collapse
Affiliation(s)
- Eunji Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Donghyun Kim
- Material Lab, Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Republic of Korea
| | - Sulgi Yoo
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yo Han Hong
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sang Yun Han
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seonggu Jeong
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Deok Jeong
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jong-Hoon Kim
- Department of Physiology, College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Junseong Park
- Department of Engineering Chemistry, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
35
|
Lee SY. Synergistic effect of maclurin on ginsenoside compound K induced inhibition of the transcriptional expression of matrix metalloproteinase-1 in HaCaT human keratinocyte cells. J Ginseng Res 2017; 42:229-232. [PMID: 29719471 PMCID: PMC5925616 DOI: 10.1016/j.jgr.2017.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/06/2017] [Accepted: 11/15/2017] [Indexed: 01/12/2023] Open
Affiliation(s)
- Sang Yeol Lee
- Department of Life Science, Gachon University, Seongnam, Republic of Korea
| |
Collapse
|
36
|
Highly regioselective biotransformation of ginsenoside Rb2 into compound Y and compound K by β-glycosidase purified from Armillaria mellea mycelia. J Ginseng Res 2017; 42:504-511. [PMID: 30337811 PMCID: PMC6187093 DOI: 10.1016/j.jgr.2017.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/27/2017] [Accepted: 07/03/2017] [Indexed: 11/22/2022] Open
Abstract
Background The biological activities of ginseng saponins (ginsenosides) are associated with type, number, and position of sugar moieties linked to aglycone skeletons. Deglycosylated minor ginsenosides are known to be more biologically active than major ginsenosides. Accordingly, the deglycosylation of major ginsenosides can provide the multibioactive effects of ginsenosides. The purpose of this study was to transform ginsenoside Rb2, one of the protopanaxadiol-type major ginsenosides, into minor ginsenosides using β-glycosidase (BG-1) purified from Armillaria mellea mycelium. Methods Ginsenoside Rb2 was hydrolyzed by using BG-1; the hydrolytic properties of Rb2 by BG-1 were also characterized. In addition, the influence of reaction conditions such as reaction time, pH, and temperature, and transformation pathways of Rb2, Rd, F2, compound O (C-O), and C-Y by treatment with BG-1 were investigated. Results BG-1 first hydrolyzes 3-O-outer β-d-glucoside of Rb2, then 3-O-β-d-glucoside of C-O into C-Y. C-Y was gradually converted into C-K with a prolonged reaction time, but the pathway of Rb2 → Rd → F2 → C-K was not observed. The optimum reaction conditions for C-Y and C-K formation from Rb2 by BG-1 were pH 4.0-4.5, temperature 45-60°C, and reaction time 72-96 h. Conclusion β-Glycosidase purified from A. mellea mycelium can be efficiently used to transform Rb2 into C-Y and C-K. To our best knowledge, this is the first result of transformation from Rb2 into C-Y and C-K by basidiomycete mushroom enzyme.
Collapse
|
37
|
Production of bioactive ginsenoside Rg3(S) and compound K using recombinant Lactococcus lactis. J Ginseng Res 2017; 42:412-418. [PMID: 30337801 PMCID: PMC6187048 DOI: 10.1016/j.jgr.2017.04.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/13/2017] [Accepted: 04/17/2017] [Indexed: 12/15/2022] Open
Abstract
Background Ginsenoside Rg3(S) and compound K (C-K) are pharmacologically active components of ginseng that promote human health and improve quality of life. The aim of this study was to produce Rg3(S) and C-K from ginseng extract using recombinant Lactococcus lactis. Methods L. lactis subsp. cremoris NZ9000 (L. lactis NZ9000), which harbors β-glucosidase genes (BglPm and BglBX10) from Paenibacillus mucilaginosus and Flavobacterium johnsoniae, respectively, was reacted with ginseng extract (protopanaxadiol-type ginsenoside mixture). Results Crude enzyme activity of BglBX10 values comprised 0.001 unit/mL and 0.003 unit/mL in uninduced and induced preparations, respectively. When whole cells of L. lactis harboring pNZBglBX10 were treated with ginseng extract, after permeabilization of cells by xylene, Rb1 and Rd were converted into Rg3(S) with a conversion yield of 61%. C-K was also produced by sequential reactions of the permeabilized cells harboring each pNZBgl and pNZBglBX10, resulting in a 70% maximum conversion yield. Conclusion This study demonstrates that the lactic acid bacteria having specific β-glucosidase activity can be used to enhance the health benefits of Panax ginseng in either fermented foods or bioconversion processes.
