1
|
Wu LF, Zhou ZJ, Zeng YH, Yang SL, Zhang QY. Circular RNA RRM2 alleviates metabolic dysfunction-associated steatotic liver disease by targeting miR-142-5p to increase NRG1 expression. Am J Physiol Gastrointest Liver Physiol 2024; 327:G485-G498. [PMID: 39259911 DOI: 10.1152/ajpgi.00255.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 09/13/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent chronic liver condition worldwide, demanding further investigation into its pathogenesis. Circular RNAs (circRNAs) are emerging as pivotal regulators in MASLD processes, yet their pathological implications in MASLD remain poorly understood. This study focused on elucidating the role of circular RNA ribonucleotide reductase subunit M2 (circRRM2) in MASLD progression. In this study, we used both in vitro and in vivo MASLD models using long-chain-free fatty acid (FFA)-treated hepatocytes and high-fat diet (HFD)-induced MASLD in mice, respectively. We determined the expression patterns of circRRM2, microRNA-142-5p (miR-142-5p), and neuregulin 1 (NRG1) in livers of MASLD-afflicted mice and MASLD hepatocytes by RT-qPCR. Dual-luciferase reporter assays verified the binding relationships among circRRM2, miR-142-5p, and NRG1. We conducted further analyses of their roles in MASLD hepatocytes and modulated circRRM2, miR-142-5p, and NRG1 expression in vitro by transfection. Our findings were validated in vivo. The results demonstrated reduced levels of circRRM2 and NRG1, along with elevated miR-142-5p expression in MASLD livers and hepatocytes. Overexpression of circRRM2 downregulated lipogenesis-related genes and decreased triglycerides accumulation in livers of MASLD mice. MiR-142-5p, which interacts with circRRM2, effectively counteracted the effects of circRRM2 in MASLD hepatocytes. Furthermore, NRG1 was identified as a miR-142-5p target, and its overexpression mitigated the regulatory impact of miR-142-5p on MASLD hepatocytes. In conclusion, circRRM2, via its role as a miR-142-5p sponge, upregulating NRG1, possibly influenced triglycerides accumulation in both in vitro and in vivo MASLD models.NEW & NOTEWORTHY CircRRM2 expression was downregulated in free fatty acid (FFA)-challenged hepatocytes and high-fat diet (HFD) fed mice. Overexpressed circular RNA ribonucleotide reductase subunit M2 (circRRM2) attenuated metabolic dysfunction-associated steatotic liver disease (MASLD) development by suppressing FFA-induced triglycerides accumulation. CircRRM2 targeted microRNA-142-5p (miR-142-5p), which served as an upstream inhibitor of neuregulin 1 (NRG1) and collaboratively regulated MASLD progression.
Collapse
Affiliation(s)
- Long-Fei Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, People's Republic of China
- Department of Cardiology, People's Hospital of Xinjin District, Chengdu, People's Republic of China
- First Affiliated Hospital of Shantou University Medical College, Shantou, People's Republic of China
| | - Zhi-Jiang Zhou
- Department of Preventive Medicine, Shantou University Medical College, Shantou, People's Republic of China
| | - Yu-Heng Zeng
- Department of Preventive Medicine, Shantou University Medical College, Shantou, People's Republic of China
| | - Sheng-Li Yang
- First Affiliated Hospital of Shantou University Medical College, Shantou, People's Republic of China
| | - Qing-Ying Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, People's Republic of China
| |
Collapse
|
2
|
Danielewski M, Rapak A, Kruszyńska A, Małodobra-Mazur M, Oleszkiewicz P, Dzimira S, Kucharska AZ, Słupski W, Matuszewska A, Nowak B, Szeląg A, Piórecki N, Zaleska-Dorobisz U, Sozański T. Cornelian Cherry ( Cornus mas L.) Fruit Extract Lowers SREBP-1c and C/EBPα in Liver and Alters Various PPAR-α, PPAR-γ, LXR-α Target Genes in Cholesterol-Rich Diet Rabbit Model. Int J Mol Sci 2024; 25:1199. [PMID: 38256272 PMCID: PMC10816641 DOI: 10.3390/ijms25021199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Cornelian cherry (Cornus mas L.) fruits, abundant in iridoids and anthocyanins, are natural products with proven beneficial impacts on the functions of the cardiovascular system and the liver. This study aims to assess and compare whether and to what extent two different doses of resin-purified cornelian cherry extract (10 mg/kg b.w. or 50 mg/kg b.w.) applied in a cholesterol-rich diet rabbit model affect the levels of sterol regulatory element-binding protein 1c (SREBP-1c) and CCAAT/enhancer binding protein α (C/EBPα), and various liver X receptor-α (LXR-α), peroxisome proliferator-activated receptor-α (PPAR-α), and peroxisome proliferator-activated receptor-γ (PPAR-γ) target genes. Moreover, the aim is to evaluate the resistive index (RI) of common carotid arteries (CCAs) and aortas, and histopathological changes in CCAs. For this purpose, the levels of SREBP-1c, C/EBPα, ATP-binding cassette transporter A1 (ABCA1), ATP-binding cassette transporter G1 (ABCG1), fatty acid synthase (FAS), endothelial lipase (LIPG), carnitine palmitoyltransferase 1A (CPT1A), and adiponectin receptor 2 (AdipoR2) in liver tissue were measured. Also, the levels of lipoprotein lipase (LPL), visceral adipose tissue-derived serine protease inhibitor (Vaspin), and retinol-binding protein 4 (RBP4) in visceral adipose tissue were measured. The RI of CCAs and aortas, and histopathological changes in CCAs, were indicated. The oral administration of the cornelian cherry extract decreased the SREBP-1c and C/EBPα in both doses. The dose of 10 mg/kg b.w. increased ABCA1 and decreased FAS, CPT1A, and RBP4, and the dose of 50 mg/kg b.w. enhanced ABCG1 and AdipoR2. Mitigations in atheromatous changes in rabbits' CCAs were also observed. The obtained outcomes were compared to the results of our previous works. The beneficial results confirm that cornelian cherry fruit extract may constitute a potentially effective product in the prevention and treatment of obesity-related disorders.
Collapse
Affiliation(s)
- Maciej Danielewski
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (W.S.); (A.M.); (B.N.); (A.S.)
| | - Andrzej Rapak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland; (A.R.); (A.K.)
| | - Angelika Kruszyńska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland; (A.R.); (A.K.)
| | - Małgorzata Małodobra-Mazur
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland;
| | - Paweł Oleszkiewicz
- Department of Radiology and Imaging Diagnostics II, Lower Silesian Center of Oncology, Pulmonology and Hematology, Grabiszynska 105, 53-439 Wroclaw, Poland;
| | - Stanisław Dzimira
- Department of Pathology, Wroclaw University of Environmental and Life Sciences, C. K. Norwida 31, 50-375 Wroclaw, Poland;
| | - Alicja Z. Kucharska
- Department of Fruit, Vegetable, and Plant Nutraceutical Technology, Wroclaw University of Environmental and Life Sciences, J. Chelmonskiego 37, 51-630 Wroclaw, Poland;
| | - Wojciech Słupski
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (W.S.); (A.M.); (B.N.); (A.S.)
| | - Agnieszka Matuszewska
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (W.S.); (A.M.); (B.N.); (A.S.)
| | - Beata Nowak
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (W.S.); (A.M.); (B.N.); (A.S.)
| | - Adam Szeląg
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (W.S.); (A.M.); (B.N.); (A.S.)
| | - Narcyz Piórecki
- Bolestraszyce Arboretum and Institute of Physiography, Bolestraszyce 130, 37-722 Wyszatyce, Poland;
- Institute of Physical Culture Sciences, Medical College, University of Rzeszow, Cicha 2A, 35-326 Rzeszow, Poland
| | - Urszula Zaleska-Dorobisz
- Department of General and Pediatric Radiology, Wroclaw Medical University, M. Sklodowskiej-Curie 50/52, 50-369 Wroclaw, Poland;
| | - Tomasz Sozański
- Department of Preclinical Sciences, Pharmacology and Medical Diagnostics, Faculty of Medicine, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland;
| |
Collapse
|
3
|
He L, Wu D, Liu J, Li G, Chen C, Karrar E, Ahmed IAM, Zhang L, Li J. Comparison of Lipid Composition between Quasipaa spinosa Oil and Rana catesbeiana Oil and Its Effect on Lipid Accumulation in Caenorhabditis elegans. J Oleo Sci 2024; 73:239-251. [PMID: 38311413 DOI: 10.5650/jos.ess23143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Frog oil has been recognized for its nutritional and medicinal value. However, there is limited research on the role of frog oil in preventing obesity. In this study, we aimed to investigate the lipid composition of Quasipaa spinosa oil (QSO) and Rana catesbeiana oil (RCO) using lipidomics analysis. We compared the lipid accumulation effects of these two kinds of frog oils and soybean oil (SO) in Caenorhabditis elegans (C. elegans). Additionally, we determined the gene expression related to lipid metabolism and used the nhr-49 mutant (RB1716) and sir-2.1 mutant (VC199) for validation experiments. The results showed that the lipid composition of QSO and RCO was significantly different (p < 0.05), and QSO was rich in more polyunsaturated fatty acids (PUFAs). After feeding C. elegans, the lipid accumulation of the QSO group was the lowest among the three dietary oil groups. In addition, compared with RCO and SO, QSO significantly inhibited the production of malondialdehyde (MDA) and increased the activity of superoxide dismutase (SOD). The effects of three kinds of dietary oils on the fatty acid composition of C. elegans were significantly different. Compared with SO and RCO, QSO significantly up-regulated (p < 0.05) the expression of sir-2.1 and ech-1 genes. The results showed that QSO might reduce lipid accumulation through the SIRT1 and nuclear hormone signaling pathways. Such a situation was verified experimentally by the nhr-49 mutant (RB1716) and sir-2.1 mutant (VC199). This study proposed a new functional oil, laying the groundwork for developing functional foods from Quasipaa spinosa.
