1
|
Zhang Y, Wang Y, Zhao Y, Hu R, Yuan H. Design of aggregation-induced emission materials for biosensing of molecules and cells. Biosens Bioelectron 2025; 267:116805. [PMID: 39321612 DOI: 10.1016/j.bios.2024.116805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/17/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
In recent years, aggregation-induced emission (AIE) materials have gained significant attention and have been developed for various applications in different fields including biomedical research, chemical analysis, optoelectronic devices, materials science, and nanotechnology. AIE is a unique luminescence phenomenon, and AIEgens are fluorescent moieties with relatively twisted structures that can overcome the aggregation-caused quenching (ACQ) effect. Additionally, AIEgens offer advantages such as non-washing properties, deep tissue penetration, minimal damage to biological structures, high signal-to-noise ratio, and excellent photostability. Fluorescent probes with AIE characteristics exhibit high sensitivity, short response time, simple operation, real-time detection capability, high selectivity, and excellent biocompatibility. As a result, they have been widely applied in cellular imaging, luminescent sensing, detection of physiological abnormalities in the human body, as well as early diagnosis and treatment of diseases. This review provides a comprehensive summary and discussion of the progress over the past four years regarding the detection of metal ions, small chemical molecules, biomacromolecules, microbes, and cells based on AIE materials, along with discussing their potential applications and future development prospects.
Collapse
Affiliation(s)
- Yuying Zhang
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Yi Wang
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Yue Zhao
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Rong Hu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, PR China
| | - Huanxiang Yuan
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, PR China.
| |
Collapse
|
2
|
Ndour PMS, Langrand J, Fontaine J, Lounès-Hadj Sahraoui A. Exploring the significance of different amendments to improve phytoremediation efficiency: focus on soil ecosystem services. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:485-513. [PMID: 39730919 DOI: 10.1007/s11356-024-35660-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/23/2024] [Indexed: 12/29/2024]
Abstract
Phytoremediation is recognized as an environmentally, economically and socially efficient phytotechnology for the reclamation of polluted soils. To improve its efficiency, several strategies can be used including the optimization of agronomic practices, selection of high-performance plant species but also the application of amendments. Despite evidences of the benefits provided by different types of amendments on pollution control through several phytoremediation pathways, their contribution to other soil ecosystem functions supporting different ecosystem services remains sparsely documented. This current review aims at (i) updating the state of the art about the contribution of organic, mineral and microbial amendments in improving phytostabilization, phytoextraction of inorganic and phytodegradation of organic pollutants and (ii) reviewing their potential beneficial effects on soil microbiota, nutrient cycling, plant growth and carbon sequestration. We found that the benefits of amendment application during phytoremediation go beyond limiting the dispersion of pollutants as they enable a more rapid recovery of soil functions leading to wider environmental, social and economic gains. Effects of amendments on plant growth are amendment-specific, and their effect on carbon balance needs more investigation. We also pointed out some research questions that should be investigated to improve amendment-assisted phytoremediation strategies and discussed some perspectives to help phytomanagement projects to improve their economic sustainability.
Collapse
Affiliation(s)
- Papa Mamadou Sitor Ndour
- Unité de Chimie Environnementale Et Interactions Sur Le Vivant (UCEIV), Université du Littoral Côte d'Opale (ULCO), 50 Rue Ferdinand Buisson, Calais Cedex, UR4492, France.