Collapse
|
38
|
Upadhyaya J, Yoon MS, Kim MJ, Ryu NS, Song YE, Kim YH, Kim MK. Purification and characterization of a novel ginsenoside Rc-hydrolyzing β-glucosidase from Armillaria mellea mycelia. AMB Express 2016; 6:112. [PMID: 27837549 PMCID: PMC5106418 DOI: 10.1186/s13568-016-0277-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 10/27/2016] [Indexed: 12/22/2022] Open
Abstract
Ginsenosides are the principal compounds responsible for the pharmacological effects and health benefits of Panax ginseng root. Among protopanaxadiol (PPD)-type ginsenosides, minor ginsenosides such as ginsenoside (G)-F2, G-Rh2, compound (C)-Mc1, C-Mc, C-O, C-Y, and C-K are known to be more pharmacologically active constituents than major ginsenosides such as G-Rb1, G-Rb2, G-Rc, and G-Rd. A novel ginsenoside Rc-hydrolyzing β-glucosidase (BG-1) from Armillaria mellea mycelia was purified as a single protein band with molecular weight of 121.5 kDa on SDS-PAGE and a specific activity of 17.9 U mg-1 protein. BG-1 concurrently hydrolyzed α-(1 → 6)-arabinofuranosidic linkage at the C-20 site or outer β-(1 → 2)-glucosidic linkage at the C-3 site of G-Rc to produce G-Rd and C-Mc1, respectively. The enzyme also hydrolyzed outer and inner glucosidic linkages at the C-3 site of G-Rd to produce C-K via G-F2, and inner glucosidic linkage at the C-3 site of C-Mc1 to produce C-Mc. C-Mc was also slowly hydrolyzed α-(1 → 6)-arabinofuranosidic linkage at the C-20 site to produce C-K with reaction time prolongation. Finally, the pathways for formation of C-Mc and C-K from G-Rc by BG-1 were G-Rc → C-Mc1 → C-Mc and G-Rc → G-Rd → G-F2 → C-K, respectively. The optimum reaction conditions for C-Mc and C-K formation from G-Rc by BG-1 were pH 4.0-4.5, temperature 45-60 °C, and reaction time 72-96 h. This is the first report of efficient production of minor ginsenosides, C-Mc and C-K from G-Rc by β-glucosidase purified from A. mellea mycelia.
Collapse
Affiliation(s)
- Jitendra Upadhyaya
- Department of Food Science and Technology, Chonbuk National University, Jeonju, 54896 Republic of Korea
| | - Min-Sun Yoon
- Department of Food Science and Biotechnology, Chonbuk National University, Iksan, 54596 Republic of Korea
| | - Min-Ji Kim
- Department of Food Science and Technology, Chonbuk National University, Jeonju, 54896 Republic of Korea
| | - Nam-Soo Ryu
- Department of Food Science and Biotechnology, Chonbuk National University, Iksan, 54596 Republic of Korea
| | - Young-Eun Song
- Agricultural Research and Extension Services, Iksan, 54591 Republic of Korea
| | - Young-Hoi Kim
- Department of Food Science and Technology, Chonbuk National University, Jeonju, 54896 Republic of Korea
| | - Myung-Kon Kim
- Department of Food Science and Technology, Chonbuk National University, Jeonju, 54896 Republic of Korea
| |
Collapse
|