1
|
Xu L, Xu J, Chen W, Xie L. Pressure-centric regulation for efficient anaerobic digestion: State-of-the-art, challenges and prospects. BIORESOURCE TECHNOLOGY 2024; 413:131421. [PMID: 39233186 DOI: 10.1016/j.biortech.2024.131421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
Anaerobic digestion (AD) is an environmentally friendly technology that simultaneously stabilizes biowaste and produces biogas. Conventional AD faces challenges such as inadequate substrate degradation and low methane purity. Pressure-centric regulation serves as an AD optimization strategy that can enhance the digestion efficiency and generate higher-energy-value biogas. However, limited reviews have been undertaken to focus on this technology. This review is designed to discuss innovations in ex-situ high-pressure pretreatment and in-situ high-pressure anaerobic digestion (HPAD) processes. Moreover, comprehensive understandings on the intrinsic mechanisms of HPAD are critically examined, including physicochemical reaction principles and microbial responses. The constraints currently curtailing these technologies and potential mitigation strategies are also scrutinized. Additionally, current knowledge gaps and future research directions on mechanisms, model fitting, and engineering practices are presented. Overall, this work highlights the feasibility of pressure-centric regulated AD and provides novel insights to overcome existing technical barriers in its application.
Collapse
Affiliation(s)
- Ling Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jun Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Weizhen Chen
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Li Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
2
|
Yousuf N, Kurukulasuriya N, Chryss A, Rudman M, Rees C, Usher S, Farno E, Lester D, Eshtiaghi N. An accurate and robust method for intensification of wastewater sludge pipe flow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175143. [PMID: 39084373 DOI: 10.1016/j.scitotenv.2024.175143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/12/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Globally, environmental impacts and population growth are driving the process intensification of wastewater treatment plants (WWTPs) via transition from conventional (2-3 wt% solids) to highly concentrated (4-6 wt% solids) wastewater sludges (HCWS). This presents an industrial challenge as HCWS are complex, non-Newtonian materials whose viscosity increases nonlinearly with solids concentration. This viscosity increase is particularly relevant for sludge pipe flow as it leads to considerable pumping pressure that ultimately limits the feasibility of pipe flow transportation. Hence, process intensification demands accurate prediction of HCWS turbulent pipe flow to design and optimise pumping infrastructure and piping systems. Such prediction requires accurate rheological characterisation of HCWS and numerical prediction of HCWS turbulent pipe flow, neither of which has been achieved to date due to respective limitations associated with benchtop rheometry and numerical turbulence models. We address these challenges by first developing accurate methods for rheological characterisation of HCWS via laminar flow of digested sludge at various solids concentrations (2-5 %) in a fully instrumented pipe loop facility at a large-scale WWTP. These rheological parameters are used in direct numerical simulation (DNS) computations (that avoid turbulence models) of turbulent pipe flow of HCWS. These predictions are then validated against turbulent flow pipe loop data. This method yields accurate (2-15 % error) predictions of HCWS turbulent pipe flow, compared with up to ∼75 % error for conventional pipe flow correlations. This validation highlights the need for accurate rheological characterisation and numerical simulation to predict HCWS pipe flow and provides a sound basis for the intensification and optimisation of WWTP pipeline systems.
Collapse
Affiliation(s)
- Noman Yousuf
- Chemical and Environmental Engineering, RMIT University, VIC 3000, Australia
| | | | - Andrew Chryss
- CSIRO Minerals Resources, Clayton, VIC 3168, Australia
| | - Murray Rudman
- Department of Mechanical and Aerospace Engineering, Monash University, VIC 3800, Australia
| | - Catherine Rees
- Melbourne Water Corporation, Docklands, VIC 3008, Australia
| | - Shane Usher
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, VIC 3010, Australia
| | - Ehsan Farno
- South East Water, Frankston, VIC 3199, Australia
| | - Daniel Lester
- Chemical and Environmental Engineering, RMIT University, VIC 3000, Australia
| | - Nicky Eshtiaghi
- Chemical and Environmental Engineering, RMIT University, VIC 3000, Australia.
| |
Collapse
|
3
|
Chen K, Yang L, Zhang J, Rene ER, Wang D, Chen W, Li Z, Zhu H. Coupling of biocarriers and dynamic membrane for an enhanced volatile fatty acids production from sludge anaerobic fermentation. BIORESOURCE TECHNOLOGY 2024; 415:131725. [PMID: 39477159 DOI: 10.1016/j.biortech.2024.131725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/10/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Efficiently and economically recovering volatile fatty acids (VFAs) from sludge anaerobic fermentation (AF) poses a significant challenge. This study discovered a synergistic enhancement effect on VFAs production and membrane fouling control by combining polyethylene (PE) biocarriers and dynamic membrane technology (DM) in an anaerobic bioreactor. The reduced sludge particle size and enhanced hydrolysis efficiency led to a VFAs yield of 1200 mg/L, which is 2.4 times higher than that of traditional AF processes and 1.7 times greater than using the DM module alone. The introduction of PE promoted the enrichment of hydrolytic bacteria, particularly the Christensenellaceae_R-7_group, and facilitated the biotransformation of organic matter. The frictional properties of PE significantly reduced DM fouling, maintaining the transmembrane pressure drop below 30 kPa throughout operation without the need for DM module replacement or cleaning. This study presents a novel approach for resource recovery from sludge through AF, offering new opportunities in the field.
Collapse
Affiliation(s)
- Kai Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Lisha Yang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Jing Zhang
- China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P.O. Box 3015, 2601DA Delft, the Netherlands
| | - Dongquan Wang
- China Water Investment Co., Ltd., Beijing 100053, China
| | - Wangyang Chen
- China Water Investment Co., Ltd., Beijing 100053, China
| | - Zhuo Li
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
4
|
Djellabi R, Su P, Ambaye TG, Cerrato G, Bianchi CL. Ultrasonic Disintegration of Municipal Sludge: Fundamental Mechanisms, Process Intensification and Industrial Sono-Reactors. Chempluschem 2024; 89:e202400016. [PMID: 39036885 DOI: 10.1002/cplu.202400016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Sludge disintegration is an environmental and industrial challenge that requires intensive research and technological development. Sludge has a complex structure with a high yield of various chemical and biological compounds. Anaerobic digestion is the most commonly used process for sludge disintegration to produce biogas, detoxify sludge, and generate biosolids that can be used in agriculture . Biological cell lysis is the rate-limiting cell lysis. This review discusses the application of sonolysis as a sludge pretreatment for enhanced anaerobic digestion via three combined processes: thermal destruction, hydrochemical shear forces, and radical oxidation. The mechanistic pathways of sono-pretreatment to enhance biogas, sludge-enhanced dewatering, activation of filamentous bacteria, oxidation of organic pollutants, release of heavy metals, reduction of bulking and foaming sludge, and boosting ammonia-oxidizing bacterial activity are discussed in this review. This article also discusses the use of ultrasound in sludge disintegration, highlighting its potential in conjunction with Fenton and cation-binding agents, and reviews common large-scale sonoreactors available on the market..
Collapse
Affiliation(s)
- Ridha Djellabi
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, 11533, Riyadh, Saudi Arabia
| | - Peidong Su
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Teklit Gebregiorgis Ambaye
- Department of Environment and Resource Engineering, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Giuseppina Cerrato
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125, Torino, Italy
| | - Claudia L Bianchi
- Department of Chemistry, University of Milan, Via Golgi 19, 20133, Milano, Italy
| |
Collapse
|
5
|
Kim S, Lee C, Lee YS, Kim J, Kim JY. Modification of Anaerobic Digestion Model No. 1 for modeling anaerobic digestion of cattle manure with changing solids retention time. BIORESOURCE TECHNOLOGY 2024; 406:131033. [PMID: 38925400 DOI: 10.1016/j.biortech.2024.131033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
In this study, Anaerobic Digestion Model No.1 (ADM1) was modified to incorporate changes in biochemical parameters due to solids retention time (SRT) variations. Cattle manure (CM) and thermally hydrolyzed CM were selected for testing. Continuous anaerobic digestion reactors were operated under different SRT conditions ranging from 6.6 to 36.0 days for both samples. The biochemical parameters (kch, kli, kpr, um,ac, um,bu, um,pro, um,va, Kac, Kbu, Kpro, and Kva) for each SRT condition were determined. To modify ADM1, the equations obtained through linear regression were substituted into biochemical parameters as a function of SRT. The modified ADM1 demonstrated superior accuracy compared with conventional ADM1. This study implies the feasibility of optimizing biochemical parameters for modeling in response to changes in environmental variables.
Collapse
Affiliation(s)
- Seunghwan Kim
- Department of Civil & Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Changmin Lee
- Department of Civil & Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Young Su Lee
- Department of Energy and Environmental Engineering, College of Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Asan, Chungcheongnam-do 31538, Republic of Korea
| | - Junhyeon Kim
- Department of Civil & Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jae Young Kim
- Department of Civil & Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
6
|
Le HQ, Duong CC, Chang HM, Nguyen NC, Chien IC, Ngo HH, Chen SS. Innovative hyper-thermophilic aerobic submerged membrane distillation bioreactor for wastewater reclamation. CHEMOSPHERE 2024; 362:142743. [PMID: 38950740 DOI: 10.1016/j.chemosphere.2024.142743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Accepted: 06/29/2024] [Indexed: 07/03/2024]
Abstract
For the first time, a hyper-thermophilic aerobic (>60 °C) bioreactor has been integrated with direct submerged membrane distillation (MD), highlighting its potential as an advanced wastewater treatment solution. The hyper-thermophilic aerobic bioreactor, operating up to 65 °C, is tailored for high organic removal, while MD efficiently produces clean water. Throughout the study, high removal rates of 99.5% for organic matter, 96.4% for ammonia, and 100% for phosphorus underscored the impressive adaptability of microorganisms to challenging hyper-thermophilic conditions and a successful combination with the MD process. Despite the extreme temperatures and substantial salinity accumulation reaching up to 12,532 μS/cm, the biomass of microorganisms increased by 1.6 times over a 92-day period, representing their remarkable resilience. The distillation flux ranged from 6.15 LMH to 8.25 LMH, benefiting from the temperature gradient in the hyper-thermophilic setting and the design of the tubular submerged MD membrane module. The system also excels in pH control, utilizing fewer alkali and nutritional resources than conventional systems. Meiothermus, Firmicutes, and Bacteroidetes, the three dominant species, played a crucial role, showcasing their significance in adapting to high salinity and decomposing organic matter.
Collapse
Affiliation(s)
- Huy Quang Le
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Zhongxiao E. Rd, Taipei, 10608, Taiwan; Faculty of Chemistry and Environment, Dalat University, 01 Phu Dong Thien Vuong Street, Da Lat City, 66000, Viet Nam
| | - Chinh Cong Duong
- Southern Institute of Water Resources Research, 658 Vo Van Kiet Street, District 5, Ho Chi Minh City, 700000, Viet Nam
| | - Hau-Ming Chang
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Zhongxiao E. Rd, Taipei, 10608, Taiwan
| | - Nguyen Cong Nguyen
- Faculty of Chemistry and Environment, Dalat University, 01 Phu Dong Thien Vuong Street, Da Lat City, 66000, Viet Nam
| | - I-Chieh Chien
- Department of Water Resources and Environmental Engineering, Tamkang University, New Taipei City, 251301, Taiwan
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Shiao-Shing Chen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Zhongxiao E. Rd, Taipei, 10608, Taiwan.
| |
Collapse
|
7
|
Blagojevič M, Bizjan B, Zupanc M, Gostiša J, Perše LS, Centa UG, Stres B, Novak U, Likozar B, Rak G, Repinc SK. Preliminary analysis: Effect of a rotary generator of hydrodynamic cavitation on rheology and methane yield of wastewater sludge. ULTRASONICS SONOCHEMISTRY 2024; 107:106943. [PMID: 38852537 PMCID: PMC11217745 DOI: 10.1016/j.ultsonch.2024.106943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/10/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Slightly acidic (pH 5.1) waste sludge with 4.7 % Total Solids (TS) was treated on a laboratory scale pined disc rotary generator of hydrodynamic cavitation (PD RGHC). Influence of four rotor discs with different number of cavitation generation units (CGUs) was investigated: 8-pins, 12-pins, 16-pins and 8-prism elements. The effect of hydrodynamic cavitation (HC) was investigated by analyzing rheological properties, surface tension, dewaterability, and particle size distribution. After subjecting the sludge to 30 cavitation passes, the dewatering ability of the sludge significantly decreased, resulting in a more than two-fold increase in Capillary Suction Time (CST). All regimes were successful in disintegrating particles to smaller sizes. A slight increase of sludge surface tension was measured post cavitation. Cavitated samples displayed a zero-shear viscosity, in contrast to the untreated sample, where viscosity noticeably increased as shear stress decreased. HC did not improve methane yield. Statistically significant correlations between physio-chemical properties and apparent viscosity at low shear stress were identified. Although there were no discernible statistical differences in sludge characteristics, some trends are visible among investigated CGU designs and warrant further research.
