1
|
Saha B, Pallatt S, Banerjee A, Banerjee AG, Pathak R, Pathak S. Current Insights into Molecular Mechanisms and Potential Biomarkers for Treating Radiation-Induced Liver Damage. Cells 2024; 13:1560. [PMID: 39329744 PMCID: PMC11429644 DOI: 10.3390/cells13181560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Highly conformal delivery of radiation therapy (RT) has revolutionized the treatment landscape for primary and metastatic liver cancers, yet concerns persist regarding radiation-induced liver disease (RILD). Despite advancements, RILD remains a major dose-limiting factor due to the potential damage to normal liver tissues by therapeutic radiation. The toxicity to normal liver tissues is associated with a multitude of physiological and pathological consequences. RILD unfolds as multifaceted processes, intricately linking various responses, such as DNA damage, oxidative stress, inflammation, cellular senescence, fibrosis, and immune reactions, through multiple signaling pathways. The DNA damage caused by ionizing radiation (IR) is a major contributor to the pathogenesis of RILD. Moreover, current treatment options for RILD are limited, with no established biomarker for early detection. RILD diagnosis often occurs at advanced stages, highlighting the critical need for early biomarkers to adjust treatment strategies and prevent liver failure. This review provides an outline of the diverse molecular and cellular mechanisms responsible for the development of RILD and points out all of the available biomarkers for early detection with the aim of helping clinicians decide on advance treatment strategies from a single literature recourse.
Collapse
Affiliation(s)
- Biki Saha
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Sneha Pallatt
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Antara Banerjee
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Abhijit G. Banerjee
- R&D, Genomic Bio-Medicine Research and Incubation (GBMRI), Durg 491001, Chhattisgarh, India
| | - Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Surajit Pathak
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| |
Collapse
|
2
|
Zhang W, Zou M, Fu J, Xu Y, Zhu Y. Autophagy: A potential target for natural products in the treatment of ulcerative colitis. Biomed Pharmacother 2024; 176:116891. [PMID: 38865850 DOI: 10.1016/j.biopha.2024.116891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease primarily affecting the mucosa of the colon and rectum. UC is characterized by recurrent episodes, often necessitating lifelong medication use, imposing a significant burden on patients. Current conventional and advanced treatments for UC have the disadvantages of insufficient efficiency, susceptibility to drug resistance, and notable adverse effects. Therefore, developing effective and safe drugs has become an urgent need. Autophagy is an intracellular degradation process that plays an important role in intestinal homeostasis. Emerging evidence suggests that aberrant autophagy is involved in the development of UC, and modulating autophagy can effectively alleviate experimental colitis. A growing number of studies have established that autophagy can interplay with endoplasmic reticulum stress, gut microbiota, apoptosis, and the NLRP3 inflammasome, all of which contribute to the pathogenesis of UC. In addition, a variety of intestinal epithelial cells, including absorptive cells, goblet cells, and Paneth cells, as well as other cell types like neutrophils, antigen-presenting cells, and stem cells in the gut, mediate the development of UC through autophagy. To date, many studies have found that natural products hold the potential to exert therapeutic effects on UC by regulating autophagy. This review focuses on the possible effects and pharmacological mechanisms of natural products to alleviate UC with autophagy as a potential target in recent years, aiming to provide a basis for new drug development.
Collapse
Affiliation(s)
- Wei Zhang
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Menglong Zou
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jia Fu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China
| | - Yin Xu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China.
| | - Ying Zhu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China.
| |
Collapse
|
3
|
Elblehi SS, Hafez MH, El-Far AH. Panax ginseng ameliorates hepatorenal oxidative alterations induced by commercially used cypermethrin in male rats: experimental and molecular docking approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109702-109723. [PMID: 37776425 PMCID: PMC10622388 DOI: 10.1007/s11356-023-29935-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023]
Abstract
Cypermethrin (CYP) is a synthetic pyrethroid utilized as an insecticide in agriculture and various pest eradication programs. However, it induces numerous health hazards for animals and humans. Therefore, the current study used Panax ginseng root extract (ginseng) to reduce the hepatorenal damage caused by commercially used CYP. Thirty-two male Wistar albino rats were distributed into control, ginseng (300 mg/kg B.W/day), CYP (4.67 mg/kg B.W.), and Ginseng+CYP (rats received both CYP and ginseng). All treatments were administered orally for 30 consecutive days. Cypermethrin induced harmful effects on hepatic and renal tissues through a substantial decline in body weight in addition to a considerable increase in liver enzymes, functional renal markers, and cholesterol. Also, CYP significantly decreased acetylcholinesterase (AChE) activity and increased pro-inflammatory cytokines (interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α)). Moreover, a marked increase in malondialdehyde level with a significant drop in reduced glutathione level and total superoxide dismutase (T-SOD) and catalase (CAT) activities was reported in the CYP group in kidney and liver tissues. Additionally, CYP exhibited affinities to bind and inhibit AChE and antioxidant enzymes (T-SOD and CAT) in rats following the molecular docking modeling. The apparent hepatorenal oxidative damage was linked with obvious impairments in the liver and kidney histoarchitecture, immunohistochemical staining of B cell lymphoma-2 (Bcl-2), and caspase-3 proteins. Ginseng reduced CYP's oxidative alterations by repairing the metabolic functional markers, improving antioxidant status, reducing the inflammatory response, and enhancing the molecular docking evaluation. It also ameliorated the intensity of the histopathological alterations and improved the immunohistochemical staining of Bcl-2 and caspase-3 proteins in the liver and kidney tissues. Finally, concomitant oral administration of ginseng mitigated CYP-prompted hepatorenal damage through its antioxidant, anti-inflammatory, and anti-apoptotic potentials.