| | - Julien Langrand
- Unité de Chimie Environnementale Et Interactions Sur Le Vivant (UCEIV), Université du Littoral Côte d'Opale (ULCO), 50 Rue Ferdinand Buisson, Calais Cedex, UR4492, France
| | - Joel Fontaine
- Unité de Chimie Environnementale Et Interactions Sur Le Vivant (UCEIV), Université du Littoral Côte d'Opale (ULCO), 50 Rue Ferdinand Buisson, Calais Cedex, UR4492, France
| | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale Et Interactions Sur Le Vivant (UCEIV), Université du Littoral Côte d'Opale (ULCO), 50 Rue Ferdinand Buisson, Calais Cedex, UR4492, France
| |
Collapse
|
3
|
Gupta M, Kumar S, Dwivedi V, Gupta DG, Ali D, Alarifi S, Patel A, Yadav VK. Selective synergistic effects of oxalic acid and salicylic acid in enhancing amino acid levels and alleviating lead stress in Zea mays L. PLANT SIGNALING & BEHAVIOR 2024; 19:2400451. [PMID: 39235999 PMCID: PMC11382712 DOI: 10.1080/15592324.2024.2400451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Lead is one of the major environmental pollutants which is highly toxic to plants and living beings. The current investigation thoroughly evaluated the synergistic effects of oxalic acid (OA) and salicylic acid (SA) on Zea mays L. plants subjected to varying durations (15, 30, 30, and 45 days) of lead (Pb) stress. Besides, the effects of oxalic acid (OA) combined with salicylic acid (SA) for different amino acids at various periods of Pb stress were also investigated on Zea mays L. The soil was treated with lead nitrate Pb (NO3)2 (0.5 mM) to induce Pb stress while the stressed plants were further treated using oxalic acid (25 mg/L), salicylic acid (25 mg/L), and their combination OA + SA (25 mg/L each). Measurements of protein content, malondialdehyde (MDA) levels, guaiacol peroxidase (GPOX) activity, catalase (CAT) activity, GSH content, and Pb concentration in maize leaves were done during this study. MDA levels increased by 71% under Pb stress, while protein content decreased by 56%, GSH content by 35%, and CAT activity by 46%. After treatment with SA, OA, and OA+SA, there was a significant reversal of these damages, with the OA+SA combination showing the highest improvement. Specifically, OA+SA treatment led to a 45% increase in protein content and a 39% reduction in MDA levels compared to Pb treatment alone. Moreover, amino acid concentrations increased by 68% under the Pb+OA+SA treatment, reflecting the most significant recovery (p < 0.0001).
Collapse
Affiliation(s)
- Minoti Gupta
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Chandigarh, India
| | - Swatantar Kumar
- Department of Biotechnology Engineering & Food Technology, University Institute of Engineering, Chandigarh University, Chandigarh, India
| | - Vinay Dwivedi
- Amity Institute of Biotechnology, Amity University, Gwalior, India
| | - Dikshat Gopal Gupta
- Department of Urology & Pathology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Virendra Kumar Yadav
- Department of Microbiology, Faculty of Sciences, Marwadi University Research Center, Marwadi University, Rajkot, India
| |
Collapse
|
4
|
Qi M, Wang D, Zhai H, Zhou F, Wu H, Zhao W, Ren R, Shi J, Liang D. Effects of straw amendment on the bioavailability of selenite in soil and its mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117578. [PMID: 39709708 DOI: 10.1016/j.ecoenv.2024.117578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Dissolved organic matter (DOM) released by straw returning for decomposition interacts with selenium (Se) in soil, which affects the speciation distribution of Se and its bioavailability. However, the relative mechanisms involved are slightly understood. This study investigated the effects of straw-derived DOM on two levels of exogenous selenite (low-Se and high-Se treatments) in two types of soil with distinct pH. Interactions between DOM and Se were revealed through three-dimensional excitation emission matrix (3D-EEM) fluorescence spectroscopy and two-dimensional correlation spectroscopy (2D-COS). Results showed that straw amendment significantly enhanced selenite bioavailability in alkaline Lou soil regardless of Se application rates (p < 0.05). However, only the high-Se treatment generated remarkable Se content in wheat grains in acidic krasnozems (p < 0.05). Selenite predominantly incorporated with phenolic and etheric C-O functional groups of DOM in soil, which mainly existed in aromatic DOM such as humic acid (HA). Consequently, HA-Se was more likely to form in krasnozems enriched with HA. 2D-COS evidenced that HA mineralization promoted Se bioavailability in krasnozems with high-Se treatment. After selenite complexed with saturated and unsaturated aliphatic carboxyl groups (CO) of DOM, it formed Hy-Se and FA-Se in Lou soil, which could be directly absorbed by wheat roots. Therefore, the composition and functional group reaction sequences of DOM in different soils manipulated selenite bioavailability in soil. These findings could provide a basis for regulating Se bioavailability during biofortification in soils.