Collapse
Affiliation(s)
- Marko Blagojevič
- Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova cesta 2, 1000 Ljubljana, Slovenija
| | - Benjamin Bizjan
- Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova cesta 2, 1000 Ljubljana, Slovenija; Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva cesta 6, 1000 Ljubljana, Slovenija
| | - Mojca Zupanc
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva cesta 6, 1000 Ljubljana, Slovenija
| | - Jurij Gostiša
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva cesta 6, 1000 Ljubljana, Slovenija
| | - Lidija Slemenik Perše
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva cesta 6, 1000 Ljubljana, Slovenija
| | - Urška Gradišar Centa
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva cesta 6, 1000 Ljubljana, Slovenija
| | - Blaž Stres
- Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova cesta 2, 1000 Ljubljana, Slovenija; National Institute of Chemistry, Hajdrihova ulica 19, 1000 Ljubljana, Slovenija; Jozef Stefan Institute, Ljubljana, Slovenia, Jamova cesta 39, 1000 Ljubljana, Slovenija; Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenija
| | - Uroš Novak
- National Institute of Chemistry, Hajdrihova ulica 19, 1000 Ljubljana, Slovenija
| | - Blaž Likozar
- National Institute of Chemistry, Hajdrihova ulica 19, 1000 Ljubljana, Slovenija
| | - Gašper Rak
- Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova cesta 2, 1000 Ljubljana, Slovenija
| | - Sabina Kolbl Repinc
- Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova cesta 2, 1000 Ljubljana, Slovenija; National Institute of Chemistry, Hajdrihova ulica 19, 1000 Ljubljana, Slovenija.
| |
Collapse
|
8
|
Li B, Tang Y, Xiao X, Tang X, Luo D, Liu Y, Zhang Y, Zhang L. Enhanced anaerobic digestion of waste-activated sludge by thermal-alkali pretreatment: a pilot-scale study. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:303-313. [PMID: 39007321 DOI: 10.2166/wst.2024.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/31/2024] [Indexed: 07/16/2024]
Abstract
The composition of waste-activated sludge (WAS) is complex, containing a large amount of harmful substances, which pose a threat to the environment and human health. The reduction and resource utilization of sludge has become a development demand in sludge treatment and disposal. Based on the technical bottlenecks in the practical application of direct anaerobic digestion technology, this study adopted two different thermal and thermal-alkali hydrolysis technologies to pretreat sludge. A pilot-scale experiment was conducted to investigate the experimental conditions, parameters, and effects of two hydrolysis technologies. This study showed that the optimal hydrolysis temperature was 70 °C, the hydrolysis effect and pH can reach equilibrium with the hydrolysis retention time was 4-8 h, and the optimal alkali concentration range was 0.0125-0.015 kg NaOH/kg dry-sludge. Thermal-alkali combination treatment greatly improved the performance of methane production, the addition of NaOH increased methane yield by 31.2% than that of 70 °C thermal hydrolysis. The average energy consumption is 75 kWh/m3 80% water-content sludge during the experiment. This study provides a better pretreatment strategy for exploring efficient anaerobic digestion treatment technologies suitable for southern characteristic sewage sludge.
Collapse
Affiliation(s)
- Biqing Li
- Guangzhou Sewage Purification Co., Ltd, Guangzhou 510655, China; These authors contributed equally to this work
| | - Yao Tang
- School of Mathematics and Information, Guangzhou University, Guangzhou 510006, China; These authors contributed equally to this work
| | - Xiannian Xiao
- Guangzhou Sewage Purification Co., Ltd, Guangzhou 510655, China; These authors contributed equally to this work
| | - Xia Tang
- Guangzhou Sewage Purification Co., Ltd, Guangzhou 510655, China; These authors contributed equally to this work
| | - Dan Luo
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yuxin Liu
- Guangzhou Sewage Purification Co., Ltd, Guangzhou 510655, China
| | - Yahui Zhang
- Guangzhou Sewage Purification Co., Ltd, Guangzhou 510655, China
| | - Liguo Zhang
- School of Environment, South China Normal University, Guangzhou 510006, China E-mail:
| |
Collapse
|
9
|
Galván-Arzola U, Valencia-Vázquez R, Gómez-González R, Alcalá-Rodríguez MM, Loredo-Medrano JÁ, García-Balandrán EE, Rivas-García P. Low-performance diagnosis of covered anaerobic lagoons as a waste management strategy in the intensive dairy industry. ENVIRONMENTAL TECHNOLOGY 2024:1-13. [PMID: 38940278 DOI: 10.1080/09593330.2024.2368688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/26/2024] [Indexed: 06/29/2024]
Abstract
Covered anaerobic lagoons (CALs) are Latin America's main livestock waste treatment systems. Mexico has 680 CALs that present low biogas yields (0.05 m3 m-3 digester d-1) and low COD removal rates (< 60%). This work focused on diagnosing CAL´s low performance in dairy farms by determining and analyzing operational parameters. Seven CALs located in the main dairy basin of Mexico were analyzed. The sampling areas for each CAL were the supernatant, the active zone, settled sludge, and digester inlet and outlet. The variation of the process parameter values corroborated that CALs appeared stratified and not working as expected. The sludge zone, comprising 50-58% of total solids content and 1-15% of total CALs volume, showed an elemental compounds content suitable for organic fertilizer (340, 48, and 5 kg t-1 of C, N, and S, respectively). However, this zone contained, at least, 85% of the slowly hydrolysable material; the methanogenic potential was less than 87 mL CH4 g VS-1, and the C/N ratio ranged from 4.9 to 17, outside of the optimal range. The biogas produced did not exceed 60% of methane content and more than 3000 ppm of H2S. The sludge zone significantly influences the lagoon's dynamics since it is a nutrient sink. Furthermore, the lack of agitation is the leading cause for the low energy yield and the low removal of organic matter rate. This work provides valuable information to address the operational problems within the CALs improving our understanding that shall allow proposing reactivation alternatives.
Collapse
Affiliation(s)
- Uriel Galván-Arzola
- Facultad de Ciencias Químicas, Departamento de Ingeniería Química, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Roberto Valencia-Vázquez
- Maestría en Sistemas Ambientales, División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México, Campus Durango, Durango, México
| | - Ricardo Gómez-González
- Facultad de Ciencias Químicas, Departamento de Ingeniería Química, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Mónica María Alcalá-Rodríguez
- Facultad de Ciencias Químicas, Departamento de Ingeniería Química, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - José Ángel Loredo-Medrano
- Facultad de Ciencias Químicas, Departamento de Ingeniería Química, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Ever Efraín García-Balandrán
- Facultad de Ciencias Químicas, Departamento de Ingeniería Química, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Pasiano Rivas-García
- Facultad de Ciencias Químicas, Departamento de Ingeniería Química, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| |
Collapse
|
10
|
Hu H, Liu S, Li D, Zhou A, Cai W, Luo J, Liu Z, He Z, Yue X, Liu W. Sulfate-reducing bacteria decreases fractional pressure of H 2 to accelerate short-chain fatty acids production from waste activated sludge fermentation assisted with zero-valent iron activated sulfite pretreatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172898. [PMID: 38697543 DOI: 10.1016/j.scitotenv.2024.172898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
The production of short-chain fatty acids (SCFAs) is constrained by substrate availability and the increased fractional pressure of H2 emitted by acidogenic/fermentative bacteria during anaerobic fermentation of waste activated sludge (WAS). This study introduced a novel approach employing zero-valent iron (ZVI)-activated sulfite pretreatment combined with H2-consuming sulfate-reducing bacteria (SRB) mediation to improve SCFAs, especially acetate production from WAS fermentation. Experimental results showed that the combined ZVI-activated sulfite and incomplete-oxidative SRB (io-SRB) process achieved a peak SCFAs production of 868.11 mg COD/L, with acetate accounting for 80.55 %, which was 7.90- and 2.18-fold higher than that obtained from raw WAS fermentation, respectively. This could be firstly attributed to the SO4- and OH generated by ZVI-activated sulfite, which significantly promoted WAS decomposition, e.g., soluble proteins and carbohydrates increased 14.3- and 10.8-fold, respectively, over those in raw WAS. The biodegradation of dissolved organic matter was subsequently enhanced by the synergistic interaction and H2 transfer between anaerobic fermentation bacteria (AFB) and io-SRB. The positive and negative correlations among AFB, nitrate-reducing bacteria (NRB) and the io-SRB consortia were revealed by molecular ecological network (MEN) and Mantel test. Moreover, the expression of functional genes was also improved, for instance, in relation to acetate formation, the relative abundances of phosphate acetyltransferase and acetate kinase was 0.002 % and 0.005 % higher than that in the control test, respectively. These findings emphasized the importance of sulfate radicals-based oxidation pretreatment and the collaborative relationships of multifunctional microbes on the value-added chemicals and energy recovery from sludge fermentation.
Collapse
Affiliation(s)
- Huitao Hu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Engineer Research Institute of Sludge Disposition and Resources, Taiyuan University of Technology, Taiyuan 030000, China
| | - Shuli Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Dengfei Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Engineer Research Institute of Sludge Disposition and Resources, Taiyuan University of Technology, Taiyuan 030000, China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Engineer Research Institute of Sludge Disposition and Resources, Taiyuan University of Technology, Taiyuan 030000, China.
| | - Weiwei Cai
- School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Jingyang Luo
- College of Environment, Hohai University, Nanjing 210098, China
| | - Zhihong Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Engineer Research Institute of Sludge Disposition and Resources, Taiyuan University of Technology, Taiyuan 030000, China
| | - Zhangwei He
- School of Environment and Municipal Engineering, Xi'an University of Architecture and Technology, Shanxi 710055, China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Engineer Research Institute of Sludge Disposition and Resources, Taiyuan University of Technology, Taiyuan 030000, China
| | - Wenzong Liu
- Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
11
|
Bharadwaj A, Holwerda EK, Regan JM, Lynd LR, Richard TL. Enhancing anaerobic digestion of lignocellulosic biomass by mechanical cotreatment. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:76. [PMID: 38831375 PMCID: PMC11149370 DOI: 10.1186/s13068-024-02521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/16/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND The aim of this study was to increase the accessibility and accelerate the breakdown of lignocellulosic biomass to methane in an anaerobic fermentation system by mechanical cotreatment: milling during fermentation, as an alternative to conventional pretreatment prior to biological deconstruction. Effluent from a mesophilic anaerobic digester running with unpretreated senescent switchgrass as the predominant carbon source was collected and subjected to ball milling for 0.5, 2, 5 and 10 min. Following this, a batch fermentation test was conducted with this material in triplicate for an additional 18 days with unmilled effluent as the 'status quo' control. RESULTS The results indicate 0.5 - 10 min of cotreatment increased sugar solubilization by 5- 13% when compared to the unmilled control, with greater solubilization correlated with increased milling duration. Biogas concentrations ranged from 44% to 55.5% methane with the balance carbon dioxide. The total biogas production was statistically higher than the unmilled control for all treatments with 2 or more minutes of milling (α = 0.1). Cotreatment also decreased mean particle size. Energy consumption measurements of a lab-scale mill indicate that longer durations of milling offer diminishing benefits with respect to additional methane production. CONCLUSIONS Cotreatment in anaerobic digestion systems, as demonstrated in this study, provides an alternative approach to conventional pretreatments to increase biogas production from lignocellulosic grassy material.