Collapse
Affiliation(s)
- Samar S Elblehi
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22758, Egypt
| | - Mona H Hafez
- Department of Physiology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22758, Egypt
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| |
Collapse
|
4
|
Sayed DF, Mohamed MA, Nada AS, Temraz A, Ahmed AH. Hepatoprotective role of myricitrin isolated from Mimusops elengi Linn. leaves extract on γ-radiation-induced liver damage in rats: Phyto-biochemical investigations. Cell Biochem Funct 2023; 41:642-657. [PMID: 37342005 DOI: 10.1002/cbf.3820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 06/22/2023]
Abstract
The hepatoprotective effects of methanol extract of Mimusops elengi Linn. (M. elengi L.) leaves and isolated pure myricitrin (3-, 4-, 5-, 5, 7-five hydroxyflavone-3-O-α-l-rhamnoside) (Myr) were evaluated in male rats exposed to γ-irradiation. The extraction of M. elengi L. leaves was performed using ethyl acetate (EtOAC). Seven groups of rats were used: control group, irradiated (IRR) group (6 Gy of γ-rays in a single dose), vehicle group (oral administration of 0.5% carboxymethyl cellulose for 10 days), EtOAC extract group (100 mg/kg body weight of extract, orally for 10 days), EtOAC + IRR group (administration of extract and exposure to γ-rays on Day 7), Myr group (50 mg/kg body weight Myr, orally for 10 days), and Myr + IRR group (administration of Myr and exposure to γ-rays on Day 7). High-performance liquid chromatography and 1H-nuclear magnetic resonance were used to isolate and characterize the compounds from M. elengi L. leaves. Enzyme-linked immunosorbent assay was used for biochemical analyses. Identified compounds were Myr, myricetin 3-O-galactoside, myricetin 3-O-rahmnopyranoside (1 → 6) glucopyranoside, quercetin, quercitol, gallic acid, α-,β-amyrin, ursolic acid, and lupeol. Serum aspartate transaminase and alanine transaminase activities were significantly increased, while serum protein and albumin levels were significantly decreased after irradiation. Hepatic levels of tumor necrosis factor-α, prostaglandin 2, inducible nitric oxide synthase, interleukin-6 (IL-6), and IL-12 were increased following irradiation. Improvements were observed in most serological parameters after treatment with extract or pure Myr, with histological analyses confirming decreased liver injury in treated rats. Our study demonstrates that pure Myr has a greater hepatoprotective effect than M. elengi leaf extracts against irradiation-induced hepatic inflammation.
Collapse
Affiliation(s)
- Dina F Sayed
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (AEA), Cairo, Egypt
| | - Marwa A Mohamed
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (AEA), Cairo, Egypt
| | - Ahmed S Nada
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (AEA), Cairo, Egypt
| | - Abeer Temraz
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University (Girls), Cairo, Egypt
| | - Amal H Ahmed
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University (Girls), Cairo, Egypt
| |
Collapse
|
5
|
Zhang Y, Huang Y, Li Z, Wu H, Zou B, Xu Y. Exploring Natural Products as Radioprotective Agents for Cancer Therapy: Mechanisms, Challenges, and Opportunities. Cancers (Basel) 2023; 15:3585. [PMID: 37509245 PMCID: PMC10377328 DOI: 10.3390/cancers15143585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Radiotherapy is an important cancer treatment. However, in addition to killing tumor cells, radiotherapy causes damage to the surrounding cells and is toxic to normal tissues. Therefore, an effective radioprotective agent that prevents the deleterious effects of ionizing radiation is required. Numerous synthetic substances have been shown to have clear radioprotective effects. However, most of these have not been translated for use in clinical applications due to their high toxicity and side effects. Many medicinal plants have been shown to exhibit various biological activities, including antioxidant, anti-inflammatory, and anticancer activities. In recent years, new agents obtained from natural products have been investigated by radioprotection researchers, due to their abundance of sources, high efficiency, and low toxicity. In this review, we summarize the mechanisms underlying the radioprotective effects of natural products, including ROS scavenging, promotion of DNA damage repair, anti-inflammatory effects, and the inhibition of cell death signaling pathways. In addition, we systematically review natural products with radioprotective properties, including polyphenols, polysaccharides, alkaloids, and saponins. Specifically, we discuss the polyphenols apigenin, genistein, epigallocatechin gallate, quercetin, resveratrol, and curcumin; the polysaccharides astragalus, schisandra, and Hohenbuehelia serotina; the saponins ginsenosides and acanthopanax senticosus; and the alkaloids matrine, ligustrazine, and β-carboline. However, further optimization through structural modification, improved extraction and purification methods, and clinical trials are needed before clinical translation. With a deeper understanding of the radioprotective mechanisms involved and the development of high-throughput screening methods, natural products could become promising novel radioprotective agents.
Collapse
Affiliation(s)
- Yi Zhang
- Division of Thoracic Oncology, Cancer Center, Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Huang
- College of Management, Sichuan Agricultural University, Chengdu 611130, China
| | - Zheng Li
- Division of Thoracic Oncology, Cancer Center, Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanyou Wu
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Bingwen Zou
- Division of Thoracic Oncology, Cancer Center, Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Xu
- Division of Thoracic Oncology, Cancer Center, Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Zhou YJ, Tang Y, Liu SJ, Zeng PH, Qu L, Jing QC, Yin WJ. Radiation-induced liver disease: beyond DNA damage. Cell Cycle 2023; 22:506-526. [PMID: 36214587 PMCID: PMC9928481 DOI: 10.1080/15384101.2022.2131163] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/03/2022] Open
Abstract
Radiation-induced liver disease (RILD), also known as radiation hepatitis, is a serious side effect of radiotherapy (RT) for hepatocellular carcinoma. The therapeutic dose of RT can damage normal liver tissue, and the toxicity that accumulates around the irradiated liver tissue is related to numerous physiological and pathological processes. RILD may restrict treatment use or eventually deteriorate into liver fibrosis. However, the research on the mechanism of radiation-induced liver injury has seen little progress compared with that on radiation injury in other tissues, and no targeted clinical pharmacological treatment for RILD exists. The DNA damage response caused by ionizing radiation plays an important role in the pathogenesis and development of RILD. Therefore, in this review, we systematically summarize the molecular and cellular mechanisms involved in RILD. Such an analysis is essential for preventing the occurrence and development of RILD and further exploring the potential treatment of this disease.
Collapse
Affiliation(s)
- Ying Jie Zhou
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yun Tang
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Si Jian Liu
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Peng Hui Zeng
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Qu
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qian Cheng Jing
- The Affiliated Changsha Central Hospital, Department of Otolaryngology Head and Neck Surgery,Hengyang Medical School, University of South China, Changsha, Hunan, China
- Institute of Otolaryngology Head and Neck Surgery, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Wen Jun Yin
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory, Changsha Central Hospital, University of South China, Changsha, Hunan, China
| |
Collapse
|
7
|
Elbakry MMM, Mansour SZ, Helal H, Ahmed ESA. Nattokinase attenuates bisphenol A or gamma irradiation-mediated hepatic and neural toxicity by activation of Nrf2 and suppression of inflammatory mediators in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75086-75100. [PMID: 35648353 PMCID: PMC9550699 DOI: 10.1007/s11356-022-21126-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/23/2022] [Indexed: 05/05/2023]
Abstract
Nattokinase (NK), a protease enzyme produced by Bacillus subtilis, has various biological effects such as lipid-lowering activity, antihypertensive, antiplatelet/anticoagulant, and neuroprotective effects. Exposure to environmental toxicants such as bisphenol A (BPA) or γ-radiation (IR) causes multi-organ toxicity through several mechanisms such as impairment of oxidative status, signaling pathways, and hepatic and neuronal functions as well as disruption of the inflammatory responses. Therefore, this study is designed to evaluate the ameliorative effect of NK against BPA- or IR-induced liver and brain damage in rats. Serum ammonia level and liver function tests were measured in addition to brain oxidative stress markers, amyloid-beta, tau protein, and neuroinflammatory mediators. Moreover, relative quantification of brain nuclear factor-erythroid 2-related factor-2 (Nrf2)/heme oxygenase-1 (HO-1) genes, as well as apoptotic markers in brain tissue, was carried out in addition to histopathological examination. The results showed that NK improved liver functions, impaired oxidative status, the cholinergic deficits, and minified the misfolded proteins aggregates. Furthermore, NK alleviated the neuroinflammation via modulating NF-κB/Nrf2/HO-1 pathway and glial cell activation in addition to their antiapoptotic effect. Collectively, the current results revealed the protective effect of NK against hepatic and neurotoxicity derived from BPA or IR.