Collapse
Affiliation(s)
- Lili He
- College of Ocean Food and Biological Engineering, Jimei University
| | - Daren Wu
- College of Ocean Food and Biological Engineering, Jimei University
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food
| | - Jingwen Liu
- College of Ocean Food and Biological Engineering, Jimei University
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food
| | - Guiling Li
- College of Ocean Food and Biological Engineering, Jimei University
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food
| | - Chaoxiang Chen
- College of Ocean Food and Biological Engineering, Jimei University
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food
| | - Emad Karrar
- College of Ocean Food and Biological Engineering, Jimei University
| | - Isam A Mohamed Ahmed
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University
| | - Lingyu Zhang
- College of Ocean Food and Biological Engineering, Jimei University
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food
| | - Jian Li
- College of Ocean Food and Biological Engineering, Jimei University
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food
| |
Collapse
|
4
|
Sadovoy V, Barakova N, Baskovtceva A, Kiprushkina E, Tochilnikov G, Shamtsyan M. Modeling of lipolysis in the human body and the methodology for developing technology of supplements for obesity prevention considering the utilization of food industry by-products. Front Nutr 2023; 10:1264477. [PMID: 38144426 PMCID: PMC10739412 DOI: 10.3389/fnut.2023.1264477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/09/2023] [Indexed: 12/26/2023] Open
Affiliation(s)
- Vladimir Sadovoy
- Department of Commodity Science and Public Catering Technology, Stavropol Institute of Cooperation (Branch), Belgorod University of Cooperation, Economics, and Law, Stavropol, Russia
- Departments of Food Technology and Commodity Science, Institute of Service, Tourism and Design (Branch), North-Caucasian Federal University, Pyatigorsk, Russia
| | - Nadezhda Barakova
- Faculty of Biotechnology, ITMO University, St. Petersburg, Russia
- Department of Microbiological Synthesis Technology, St. Petersburg State Technological Institute (Technical University), St. Petersburg, Russia
| | | | - Elena Kiprushkina
- Faculty of Biotechnology, ITMO University, St. Petersburg, Russia
- Department of Microbiological Synthesis Technology, St. Petersburg State Technological Institute (Technical University), St. Petersburg, Russia
| | - Grigory Tochilnikov
- N.N. Petrov National Research Center of Oncology of the Ministry of Health of Russia, St. Petersburg, Russia
| | - Mark Shamtsyan
- Department of Microbiological Synthesis Technology, St. Petersburg State Technological Institute (Technical University), St. Petersburg, Russia
| |
Collapse
|
5
|
Zheng M, Li Y, Dong Z, Zhang Y, Xi Z, Yuan M, Xu H. Korean red ginseng formula attenuates non-alcoholic fatty liver disease in oleic acid-induced HepG2 cells and high-fat diet-induced rats. Heliyon 2023; 9:e21846. [PMID: 38027623 PMCID: PMC10658318 DOI: 10.1016/j.heliyon.2023.e21846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Objective Non-alcoholic fatty liver disease (NAFLD) is the leading chronic liver disease. We have developed a Korean Red Ginseng Formula (KRGF) containing extracts of Korean Red Ginseng (KRG), Crataegus Fructus, and Cassiae Semen. In this study, our aims were to investigate the therapeutic potential and underpinning mechanisms of KRGF in NAFLD complicated by hyperlipidemia. Methods In the in vitro assays, HepG2 cells were treated with KRGF for 24 h in the presence or absence of oleic acid (OA). To assess the in vivo protective effect of KRGF against NAFLD, rats fed a high-fat diet (HFD) were given intragastric administration for 30 days. Results KRGF exerted protective effects against NAFLD by reducing lipid accumulation and steatosis in OA-stimulated HepG2 cells and HFD-fed rats. In HFD-fed rats, KRGF effectively decreased triglyceride levels in both blood and liver tissue and modulated the expression of key regulators of lipogenesis and fatty acid oxidation. KRGF downregulated the expression of lipogenesis factors, namely C/EBPα, FAS, SREBP-1c, and PPARγ, while upregulating the expression of PPARα and CPT-1, thus promoting fatty acid oxidation. Additionally, KRGF intensified the phosphorylation of AMPK and ACC, which are two enzymes that suppress fatty acid synthesis and promote fatty acid oxidation. KRGF effectively decreased total cholesterol (TC) levels in both blood and liver tissue, and it modulated the expression of major enzymes related to TC metabolism, namely apoB, ACAT2, CYP7A1, and HMGCR. Conclusion In conclusion, KRGF mitigated NAFLD complicated by hyperlipidemia by modulating triglyceride and cholesterol metabolism, suggesting its potential for future development in the treatment of NAFLD.