Collapse
Affiliation(s)
- Anahita Bharadwaj
- The Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Evert K Holwerda
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - John M Regan
- The Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lee R Lynd
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Tom L Richard
- The Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
12
|
Pourrostami Niavol K, Bordoloi A, Suri R. An overview of the occurrence, impact of process parameters, and the fate of antibiotic resistance genes during anaerobic digestion processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41745-41774. [PMID: 38853230 PMCID: PMC11219439 DOI: 10.1007/s11356-024-33844-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024]
Abstract
Antibiotic resistance genes (ARGs) have emerged as a significant global health threat, contributing to fatalities worldwide. Wastewater treatment plants (WWTPs) and livestock farms serve as primary reservoirs for these genes due to the limited efficacy of existing treatment methods and microbial adaptation to environmental stressors. Anaerobic digestion (AD) stands as a prevalent biological treatment for managing sewage sludge and manure in these settings. Given the agricultural utility of AD digestate as biofertilizers, understanding ARGs' fate within AD processes is essential to devise effective mitigation strategies. However, understanding the impact of various factors on ARGs occurrence, dissemination, and fate remains limited. This review article explores various AD treatment parameters and correlates to various resistance mechanisms and hotspots of ARGs in the environment. It further evaluates the dissemination and occurrence of ARGs in AD feedstocks and provides a comprehensive understanding of the fate of ARGs in AD systems. This review explores the influence of key AD parameters such as feedstock properties, pretreatments, additives, and operational strategies on ARGs. Results show that properties such as high solid content and optimum co-digestion ratios can enhance ARG removal, while the presence of heavy metals, microplastics, and antibiotics could elevate ARG abundance. Also, operational enhancements, such as employing two-stage digestion, have shown promise in improving ARG removal. However, certain pretreatment methods, like thermal hydrolysis, may exhibit a rebounding effect on ARG levels. Overall, this review systematically addresses current challenges and offers future perspectives associated with the fate of ARGs in AD systems.
Collapse
Affiliation(s)
- Kasra Pourrostami Niavol
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Achinta Bordoloi
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Rominder Suri
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
13
|
Hamze A, Zakaria BS, Zaghloul MS, Dhar BR, Elbeshbishy E. Comprehensive hydrothermal pretreatment of municipal sewage sludge: A systematic approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 361:121194. [PMID: 38820794 DOI: 10.1016/j.jenvman.2024.121194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/23/2024] [Accepted: 05/15/2024] [Indexed: 06/02/2024]
Abstract
This study provides a comprehensive analysis of the potential impact of hydrothermal pretreatment (HTP) on municipal thickened waste-activated sludge (TWAS) and its integration with anaerobic digestion (AD). The research demonstrates that HTP conditions (170 °C, 3 bars for 30 min) can increase the solubilization of macromolecular organic compounds by 41%, which enhances biodegradability in semicontinuous bioreactors. This treatment also results in a 50% reduction in chemical oxygen demand (COD) and a 63% increase in the destruction of volatile solids (VS). The combination of HTP with AD significantly boosts methane yields by 51%, reaching 176 ml/g COD, and improves the digestate dewaterability, doubling the solid content in the dewatered cake. However, a higher polymer dose is required compared to conventional AD. Microbial community analysis correlates the observed performance and alterations; it indicates that HTP enhances resilience to stress conditions such as ammonia toxicity. This comprehensive study provides valuable insights into the transition from wastewater treatment plants (WWTPs) to resource recovery facilities (RRF) in line with circular economy principles.
Collapse
Affiliation(s)
- Abir Hamze
- Department of Civil Engineering, Toronto Metropolitan University, Toronto, Ontario, M5B 2K3, Canada
| | - Basem S Zakaria
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94608, United States; Advanced Biofuels and Bioproducts Process Development Unit, Emeryville, CA, 94608, United States; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
| | - Mohamed Sherif Zaghloul
- Department of Civil Engineering, Toronto Metropolitan University, Toronto, Ontario, M5B 2K3, Canada; Department of Civil and Environmental Engineering, United Arab Emirates University, Sheik Khalifa Bin Zayed St - 'Asharij, Abu Dhabi, United Arab Emirates
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
| | - Elsayed Elbeshbishy
- Department of Civil Engineering, Toronto Metropolitan University, Toronto, Ontario, M5B 2K3, Canada.
| |
Collapse
|
14
|
Zhou P, Li D, Zhang C, Ping Q, Wang L, Li Y. Comparison of different sewage sludge pretreatment technologies for improving sludge solubilization and anaerobic digestion efficiency: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171175. [PMID: 38402967 DOI: 10.1016/j.scitotenv.2024.171175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Anaerobic digestion (AD) of sewage sludge reduces organic solids and produces methane, but the complex nature of sludge, especially the difficulty in solubilization, limits AD efficiency. Pretreatments, by destroying sludge structure and promoting disintegration and hydrolysis, are valuable strategies to enhance AD performance. There is a plethora of reviews on sludge pretreatments, however, quantitative comparisons from multiple perspectives across different pretreatments remain scarce. This review categorized various pretreatments into three groups: Physical (ultrasonic, microwave, thermal hydrolysis, electric decomposition, and high pressure homogenization), chemical (acid, alkali, Fenton, calcium peroxide, and ozone), and biological (microaeration, exogenous bacteria, and exogenous hydrolase) pretreatments. The optimal conditions of various pretreatments and their impacts on enhancing AD efficiency were summarized; the effects of different pretreatments on microbial community in the AD system were comprehensively compared. The quantitative comparison based on dissolution degree of COD (DDCOD) indicted that the sludge solubilization performance is in the order of physical, chemical, and biological pretreatments, although with each below 40 % DDCOD. Biological pretreatment, particularly microaeration and exogenous bacteria, excel in AD enhancement. Pretreatments alter microbial ecology, favoring Firmicutes and Methanosaeta (acetotrophic methanogens) over Proteobacteria and Methanobacterium (hydrogenotrophic methanogens). Most pretreatments have unfavorable energy and economic outcomes, with electric decomposition and microaeration being exceptions. On the basis of the overview of the above pretreatments, a full energy and economy assessment for sewage sludge treatment was suggested. Finally, challenges associated with sludge pretreatments and AD were analyzed, and future research directions were proposed. This review may broaden comprehension of sludge pretreatments and AD, and provide an objective basis for the selection of sludge pretreatment technologies.
Collapse
Affiliation(s)
- Pan Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Dunjie Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Cong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Lin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
15
|
Okoye F, Kakar FL, Elbeshbishy E. Novel free nitrous acid and ultrasonication pretreatment enhanced sludge biodegradability. ENVIRONMENTAL TECHNOLOGY 2024; 45:1829-1840. [PMID: 36469644 DOI: 10.1080/09593330.2022.2155252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The main goal of this study was to investigate the novel combined Ultrasonication and Free Nitrous Acid (FNA) pretreatment on biodegradability and kinetics of thickened waste-activated sludge (TWAS). Partial factorial design with four levels of (0, 600, 1500, and 3000 KJ/Kg) for ultrasonication and 0, 0.7, 1.4, and 2.8 mg HNO2-N/L for FNA dose were examined creating 16 different combinations. Results revealed that combined pretreatment could significantly improve solubilization and solid destruction compared to solo pretreatments. The highest organic matter solubilization of 25.6% and volatile suspended solids destruction of 21.7% were observed when 2.8 mg HNO2-N/L and 1500 KJ/Kg were combined. Moreover, combining the pretreatments further enhanced biodegradability up to the highest percentage of 50.3% when pretreatment of 3000 KJ/Kg and 2.8 mg HNO2-N/L was applied. Also, the experimental data from a biochemical methane potential test was fitted well into First Order Kinetic and Modified Gompertz models, given that the coefficients of determination, R2, for models at all treatment levels were above 99%.
Collapse
Affiliation(s)
- Frances Okoye
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, Toronto, Canada
| | - Farokh Laqa Kakar
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, Toronto, Canada
| | - Elsayed Elbeshbishy
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, Toronto, Canada
| |
Collapse
|
16
|
Zhang J, Long Z, Liu X, He H, Zhang G, Tian Y. Structure and composition of dissolved organic matters in sludge by ultrasonic treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120589. [PMID: 38531126 DOI: 10.1016/j.jenvman.2024.120589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/20/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024]
Abstract
The leaching of dissolved organic matter (DOM) from the sludge into the liquid phase is induced by ultrasound. However, there is limited investigation into the structure and molecular composition of sludge DOM in this process. The molecular structure and composition of sludge DOM in ultrasonic treatment were comprehensively elucidated in this study. The sludge dissolved organic carbon (DOC) and three-dimensional fluorescence spectroscopy (3D-EEM) image had most significant change at 15-min ultrasonic time and 1.2 W/mL ultrasonic density, respectively. Gas Chromatography-Mass Spectrometry (GC-MS) analysis indicated that ultrasonic treatment of sludge reduced the macromolecules to small molecules in DOM. Then, electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS) analysis revealed that lignin, tannins, and carbohydrates were the main components of sludge DOMs after ultrasound treatment. analysis revealed that lignin, tannins, and carbohydrates were the main components of sludge DOMs after ultrasound treatment. Furthermore, through the Van Krevelen analysis, the major components were CHO (48.50%) and CHOS (23.20%) in the DOM of ultrasonicated sludge. This research provides the basis for the practical application of ultrasonic treatment of sludge and provides basic information for DOM components.
Collapse
Affiliation(s)
- Jie Zhang
- School of Energy & Environmental Engineering, Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei University of Technology, Tianjin, 300401, China
| | - Zeqing Long
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, 046000, China
| | - Xiaoyang Liu
- School of Energy & Environmental Engineering, Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei University of Technology, Tianjin, 300401, China
| | - Hui He
- School of Energy & Environmental Engineering, Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei University of Technology, Tianjin, 300401, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Tianjin Key Laboratory of Clean Energy and Pollution Control, Hebei University of Technology, Tianjin, 300401, China.
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
17
|
Ortiz Vanegas GO, Kim HW. Improved hydrolysis of sewage sludge by air-assisted non-thermal plasma for enhanced biomethane recovery. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28814-28826. [PMID: 38561541 DOI: 10.1007/s11356-024-33006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/16/2024] [Indexed: 04/04/2024]
Abstract
Conventional pretreatment technologies have been assessed to resolve the slow hydrolysis of sewage sludge, but high operating costs have prevented their wide use. This study investigated non-thermal plasma (NTP) technologies as an alternative to promote anaerobic digestion (AD). Various contact time (CT) and temperature (T) conditions were used to assess how NTP pretreatment improves the methane conversion of organics in sewage sludge. A multi-response surface model (RSM) using a central composite design (CCD) identified the optimal CT (4.6 h) and T (45 °C). This statistical optimization of NTP pretreatment led to an enhanced biochemical methane potential of 297 ± 46 mL CH4 g-1 COD by reducing operating cost as power consumption as low as 0.08 USD L-1. The result was comparable to those of other advanced oxidation processes (0.14 - 0.60 USD L-1) demonstrating that accelerated hydrolysis of sewage sludge using NTP pretreatment show potential for improving renewable energy recovery from sewage sludge.
Collapse
Affiliation(s)
- Gerardo Oswaldo Ortiz Vanegas
- Department of Environment and Energy, Jeonbuk National University, 567 Baekje-Daero, Deokjin-Gu, Jeonju, 54896, Republic of Korea
| | - Hyun-Woo Kim
- Department of Environment and Energy, Jeonbuk National University, 567 Baekje-Daero, Deokjin-Gu, Jeonju, 54896, Republic of Korea.