Collapse
Affiliation(s)
- Mustafa M M Elbakry
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Somaya Z Mansour
- Radiation Biology Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Cairo, 11787, Egypt
| | - Hamed Helal
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Esraa S A Ahmed
- Radiation Biology Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Cairo, 11787, Egypt.
| |
Collapse
|
8
|
Li YH, Wu JX, He Q, Gu J, Zhang L, Niu HZ, Zhang XW, Zhao HT, Xu JY, Qin LQ. Amelioration of radiation-induced liver damage by p-coumaric acid in mice. Food Sci Biotechnol 2022; 31:1315-1323. [PMID: 35992325 PMCID: PMC9385927 DOI: 10.1007/s10068-022-01118-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/06/2022] [Accepted: 06/05/2022] [Indexed: 12/20/2022] Open
Abstract
Radiation-induced liver damage (RILD) is a spiny problem in radiotherapy or other circumstances that exposure to radiation. The need for radioprotective agent is increasing to protect liver tissue. This study aimed to explore the hepatoprotective effect of p-coumaric acid (CA) against RILD. C57BL/6 male mice were exposed to 4 Gy irradiation and administrated with CA for 4 days starting on the same day of irradiation. Mice were sacrificed to obtain blood and liver tissues on day 3.5 or 14 post irradiation, respectively. The blood and liver tissues were collected. As compared with the only irradiated group, CA supplementation improved liver morphology, decreased serum alanine aminotransferase and aspartate aminotransferase, inhibited BCL2-associated X (BAX) protein expression, and improved the mice hematopoietic function. CA at the dose of 100 mg/kg body weight showed better effect compared to the other doses. Thus, CA might possess potential to protect against RILD.
Collapse
|
9
|
Ginseng ® Alleviates Malathion-Induced Hepatorenal Injury through Modulation of the Biochemical, Antioxidant, Anti-Apoptotic, and Anti-Inflammatory Markers in Male Rats. LIFE (BASEL, SWITZERLAND) 2022; 12:life12050771. [PMID: 35629437 PMCID: PMC9144712 DOI: 10.3390/life12050771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
This study aims to see if Ginseng® can reduce the hepatorenal damage caused by malathion. Four groups of forty male Wistar albino rats were alienated. Group 1 was a control group that got orally supplied corn oil (vehicle). Group 2 was intoxicated by malathion dissolved in corn oil orally at 135 mg/kg/day. Group 3 orally received both malathion + Panax Ginseng® (300 mg/kg/day). Group 4 was orally given Panax Ginseng® at a 300 mg/kg/day dose. Treatments were administered daily and continued for up to 30 consecutive days. Malathion's toxic effect on both hepatic and renal tissues was revealed by a considerable loss in body weight and biochemically by a marked increase in liver enzymes, LDH, ACP, cholesterol, and functional renal markers with a marked decrease in serum TP, albumin, and TG levels with decreased AchE and Paraoxonase activity. Additionally, malondialdehydes, nitric oxide (nitrite), 8-hydroxy-2-deoxyguanosine, and TNFα with a significant drop in the antioxidant activities were reported in the malathion group. Malathion upregulated the inflammatory cytokines and apoptotic genes, while Nrf2, Bcl2, and HO-1 were downregulated. Ginseng® and malathion co-treatment reduced malathion's harmful effects by restoring metabolic indicators, enhancing antioxidant pursuit, lowering the inflammatory reaction, and alleviating pathological alterations. So, Ginseng® may have protective effects against hepatic and renal malathion-induced toxicity on biochemical, antioxidant, molecular, and cell levels.
Collapse
|
10
|
Incompatible effects of Panax ginseng and Veratrum nigrum on estrogen decline in rats using metabolomics and gut microbiota. J Pharm Biomed Anal 2022; 208:114442. [PMID: 34749105 DOI: 10.1016/j.jpba.2021.114442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 11/23/2022]
Abstract
Panax ginseng (PG) and Veratrum nigrum (VN) are the most representative incompatibility herb pair in traditional Chinese medicine (TCM). This theory is derived from long-term clinical practice and has been applied for thousands of years. However, its mechanism has not yet been clearly investigated. The purpose of this work is to examine the incompatible effects of PG and VN on estrogen decline in rats to better understand the adverse effects of inappropriate herbal combinations using metabolomics and gut microbiota. The ovariectomized rats were administered with PG, VN and their combination decoction decoction intragastrically. After the combination of PG and VN, the improvement of depression-like behavior, neurotransmitter of brain, serum estrogen levels on ovariectomized rats was decreased; the regulation of PG on eight metabolic biomarkers and four intestinal bacteria was reduced by metabolomic and gut microbiota analysis. In addition, the correlation analysis revealed that the above four gut flora showed a relative trend with the significant metabolites of Pantothenic acid, 4, 6-Dihydroxyquinoline, Chenodeoxycholic acid and Caprylic acid. They were involved in tryptophan metabolism, pantothenic acid and coenzyme A biosynthesis, fatty acid biosynthesis and primary bile acid biosynthesis. These results provide further insight into the pathway by which PG and VN combine to reduce the therapeutic effects of estrogen decline. It is helpful to comprehend the incompatible mechanisms of PG and VN.