Collapse
Affiliation(s)
- Min Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Yang Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Zhiying Dong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Yibo Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Man Yuan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
6
|
Yang K, Kim HH, Shim YR, Song MJ. The Efficacy of Panax ginseng for the Treatment of Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis of Preclinical Studies. Nutrients 2023; 15:nu15030721. [PMID: 36771427 PMCID: PMC9919883 DOI: 10.3390/nu15030721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Although tremendous research has reported the protective effects of natural compounds in nonalcoholic fatty liver disease (NAFLD), there is still no approved drug. This study aimed to examine the efficacy of Panax ginseng in NAFLD in preclinical studies. A total of 41 studies were identified by searching the PubMed, Web of Science, and Cochrane Library databases. The methodological quality was assessed by the risk of bias tool from the Systematic Review Center for Laboratory Animal Experimentation. The standardized mean difference (SMD) with a 95% confidence interval was calculated, and the random effects model was used to examine overall efficacy or heterogeneity. The publication bias was analyzed by Egger's test. The results showed that Panax ginseng treatment significantly reduced the systemic levels of alanine aminotransferase (SMD: -2.15 IU/L; p < 0.0001), aspartate aminotransferase (SMD: -2.86 IU/L; p < 0.0001), triglyceride (SMD: -2.86 mg/dL; p < 0.0001), total cholesterol (SMD: -1.69 mg/dL; p < 0.0001), low-density lipoprotein (SMD: -1.46 mg/dL; p < 0.0001), and fasting glucose (SMD: -1.45 mg/dL; p < 0.0001) while increasing high-density lipoprotein (SMD: 1.22 mg/dL; p = 0.0002) in NAFLD regardless of animal models or species. These findings may suggest that Panax ginseng is a promising therapeutic agent for NAFLD treatment.
Collapse
Affiliation(s)
- Keungmo Yang
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hee-Hoon Kim
- Life Science Research Institute, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Young-Ri Shim
- Life Science Research Institute, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Myeong Jun Song
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Correspondence:
| |
Collapse
|
7
|
Kumar A, Sakhare K, Bhattacharya D, Chattopadhyay R, Parikh P, Narayan KP, Mukherjee A. Communication in non-communicable diseases (NCDs) and role of immunomodulatory nutraceuticals in their management. Front Nutr 2022; 9:966152. [PMID: 36211513 PMCID: PMC9532975 DOI: 10.3389/fnut.2022.966152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022] Open
Abstract
Conveyance of pathogens between organisms causes communicable diseases. On the other hand, a non-communicable disease (NCD) was always thought to have no causative transmissible infective agents. Today, this clear distinction is increasingly getting blurred and NCDs are found to be associated with some transmissible components. The human microbiota carries a congregation of microbes, the majority and the most widely studied being bacteria in the gut. The adult human gut harbors ginormous inhabitant microbes, and the microbiome accommodates 150-fold more genes than the host genome. Microbial communities share a mutually beneficial relationship with the host, especially with respect to host physiology including digestion, immune responses, and metabolism. This review delineates the connection between environmental factors such as infections leading to gut dysbiosis and NCDs and explores the evidence regarding possible causal link between them. We also discuss the evidence regarding the value of appropriate therapeutic immunomodulatory nutritional interventions to reduce the development of such diseases. We behold such immunomodulatory effects have the potential to influence in various NCDs and restore homeostasis. We believe that the beginning of the era of microbiota-oriented personalized treatment modalities is not far away.