- Department of Environmental Engineering, Division of Civil, Environmental, Mineral Resources and Energy Engineering, Soil Environment Research Center, Jeonbuk National University, 567 Baekje-Daero, Deokjin-Gu, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
18
|
Liu W, Sun C, Li W, Li T, Chen Z, Wang J, Ren Z, Wen X. Sludge composition and characteristics shaped microbial community and further determined process performance: A study on full-scale thermal hydrolysis-anaerobic digestion processes. J Environ Sci (China) 2024; 137:96-107. [PMID: 37980058 DOI: 10.1016/j.jes.2022.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 11/20/2023]
Abstract
Anaerobic digestion (AD) with thermal hydrolysis (TH) pretreatment is a promising process for excess sludge treatment, while there lacks of the knowledge from full-scale process about the impact of sludge composition and characteristics on microbial community and performance. The sludge physiochemical indices, microbial community and performance data of four full-scale TH-AD plants were characterized, and their relationships was elucidated. The four plants were operated under almost similar total organic loading rate (OLR) but their methanogenesis performance differentiate into two groups, namely superior group (SupG) and the inferior group (InfG). In both groups, TH effectively solubilized particulate organic compounds, meanwhile raised the ammonia nitrogen (NH4+-N) and volatile fatty acid (VFA) concentration. Compared with the SupG, thermal hydrolyzed sludge of InfG had higher level of VFAs, NH4+-N and total chemical oxygen demand (tCOD), which showed higher inhibition effect on microbes, leading to a community with lower diversity, lower abundance of carbohydrate degrading functional guild, higher protein degrading one, and methanogens that adapted to limited substrates, and further declined the methane production rate. Thus, it was recommended that OLR alone was not sufficient for controlling the system in design and operation, the concentration of VFAs, NH4+-N and tCOD should be equally considered. Their higher concentration, together with the higher abundance of Defluviitoga and Proteiniphilum were recommended as indicators for inferior running condition. Our results proposed that microbial communities played a role of bridge between environmental factors and performance, provided implications for engineering ecology and operational regulation for full-scale sludge TH-AD process.
Collapse
Affiliation(s)
- Wei Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Chenxiang Sun
- School of Environment, Tsinghua University, Beijing 100084, China; Jinneng Holding Group, Datong, Shanxi 037000, China
| | - Wei Li
- Research and Development Center, Beijing Drainage Group Co. Ltd., Beijing 100124, China; Beijing Dabeinong Science and Technology Group Co., Ltd., Beijing 100080, China
| | - Tianle Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhan Chen
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiawei Wang
- Research and Development Center, Beijing Drainage Group Co. Ltd., Beijing 100124, China
| | - Zhengran Ren
- Research and Development Center, Beijing Drainage Group Co. Ltd., Beijing 100124, China
| | - Xianghua Wen
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
19
|
Lu D, Yan W, Le C, Low SL, Tao G, Zhou Y. Near-infrared reflectance spectroscopy for rapid prediction of biochemical methane potential of wastewater wasted sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169640. [PMID: 38151129 DOI: 10.1016/j.scitotenv.2023.169640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
The information of biochemical methane potential (BMP) of wasted sludge is essential to ensure the stable operation of sludge management processes. However, conventional anaerobic digestion (AD) approach for BMP test is time-consuming and labour-intensive. Currently, the technique of Near Infrared Spectroscopy (NIRS) is gaining prominence in the biogas production within AD process. Previous studies mostly focused on predicting BMP values for fibrous plant biomass and solid waste, with only a limited number of studies attempting to apply NIRS to obtain BMP values across a wide array of wasted sludge types. To obtain BMP values for this diverse range of wasted sludge efficiently and accurately, it is imperative to develop precise models for assessing BMP values using NIRS. In this study, the possibility of using NIRS to predict the BMP values of wasted sludge was evaluated. A total of 70 sludge samples from different sources were investigated to develop a BMP-prediction model by correlating the measured BMP values with the obtained NIR spectra. As a result, a reliable and successful BMP-prediction model was established with the determination coefficient of 0.90, residual prediction deviation of 3.50 and low root mean square error of prediction of 36.8 mL CH4/g VS. This BMP-prediction model is satisfactory for predicting BMP values of various types of sludge. It could provide support for plant operators to make decisions rapidly, thereby improving the process efficiency and optimizing sludge management procedures.
Collapse
Affiliation(s)
- Dan Lu
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Wangwang Yan
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Chencheng Le
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Siok Ling Low
- Public Utilities Board, Water Reclamation (Plants) Department, 40 Scotts Road, #15-01, 228231, Singapore
| | - Guihe Tao
- Public Utilities Board, Water Reclamation (Plants) Department, 40 Scotts Road, #15-01, 228231, Singapore
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
20
|
Qin S, Zhang D, Wang J, Liang M, Chen W, Zhang T, Lu X, Li L, Wu X, Zan F. In-situ sulfite treatment promotes solid reduction during aerobic digestion of waste activated sludge: Feasibility for small-scale wastewater treatment plants. BIORESOURCE TECHNOLOGY 2024; 394:130224. [PMID: 38122993 DOI: 10.1016/j.biortech.2023.130224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/05/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
Aerobic digestion remains the preferred choice for small-scale wastewater treatment plants (WWTPs) in some developing countries, largely due to economic viability and operational simplicity. The escalating production of waste activated sludge (WAS) has prompted small-scale WWTPs to improve efficiency. To address this issue, this study employed an in-situ sulfite treatment as a non-intrusive method to augment aerobic digestion. With sulfite-enhanced solubilization and hydrolysis, a 3.6-fold increase in degradation was achieved. Both sludge dewatering properties and pathogens inactivation were improved. Microbial community analysis revealed a preferential enrichment of Actinobacteriota and Firmicutes during sulfite treatment. The desktop scaling-up estimation suggests that implementing this treatment yielded operational cost savings exceeding 40 %. In summary, in-situ sulfite treatment offers a cost-effective strategy for WAS management in small-scale WWTPs.
Collapse
Affiliation(s)
- Shichan Qin
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dandan Zhang
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan 430074, China; School of Urban Construction, Department of Water and Wastewater Engineering and Hubei Experimental Teaching Demonstration Center, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jiale Wang
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Muxiang Liang
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Chen
- School of Urban Construction, Department of Water and Wastewater Engineering and Hubei Experimental Teaching Demonstration Center, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Tiantian Zhang
- Changjiang Eco-environmental Protection Group Co., Ltd, Wuhan, China
| | - Xiejuan Lu
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liangbin Li
- Changjiang Eco-environmental Protection Group Co., Ltd, Wuhan, China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Feixiang Zan
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
21
|
Lenzuni M, Converti A, Casazza AA. From laboratory- to industrial-scale plants: Future of anaerobic digestion of olive mill solid wastes. BIORESOURCE TECHNOLOGY 2024; 394:130317. [PMID: 38218408 DOI: 10.1016/j.biortech.2024.130317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
In this review, the main properties of olive mill solid waste, the primary by-product of olive oil production, and its feasibility as a feedstock for anaerobic digesters operating at laboratory-, pilot- and industrial-scales are discussed in detail. Nutrient addition and thermal pretreatments were found to have the potential to address the challenges arising from the high carbon-to-nitrogen ratio, the low pH, and the high concentration of phenolic compounds. Furthermore, anaerobic co-digestion with different organic feedstocks has been identified as one of the most promising options to solve the aforementioned problems and the seasonality nature of olive waste, while improving the efficiency of anaerobic treatment plants that operate throughout the whole year. The insights generated from this study show co-digestion with wastes from animal farming to be the most environmentally and economically sustainable method for improving anaerobic digestion processes with olive mill solid waste.
Collapse
Affiliation(s)
- Martina Lenzuni
- Department of Civil, Chemical, and Environmental Engineering, University of Genoa, Italy; National Research Centre for Agricultural Technologies (CN AgriTech), Naples, Italy
| | - Attilio Converti
- Department of Civil, Chemical, and Environmental Engineering, University of Genoa, Italy; National Research Centre for Agricultural Technologies (CN AgriTech), Naples, Italy.
| | | |
Collapse
|
22
|
Wang Z, Ma J, Zhu L, He Q, Ke Q, Ke S. Enhanced sludge solubilization by a fluidized electrode: Granular activated carbon promoted electrochemical oxidation. BIORESOURCE TECHNOLOGY 2024; 394:130210. [PMID: 38113949 DOI: 10.1016/j.biortech.2023.130210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/29/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Electrochemical sludge pretreatment is receiving increasing attention because of its small footprint and higher environmental compatibility. However, the limited effective area of electrode plates and the low conductivity of sludge hinder the widespread application of electrochemical pretreatment. In this study, granular activated carbon (GAC) was employed to construct a fluidized electrode electrochemical system (FEE) to promote electrochemical pretreatment. Under the optimal operating parameters, the FEE system could effectively facilitate sludge decomposition, indicated by 126% increase in soluble chemical oxygen demand (SCOD) and 23.1% reduction in sludge volume. Mechanism study revealed that the addition of GAC significantly enhanced the conductivity of sludge, thereby promoting the oxidation capacity of FEE system. Furthermore, continuously generated H2O2 in FEE further promoted sludge solubilization. GAC offered an effectively, green and sustainable enhancement approach for sludge electrochemical pretreatment.
Collapse
Affiliation(s)
- Zhanhang Wang
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Jingwei Ma
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China.
| | - Liang Zhu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Qiulai He
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China.
| | - Qiang Ke
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035,China
| | - Shuizhou Ke
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
23
|
Dou C, Liu Y, Li S, Sun R, Zhao P. Effects of rhamnolipid pretreatment on DOM dissolution characteristics and anaerobic fermentation acid production of waste activated sludge. ENVIRONMENTAL TECHNOLOGY 2024; 45:1203-1214. [PMID: 36269674 DOI: 10.1080/09593330.2022.2139637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
In this paper, the change characteristics of DOM (dissolved organic matter) and acid production characteristics of anaerobic fermentation in waste activated sludge(WAS) pretreated with rhamnolipid (RL) were studied. The results showed that RL at the dose of 80 mg/gTS could significantly promote the disintegrating of EPS (extracellular polymers) and cell wall in WAS, and a large number of proteins and carbohydrates were dissolved. Three dimensional fluorescence parallel factor analysis showed that the addition of RL enhanced the dissolution and biodegradability of humus-like substances. LC-OCD (Liquid chromatography - organic carbon detection) analysis showed that RL promotes the dissolution of biodegradable components such as Biopolymer, Building Blocks and LMW Neutrals, and ensures the increase of VFA (volatile fatty acids) production in the process of anaerobic fermentation. Under the RL dose of 80 mg/gTS, the maximum VFA production of WAS was obtained at 108 h of anaerobic fermentation, which was 2699.39 mg/L. Acetic acid and propionic acid were the main components in the WAS fermentation broth pretreated by RL. The concentration of butyric acid increased with the increase of RL dose. The RL dose can significantly affect the composition of VFA in WAS fermentation broth.
Collapse
Affiliation(s)
- Chuanchuan Dou
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Yuling Liu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Shuaishuai Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Ruihao Sun
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Penghe Zhao
- Shaanxi Academy of Social Sciences, Xi'an, People's Republic of China
| |
Collapse
|
24
|
Chi B, Huang Y, Xiong Z, Tan J, Zhou W, Yang Z, Zhou K, Duan X, Chen A, Zha R, Gui K. Investigation of lysing excess sludge slurry using hydrolase secreting thermophilic bacterial communities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119562. [PMID: 37952379 DOI: 10.1016/j.jenvman.2023.119562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/22/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
Sludge reduction is a critical challenge in biological wastewater treatment. Combining excess sludge slurry lysis technology with traditional activated sludge processes is a promising approach for in-situ sludge reduction. Here, a strategy for excess sludge slurry lysis based on thermophilic bacterial communities (LTBC) was proposed. This investigation focused on the process of excess sludge slurry lysis dominated by thermophilic bacterial communities domesticated at different temperatures (55-75 °C). The evolution of sludge lysate was analyzed, and the mechanism of excess sludge slurry lysis under the action of thermophilic bacterial communities was elucidated through amplicon sequencing analysis. The results demonstrated that the aerobic thermophilic bacterial communities adapted to 75 °C exhibit the highest efficiency in sludge slurry lysis. During LTBC process, the removal efficiency of volatile suspended solids reached 53.9 ± 1.8% within 2 h, and 97.0 ± 1.0% of the protein and 96.0 ± 1.0% of the polysaccharide in the extracellular polymers was solubilized, and bacterial cell walls in sludge were disrupted. Fourier transform infrared spectroscopy and excitation-emission matrix spectroscopy of the sludge lysate demonstrated that the LTBC process was accompanied by humification process. The accumulation of humic acid primarily occurred at 55 °C and 65 °C, while fulvic acid occurred at 75 °C. The thermophilic bacterial communities adapted to 75 °C were dominated by Thermus and Thermaerobacter. Phylogenetic studies showed that the LTBC hydrolase system comprises enzymes related to protein hydrolysis, carbohydrate hydrolysis, and peptidoglycan hydrolysis, including metalopeptidase MepB, neutral α-glucosidase C, N-acetyl Muramyl-L-alanine amidase, and others enzymes. These results provide a theoretical basis for the application of LTBC technology in the reduction of sludge which generated in traditional waste water activated sludge processes.