Collapse
|
11
|
Mostafa RE, Shaffie NM, Allam RM. Panax Ginseng alleviates thioacetamide-induced liver injury in ovariectomized rats: Crosstalk between inflammation and oxidative stress. PLoS One 2021; 16:e0260507. [PMID: 34843587 PMCID: PMC8629276 DOI: 10.1371/journal.pone.0260507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/09/2021] [Indexed: 12/21/2022] Open
Abstract
Liver diseases impose a substantial health problem. Female hormones play a crucial role in the protection against chronic inflammatory diseases. Fifty female rats were allocated into five groups (n = 10). Group I comprised sham-operated rats. The remaining groups underwent ovariectomy at the beginning of the experiment. Group II served as the ovariectomy-control group. Groups III, IV & V received thioacetamide (TAA; 300 mg/kg; i.p.) to induce liver injury 6 weeks after ovariectomy. Group III served as the TAA-control group. Groups IV & V received panax ginseng (100 and 300 mg/kg/day, p.o.) for 6 weeks post TAA administration. All groups were investigated for liver function tests along with total antioxidant capacity (TAC), tumor necrosis factor-α (TNF-α) and advanced glycation end products (AGEs). Histopathological examination of liver tissues was performed followed by immunohistochemical staining for nuclear factor kappa-B (NF-kβ p65) and myeloperoxidase (MPO). Ovariectomized-rats showed a non-significant change in the measured parameters while TAA administration resulted in significant liver damage. Panax ginseng at both dose levels significantly improved the serum liver function tests and TAC along with decreasing the AGEs and TNF-α. It also restored the histopathological picture of liver tissue and decreased hepatic tissue inflammation via reduction of MPO and NF-kβ p65 immunoreactivity. The current study is the first to elucidate the effect of panax ginseng against TAA-induced liver injury in ovariectomized rats which mimic aged post-menopausal estrogen-deficient females. The study demonstrates the crosstalk between AGEs, NF-kβ and MPO in the modulation of inflammation. Panax ginseng possesses antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Rasha E. Mostafa
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Nermeen M. Shaffie
- Department of Pathology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Rasha M. Allam
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
12
|
Zhu W, Zhang X, Yu M, Lin B, Yu C. Radiation-induced liver injury and hepatocyte senescence. Cell Death Discov 2021; 7:244. [PMID: 34531376 PMCID: PMC8446062 DOI: 10.1038/s41420-021-00634-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/06/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
Radiation-induced liver injury (RILI) is a major complication of radiotherapy during treatment for liver cancer and other upper abdominal malignant tumors that has poor pharmacological therapeutic options. A series of pathological changes can be induced by radiation. However, the underlying mechanism of RILI remains unclear. Radiation can induce cell damage via direct energy deposition or reactive free radical generation. Cellular senescence can be observed due to the DNA damage response (DDR) caused by radiation. The senescence-associated secretory phenotype (SASP) secreted from senescent cells can cause chronic inflammation and aggravate liver dysfunction for a long time. Oxidative stress further activates the signaling pathway of the inflammatory response and affects cellular metabolism. miRNAs clearly have differential expression after radiation treatment and take part in RILI development. This review aims to systematically profile the overall mechanism of RILI and the effects of radiation on hepatocyte senescence, laying foundations for the development of new therapies.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaofen Zhang
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mengli Yu
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bingru Lin
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chaohui Yu
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
13
|
Dowlath MJH, Karuppannan SK, Sinha P, Dowlath NS, Arunachalam KD, Ravindran B, Chang SW, Nguyen-Tri P, Nguyen DD. Effects of radiation and role of plants in radioprotection: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146431. [PMID: 34030282 DOI: 10.1016/j.scitotenv.2021.146431] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 05/16/2023]
Abstract
Radiation can be lethal at high doses, whereas controlled doses are useful in medical applications. Other applications include power generation, agriculture sterilization, nuclear weapons, and archeology. Radiation damages genetic material, which is reflected in genotoxicity and can cause hereditary damage. In the medical field, it is essential to avoid the harmful effects of radiation. Radiation countermeasures and the need for radioprotective agents have been explored in recent years. Considering plants that evolve in radiative conditions, their ability to protect organisms against radiation has been studied and demonstrated. Crude extracts, fractioned extracts, isolated phytocompounds, and plant polysaccharides from various plants have been used in radioprotection studies, and their efficiency has been proven in various in vitro and in vivo experimental models. It is important to identify the mechanism of action to develop a potent plant-based radioprotective agent. To identify this protective mechanism, it is necessary to understand the damage caused by radiation in biological systems. This review intends to discuss the effects of ionizing radiation on biological systems and evaluate plant-based radioprotectants that have tested thus far as well as their mechanism of action in protecting against the toxic effects of radiation. From the review, the mechanism of radioprotection exhibited by the plant-based products could be understood. Meanwhile, we strongly suggest that the potential products identified so far should undergo clinical trials for critically evaluating their effects and for developing an ideal and compatible radioprotectant with no side-effects.
Collapse
Affiliation(s)
- Mohammed Junaid Hussain Dowlath
- Center for Environmental Nuclear Research, Directorate of Research, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - Sathish Kumar Karuppannan
- Center for Environmental Nuclear Research, Directorate of Research, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - Pamela Sinha
- Project Management, Bioneeds India Pvt. Ltd, Peenya Industrial Area, Bengaluru 560058, India
| | - Nihala Sultana Dowlath
- Department of Biochemistry, Ethiraj College for Women, Chennai, Tamil Nadu 600008, India
| | - Kantha Deivi Arunachalam
- Center for Environmental Nuclear Research, Directorate of Research, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India.
| | - B Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea.
| | - S Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea
| | - Phuong Nguyen-Tri
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC G8Z 4M3, Canada
| | - D Duc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam; Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea.
| |
Collapse
|
14
|
Wang C, Liu T, Tong Y, Cui R, Qu K, Liu C, Zhang J. Ulinastatin protects against acetaminophen-induced liver injury by alleviating ferroptosis via the SIRT1/NRF2/HO-1 pathway. Am J Transl Res 2021; 13:6031-6042. [PMID: 34306342 PMCID: PMC8290678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 04/11/2021] [Indexed: 06/13/2023]
Abstract
Acetaminophen (APAP) overdose has been considered responsible for the drug-induced liver injury for many years. Ferroptosis is defined as an iron-dependent form of cell death associated with lipid peroxide accumulation. Ferroptosis is involved in APAP-induced acute liver failure, and UTI is an effective drug treatment for acute liver failure. Thus, we aimed to determine whether UTI protects the liver against APAP-induced acute liver failure by decreasing ferroptosis-induced lipid peroxide accumulation. C57BL/6 mice and LO2 cell line were treated with UTI before and after the exposure to APAP. Liver tissues and LO2 cells were collected for biochemical assessment of molecular parameters. APAP-induced upregulation of ferroptotic events (iron content), lipid hydroperoxides (ROS production, MDA, and 4-HNE), and depletion of GSH were effectively relieved by ferrostatin-1 (Fer-1), a ferroptosis inhibitor, and UTI. UTI blocked ferroptosis-induced lipid peroxide accumulation by promoting nuclear translocation of NRF2 to activate its downstream targets (HO-1). An increased expression or knockdown of of SIRT1 influenced the UTI effect on the NRF2 pathway and had an impact on lipid accumulation. Overall, UTI plays a role in mitigation of APAP-induced acute liver injury by inhibiting ferroptosis-induced lipid peroxide accumulation, and the effect of UT1 was mediated by the NRF2/HO-1 pathway and SIRT1 expression.