Collapse
Affiliation(s)
- Abhiram Kumar
- Esperer Onco Nutrition Pvt. Ltd., Mumbai, India
- Department of Biological Sciences, Birla Institute of Technology and Science – Pilani, Hyderabad, India
| | - Kalyani Sakhare
- Department of Biological Sciences, Birla Institute of Technology and Science – Pilani, Hyderabad, India
| | - Dwaipayan Bhattacharya
- Department of Biological Sciences, Birla Institute of Technology and Science – Pilani, Hyderabad, India
| | | | - Purvish Parikh
- Department of Clinical Haematology, Mahatma Gandhi Medical College and Hospital, Jaipur, India
| | - Kumar P. Narayan
- Department of Biological Sciences, Birla Institute of Technology and Science – Pilani, Hyderabad, India
- *Correspondence: Kumar P. Narayan,
| | | |
Collapse
|
8
|
Impact of theaflavin soaking pretreatment on oxidative stabilities and physicochemical properties of semi-dried large yellow croaker (Pseudosciaena crocea) fillets during storage. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
LncRNA MEG3 up-regulates SIRT6 by ubiquitinating EZH2 and alleviates nonalcoholic fatty liver disease. Cell Death Dis 2022; 8:103. [PMID: 35256601 PMCID: PMC8901640 DOI: 10.1038/s41420-022-00889-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/13/2022] [Accepted: 02/10/2022] [Indexed: 12/24/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global health threat. Here, we presented the significant role of a novel signaling axis comprising long non-coding RNA maternally expressed gene 3 (MEG3), enhancer of zeste homolog 2 (EZH2), and sirtuin 6 (SIRT6) in controlling lipid accumulation, inflammation, and the progression of NAFLD. Mice fed with high-fat diet (HFD) were established as in vitro and in vivo NAFLD models, respectively. Lipid accumulation was measured by oil red O staining and assays for triglycerides or cholesterol. Inflammation was examined by ELISA for pro-inflammatory cytokines. Gene expressions were examined by RT-qPCR or Western blot. Interactions between key signaling molecules were examined by combining expressional analysis, RNA immunoprecipitation, cycloheximide stability assay, co-immunoprecipitation, and chromatin immunoprecipitation. MEG3 level was reduced in FFA-challenged hepatocytes or liver from HFD-fed mice, and the reduction paralleled the severity of NAFLD in clinic. Overexpressing MEG3 suppressed FFA-induced lipid accumulation or inflammation in hepatocytes. By promoting the ubiquitination and degradation of EZH2, MEG3 upregulated SIRT6, an EZH2 target. SIRT6 essentially mediated the protective effects of MEG3 in hepatocytes. Consistently, overexpressing MEG3 alleviated HFD-induced NAFLD in vivo. By controlling the expressions of genes involved in lipid metabolism and inflammation, the MEG3/EZH2/SIRT6 axis significantly suppressed lipid accumulation and inflammation in vitro, and NAFLD development in vivo. Therefore, boosting MEG3 level may benefit the treatment of NAFLD.