Collapse
Affiliation(s)
- Baoyan Chi
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, 210096, PR China
| | - Ying Huang
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, 210096, PR China.
| | - Zhenfeng Xiong
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, 210096, PR China
| | - Jiali Tan
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, 210096, PR China
| | - Weidong Zhou
- Nanjing Water Group Co., Ltd., Nanjing, 210002, PR China
| | - Zhuo Yang
- Central & South China Municipal Engineering Design and Research Institute Co., Ltd., Wuhan, 430010, PR China
| | - Kemei Zhou
- Nanjing Water Group Co., Ltd., Nanjing, 210002, PR China
| | - Xinxin Duan
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China
| | - Ao Chen
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China
| | - Rong Zha
- Zhenjiang Esther Environment Protection Technology Co., Ltd., Jurong City, 212400, PR China
| | - Keting Gui
- Solid Waste Treatment and Resource Recycle Research Laboratory, Department of Environmental Science and Technology, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China
| |
Collapse
|
25
|
Zupanc M, Humar BB, Dular M, Gostiša J, Hočevar M, Repinc SK, Krzyk M, Novak L, Ortar J, Pandur Ž, Stres B, Petkovšek M. The use of hydrodynamic cavitation for waste-to-energy approach to enhance methane production from waste activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119074. [PMID: 37804635 DOI: 10.1016/j.jenvman.2023.119074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/30/2023] [Accepted: 08/30/2023] [Indexed: 10/09/2023]
Abstract
Anaerobic digestion in wastewater treatment plants converts its unwanted end product - waste activated sludge into biogas. Even if the process is well established, pre-treatment of the sludge can further improve its efficiency. In this study, four treatment regimes for increasing methane production through prior sludge disintegration were investigated using lab-scale cavitation generator and real sludge samples. Three different cavitating (attached cavitation regime, developed cloud shedding cavitation regime and cavitation in a wake regime) and one non-cavitating regime at elevated static pressure were studied in detail for their effectiveness on physical and chemical properties of sludge samples. Volume-weighted mean diameter D[4,3] of sludge's particles decreased by up to 92%, specific surface area increased by up to 611%, while viscosity (at a shear rate of 3.0 s-1) increased by up to 39% in the non-cavitating and decreased by up to 24% in all three cavitating regimes. Chemical changes were more pronounced in cavitating regimes, where released soluble chemical oxygen demand (sCOD) and increase of dissolved organic matter (DOM) compounds by up to 175% and 122% were achieved, respectively. Methane production increased in all four cases, with the highest increase of 70% corresponding to 312 mL CH4 g-1 COD. However, this treatment was not particularly efficient in terms of energy consumption. The best energy balance was found for the regime with a biochemical methane potencial increase of 43%.
Collapse
Affiliation(s)
- Mojca Zupanc
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | | | - Matevž Dular
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Jurij Gostiša
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Hočevar
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Sabina Kolbl Repinc
- Faculty of Civil and Geodetic Engineering, University of Ljubljana, Ljubljana, Slovenia; National Institute of Chemistry, Hajdrihova Ulica 19, 1000 Ljubljana Slovenia
| | - Mario Krzyk
- Faculty of Civil and Geodetic Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Lovrenc Novak
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Ortar
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Žiga Pandur
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Blaž Stres
- Faculty of Civil and Geodetic Engineering, University of Ljubljana, Ljubljana, Slovenia; National Institute of Chemistry, Hajdrihova Ulica 19, 1000 Ljubljana Slovenia; Jozef Stefan Institute, Department of Automation, Biocybernetics and Robotics, Ljubljana, Slovenia
| | - Martin Petkovšek
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
26
|
Pang H, Xu Y, Zhang Y, Wei Q, Xu D, Liu J, Lu J. Endogenous biopolymer hydrolysis for enhancing short-chain fatty acids recovery from excess sludge: Combination of lysozyme-catalyzing and cation exchange resin-mediated metal regulation. CHEMOSPHERE 2023; 341:140102. [PMID: 37683954 DOI: 10.1016/j.chemosphere.2023.140102] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
In decades, anaerobic fermentation with short-chain fatty acids (SCFAs) recovery from excess sludge have attained rising attention. However, rigid particulate organic matter (POMs) structure with slow hydrolysis limited anaerobic fermentation performance of excess sludge. Remarkable sludge hydrolysis performance was supposed to be achievable by the synchronous EPS repture and microbial cell lysis. This study clarified the improvement of overall anaerobic fermentation performance by combination treatment of lysozyme (Lyso) catalysis and metal regulation (MR). The Lyso + MR treatment triggered EPS rupture by protein structure deflocculation while catalyzing microbial cell lysis, which promoted massive extracellular and intracellular POMs hydrolysis. As a result, a significant amount of SCOD (5646.67 mg/L) was produced. Such endogenous organic matters hydrolysis led to considerable SCFAs accumulation (3651.14 mg COD/L) through 48-h anaerobic fermentation at 1.75 g/g SS cation-exchange resin and Lyso dosage of 10% (w/w), which was 5.945 times higher than that in the control. Additionally, it suggested that most of the recovered SCFAs remained in fermentative liquid after chemical conditioning and mechanical dewatering towards solid-liquid separation, which provided considerable economic benefit of 363.6-1059.1 CNY/ton SS.
Collapse
Affiliation(s)
- Heliang Pang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| | - Yumeng Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yuyao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Qiao Wei
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Dong Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jinxuan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jinsuo Lu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
27
|
Ozyildiz G, Zengin GE, Güven D, Cokgor E, Özdemir Ö, Hauduc H, Takács I, Insel G. Restructuring anaerobic hydrolysis kinetics in plant-wide models for accurate prediction of biogas production. WATER RESEARCH 2023; 245:120620. [PMID: 37717326 DOI: 10.1016/j.watres.2023.120620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/27/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
In this study, the effect of anaerobic hydrolysis rate on biogas production was investigated with mesophilic digesters in seven large-scale wastewater treatment plants. A linear correlation was determined between the percentage of primary sludge mass in the total sludge fed to the digester and the overall anaerobic hydrolysis rate. The anaerobic hydrolysis rate of primary sludge was determined to be three times higher than that of biological sludge. The reduction factors for anaerobic hydrolysis (ηHYD,ana) were identified in the range of 0.11-0.30 which is lower compared to the recommended range (0.30-0.50) given in the literature. This study proposes a new model approach where anaerobic degradation kinetics of influent originated (XB) and decay originated (XB,E) particulate biodegradable organics are separated. Current plant-wide models with a single kinetic expression required recalibration of the model for calculating biogas flowrate for each treatment facility with different primary and secondary sludge ratios fed to the digesters. The new model structure is able to predict biogas production of all wastewater treatment plants without any recalibration effort by segregating degradation kinetics of two particulate biodegradable organic fractions (XB, XB,E).
Collapse
Affiliation(s)
- Goksin Ozyildiz
- Istanbul Technical University, Environmental Engineering Department, Maslak, Istanbul, 34469, Türkiye.
| | - Gulsum Emel Zengin
- Istanbul Technical University, Environmental Engineering Department, Maslak, Istanbul, 34469, Türkiye
| | - Didem Güven
- ITU Nova TTO, Istanbul Technical University, Maslak, Istanbul, 34469, Türkiye
| | - Emine Cokgor
- Istanbul Technical University, Environmental Engineering Department, Maslak, Istanbul, 34469, Türkiye
| | - Özgür Özdemir
- Kayseri Water and Sewerage Administration, Kayseri, Türkiye
| | | | - Imre Takács
- Dynamita, 2015 Route d'Aiglun, Sigale, France
| | - Güçlü Insel
- Istanbul Technical University, Environmental Engineering Department, Maslak, Istanbul, 34469, Türkiye
| |
Collapse
|
28
|
Zhang Y, Deng J, Xiao X, Li YY, Liu J. Insights on pretreatment technologies for partial nitrification/anammox processes: A critical review and future perspectives. BIORESOURCE TECHNOLOGY 2023:129351. [PMID: 37336448 DOI: 10.1016/j.biortech.2023.129351] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
For almost 20 years, partial nitrification-anammox (PN/A) has been the subject of intensive study and development. Pretreatment of wastewater for PN/A is crucial because the inhibitory substances in the influent may reduce the performance of PN/A. In this review, the current PN/A pretreatment technologies are comprehensively summarized. The selection of pretreatment technology for PN/A depending on the source of the wastewater and its main characteristics (high-strength wastewater or municipal wastewater, organic matters, suspended solids). Comparison of pretreatment technologies through multiple perspectives including wastewater characteristics, the objectives of the wastewater treatment (treating requirement, energy and resource recovery demand), reactor configuration of PN/A. Based on the discussion, two integrated processes, HRAS + one-stage PN/A and advanced AD + two-stage PN/A, are recommended as the preferred processes for treating municipal wastewater and wastewater with a high-strength ammonium, respectively. This review aims to provide guidance for future research and development of PN/A.
Collapse
Affiliation(s)
- Yixuan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jiayuan Deng
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Xiangmin Xiao
- Cangzhou Water Supply and Drainage Group Company Limited, 15 West Jiuhe Road, Cangzhou, Hebei Province 061001, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|
29
|
Kim S, Lee C, Kim J, Young Kim J. Feasibility of thermal hydrolysis pretreatment to reduce hydraulic retention time of anaerobic digestion of cattle manure. BIORESOURCE TECHNOLOGY 2023:129308. [PMID: 37311528 DOI: 10.1016/j.biortech.2023.129308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023]
Abstract
In this study, we investigated the potential of thermal hydrolysis pretreatment (THP) to reduce the hydraulic retention times (HRTs) in the anaerobic digestion (AD) of cattle manure (CM). The AD with THP (THP AD) outperformed the control AD by over 1.4 times in terms of methane yield and volatile solid removal, even under the same HRT conditions. Remarkably, even when the THP AD was operated with an HRT of 13.2 d, it performed better than the control AD operated with an HRT of 36.0 d. In THP AD, there was a shift in the dominant archaeal genus responsible for methane generation from Methanogranum (at HRT of 36.0 - 13.2 d) to Methanosaeta (at HRT of 8.0 d). However, decreasing HRT, and applying THP resulted in reduced stability, accompanied by increased inhibitory compounds, and changes in the microbial community. Further confirmation is required to assess the long-term stability of THP AD.
Collapse
Affiliation(s)
- Seunghwan Kim
- Department of Civil & Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Changmin Lee
- Department of Civil & Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Junhyeon Kim
- Department of Civil & Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jae Young Kim
- Department of Civil & Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
30
|
Lin Q, Dong X, Xi S, Cheng B, Zan F, Ma J, Liu X, Hao T, Guo G. Optimizing waste activated sludge disintegration by investigating multiple electrochemical pretreatment conditions: Performance, mechanism and modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:162025. [PMID: 36739035 DOI: 10.1016/j.scitotenv.2023.162025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/14/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The complex and rigid floc structure often limits the reutilization of waste activated sludge (WAS). Electrochemical pretreatment (EPT) is one of the most effective technologies that can enhance WAS disintegration. But a comprehensive investigation into how multiple EPT conditions work was rarely reported. The study evaluated the effects of multiple EPT conditions, i.e., different electrolytes (NaCl, Na2SO4, and CaCl2), electrolytes dosage (0 g/L, 0.5 g/L, 1.0 g/L, and 3.0 g/L), EPT current (0 A, 0.5 A, 1.0 A, and 3.0 A) and EPT time (0 min, 30 min, 60 min, and 90 min) on WAS disintegration. The results showed that NaCl was outstanding from other electrolytes in promoting more WAS disintegration. Besides, a relatively higher NaCl dosage, a higher EPT current, and a longer EPT time promoted more reactive chlorine species (RCS), thus enhancing WAS disintegration in terms of extracellular polymeric substances (EPS) structure destruction and biodegradable organic matter release. After EPT for 60 min at NaCl dosage of 1.0 g/L and current of 1.0 A, the EPS multilayer structure destruction, biodegradable organic matters release, and soluble chemical oxygen demand (SCOD) increase in the supernatant were enhanced by 17.2 %, 130.5 %, and 238.7 %, respectively. Then a predictive quadratic model was established and the impact significance of the above EPT factors for enhancing WAS disintegration followed dosage of NaCl > current > EPT time. Furthermore, response surface methodology (RSM) suggested NaCl dosage of 2.75 g/L, current of 2.0 A, and EPT time of 30 min were the optimal EPT conditions, bringing a 42.0 % increase in the net economic benefit of WAS treatment compared to without EPT.