Collapse
Affiliation(s)
- Cong Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, People’s Republic of China
| | - Tong Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, People’s Republic of China
| | - Yingmu Tong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, People’s Republic of China
| | - Ruixia Cui
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, People’s Republic of China
| | - Kai Qu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, People’s Republic of China
| | - Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, People’s Republic of China
- Department of SICU, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, People’s Republic of China
| | - Jingyao Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, People’s Republic of China
- Department of SICU, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, People’s Republic of China
| |
Collapse
|
15
|
Cagin YF, Parlakpinar H, Vardi N, Aksanyar S. Protective effects of apocynin against ionizing radiation-induced hepatotoxicity in rats. Biotech Histochem 2021; 97:228-235. [PMID: 34120545 DOI: 10.1080/10520295.2021.1936641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Radiation hepatotoxicity is thought to be due to free oxygen radicals. We investigated the protective effects of apocynin (APO) against ionizing radiation induced oxidative stress in liver tissue following whole body ionizing radiation. We divided rats into four groups. The control group was injected intraperitoneally (i.p.) with saline for five consecutive days. A second group was injected i.p. with saline for 5 days and after 24 h, a single-dose of radiation (800 cGy) was administered to the whole abdomen. A third group was injected i.p. with 20 mg/kg APO for 5 days. A fourth group was injected i.p. with APO for 5 days and after 24 h, the rats were exposed to radiation. Ionizing radiation induced hepatotoxicity was demonstrated biochemically by significant changes in oxidative and antioxidant parameters. Our findings suggest that APO treatment may be protective against radiation induced hepatic injury by decreasing oxidative stress and increasing antioxidant activity.
Collapse
Affiliation(s)
- Yasir Furkan Cagin
- Department of Gastroenterology, Medical Faculty, Inonu University, Malatya, Turkey
| | - Hakan Parlakpinar
- Department of Pharmacology, Medical Faculty, Inonu University, Malatya, Turkey
| | - Nigar Vardi
- Department of Histology and Embryology, Medical Faculty, Inonu University, Malatya, Turkey
| | - Salih Aksanyar
- Department of Histology and Embryology, Medical Faculty, Inonu University, Malatya, Turkey
| |
Collapse
|
16
|
Vitamin E and ginseng combined supplement for treatment of male erectile dysfunction: A double-blind, placebo-controlled, randomized, clinical trial. ADVANCES IN INTEGRATIVE MEDICINE 2021. [DOI: 10.1016/j.aimed.2019.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
The Protective Effects of Water Extracts of Compound Turmeric Recipe on Acute Alcoholism: An Experimental Research Using a Mouse Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6641919. [PMID: 33519945 PMCID: PMC7817264 DOI: 10.1155/2021/6641919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 11/17/2022]
Abstract
Acute alcoholism (AAI) is a common emergency. Currently, there is a lack of preventive and therapeutic drugs with superior safety and efficacy. Curcuma longa, Panax ginseng, Pueraria lobata, Pueraria flower, and Hovenia dulcis Thunb., which are the components of compound turmeric recipe (CTR), are, respectively, used in China as adjuvant therapeutic agents for AAI and alcoholic liver injury, respectively. The purpose of this research was to investigate the effect of traditional compound turmeric recipe in anti-inebriation treatment and to identify its underlying mechanisms. The mice were administered with CTR mixture, and ethanol was subsequently given to mice by gavage. The effects of CTR on the righting reflex, 24-hour survival, drunken behavior, blood ethanol concentration, and pathological changes of liver are depicted. The activities of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were detected. Besides, the activities of tumor necrosis factor-α (TNF-α), interleukin-8 (IL-8), alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), cytochrome P450 (P450), superoxide dismutase (SOD), and malondialdehyde (MDA) in the liver and the levels of β-endorphin (β-EP) and leucine enkephalin (LENK) in the brain were also measured. Our results demonstrated that CTR can increase the activities of ADH, ALDH, P450, and SOD and decrease the contents of TNF-α, IL-8, and MDA in the liver. In addition, it can decrease the activities of ALT, AST, and ALP in serum and β-EP and LENK activities in the brain. CTR showed effects on prevention of acute alcoholism, promoting wakefulness, and alleviating alcoholic liver injury, which were likely mediated by the above mechanisms.
Collapse
|
18
|
Yi J, Zhu J, Zhao C, Kang Q, Zhang X, Suo K, Cao N, Hao L, Lu J. Potential of natural products as radioprotectors and radiosensitizers: opportunities and challenges. Food Funct 2021; 12:5204-5218. [PMID: 34018510 DOI: 10.1039/d1fo00525a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Natural products can be used as natural radiosensitizers and radioprotectors, showing promising effects in cancer treatments in combination with radiotherapy, while reducing ionizing radiation (IR) damage to normal cells/tissues. The different effects of natural products on irradiated normal and tumor cells/tissues have attracted more and more researchers' interest. Nonetheless, the clinical applications of natural products in radiotherapy are few, which may be related to their low bioavailability in the human body. Here, we displayed the radiation protection and radiation sensitization of major natural products, highlighted the related molecular mechanisms of these bioactive substances combined with radiotherapy to treat cancer, and critically reviewed their deficiency and improved measures. Lastly, several clinical trials were presented to verify the clinical application of natural products as radiosensitizers and radioprotectors. Further clinical evaluation is still needed. This review provides a reference for the utilization of natural products as radiosensitizers and radioprotectors.
Collapse
Affiliation(s)
- Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Jiaqing Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Changcheng Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiaomiao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Keke Suo
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Nana Cao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Limin Hao
- Institute of Quartermaster Engineering and Technology, Academy of Military Sciences PLA China, Beijing, 100010, China.