Collapse
|
10
|
He D, Yan L, Zhang J, Li F, Wu Y, Su L, Chen P, Wu M, Choi J, Tong H. Sargassum fusiforme polysaccharide attenuates high-sugar-induced lipid accumulation in HepG2 cells and Drosophila melanogaster larvae. Food Sci Nutr 2021; 9:5590-5599. [PMID: 34646529 PMCID: PMC8498055 DOI: 10.1002/fsn3.2521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/22/2022] Open
Abstract
Lipid accumulation is a major factor in the development of non-alcoholic fatty liver disease (NAFLD). Currently, there is a lack of intervention or therapeutic drugs against NAFLD. In this study, we investigated the ability of Sargassum fusiforme polysaccharide (SFPS) to reduce lipid accumulation induced by high sugar in HepG2 cells and Drosophila melanogaster larvae. The results indicated that SFPS significantly (p < .01) decreased the accumulation of lipid droplets in high sugar-induced HepG2 cells. Furthermore, SFPS also suppressed the expression of Srebp and Fas (genes involved in lipogenesis) and increased the expression of PPARɑ and Cpt1 (genes that participated in fatty acid β-oxidation) in these cells. SFPS markedly reduced the content of triglyceride of the third instar larvae developed from D. melanogaster eggs reared on the high-sucrose diet. The expression of the Srebp and Fas genes in the larvae was also inhibited whereas the expression of two genes involved in the β-oxidation of fatty acids, Acox57D-d and Fabp, was increased in the larval fat body (a functional homolog of the human liver). We also found that SFPS ameliorated developmental abnormalities induced by the high-sucrose diet. These results of this study suggest that SFPS could potentially be used as a therapeutic agent for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Dan He
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
- Department of Biotechnology and BioengineeringChonnam National UniversityGwangjuSouth Korea
| | - Liping Yan
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Jiaqi Zhang
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Fang Li
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Yu Wu
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Laijin Su
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Peichao Chen
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Mingjiang Wu
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Jong‐il Choi
- Department of Biotechnology and BioengineeringChonnam National UniversityGwangjuSouth Korea
| | - Haibin Tong
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| |
Collapse
|
11
|
Paving the Road Toward Exploiting the Therapeutic Effects of Ginsenosides: An Emphasis on Autophagy and Endoplasmic Reticulum Stress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:137-160. [PMID: 33861443 DOI: 10.1007/978-3-030-64872-5_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Programmed cell death processes such as apoptosis and autophagy strongly contribute to the onset and progression of cancer. Along with these lines, modulation of cell death mechanisms to combat cancer cells and elimination of resistance to apoptosis is of great interest. It appears that modulation of autophagy and endoplasmic reticulum (ER) stress with specific agents would be beneficial in the treatment of several disorders. Interestingly, it has been suggested that herbal natural products may be suitable candidates for the modulation of these processes due to few side effects and significant therapeutic potential. Ginsenosides are derivatives of ginseng and exert modulatory effects on the molecular mechanisms associated with autophagy and ER stress. Ginsenosides act as smart phytochemicals that confer their effects by up-regulating ATG proteins and converting LC3-I to -II, which results in maturation of autophagosomes. Not only do ginsenosides promote autophagy but they also possess protective and therapeutic properties due to their capacity to modulate ER stress and up- and down-regulate and/or dephosphorylate UPR transducers such as IRE1, PERK, and ATF6. Thus, it would appear that ginsenosides are promising agents to potentially restore tissue malfunction and possibly eliminate cancer.
Collapse
|
12
|
Mularczyk M, Bourebaba Y, Kowalczuk A, Marycz K, Bourebaba L. Probiotics-rich emulsion improves insulin signalling in Palmitate/Oleate-challenged human hepatocarcinoma cells through the modulation of Fetuin-A/TLR4-JNK-NF-κB pathway. Biomed Pharmacother 2021; 139:111560. [PMID: 33839491 DOI: 10.1016/j.biopha.2021.111560] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Fetuin-A, also known as α2-Heremans-Schmid glycoprotein (AHSG), is an abundant plasmatic serum protein synthesized predominantly in liver and adipose tissue. This glycoprotein is known to negatively regulate insulin signaling through the inhibition of insulin receptor (IR) autophosphorylation and tyrosine kinase activity, which participates in insulin resistance (IR) and metabolic syndrome development. Recent studies demonstrated that IR and associated metabolic disorders, are closely related to the gut microbiota and modulating it by probiotics could be effective in metabolic diseases management. OBJECTIVE In this present work we aimed to evaluate the effects of a probiotics-rich emulsion on reducing the IR induced by free fatty acids accumulation in human hepatocarcinoma cell line, and to elucidate the implicated molecular pathways, with a specific emphasis on the hepatokin Fetuin-A-related axis. RESULTS Here we showed, that probiotics improve HepG2 viability, protect against apoptosis under normal and IR conditions. Moreover, the emulsion was successful in attenuating oxidative stress as well as improving mitochondrial metabolism and dynamics. Interestingly, application of the probiotics to lipotoxic HepG2 cells resulted in significant reduction of Fetuin-A/TLR4/JNK/NF-κB pathway activation, which suggests a protective effect against inflammation, obesity as well as liver related insulin resistant. CONCLUSION Overall, the presented data reports clearly on the potent potential of probiotics formulated in an emulsion vehicle to enhance metabolic functions of affected IR HepG2 cells, and suggest the possibility of using such preparations as insulin sensitizing therapy, playing at the same time protective role for the development of liver related insulin resistant.