Collapse
Affiliation(s)
- Qingshan Lin
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
| | - Xinlei Dong
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
| | - Shihao Xi
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
| | - Boyi Cheng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
| | - Feixiang Zan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
| | - Jie Ma
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| | - Xiaoming Liu
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, University of Macau, Macau
| | - Gang Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China.
| |
Collapse
|
31
|
Han Z, Shao B, Lei L, Pang R, Wu D, Tai J, Xie B, Su Y. The role of pretreatments in handling antibiotic resistance genes in anaerobic sludge digestion - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161799. [PMID: 36709893 DOI: 10.1016/j.scitotenv.2023.161799] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/07/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Sludge is among the most important reservoirs of antibiotic resistance genes (ARGs), which would cause potential environmental risks with the sludge utilization. Currently, anaerobic digestion (AD) is effective to simultaneously realize the resource recovery and pollutants removal, including antibiotic resistance genes (ARGs), and various pretreatments are used to enhance the performance. Recently, plentiful publications have focused on the effects of pretreatment on ARGs removal, but the contradictory results are often obtained, and a comprehensive understanding of the research progress and mechanisms is essential. This study summarizes various pretreatment techniques for improving AD efficiency and ARGs reduction, investigates promising performance in ARGs removal when pretreatments combined with AD, and analyzes the potential mechanisms accounting for ARGs fates. The results showed that although thermal hydrolysis pretreatment showed the best performance in ARGs reduction during the pretreatment process, the significant rebound of ARGs would occur in the subsequent AD process. Conversely, ozone pretreatment and alkali pretreatment had no significant effect on ARGs abundance in the pretreatment stage, but could enhance ARGs removal by 15.6-24.3 % in the subsequent AD. Considering the efficiency and economic effectiveness, free nitrous acid pretreatment would be a promising and feasible option, which could enhance methane yield and ARGs removal by up to 27 % and 74.5 %, respectively. Currently, the factors determining ARGs fates during pretreatment and AD processes included the shift of microbial community, mobile genetic elements (MGEs), and environmental factors. A comprehensive understanding of the relationship between the fate of ARGs and pretreatment technologies could be helpful for systematically evaluating various pretreatments and facilitating the development of emerging and effective pretreatment techniques. Moreover, given the effectiveness, economic efficiency and environmental safety, we called for the applications of modern analysis approaches such as metagenomic and machine learning on the optimization of pretreatment conditions and revealing underlying mechanisms.
Collapse
Affiliation(s)
- Zhibang Han
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Boqun Shao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Lang Lei
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Ruirui Pang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jun Tai
- Shanghai Environmental Sanitation Engineering Design Institute Co., Ltd., Shanghai 200232, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China.
| |
Collapse
|
32
|
Dar RA, Phutela UG. Improvement of Asterarcys quadricellulare biomass solubilization and subsequent biogas production via pretreatment approaches: structural changes and kinetic modeling evaluation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58450-58465. [PMID: 36977882 DOI: 10.1007/s11356-023-26555-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/15/2023] [Indexed: 05/10/2023]
Abstract
This study investigated the effect of enzymatic and hydrothermal pretreatment approaches on the solubilization of organic matter, structure, and biogas yield from microalgal biomass. The soluble chemical oxygen demand (sCOD) concentration increased by 1.21-3.30- and 5.54-6.60-fold compared to control by enzymatic and hydrothermal pretreatments respectively. The hydrothermal pretreatment affected the structural changes in the microalgal biomass markedly; nonetheless, increased enzymatic concentration also had a definite effect on it as determined by qualitative approaches like scanning electron microscopy and Fourier transform infrared spectroscopy. Also, the hydrothermal pretreatment (100 °C for 30 min) resulted in the highest biogas production potential (P) of 765.37 mLg-1 VS at a maximum biogas production rate (Rm) of 22.66 mLg-1 day-1 with a very short lag phase (λ) of 0.07 days. The biogas production of pretreated microalgal biomass particularly at higher enzyme dose (20%, 24 h) and higher hydrothermal pretreatment temperature (120 °C, 30 min) showed a significant but weak correlation (R = 0.53) with sCOD, thus demonstrating that the less organic matter was used up for the biogas production. The modified Gompertz model explained the anaerobic digestion of microalgal biomass more accurately and had a better fit to the experimental data comparatively because of the low root mean square error (3.259-16.728), residual sum of squares (78.887-177.025), and Akaike's Information Criterion (38.605-62.853).
Collapse
Affiliation(s)
- Rouf Ahmad Dar
- Department of Microbiology, Punjab Agricultural University, Ludhiana, 141004, Punjab, India.
| | - Urmila Gupta Phutela
- Department of Microbiology, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
- Department of Renewable Energy Engineering, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| |
Collapse
|
33
|
Devos P, Filali A, Grau P, Gillot S. Sidestream characteristics in water resource recovery facilities: A critical review. WATER RESEARCH 2023; 232:119620. [PMID: 36780748 DOI: 10.1016/j.watres.2023.119620] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/12/2022] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
This review compiles information on sidestream characteristics that result from anaerobic digestion dewatering (conventional and preceded by a thermal hydrolysis process), biological and primary sludge thickening. The objective is to define a range of concentrations for the different characteristics found in literature and to confront them with the optimal operating conditions of sidestream processes for nutrient treatment or recovery. Each characteristic of sidestream (TSS, VSS, COD, N, P, Al3+, Ca2+, Cl-, Fe2+/3+, Mg2+, K+, Na+, SO42-, heavy metals, micro-pollutants and pathogens) is discussed according to the water resource recovery facility configuration, wastewater characteristics and implications for the recovery of nitrogen and phosphorus based on current published knowledge on the processes implemented at full-scale. The thorough analysis of sidestream characteristics shows that anaerobic digestion sidestreams have the highest ammonium content compared to biological and primary sludge sidestreams. Phosphate content in anaerobic digestion sidestreams depends on the type of applied phosphorus treatment but is also highly dependent on precipitation reactions within the digester. Thermal Hydrolysis Process (THP) mainly impacts COD, N and alkalinity content in anaerobic digestion sidestreams. Surprisingly, the concentration of phosphate is not higher compared to conventional anaerobic digestion, thus offering more attractive recovery possibilities upstream of the digester rather than in sidestreams. All sidestream processes investigated in the present study (struvite, partial nitrification/anammox, ammonia stripping, membranes, bioelectrochemical system, electrodialysis, ion exchange system and algae production) suffer from residual TSS in sidestreams. Above a certain threshold, residual COD and ions can also deteriorate the performance of the process or the purity of the final nutrient-based product. This article also provides a list of characteristics to measure to help in the choice of a specific process.
Collapse
Affiliation(s)
| | - Ahlem Filali
- Université Paris-Saclay, INRAE, UR PROSE, F-92761, Antony, France
| | - Paloma Grau
- Ceit and Tecnun, Manuel de Lardizabal 15, 20018, San Sebastian, Spain
| | | |
Collapse
|
34
|
Pan X, Zou X, He J, Pang H, Zhang P, Zhong Y, Ding J. Enhancing short-chain fatty acids recovery through anaerobic fermentation of waste activated sludge with cation exchange resin assisted lysozyme pretreatment: Performance and mechanism. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
35
|
Maamri S, Moussa A, Yacine M. Development of a Statistical Model to Predict Methane Production from Waste Activated Sludge Co-Digested with Olive Mill Wastewater and Cattle Dung by Response Surface Methodology. CHEMISTRY & CHEMICAL TECHNOLOGY 2023. [DOI: 10.23939/chcht17.01.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Nowadays, population growth is likely to lead to a wide variety of biomass wastes generation from the diversified human, industrial, and agricultural activities. Anaerobic digestion is mostly applied to manage biomass wastes and mitigate a huge spectrum of environmental damages. This paper aims to enhance the anaerobic digestion efficiency of multicomponent substrates, using a mixture of waste activated sludge (WAS), olive mill wastewater (OMW), and cattle manure (CM). A Response Surface Methodology is employed in experimental design to determine individual and interactive effects on methane yield and chemical oxygen demand reduction. After numerical optimization using Design Expert®, the optimum values of the test factors in actual were as follows: initial pH = 8, COD/N ratio = 47, 42, CM/WAS-OMW ratio = 0.352, TS = 42.94 g/L. The obtained results indicate that anaerobic co-digestion performance could be achieved by optimising substrate composition to assure a larger microbial synergistic effect.
Collapse
|
36
|
Saha M, Srinivasan A, Liao PH, Lo KV. Evaluation of impact of sludge types and solids content on sludge treatment using microwave enhanced advanced oxidation process. ENVIRONMENTAL TECHNOLOGY 2023; 44:1114-1124. [PMID: 34704537 DOI: 10.1080/09593330.2021.1994655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
The microwave enhanced advanced oxidation process (MW-AOP) has been applied to pre-treat different sludge types and high solids content. Secondary sludge not only had the highest solids and nutrient content but also yielded higher treatment efficiency than primary or mixed sludge. In the case of secondary sludge with 4% total solids (TS), the total suspended solids (TSS) concentration was reduced by 32% while soluble chemical oxygen demand concentration increased from 1% to 40% after treatment at 110°C. A high level of nutrient release was also achieved; about 65% total phosphate (TP) solubilized at 110°C. The degree of secondary sludge disintegration was dictated by temperature and hydrogen peroxide dosage. The optimal operating temperature for the system was 110°C, and sludge containing TS up to 8% was treated effectively. Secondary sludge with 8% TS had a TSS reduction of 41% after treatment at 110°C while COD solubilization was about 45%; about 55% TP was solubilized at 10 min holding time. Treatment of sludge with higher solids content would allow for handling larger amounts of sludge at a given period and reduce heating cost per unit of treated sludge. The inter-relationship between the degree of sludge disintegration and changes in chemical and physical properties was also clearly demonstrated here. The treated sludge would be an ideal substrate for anaerobic digestion or phosphorous recovery processes. High levels of nutrients (phosphorus and nitrogen) and metal release, and solids disintegration from sludge containing high solids content would make subsequent resource recovery processes more effective and economical.