Collapse
Affiliation(s)
- Mingxing Qi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan 637009, China
| | - Hui Zhai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Oasis Ministry of Education, College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
| | - Fei Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wanchen Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rongxin Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingyi Shi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China.
| |
Collapse
|
5
|
Jeong H, Lee Y, Lee B, Jung E, Lee JY, Lee S. Applications of geographically weighted machine learning models for predicting soil heavy metal concentrations across mining sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177667. [PMID: 39579881 DOI: 10.1016/j.scitotenv.2024.177667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
The accurate prediction of soil heavy metal contamination is crucial for the effective environmental management of abandoned mining areas. However, conventional machine learning models (CMLMs) often fail to account for the spatial heterogeneity of soil contamination, which limits their predictive accuracy. This study evaluated the performance of geographically weighted machine learning models (GWMLMs) in predicting soil Cd and Pb concentrations in abandoned mines in the Republic of Korea. We compared two GWMLMs (Geographically Weighted Random Forest and Geographically Weighted Extreme Gradient Boosting) with four CMLMs (Random Forest, Gradient Boosting, Light Gradient Boosting, and extreme Gradient Boosting). The data used in this study included soil samples from six abandoned mining sites with various geographical and soil input variables. The results showed that the GWMLMs consistently outperformed the CMLMs in predicting heavy metal contamination. For Cd predictions, GWMLMs exhibited on average 0.02 lower root mean square error and mean absolute error values, with a 0.26 increase in R2 values compared to CMLMs. Similarly, for Pb predictions, the GWMLMs showed 0.18 and 0.13 lower root mean square error and mean absolute error values, respectively, and a 0.17 increase in R2 relative to the CMLMs. The findings demonstrate the usefulness of GWMLMs for predicting the spatial distribution of soil heavy metals. SHapley Additive exPlanations analysis exhibited elevation and distance from abandoned mining sites as the most influential factors in predicting both Cd and Pb concentrations. This study highlights the value of GWMLMs that incorporate spatial heterogeneity into CMLMs for enhancing prediction accuracy and providing crucial insights for environmental management in mining-impacted regions.
Collapse
Affiliation(s)
- Hyemin Jeong
- Department of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Younghun Lee
- Department of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Byeongwon Lee
- Department of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Euisoo Jung
- School of Environmental Engineering, University of Seoul, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Jai-Young Lee
- School of Environmental Engineering, University of Seoul, Dongdaemun-gu, Seoul 02504, Republic of Korea.
| | - Sangchul Lee
- Department of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
6
|
Banda MF, Matabane DL, Munyengabe A. A phytoremediation approach for the restoration of coal fly ash polluted sites: A review. Heliyon 2024; 10:e40741. [PMID: 39691195 PMCID: PMC11650309 DOI: 10.1016/j.heliyon.2024.e40741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
Coal fly ash (CFA) is a predominant waste by-product of coal combustion which is disposed of in open ash dams that utilize large pieces of land. This waste material is classified as a hazardous substance in South Africa as well as in other countries due to its fine particles that are easily blown to the atmosphere and the unacceptable levels of heavy metals and persistent organic pollutants. Contaminants in CFA can pollute surface and ground water, agricultural sites, soil and therefore pose risks to the health of humans and the environment. More than 500 million tons of CFA is produced yearly and over 200 million tons remain unused globally. The production will continue due to high consumer energy demands, especially in countries with heavy reliance on coal for power generation. Despite a significant progress made on the application of phytoremediation approach for decontamination of polluted sites, there is very limited evidence for its potential in the rehabilitation of CFA dumps. Low organic carbon, microbial activities and availability of nutrients including nitrogen contribute to restricted plant growth in CFA, and therefore converting ash dumps to barren lands devoid of vegetation. Leguminous plant species can fix atmospheric nitrogen through symbiotic association with bacteria. Therefore, their intercropping mixture development can improve the chemistry of the substrate and facilitate nutrients availability to the companion plants. This approach can enhance the performance of phytoremediation and promote sustainable practices. The paper provides an overview of the ongoing burden of CFA disposal and discusses the ecological and economic benefits of using legumes, aromatic and bioenergy plants. We identify knowledge gaps to establishing vegetation in ash dumping sites, and provide insights to encourage continued research that will enhance the applicability of phytoremediation in restoration programs.