Collapse
Affiliation(s)
- Malwina Mularczyk
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114 Wisznia Mała, Poland
| | - Yasmina Bourebaba
- International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114 Wisznia Mała, Poland; Département du Tronc Commun, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria
| | - Anna Kowalczuk
- National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland
| | - Krzyzstof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114 Wisznia Mała, Poland
| | - Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114 Wisznia Mała, Poland.
| |
Collapse
|
13
|
Zhao M, Chen S, Ji X, Shen X, You J, Liang X, Yin H, Zhao L. Current innovations in nutraceuticals and functional foods for intervention of non-alcoholic fatty liver disease. Pharmacol Res 2021; 166:105517. [PMID: 33636349 DOI: 10.1016/j.phrs.2021.105517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/27/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023]
Abstract
As innovations in global agricultural production and food trading systems lead to major dietary shifts, high morbidity rates from non-alcoholic fatty liver disease (NAFLD), accompanied by elevated risk of lipid metabolism-related complications, has emerged as a growing problem worldwide. Treatment and prevention of NAFLD and chronic liver disease depends on the availability of safe, effective, and diverse therapeutic agents, the development of which is urgently needed. Supported by a growing body of evidence, considerable attention is now focused on interventional approaches that combines nutraceuticals and functional foods. In this review, we summarize the pathological progression of NAFLD and discuss the beneficial effects of nutraceuticals and the active ingredients in functional foods. We also describe the underlying mechanisms of these compounds in the intervention of NAFLD, including their effects on regulation of lipid homeostasis, activation of signaling pathways, and their role in gut microbial community dynamics and the gut-liver axis. In order to identify novel targets for treatment of lipid metabolism-related diseases, this work broadly explores the molecular mechanism linking nutraceuticals and functional foods, host physiology, and gut microbiota. Additionally, the limitations in existing knowledge and promising research areas for development of active interventions and treatments against NAFLD are discussed.
Collapse
Affiliation(s)
- Mengyao Zhao
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| | - Shumin Chen
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoguo Ji
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Xin Shen
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Jiangshan You
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyi Liang
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Yin
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai 200003, China.
| | - Liming Zhao
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China; School of Life Science, Shandong University of Technology, Zibo, Shandong 255000, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China.
| |
Collapse
|
14
|
Simental-Mendía LE, Gamboa-Gómez CI, Guerrero-Romero F, Simental-Mendía M, Sánchez-García A, Rodríguez-Ramírez M. Beneficial Effects of Plant-Derived Natural Products on Non-alcoholic Fatty Liver Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:257-272. [PMID: 33861449 DOI: 10.1007/978-3-030-64872-5_18] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Non-alcoholic fatty liver disease is becoming in one of the most prevalent liver diseases that leads to liver transplantation. This health problem is a multisystem disease with a complex pathogenesis that involves liver, adipose tissue, gut, and muscle. Although several pharmacological agents have been investigated to prevent or treat non-alcoholic fatty liver disease, currently there is no effective treatment for the management of this chronic liver disease. Nonetheless, the use of natural products has emerged as a alternative therapeutic for the treatment of hepatic diseases, including non-alcoholic fatty liver disease, due to its anti-inflammatory, antioxidant, antidiabetic, insulin-sensitizing, antiobesity, hypolipidemic, and hepatoprotective properties. In the present review, we have discussed the evidence from experimental and clinical studies regarding the potential beneficial effects of plant-derived natural products (quercetin, resveratrol, berberine, pomegranate, curcumin, cinnamon, green tea, coffee, garlic, ginger, ginseng, and gingko biloba) for the treatment or prevention of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Luis E Simental-Mendía
- Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, Durango, México.
| | - Claudia I Gamboa-Gómez
- Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, Durango, México
| | - Fernando Guerrero-Romero
- Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, Durango, México
| | - Mario Simental-Mendía
- Department of Orthopedics and Traumatology, Hospital Universitario "Dr. José E. González", Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, NL, México
| | - Adriana Sánchez-García
- Endocrinology Division, Hospital Universitario "Dr. José E. González", Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, NL, México
| | - Mariana Rodríguez-Ramírez
- Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, Durango, México
| |
Collapse
|
15
|
Anti-Melanogenic Effects of Korean Red Ginseng Oil in an Ultraviolet B-Induced Hairless Mouse Model. Molecules 2020; 25:molecules25204755. [PMID: 33081281 PMCID: PMC7587592 DOI: 10.3390/molecules25204755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
A 'remedy for all' natural product widely known in the Korean Peninsula is called Panax Ginseng Meyer. Globalization represents a persistent risk to the ozone layer, leading to bountiful amounts of Ultra-Violet B beams (UVB). The variety in human skin hues is ascribed to the characteristic color called Melanin. However, Melanin overproduction due to UVB beams promotes skin staining and tumorigenesis, a process called photo aging, which damages skin quality. To assess the effects of Korean Red Ginseng Oil (KGO) on photo aging, the murine melanoma cell lines B16/F10 were used in vitro and HRM-2 hairless mice exposed to UVB were studied in vivo. Our results revealed that KGO reduced tyrosinase activity and melanin production in B16/F10 cells along with the suppression of upstream factors involved in the melanin production pathway, both transcriptionally and transitionally. In the in vivo studies, KGO suppressed the expression of Matrix Metalloproteinase (MMP) and Interleukins along with a reduction of depth in wrinkle formation and reduced collagen degradation. Moreover, the feed intake and feed efficiency ratio that decreased as a result of UVB exposure was also improved by KGO treatment. In light of our results, we conclude that KGO can have considerable benefits due to its various properties of natural skin enhancement.