Collapse
Affiliation(s)
- Moutoshi Saha
- Department of Civil Engineering, University of British Columbia, Vancouver, Canada
| | - Asha Srinivasan
- Department of Civil Engineering, University of British Columbia, Vancouver, Canada
| | - Ping Huang Liao
- Department of Civil Engineering, University of British Columbia, Vancouver, Canada
| | - Kwang Victor Lo
- Department of Civil Engineering, University of British Columbia, Vancouver, Canada
| |
Collapse
|
37
|
Wang C, Wang Y, Chen Z, Wei W, Chen X, Mannina G, Ni BJ. A novel strategy for efficiently transforming waste activated sludge into medium-chain fatty acid using free nitrous acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160826. [PMID: 36502988 DOI: 10.1016/j.scitotenv.2022.160826] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The global energy crisis is approaching due to rapid population growth and overexploitation of fossil fuels. Therefore, the development and use of new and renewable energy sources is already in the extreme urgency. This work developed a novel technology to efficiently produce renewable liquid bioenergy from discarded wastes, by effectively transforming sewage sludge into high-value medium chain fatty acids (MCFA). The maximum MCFA yield in the anaerobic sludge fermentation was revealed to be 10.6 times of control when utilizing sewage sludge with 1.78 mg-N/L free nitrous acid (FNA) pretreatment. The carbon flow from sewage sludge into MCFA in the fermentation system was significantly enhanced with appropriate levels (0.71-1.78 mg-N/L) of FNA pretreatment. Compared to FNA pretreatment, however, its direct addition severely inhibited total products (i.e., carboxylates and complex alcohols) generation because of the toxicity on live cells (decreasing to 8.3 %-13.9 %) in sludge. Kinetic models (one-substrate and two-substrate) were utilized to investigate the mechanism of MCFA promotion by FNA pretreatment on anaerobic sludge fermentation, in which linear relationship analysis between FNA-derived organic release and the fitted parameters were also performed. The results indicated that the conversion of refractory materials into rapidly bioavailable substrates for MCFA production contributed to increasing MCFA production rate and potential. Moreover, the relative abundances of functional microorganisms related to hydrolysis-acidification and chain elongation process increased under FNA pretreatment, further favoring the MCFA production. This study provides a novel and effective technology of sludge energy recovery that can achieve the next-generation sustainable sewage sludge management.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yun Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Zhijie Chen
- School of Civil and Environmental Engineering, Centre for Technology in Water and Wastewater, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Wei Wei
- School of Civil and Environmental Engineering, Centre for Technology in Water and Wastewater, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fujian 350116, China
| | - Giorgio Mannina
- Engineering Department, Palermo University, Ed. 8 Viale delle Scienze, 90128 Palermo, Italy
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, Centre for Technology in Water and Wastewater, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
38
|
Bauten W, Nöth M, Kurkina T, Contreras F, Ji Y, Desmet C, Serra MÁ, Gilliland D, Schwaneberg U. Plastibodies for multiplexed detection and sorting of microplastic particles in high-throughput. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160450. [PMID: 36435257 DOI: 10.1016/j.scitotenv.2022.160450] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/28/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Sensitive high-throughput analytic methodologies are needed to quantify microplastic particles (MPs) and thereby enable routine monitoring of MPs to ultimately secure animal, human, and environmental health. Here we report a multiplexed analytical and flow cytometry-based high-throughput methodology to quantify MPs in aqueous suspensions. The developed analytic MPs-quantification platform provides a sensitive as well as high-throughput detection of MPs that relies on the material binding peptide Liquid Chromatography Peak I (LCI) conjugated to Alexa-fluorophores (LCIF16C-AF488, LCIF16C-AF594, and LCIF16C-AF647). These fluorescent material-binding peptides (also termed plastibodies) were used to fluorescently label polystyrene MPs, whereas Alexa-fluorophores alone exhibited a negligible background fluorescence. Mixtures of polystyrene MPs that varied in size (500 nm to 5 μm) and varied in labeled populations were analyzed and sorted into distinct populations reaching sorting efficiencies >90 % for 1 × 106 sorted events. Finally, a multiplexed quantification and sorting with up to three plastibodies was successfully achieved to validate that the combination of plastibodies and flow cytometry is a powerful and generally applicable methodology for multiplexed analysis, quantification, and sorting of microplastic particles.
Collapse
Affiliation(s)
- Wiwik Bauten
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Maximilian Nöth
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Tetiana Kurkina
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Francisca Contreras
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Yu Ji
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Cloé Desmet
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027 Ispra, VA, Italy.
| | - Miguel-Ángel Serra
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027 Ispra, VA, Italy.
| | - Douglas Gilliland
- European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027 Ispra, VA, Italy.
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; DWI - Leibniz-Institut für Interaktive Materialien e.V., Forckenbeckstraße 50, 52056 Aachen, Germany.
| |
Collapse
|
39
|
Kadam R, Khanthong K, Park B, Jun H, Park J. Realizable wastewater treatment process for carbon neutrality and energy sustainability: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116927. [PMID: 36473349 DOI: 10.1016/j.jenvman.2022.116927] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/29/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Despite a quick shift of global goals toward carbon-neutral infrastructure, activated sludge based conventional systems inhibit the Green New Deal. Here, a municipal wastewater treatment plant (MWWTP) for carbon neutrality and energy sustainability is suggested and discussed based on realizable technical aspects. Organics have been recovered using variously enhanced primary treatment techniques, thereby reducing oxygen demand for the oxidation of organics and maximizing biogas production in biological processes. Meanwhile, ammonium in organic-separated wastewater is bio-electrochemically oxidized to N2 and reduced to H2 under completely anaerobic conditions, resulting in the minimization of energy requirements and waste sludge production, which are the main problems in activated sludge based conventional processes. The anaerobic digestion process converts concentrated primary sludge to biomethane, and H2 gas recovered from nitrogen upgrades the biomethane quality by reducing carbon dioxide in biogas. Based on these results, MWWTPs can be simplified and improved with high process and energy efficiencies.
Collapse
Affiliation(s)
- Rahul Kadam
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Kamonwan Khanthong
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Byeongchang Park
- Department of Environmental Engineering, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Hangbae Jun
- Department of Environmental Engineering, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jungyu Park
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
40
|
A Review on Rotary Generators of Hydrodynamic Cavitation for Wastewater Treatment and Enhancement of Anaerobic Digestion Process. Processes (Basel) 2023. [DOI: 10.3390/pr11020514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
The issue of ever-increasing amounts of waste activated sludge (WAS) produced from biological wastewater treatment plants (WWTPs) is pointed out. WAS can be effectively reduced in the anaerobic digestion (AD) process, where methanogens break down organic matter and simultaneously produce biogas in the absence of oxygen, mainly methane and CO2. Biomethane can then be effectively used in gas turbines to produce electricity and power a part of WWTPs. Hydrodynamic cavitation (HC) has been identified as a potential technique that can improve the AD process and enhance biogas yield. Rotary generators of hydrodynamic cavitation (RGHCs) that have gained considerable popularity due to their promising results and scalability are presented. Operation, their underlying mechanisms, parameters for performance evaluation, and their division based on geometry of cavitation generation units (CGUs) are presented. Their current use in the field of wastewater treatment is presented, with the focus on WAS pre/treatment. In addition, comparison of achieved results with RGHCs relevant to the enhancement of AD process is presented.
Collapse
|
41
|
Pang H, Zhang Y, Wei Q, Jiao Q, Pan X, He J, Tian Y. Enhancing volatile fatty acids accumulation through anaerobic co-fermentation of excess sludge and sodium citrate: Divalent cation chelation and carbon source supplement. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
42
|
Zheng K, Wang Y, Wang X, Zhu T, Chen X, Zhao Y, Sun P, Tong Y, Liu Y. Enhanced methane production from anaerobic digestion of waste activated sludge by combining ultrasound with potassium permanganate pretreatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159331. [PMID: 36220480 DOI: 10.1016/j.scitotenv.2022.159331] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/19/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The influence of ultrasound (US) and potassium permanganate (KMnO4) co-pretreatment on anaerobic digestion of waste activated sludge (WAS) was investigated in this survey. Results showed that KMnO4 (0.3 g/g TSS) cooperated with US (1 W/mL, 15 min) pretreatment significantly increased the cumulative methane yield to 174.44 ± 3.65 mL/g VS compared to the control group (108.72 ± 2.56 mL/g VS), solo US (125.39 ± 2.56 mL/g VS), and solo KMnO4 pretreatment group (160.83 ± 1.61 mL/g VS). Mechanistic investigation revealed that US combined with KMnO4 pretreatment effectively disrupted the structure of extracellular polymeric substances and cell walls by generating reactive radicals, accelerating the release of organics and hydrolytic enzymes as well as improving the biodegradability of soluble organics. Modeling analysis illustrated that the biochemical methane potential and hydrolysis rate of WAS were enhanced under US + KMnO4 pretreatment. Microbial community distribution indicated that the co-pretreatment of US and KMnO4 elevated the total relative abundance of functional microorganisms associated with anaerobic digestion (22.01 %) compared to the control (10.69 %), US alone (12.24 %) and KMnO4 alone (16.20 %).
Collapse
Affiliation(s)
- Kaixin Zheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaomin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fujian 350116, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
43
|
Hsieh CY, Wu YC, Mudigonda S, Dahms HU, Wu MC. Assessing the Effects of Ozonation on the Concentrations of Personal Care Products and Acute Toxicity in Sludges of Wastewater Treatment Plants. TOXICS 2023; 11:75. [PMID: 36668801 PMCID: PMC9865304 DOI: 10.3390/toxics11010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The aim of this study was to understand the distribution of the personal care products nonylphenol (NP), triclosan (TCS), benzophenone-3 (BP-3), and caffeine in the sludges from three wastewater treatment plants (WWTP-A, -B, and -C) in southern Taiwan. The four compounds were analyzed from activated sludge and dewatered sludge samples, and then the samples were treated with pressure-assisted ozonation under different conditions and removal efficiencies. All four target compounds were detected, especially NP, which was detected in the highest concentrations in the activated sludges of WWTP-A and dewatered sludges of WWTP-C at 17.19 ± 4.10 and 2.41 ± 1.93 µg/g, respectively. TCS was dominant in dewatered sludges from WWTP-B, and the highest detected concentration was 13.29 ± 6.36 µg/g. Removals of 70% and 90% were attained under 150 psi at 40 cycles for NP and TCS, respectively, with 5 min of ozonation reaction time, a solid/water ratio of 1:20, and 2% ozone concentration. Ecological risk quotients (RQs) were calculated by the ratios of the 10-day Hyalella azteca (freshwater amphipod) LC50 to the environmental concentrations of the target compounds. High RQs were found to be >10 for NP, TCS, and BP-3 in untreated sludges, resulting in significant ecological risks to aquatic organisms when the sludges are arbitrarily disposed. However, the toxic effects on Hyalella azteca were not significantly different among ozone sludge treatments. The reason for this may be related to the formation of toxic oxidation by-products and incomplete mineralization of organic compounds. This could also be true for unknown intermediates. The relatively high detection frequencies of these emerging compounds in WWTP sludges requires further applications and treatments.
Collapse
Affiliation(s)
- Chi-Ying Hsieh
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- Center for Water Resources Education and Research, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
| | - Ya-Chin Wu
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Sunaina Mudigonda
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Hans-Uwe Dahms
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Meng-Chun Wu
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| |
Collapse
|
44
|
Segura Y, Molina R, Rodríguez I, Hülsen T, Batstone D, Monsalvo V, Martínez F, Melero JA, Puyol D. Improvement of biogas production and nitrogen recovery in anaerobic digestion of purple phototrophic bacteria by thermal hydrolysis. BIORESOURCE TECHNOLOGY 2023; 367:128250. [PMID: 36334866 DOI: 10.1016/j.biortech.2022.128250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Purple phototrophic bacteria (PPB) are a novel driver to recover organics and nutrients from wastewater by assimilative growth. Depending on the source, assimilated resources from the PPB biomass can still be recovered after a releasing step. Anaerobic digestion (AD) releases carbonand nutrients, but the release is incomplete. Thermal hydrolysis (TH) as a pretreatment before AD improves the digestibility, release, and subsequent recovery potentials. This work determines the effects of TH in batch and continuous modes regarding methane potential, nutrients' release efficiencies, volatile solids destruction, degradability, and hydrolysis rates. Continuous runs over 165 days (d) confirmed enhanced recovery potentials, achieving up to 380 LCH4/kgVS (83 % solids destruction) and 73 % N release, respectively. The TH pretreatment is energy-intensive, but with appropriate heat recovery and increased methane production in the AD of the pretreated biomass, a combined configuration is energy positive.