Collapse
Affiliation(s)
- Maria Fezile Banda
- Tshwane University of Technology, Faculty of Science, Department of Chemistry, Pretoria, 0001, Private Bag X680, South Africa
| | - Dithobolong Lovia Matabane
- Tshwane University of Technology, Faculty of Science, Department of Chemistry, Pretoria, 0001, Private Bag X680, South Africa
| | - Alexis Munyengabe
- Tshwane University of Technology, Faculty of Science, Department of Chemistry, Pretoria, 0001, Private Bag X680, South Africa
| |
Collapse
|
7
|
Zhang H, Liang L, Du X, Shi G, Wang X, Tang Y, Lei Z, Wang Y, Yi C, Hu C, Zhao X. Metabolism Interaction Between Bacillus cereus SESY and Brassica napus Contributes to Enhance Host Selenium Absorption and Accumulation. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39559947 DOI: 10.1111/pce.15278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/20/2024]
Abstract
The use of beneficial bacteria to enhance selenium absorption in crops has been widely studied. However, it is unclear how the interaction between bacteria and plants affects selenium absorption in crops. Here, pot experiments and Murashige and Skoog medium (MS) experiments were performed. Transcriptomic analyses were used to reveal the interaction between Bacillus cereus SESY and Brassica napus. The results indicated that B. cereus SESY can significantly increase the biomass and selenium content of B. napus. The genes related to the colonization, IAA synthesis, and l-cysteine synthesis and metabolism of B. cereus SESY were significantly stimulated by B. napus through transcriptional regulation. Further verification results showed that l-cysteine increased selenium content in B. napus roots and shoots by 62.9% and 88.4%, respectively. B. cereus SESY and l-cysteine consistently regulated the relative expression level of genes involved in plant hormone, amino acid metabolism, selenium absorption, and Se enzymatic and nonenzymatic metabolic pathway of B. napus. These genes were significantly correlated with selenium content and biomass of B. napus (p < 0.05). Overall, IAA biosynthesis, and l-cysteine biosynthesis and metabolism in B. cereus SESY stimulated by interactions triggered molecular and metabolic responses of B. napus, underpinning host selenium absorption and accumulation.
Collapse
Affiliation(s)
- Huan Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, China
| | - Lianming Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, China
| | - Xiaoping Du
- Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs, Ankang, China
| | - Guangyu Shi
- Institute of Quality Standard and Monitoring Technology for Agro-Products, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xu Wang
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Yanni Tang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Zheng Lei
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Yin Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Ceng Yi
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Chengxiao Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Xiaohu Zhao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Shi H, Gong C, Zheng M, Zhao Y, Liu Y, Ma L, Liu Z. Arsenic Enhances the Degradation of Middle-Chain Petroleum Hydrocarbons by Rhodococcus sp. 2021 Under Their Combined Pollution. Microorganisms 2024; 12:2279. [PMID: 39597668 PMCID: PMC11596221 DOI: 10.3390/microorganisms12112279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
The efficient and green remediation of petroleum hydrocarbon (PH) contamination has emerged as a viable strategy for environmental management. Here, we investigated the interaction between arsenic and PH degradation by Rhodococcus sp. 2021 under their combined pollution. The strain exhibited disparate responses to varying concentrations and valences of arsenic. The elevated concentration of arsenic (>100 mg/L) facilitated the degradation of PHs, and there was a positive correlation between arsenic-promoted degradation of PHs and their carbon-chain length. The degradation of PHs changed with arsenic conditions as follows: trivalent arsenic groups > pentavalent arsenic groups > arsenic-free groups (control). Arsenite and arsenate significantly promoted the gene expression of arsenic metabolism and alkane degrading. But unlike arsenite, arsenate also significantly promoted the gene expression of phosphate metabolism. And arsenite promoted the up-regulation of the expression of genes involved in the process of PHs oxidation and fatty acid oxidation. These results highlight the potential of Rhodococcus sp. 2021 in the remediation of combined total petroleum hydrocarbon (TPH) and heavy metal pollution, providing new insights into the green and sustainable bioremediation of combined pollution of organic matters such as PHs and heavy metals/heavy metal-like elements such as arsenic.