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
19
|
Ali OSM, Amin NED, Abdel Fattah SM, Abd El-Rahman O. Ameliorative effect of kefir against γ-irradiation induced liver injury in male rats: impact on oxidative stress and inflammation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:35161-35173. [PMID: 32588307 DOI: 10.1007/s11356-020-09833-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Ionizing radiation is a double-edged sword because of its benefits and risks to human health. Therefore, protecting human organs from harmful effects of radiation is an important concern of researchers. Kefir, as a good source of probiotics, received growing interest in protective medicine owing to its antioxidant, anti-inflammatory, and immunomodulatory properties. Thus, this study was planned to investigate the protective role of kefir against γ-radiation-induced hepatotoxicity. Thirty-two male rats were distributed in four groups: (I) control, (II) received Kefir orally (5 ml/kg body weight) for 28 days, (III) exposed to whole body γ-irradiation (6.5 Gy) to induce hepatotoxicity, and (IV) was pretreated with kefir for 21 days then exposed to γ-irradiation followed by 7 days of kefir treatment. At the end of the experiment, complete blood picture (CBC), liver function, and lipid profile were estimated. Furthermore, levels of lipid peroxidation, nitric oxide content, and endogenous antioxidants, in addition to concentrations of copper, iron, and calcium were measured in liver tissue. Furthermore, monocyte chemoattractant protein-1 (MCP-1) and relative gene expression of nuclear factor kappa (NF-κB) were assessed. The results revealed that oral administration of kefir significantly reduced the radiation-induced hepatic histological alterations, hepatic function impairment, and dyslipidemia. Moreover, kefir notably ameliorated the state of oxidative stress and appeared to inhibit the induced inflammation. This study provides a possible counteracting role of kefir against hepatotoxicity induced γ-radiation. This can focus the benefit of kefir application as a prophylactic treatment to limit hepatic inflammation during radiotherapy.
Collapse
Affiliation(s)
- Ola Sayed M Ali
- Department of Biochemistry, Faculty of Pharmacy (Girls), Al Azhar University, Nasr City, Cairo, Egypt
| | - Nour El-Din Amin
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT) Atomic Energy Authority, Nasr City, Cairo, 11137, Egypt
| | - Salma M Abdel Fattah
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT) Atomic Energy Authority, Nasr City, Cairo, 11137, Egypt
| | - Omnia Abd El-Rahman
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT) Atomic Energy Authority, Nasr City, Cairo, 11137, Egypt.
| |
Collapse
|
20
|
Lee J, Jeong MI, Kim HR, Park H, Moon WK, Kim B. Plant Extracts as Possible Agents for Sequela of Cancer Therapies and Cachexia. Antioxidants (Basel) 2020; 9:E836. [PMID: 32906727 PMCID: PMC7555300 DOI: 10.3390/antiox9090836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer is a leading cause of the death worldwide. Since the National Cancer Act in 1971, various cancer treatments were developed including chemotherapy, surgery, radiation therapy and so forth. However, sequela of such cancer therapies and cachexia are problem to the patients. The primary mechanism of cancer sequela and cachexia is closely related to reactive oxygen species (ROS) and inflammation. As antioxidant properties of numerous plant extracts have been widely reported, plant-derived drugs may have efficacy on managing the sequela and cachexia. In this study, recent seventy-four studies regarding plant extracts showing ability to manage the sequela and cachexia were reviewed. Some plant-derived antioxidants inhibited cancer proliferation and inflammation after surgery and others prevented chemotherapy-induced normal cell apoptosis. Also, there are plant extracts that suppressed radiation-induced oxidative stress and cell damage by elevation of glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and regulation of B-cell lymphoma 2 (BcL-2) and Bcl-2-associated X protein (Bax). Cachexia was also alleviated by inhibition of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) by plant extracts. This review focuses on the potential of plant extracts as great therapeutic agents by controlling oxidative stress and inflammation.
Collapse
Affiliation(s)
- Jinjoo Lee
- College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea; (J.L.); (M.I.J.); (H.-R.K.); (H.P.); (W.-K.M.)
| | - Myung In Jeong
- College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea; (J.L.); (M.I.J.); (H.-R.K.); (H.P.); (W.-K.M.)
| | - Hyo-Rim Kim
- College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea; (J.L.); (M.I.J.); (H.-R.K.); (H.P.); (W.-K.M.)
| | - Hyejin Park
- College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea; (J.L.); (M.I.J.); (H.-R.K.); (H.P.); (W.-K.M.)
| | - Won-Kyoung Moon
- College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea; (J.L.); (M.I.J.); (H.-R.K.); (H.P.); (W.-K.M.)
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea; (J.L.); (M.I.J.); (H.-R.K.); (H.P.); (W.-K.M.)
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea
| |
Collapse
|
21
|
Can Medicinal Plants and Bioactive Compounds Combat Lipid Peroxidation Product 4-HNE-Induced Deleterious Effects? Biomolecules 2020; 10:biom10010146. [PMID: 31963301 PMCID: PMC7022924 DOI: 10.3390/biom10010146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/27/2022] Open
Abstract
The toxic reactive aldehyde 4-hydroxynonenal (4-HNE) belongs to the advanced lipid peroxidation end products. Accumulation of 4-HNE and formation of 4-HNE adducts induced by redox imbalance participate in several cytotoxic processes, which contribute to the pathogenesis and progression of oxidative stress-related human disorders. Medicinal plants and bioactive natural compounds are suggested to be attractive sources of potential agents to mitigate oxidative stress, but little is known about the therapeutic potentials especially on combating 4-HNE-induced deleterious effects. Of note, some investigations clarify the attenuation of medicinal plants and bioactive compounds on 4-HNE-induced disturbances, but strong evidence is needed that these plants and compounds serve as potent agents in the prevention and treatment of disorders driven by 4-HNE. Therefore, this review highlights the pharmacological basis of these medicinal plants and bioactive compounds to combat 4-HNE-induced deleterious effects in oxidative stress-related disorders, such as neurotoxicity and neurological disorder, eye damage, cardiovascular injury, liver injury, and energy metabolism disorder. In addition, this review briefly discusses with special attention to the strategies for developing potential therapies by future applications of these medicinal plants and bioactive compounds, which will help biological and pharmacological scientists to explore the new vistas of medicinal plants in combating 4-HNE-induced deleterious effects.
Collapse
|
22
|
Yao Y. Ginsenosides reduce body weight and ameliorate hepatic steatosis in high fat diet‑induced obese mice via endoplasmic reticulum stress and p‑STAT3/STAT3 signaling. Mol Med Rep 2020; 21:1059-1070. [PMID: 32016448 PMCID: PMC7003045 DOI: 10.3892/mmr.2020.10935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 10/24/2019] [Indexed: 12/28/2022] Open
Abstract
Obesity has been increasing globally for over three decades. According to previous studies, dietary obesity is usually associated with endoplasmic reticulum stress (ERS) and STAT3 signaling, which result in interference with the homeostatic control of energy and lipid metabolism. Ginsenosides (GS) administered to mice will modulate adiposity and food intake; however, the mechanism of food inhibition is unknown. The aim of the present study was to investigate whether GS may inhibit ERS and regulate STAT3 phosphorylation in GT1‑7 cells (a mouse hypothalamus gonadotropin‑releasing hormone neuron cell line) and the hypothalamus in order to reduce the body weight and ameliorate hepatic steatosis in high fat diet (HFD)‑induced obese mice. In the present study, GS inhibited the appetite, reduced the body weight, visceral fat, body fat content and blood glucose, and ameliorated the glucose tolerance of the obese mice compared with HFD mice. In addition, the levels of aspartate aminotransferase and alanine aminotransferase, triglyceride (TG), leptin and insulin in the serum were reduced compared with HFD mice. There was less TG in the liver, but more in the feces compared with HFD mice. Using hematoxylin and eosin staining of HepG2 cells and liver tissues, GS were demonstrated to improve the non‑alcoholic fatty liver of the HFD‑induced obese mice and reduce the diameter of the fat cells compared with HFD mice. GS also increased oxygen consumption and carbon dioxide emissions in the metabolic cage data compared with HFD mice. In the GT1‑7 cells, GS alleviated the ERS induced by tunicamycin and enhanced the activation of the STAT3 phosphorylation pathway. Furthermore the ERS of the liver was relieved to achieve the aforementioned pharmacological effects. GS were used in the homeostatic control of the energy and lipid metabolism of a diet‑induced obesity model. In conclusion, present studies suggest that GS exert these effects by increasing STAT3 phosphorylation expression and reducing the ERS. Thus, GS reduce body weight and ameliorate hepatic steatosis in HFD‑induced obese mice.