Collapse
|
16
|
Functional foods - dietary or herbal products on obesity: application of selected bioactive compounds to target lipid metabolism. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Nonalcoholic Fatty Liver Disease Induced by High-Fat Diet in C57bl/6 Models. Nutrients 2019; 11:nu11123067. [PMID: 31888190 PMCID: PMC6949901 DOI: 10.3390/nu11123067] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023] Open
Abstract
Researchers have a range of animal models in which to study Nonalcoholic fatty liver disease (NAFLD). Induction of NAFLD by a high-fat diet in the C57BL/6 strain is the most widely used among mice. In this study, we review works that performed NAFLD induction by a high-fat diet using the C57BL/6 strain, focusing on experiments on the effects of lipid ingestion. Studies are initially distinguished into researches in which mice received lipids by oral gavage and studies in which lipid was added to the diet, and each of these designs has peculiarities that must be considered. Oral gavage can be stressful for animals and needs trained handlers but allows accurate control of the dose administered. The addition of oils to the diet can prevent stress caused to mice by gavage, but possible changes in the consistency, taste, and smell of the diet should be considered. Regarding the experimental design, some variables, such as animal sex, treatment time, and diet-related variables, appear to have a definite pattern. However, no pattern was found regarding the number of animals per group, age at the beginning of the experiment, time of adaptation, the substance used as a vehicle, and substance used as a control.
Collapse
|
18
|
Chen LX, Qi YL, Qi Z, Gao K, Gong RZ, Shao ZJ, Liu SX, Li SS, Sun YS. A Comparative Study on the Effects of Different Parts of Panax ginseng on the Immune Activity of Cyclophosphamide-Induced Immunosuppressed Mice. Molecules 2019; 24:E1096. [PMID: 30897728 PMCID: PMC6470474 DOI: 10.3390/molecules24061096] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/10/2019] [Accepted: 03/16/2019] [Indexed: 01/07/2023] Open
Abstract
The objective of the present study was to compare the effects of the immunological activity of various parts (root/stem/leaf/flower/seed) of five-year-old ginseng on the immune system of immunosuppressive mice. Immunosuppression was induced by cyclophosphamide (CTX) in the mouse model, whereas levamisole hydrochloride tablet (LTH) was used for the positive control group. We found that ginseng root (GRT), ginseng leaf (GLF), and ginseng flower (GFR) could relieve immunosuppression by increased viability of NK cells, enhanced immune organ index, improved cell-mediated immune response, increased content of CD4⁺ and ratio of CD4⁺/CD8⁺, and recovery of macrophage function, including carbon clearance, phagocytic rate, and phagocytic index, in immunodeficient mice. However, ginseng stem (GSM) and ginseng seed (GSD) could only enhance the thymus indices, carbon clearance, splenocyte proliferation, NK cell activities, and the level of IL-4 in immunosuppressed mice. In CTX-injected mice, GRT and GFR remarkably increased the protein expression of Nrf2, HO-1, NQO1, SOD1, SOD2, and CAT in the spleen. As expected, oral administration of GRT and GFR markedly enhanced the production of cytokines, such as IL-1β, IL-4, IL-6, IFN-γ, and TNF-α, compared with the CTX-induced immunosuppressed mice, and GRT and GFR did this relatively better than GSM, GLF, and GSD. This study provides a theoretical basis for further study on different parts of ginseng.
Collapse
Affiliation(s)
- Li-Xue Chen
- Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Yu-Li Qi
- Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Zeng Qi
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Kun Gao
- Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Rui-Ze Gong
- Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| | - Zi-Jun Shao
- Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Song-Xin Liu
- Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Shan-Shan Li
- Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| | - Yin-Shi Sun
- Institute of Special Animals and Plants Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|