Collapse
Affiliation(s)
- Hongpeng Shi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China; (H.S.); (M.Z.); (Y.Z.); (Y.L.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chengyan Gong
- University of Chinese Academy of Sciences, Beijing 101408, China
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Meilin Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China; (H.S.); (M.Z.); (Y.Z.); (Y.L.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yinghao Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China; (H.S.); (M.Z.); (Y.Z.); (Y.L.)
| | - Ying Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China; (H.S.); (M.Z.); (Y.Z.); (Y.L.)
| | - Luyan Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China; (H.S.); (M.Z.); (Y.Z.); (Y.L.)
| | - Zhipei Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China; (H.S.); (M.Z.); (Y.Z.); (Y.L.)
| |
Collapse
|
9
|
Huang H, Luo J, Ma R, Zhang D, Sun S, Du C. Review on microwave immobilization of soil heavy metals: Processes and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122824. [PMID: 39378819 DOI: 10.1016/j.jenvman.2024.122824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Soil contamination with heavy metals (HMs) is still a global issue. The maintenance of long-term stability of HMs in soil during immobilization remediation is a challenge. Microwave (MW) technology can promote the immobilization of HMs in the form of crystals and minerals, thus enhancing their resistance of corrosion. This review provides a comprehensive introduction to the basics of MW irradiation through 177 papers, and reviews the research progress of MW involvement in the immobilization of soil HMs in 10 years. The effects of MW parameter settings, absorber/fixative types and soil physicochemical properties on immobilized HMs are investigated. The immobilization mechanisms of HMs are discussed, high-temperature physical encapsulation and chemical stabilization are the two basic mechanisms in the immobilization process. MW has a unique heating method to achieve efficient remediation by shortening remediation time, reducing the activation energy of reactions and promoting the transformation of stabilization products. Finally, the current limitations of MW in the remediation of HMs contaminated soils are systematically discussed and the corresponding proposed solutions are presented which may provide directions for further laboratory studies. There are still serious problems in taking the results obtained in the laboratory to the full scale. Thus, process optimization, scale-up, design and demonstration are strongly desired. In summary, this review may help new researchers to seize the research frontier in MW and can serve as a reference for future development of MW technology in soil remediation.
Collapse
Affiliation(s)
- Huiyin Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Juan Luo
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Rui Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Dengcai Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shichang Sun
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Chaoyong Du
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
10
|
Malik I, Ashraf K, Hassan F, Ali Khan AA, Sultan K, Siddiqui MH, Zaman QU. Nano-selenium and compost vitalized morpho-physio-biochemical, antioxidants and osmolytes adjustment in soybean under tannery effluent polluted soil. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108807. [PMID: 38905730 DOI: 10.1016/j.plaphy.2024.108807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024]
Abstract
The aim of this work was to investigate the impact of nano selenium (N-Se) and compost on the growth, photosynthesis, enzymes activity, compatible solutes and metals accumulation in soybean grown under tannery effluent polluted soil. The plants were exposed to compost application (no compost and compost addition) and foliar application of N-Se (0, 25, 50, and 75 mg L-1). The results showed the addition of compost in soil and foliar applied N-Se alleviated the toxic effect of tannery effluent polluted soil. Furthermore, foliar application of N-Se with basal compost supply significantly improved antoxidant enzymes activity in soybean grown in tannery effluent polluted soil. Addition of compost increased the root dry weight (46.43%) and shoot dry weight (33.50 %), relative water contents by (13.74 %), soluble sugars (15.99 %), stomatal conductance (gs) (83.33 %), intercellular CO2 concentration (Ci) (23.34 %), transpiration rate (E) (12.10 %) and decreased the electrolyte leakage (27.96 %) and proline contents by (20.34 %). The foliage application of N-Se at the rate of 75 mg L-1 showed the most promising results in control and compost amended tannery effluent polluted soil. The determined health risk index (HRI) values were recorded less than 1 for both adults and children under the application of compost and N-Se. In summary, the combined use of N-Se at 75 mg L⁻1 and basal supply of compost is an effective strategy for enhancing soybean productivity while minimizing the potential risks of metal accumulation in soybean grains grown in tannery effluent polluted soil.