Collapse
Affiliation(s)
- Yin Yao
- Department of Traditional Chinese Medicine Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 200000, P.R. China
| |
Collapse
|
23
|
Radwan RR, Hasan HF. Pioglitazone ameliorates hepatic damage in irradiated rats via regulating anti-inflammatory and antifibrogenic signalling pathways. Free Radic Res 2019; 53:748-757. [PMID: 31146611 DOI: 10.1080/10715762.2019.1624742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hepatic irradiation during radiotherapy is associated with liver damage. The current study was designed to investigate the possible modulatory effects of pioglitazone against γ irradiation-induced hepatic damage in rats. Animals were exposed to a single dose of 6 Gy and received pioglitazone (10 mg/kg/day) orally for 4 weeks starting on the same day of irradiation. Results showed that irradiation increased aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities as well as serum triglyceride (TG) and total cholesterol (TC) levels. Furthermore, it elevated inflammatory mediators; tumour necrosis factor alpha (TNF-α), interleukin-6 (IL-6); nuclear factor kappa B (NF-κB) and inducible nitric oxide synthase (iNOS) in hepatic tissues. Moreover, it increased levels of serum fibrotic markers; hyaluronic acid (HA), laminin (LN), and type III procollagen (PCIII). Additionally, hepatic fibrotic markers; transforming growth factor-β1 (TGF-β1) and hydroxyproline (HP) levels were elevated. Histological analysis of H&E and MT staining of liver sections exhibited cellular infiltration and fibrous deposition in irradiated rats. It was observed that pioglitazone modulated the described deviations. In conclusion, pioglitazone could serve as a promising therapeutic tool for attenuating radiation-induced liver injury in patients with radiotherapy which might be attributed to its anti-inflammatory and antifibrotic activities.
Collapse
Affiliation(s)
- Rasha R Radwan
- a Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) , Nasr City , Egypt
| | - Hesham F Hasan
- b Radiation Biology Department, National Center for Radiation Research and Technology, Atomic Energy Authority , Cairo , Egypt
| |
Collapse
|
24
|
Davis MP, Behm B. Ginseng: A Qualitative Review of Benefits for Palliative Clinicians. Am J Hosp Palliat Care 2019; 36:630-659. [PMID: 30686023 DOI: 10.1177/1049909118822704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ginseng has been used for centuries to treat various diseases and has been commercially developed and cultivated in the past 300 years. Ginseng products may be fresh, dried (white), or dried and steamed (red). Extracts may be made using water or alcohol. There are over 50 different ginsenosides identified by chromatography. We did an informal systematic qualitative review that centered on fatigue, cancer, dementia, respiratory diseases, and heart failure, and we review 113 studies in 6 tables. There are multiple potential benefits to ginseng in cancer. Ginseng, in certain circumstances, has been shown to improve dementia, chronic obstructive pulmonary disease, and heart failure through randomized trials. Most trials had biases or unknown biases and so most evidence is of low quality. We review the gaps in the evidence and make some recommendations regarding future studies.
Collapse
Affiliation(s)
- Mellar P Davis
- 1 Palliative Care Department, Knapper Cancer Center, Geisinger Medical Center, Danville, PA, USA
| | - Bertrand Behm
- 1 Palliative Care Department, Knapper Cancer Center, Geisinger Medical Center, Danville, PA, USA
| |
Collapse
|
25
|
Bala S, Chugh NA, Bansal SC, Garg ML, Koul A. Radiomodulatory effects of Aloe vera on hepatic and renal tissues of X-ray irradiated mice. Mutat Res 2018; 811:1-15. [PMID: 30014950 DOI: 10.1016/j.mrfmmm.2018.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 01/14/2023]
Abstract
The present study was aimed to explore the protective role of Aloe vera gel extract against hepatic and renal damage caused by X-ray exposure to mice. Male balb/c mice were divided into four groups: control, Aloe vera gel extract [AV] (50 mg/ kg b.w on alternate days for 30 days), X-ray (2 Gy) and AV + X-ray. X-ray irradiation enhanced the serum levels of liver function indices and chromosomal abnormalities in liver. Kidney function markers were found to be deranged and were accompanied by reduced glomerular filtration rate indicating renal dysfunction. Irradiation caused histopathological and biochemical alterations in both tissues which was associated with enhanced reactive oxygen species (ROS), lipid peroxidation (LPO) levels, lactate dehydrogenase (LDH) activity and enhanced apoptosis as revealed by TUNEL assay and DNA fragmentation. The administration of Aloe vera gel extract to X-ray exposed animals significantly improved their hepatic and renal function parameters which were associated with a reduction in ROS/LPO levels, LDH activity and chromosomal abnormalities as compared to their irradiated counterparts. In vitro assays revealed effective radical scavenging ability of Aloe vera gel extract, which may be linked to its potential in exhibiting antioxidant effects in in vivo conditions. This data suggested that Aloe vera may serve to boost the antioxidant system, thus providing protection against hepatic and renal damage caused by X-ray.