Collapse
Affiliation(s)
- Y Segura
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, ESCET, Madrid 28933, Spain.
| | - R Molina
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, ESCET, Madrid 28933, Spain
| | - I Rodríguez
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, ESCET, Madrid 28933, Spain
| | - T Hülsen
- Advanced Water Management Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - D Batstone
- Advanced Water Management Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - V Monsalvo
- Department of Innovation and Technology, FCC AQUALIA, Madrid 28050, Spain
| | - F Martínez
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, ESCET, Madrid 28933, Spain
| | - J A Melero
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, ESCET, Madrid 28933, Spain
| | - D Puyol
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, ESCET, Madrid 28933, Spain
| |
Collapse
|
45
|
Zhou J, Zhang H, Liu J, Gong L, Yang X, Zuo T, Zhou Y, Wang J, You X, Jia Q, Wang L. Effects of Fe 3O 4 nanoparticles on anaerobic digestion enzymes and microbial community of sludge. ENVIRONMENTAL TECHNOLOGY 2023; 44:68-81. [PMID: 34330190 DOI: 10.1080/09593330.2021.1963324] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Fe3O4 nanoparticles (NPs) have potential effects on the anaerobic digestion of excess sludge. The effects of different concentrations of Fe3O4 NPs (0, 100, 200, 400 and 600 mg/L) on enzymes and microorganisms in anaerobic digestion were studied to explore the mechanism of the effect of Fe3O4 NPs on anaerobic digestion. The results showed that 100, 200 and 400 mg/L Fe3O4 NPs could promote anaerobic digestion, and 200 mg/L Fe3O4 NPs had the most obvious promoting effect. The activities of protease, cellulase, dehydrogenase, acetic kinase and coenzyme F420 in the 200 mg/L Fe3O4 NPs group reached 120 U/mg VS, 71.75 U/g VS, 135 U/mL, 94 mol/L, 1.37 umol/g VSS, respectively, which were 3.8, 1.5, 1.2, 1.2 and 1.6 times of the blank group, respectively. However, when the concentration of Fe3O4 NPs reached 600 mg/L, the activities of cellulase, dehydrogenase and acetic kinase were lower than those of the blank group, and anaerobic digestion was inhibited. The above conclusions can also be confirmed by high-throughput sequencing. The abundance of longilinea and ornatilina in the 200 mg/L Fe3O4 NPs group was 8.8% and 4.1% respectively, and methanthrix abundance was 69%, which was more conducive to decomposition acetic acid into CH4.Highlights To explore the effects of Fe3O4 NPS on enzyme activity and microorganisms.200mg/L Fe3O4 NPs could significantly promote the activity of enzyme.200mg/L Fe3O4 NPs could promote the diversity of bacterial and archaeal communities.600mg/L Fe3O4 NPs could inhibit some enzyme activities and microbial community diversity.
Collapse
Affiliation(s)
- Jun Zhou
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Haonan Zhang
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Jianbo Liu
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Lei Gong
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Xiaoqi Yang
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Tong Zuo
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Ying Zhou
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Jin Wang
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Xiaogang You
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Qinwei Jia
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Luyu Wang
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
46
|
Hamraoui K, Siles JA, Chica AF, Martín MA, El Bari H. Kinetics of combined hydrothermal pretreatment and anaerobic digestion of lignocellulosic biomass (pepper plant and eggplant). ENVIRONMENTAL TECHNOLOGY 2023; 44:501-511. [PMID: 34469279 DOI: 10.1080/09593330.2021.1976283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
A large quantity of lignocellulosic biomass is generated annually across the world which leads to environmental pollution and requires valorization. This study investigated the effect of hydrothermal pretreatment on the anaerobic digestion and co-digestion of the residual pepper plant and eggplant with a focus on kinetics. Two thermal hydrolysis rates were observed, with the optimal conditions for the hydrothermal pretreatment of lignocellulosic biomass being 120°C for 40 min. Subsequently, single and combined biomethanization was successfully carried out in laboratory-scale completely stirred tank reactors at mesophilic temperature (35°C). A high increase in methane production was observed after the pretreatment of the pepper plant and eggplant. The pretreated and co-digested wastes led to an optimal methane yield of 79 ± 23 mL CH4/g VS. The modified Gompertz model was used to fit the cumulative methane production of the pretreated lignocellulosic substrates. The kinetic model adequately reproduced the experimental results and might be considered a useful tool to simulate the biomethanization behaviour of complex organic substrates.
Collapse
Affiliation(s)
- K Hamraoui
- Faculty of Sciences IbnTofail, Renewable Energy and Environment Laboratory, Kénitra, Morocco
| | - J A Siles
- Department of Inorganic Chemistry and Chemical Engineering, University of Cordoba, Cordoba, Spain
| | - A F Chica
- Department of Inorganic Chemistry and Chemical Engineering, University of Cordoba, Cordoba, Spain
| | - M A Martín
- Department of Inorganic Chemistry and Chemical Engineering, University of Cordoba, Cordoba, Spain
| | - H El Bari
- Faculty of Sciences IbnTofail, Renewable Energy and Environment Laboratory, Kénitra, Morocco
| |
Collapse
|
47
|
Saha B, Barua VB, Khwairakpam M, Haq I, Kalamdhad AS, Varjani S. Thermal pretreatment of Lantana camara for improved biogas production: Process parameter studies for energy evaluation. ENVIRONMENTAL RESEARCH 2023; 216:114661. [PMID: 36328230 DOI: 10.1016/j.envres.2022.114661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/15/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
The rigid lignocellulosic structure of Lantana camara impedes the hydrolysis phase and reduces the biogas production during anaerobic digestion of Lantana camara. Hence, the current study focuses on the impact of various heating pretreatment techniques, viz., hot air oven (HAO), autoclave (ATC), hot water bath (HWB), and microwave (MCW) on L. camara to speed up hydrolysis and boost up biogas production. ATC pretreatment of L. camara was witnessed to be most efficient compared to HAO, MCW, and HWB pretreatment. ATC pretreatment enhanced the solubilization (45.44%), and an increment in volatile fatty acids (VFA) was observed (56.75%) at 110 °C for 80 min when correlated to the untreated (control). Cumulative methane production following ATC pretreatment had risen to 3656 mL in 5 weeks from 2895 mL in 7 weeks. Thermal pretreatment of Lantana camara broke down the rigid lignocellulosic structure, accelerating the hydrolysis stage and improving biogas production simultaneously. To the best of our knowledge, this is the first thermal pretreatment study conducted on Lantana camara for biogas production.
Collapse
Affiliation(s)
- Biswanath Saha
- School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Guwahati 789039, Assam, India
| | - Visva Bharati Barua
- Department of Civil and Environmental Engineering, University of North Carolina Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - Meena Khwairakpam
- School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Guwahati 789039, Assam, India
| | - Izharul Haq
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 789039, Assam, India; School of Life Sciences, Jaipur National University, Jaipur 302017, Rajasthan, India.
| | - Ajay S Kalamdhad
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 789039, Assam, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India
| |
Collapse
|
48
|
Xie T, Zhang Z, Zhang D, Wei C, Lin Y, Feng R, Nan J, Feng Y. Effect of hydrothermal pretreatment and compound microbial agents on compost maturity and gaseous emissions during aerobic composting of kitchen waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158712. [PMID: 36099942 DOI: 10.1016/j.scitotenv.2022.158712] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Though aerobic composting is commonly used in kitchen waste (KW) disposal, the high-oil and high-salt characteristics of KW could affect composting efficiency and lead to the land using risk of produced fertilizer. The impact of hydrothermal pretreatment (HTP) and addition of compound microbial agent (CMA) on compost maturity, greenhouse gas (GHGs) emissions and bacterial community during the kitchen waste composting were evaluated in the present work. Results indicated that N2O, CH4 and CO2 emissions from treatment by HTP and CMA addition were reduced by 82.72%, 13.77% and 20.78 %, respectively, comparing with the control (without HTP and without CMA addition). The seed germination index (GI) value of the HTP and CMA addition treatment was 1.03 and had the highest maturity in all treatments. Furthermore, the bacterial community analysis indicated that CMA inoculation could increase the relative abundance of genus Bacillus at the thermophilic stage of composting to accelerate organic biodegradation. This work provided important insight into mitigating GHGs emissions and improving compost quality in kitchen waste composting.
Collapse
Affiliation(s)
- Ting Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Zhaohan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem, Harbin Institute of Technology, China
| | - Dawei Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Chunzhong Wei
- Guangxi Beitou Environmental Protection & Water Group CO. LTO, Nanning, China
| | - Yong Lin
- Guangxi Beitou Environmental Protection & Water Group CO. LTO, Nanning, China
| | - Rongwei Feng
- Guangxi Beitou Environmental Protection & Water Group CO. LTO, Nanning, China
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China.
| |
Collapse
|
49
|
Ortega-Martínez E, Chamy R, Jeison D. Formation of Recalcitrant Compounds during Anaerobic Digestion of Thermally Pre-Treated Sludge: A Critical Macromolecular and Structural Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:558. [PMID: 36612886 PMCID: PMC9819852 DOI: 10.3390/ijerph20010558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Thermal hydrolysis, when used as pre-treatment, enhances the anaerobic digestion of sewage sludge; moreover, due to the high temperature normally applied, undesirable recalcitrant compounds via Maillard reactions may also be formed. However, although the appearance of these recalcitrant compounds is widely reported, more information on the formation, structure, and fate of these compounds is still needed. This study was focused on understanding the amount and whereabouts of such compounds during the anaerobic digestion process with thermal pre-treatment in soluble and total phase and advance in its structural identification by analyzing their infrared (IR) spectra. It was found that, even with the improved methane production and COD degradation, at 165 °C for 30 min, humic-like compounds are formed which could not be degraded at the anaerobic digestion step. These compounds account for 25% of the original sludge. Infrared spectroscopy proved to be a powerful technique, permitting their differentiation from the natural humic-like compounds. This research provides new information about the structure of melanoidins at every stage of the thermal hydrolysis pre-treatment and how they contribute to the dissolved organic nitrogen.
Collapse
Affiliation(s)
- Eduardo Ortega-Martínez
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2362803, Chile
| | - Rolando Chamy
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2362803, Chile
- Núcleo Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Valparaíso 2373223, Chile
| | - David Jeison
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2362803, Chile
| |
Collapse
|
50
|
Neumann P, Riquelme C, Cartes J, Kuschel-Otárola M, Hospido A, Vidal G. Relevance of sludge management practices and substance modeling in LCA for decision-making: A case study in Chile. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116357. [PMID: 36202036 DOI: 10.1016/j.jenvman.2022.116357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/23/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Reducing the costs and environmental impacts of sludge management is currently one of the main challenges faced by the wastewater treatment sector. Anaerobic digestion followed by land application has been widely endorsed as a low-impact approach to sludge management, mainly due to the recovery of biogas and the valorization of digestate. However, the influence that the operational conditions of digestion and the management practices of land application can have over the environmental performance of this strategy has been scarcely studied. Furthermore, most of the previous studies dealing with the environmental assessment of this strategy use simplified methods for estimating emissions after land application of sludge, and the lack of systematic accounting of these environmental flows might significantly affect the validity and comparability of the results. Therefore, this work performed an assessment of the influence that 4 relevant practices can have over the environmental impacts of this approach in the context of south-central Chile, providing a mass-balanced inventory for nitrogen, phosphorus and heavy metals in soil based on the ad hoc implementation of models developed for agricultural Life Cycle Assessment (LCA). A total of 16 scenarios were defined and 10 impact categories were evaluated, with the results showing that the environmental impacts were greatly influenced by the variables under study. Overall, solids retention time and the inclusion of pre-treatment mainly influenced climate change, fossil resource depletion and terrestrial ecotoxicity potential, while sludge application rate influenced the eutrophication, water ecotoxicity and human toxicity categories. The type of crop in the receiving soil was a significant driver behind the differences observed in the human toxicity category, which showed the highest variation and relevance in the final weighted result. The results clearly highlight the relevance of using context specific data as well as of quantifying the fate of nutrients, metals and heavy metals during LCA of sludge management. Based on the results, some policy and decision-making recommendations are formulated to optimize the environmental performance of sludge digestion and land application.
Collapse
Affiliation(s)
- Patricio Neumann
- Basic Sciences Department, Faculty of Sciences, Universidad Del Bío-Bío, Chillán, Chile; Water Research Center for Agriculture and Mining (CRHIAM), ANID/FONDAP/15130015, Chile.
| | - Cristian Riquelme
- Basic Sciences Department, Faculty of Sciences, Universidad Del Bío-Bío, Chillán, Chile
| | - Javier Cartes
- Environmental Engineering & Biotechnology Group, Environmental Sciences Faculty & EULA-CHILE Center, Universidad de Concepción, Concepción, Chile
| | - Mathias Kuschel-Otárola
- Department of Soils and Natural Resources, Faculty of Agronomy, Universidad de Concepción, Chillán, Chile
| | - Almudena Hospido
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Galicia, Spain
| | - Gladys Vidal
- Water Research Center for Agriculture and Mining (CRHIAM), ANID/FONDAP/15130015, Chile; Environmental Engineering & Biotechnology Group, Environmental Sciences Faculty & EULA-CHILE Center, Universidad de Concepción, Concepción, Chile
| |
Collapse
|