Collapse
Affiliation(s)
- Shashi Bala
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| | - Neha Arora Chugh
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| | | | - Mohan Lal Garg
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| | - Ashwani Koul
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
26
|
Wang Z, Qi F, Cui Y, Zhao L, Sun X, Tang W, Cai P. An update on Chinese herbal medicines as adjuvant treatment of anticancer therapeutics. Biosci Trends 2018; 12:220-239. [DOI: 10.5582/bst.2018.01144] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhixue Wang
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong University
| | - Fanghua Qi
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong University
| | - Yangang Cui
- Department of Chemotherapy, Shandong Provincial Hospital affiliated to Shandong University
| | - Lin Zhao
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong University
| | - Xiaogang Sun
- Department of Tumor Minimally Invasive Surgery, Shandong Provincial Hospital affiliated to Shandong University
| | - Wei Tang
- National Center for Global Health and Medicine
| | - Pingping Cai
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong University
| |
Collapse
|
27
|
Sayed AA, Abbas OA, Saad MA, Marie MAS. Cicer arietinum extract ameliorate γ-irradiation disorders via modulation of oxidative/antioxidative pathway. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 183:46-56. [PMID: 29684720 DOI: 10.1016/j.jphotobiol.2018.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
Abstract
Ionized radiations trigger thoughtful adverse hazards through multiple organ dysfunctions. Recently, antioxidant-based biodrugs are used to prevent and treat ionizing radiation hazards. The present study aimed to investigate the prospective ameliorative effect of Cicer arietinum extract (CAE) against γ-irradiation and the pathway of this amelioration in male albino rats. Twenty four rats were allocated into four groups; (i) control group, (ii) CAE group in which rats treated with a dosage of 500 mg CAE/kg b.wt, (iii) γ-irradiated group in which rats exposed to 6Gy γ-irradiation, (iv) γ-irradiated+CAE group; rats of this group treated with CAE 1 h post exposure. All rats treated for 21 days. Liver, kidney and femoral bone were rapidly excised and homogenized for the biochemical analysis. Energy dispersive X-ray (EDX) and inductively coupled plasma emission spectrometer (ICP) analyses exhibit that γ-irradiation elicits significant change in the essential trace elements content in liver, kidney, and bone. Further, significant increases in TBARS and H2O2 contents accompanied by significant decreases in GSH, SOD, CAT, and GPx activities in liver, kidney and bone tissues were recorded in the γ-irradiated rats compared to control group. Additionally, marked reduction in the thickness of cortical bone was recorded in rats exposed to γ-irradiation. Conversely, CAE (500 mg/kg b.wt, p.o) administration for 21 days to γ-irradiated rats effectively reverses most of the altered parameters of the γ-irradiated rats. In conclusion, the present findings suggested that CAE is a potential agent that can be used against radiation hazards. This effect may be owing to its antioxidant mechanism, as CAE has an inhibitory effect against hydrogen peroxide (H2O2) and superoxide radical (O2·-) beside its ferric reducing antioxidant power (FRAP). This finding recommended that CAE can be utilized clinically to mitigate ionized radiation-induced hazard effects.
Collapse
Affiliation(s)
- Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Osama A Abbas
- Radiation Research Department, Atomic Energy Authority, Cairo, Egypt
| | - Mona A Saad
- Middle Eastern Regional Radioisotopes Center for Arab Countries, Egypt
| | | |
Collapse
|
28
|
Radwan RR, Mohamed HA. Nigella sativa oil modulates the therapeutic efficacy of mesenchymal stem cells against liver injury in irradiated rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 178:447-456. [PMID: 29216568 DOI: 10.1016/j.jphotobiol.2017.11.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/17/2017] [Accepted: 11/27/2017] [Indexed: 01/05/2023]
Abstract
Stem cell transplantation is a novel strategy for regenerative medicine in liver disease. This study was conducted to explore the modulatory effect of Nigella sativa oil (NSO) on the therapeutic potential of mesenchymal stem cells (MSCs) against irradiation-induced liver damage in rats. Liver damage was induced by a total body exposure to a single dose of 7Gy. NSO (2mg/kg/day) was then given orally for 4 consecutive weeks starting 24h after irradiation with or without a single intravenous MSCs administration, then rats were sacrificed four weeks after exposure to γ radiation. Data revealed that irradiation elevated aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities in serum, increased hepatic malondialdehyde (MDA) content and reduced hepatic superoxide dismutase (SOD) activity. Furthermore, it caused elevation in pro-inflammatory mediators such as interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) associated with reduction in anti-inflammatory cytokine interleukin-10 (IL-10) and it increased fibrogenic marker transforming growth factor-β (TGF-β) in liver tissues. It was observed that combined NSO/MSCs therapy provided more beneficial tissue repair comparable to MSCs alone as demonstrated by modulating the tested parameters. Finally, these results were confirmed by histopathological examination. In conclusion, dual therapy with NSO and MSCs could serve as a promising approach for alleviating radiation-induced liver injury in patients with radiotherapy.
Collapse
Affiliation(s)
- Rasha R Radwan
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), PO Box 29, Nasr City, Cairo, Egypt.
| | - Heba A Mohamed
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), PO Box 29, Nasr City, Cairo, Egypt
| |
Collapse
|
29
|
Eom SJ, Hwang JE, Kim KT, Paik HD. Increased antioxidative and nitric oxide scavenging activity of ginseng marc fermented by Pediococcus acidilactici KCCM11614P. Food Sci Biotechnol 2017; 27:185-191. [PMID: 30263739 DOI: 10.1007/s10068-017-0207-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/29/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022] Open
Abstract
This study aimed to improve the antioxidant and nitric oxide scavenging activities of ginseng marc fermented by Pediococcus acidilactici, thereby creating a biofunctional resource with improved anti-inflammatory capability. P. acidilactici was inoculated in 1% ginseng marc extract; cell viability, pH, and total titratable acidity were measured. Total phenolic and flavonoid contents were measured using Folin-Ciocalteu reagent and colorimetric method. Ferric reducing antioxidant power (FRAP), β-carotene, and sodium nitroprusside (SNP) assays were used to evaluate functionality. Polyphenols and flavonoids totaled 33.7 ± 0.4 and 10.0 ± 0.4 mg/g of solid, respectively, at 24 h fermentation. P. acidilactici had 40 nM β-galactosidase and 20 nM β-glucosidase activities. Antioxidative activities increased up to 34.5 and 10.2%, respectively, as measured via FRAP and β-carotene assays. Anti-inflammatory activity of the fermented extract-as measured via SNP assay-increased 342%, suggesting that ginseng marc fermented by P. acidilactici could be used in food or pharmaceutical industries.
Collapse
Affiliation(s)
- Su Jin Eom
- 1Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
| | - Ji Eun Hwang
- 1Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
| | - Kee-Tae Kim
- 2Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029 Korea
| | - Hyun-Dong Paik
- 1Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea.,2Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029 Korea
| |
Collapse
|
30
|
Yun KL, Wang ZY. Target/signalling pathways of natural plant-derived radioprotective agents from treatment to potential candidates: A reverse thought on anti-tumour drugs. Biomed Pharmacother 2017; 91:1122-1151. [DOI: 10.1016/j.biopha.2017.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/15/2017] [Accepted: 05/01/2017] [Indexed: 02/07/2023] Open
|