Collapse
Affiliation(s)
- Iqra Malik
- Department of Environmental Sciences, The University of Lahore, Lahore 54590, Pakistan
| | - Kamran Ashraf
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Faiza Hassan
- Department of Chemistry, The University of Lahore, Lahore 54590, Pakistan
| | - Aamir Amanat Ali Khan
- Department of Environmental Sciences, The University of Lahore, Lahore 54590, Pakistan
| | - Khawar Sultan
- Department of Environmental Sciences, The University of Lahore, Lahore 54590, Pakistan
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Qamar Uz Zaman
- Department of Environmental Sciences, The University of Lahore, Lahore 54590, Pakistan.
| |
Collapse
|
11
|
Alam M, Khan A, Zaman R, Khan S, Khan MA, Ahmad I, Jalal A, Kim KI. Vermi-remediation impacts on growth and metals bioaccumulation in tomato irrigated with wastewater. CHEMOSPHERE 2024; 362:142848. [PMID: 39009091 DOI: 10.1016/j.chemosphere.2024.142848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Due to their persistence in the environment, and their highly toxic and bioaccumulative nature, heavy metals are well known to the environment. Vermicompost has gained popularity because it improves soil properties and, most importantly, remediates and immobilizes heavy metals. The present study assessed vermicompost effects on heavy metal bioaccumulation in tomato plants irrigated with wastewater. A plastic bag experiment was carried out with 5 kg of growing media in each bag. Growing media contain garden soil with four levels of vermicompost mixed at 0%, 5%, 15%, and 25%. The pots were irrigated with wastewater from different industries and tap water, which was taken as control. Wastewater was collected from the pharmaceutical industry, plastic industry, and sewage water of Hayatabad Industrial Estate, Peshawar. Vermicompost application significantly affected all tomatoes' growth attributes and heavy metals concentration. Results revealed that minimum Cd (2.48 mg kg-1), Cr (1.27 mg kg-1), Cu (4.10 mg kg-1), and Pb (0.62 mg kg-1) concentrations were recorded in tomatoes cultivated in 25 % vermicompost amended soil, while, maximum Cd (5.23 mg kg-1), Cr (2.29 mg kg-1), Cu (8.84 mg kg-1) and Pb (2.18 mg kg-1) concentrations were reported in sewage water irrigated plants., Overall, vermicompost applied at 25% significantly enhanced plant growth and yield, reducing the bioavailability and bioaccumulation of heavy metals. From the finding of this study, it is observed that wastewater irrigation of plants should be avoided because of the high level of heavy metals; in contrast, the application of vermicompost is highly recommended as compost reduces heavy metals bioaccumulation and enhances productivity.
Collapse
Affiliation(s)
- Mehboob Alam
- Department of Horticulture, The University of Agriculture Peshawar, Peshawar, 25120, Pakistan
| | - Anwarzeb Khan
- Department of Environmental and Conservation Sciences, University of Swat, Swat, 19130, Khyber Pakhtunkhwa, Pakistan; Department of Horticultural Science, Mokpo National University, Jeonnam, 58554, Republic of Korea.
| | - Rasheeqa Zaman
- Department of Horticulture, The University of Agriculture Peshawar, Peshawar, 25120, Pakistan
| | - Shahnawaz Khan
- Centre for Disaster Preparedness and Management, University of Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | | | - Imran Ahmad
- Department of Horticulture, The University of Agriculture Peshawar, Peshawar, 25120, Pakistan
| | - Abdullah Jalal
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Ki In Kim
- Department of Horticultural Science, Mokpo National University, Jeonnam, 58554, Republic of Korea
| |
Collapse
|
12
|
Zhao S, Zhao Y, Cui Z, Zhang H, Zhang J. Effect of pH, Temperature, and Salinity Levels on Heavy Metal Fraction in Lake Sediments. TOXICS 2024; 12:494. [PMID: 39058146 PMCID: PMC11280739 DOI: 10.3390/toxics12070494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Heavy metals (HMs) in aquatic environments are characterized by high toxicity, a propensity for bioaccumulation, and non-degradability, and pose significant risks to biological communities. Previous studies of HMs in lakes have shown that the physical and chemical characteristics of the lake water may control both the migration of HMs in the sediments and the concentration of heavy metals in the lake water. In fact, the change in aquatic environments changes the heavy metal fraction in the sediment, which controls the release of HMs. In this paper, we investigated the effects of the pH, temperature, and salinity levels of overlying water on the chemical fraction of Cu and Zn in Wuliangsuhai Lake surface sediments. The results show that lower water pH and higher water salinity and temperature could increase Cu and Zn release from the sediment. An increase in pH led to changes in the speciation of solid fractions of Zn, namely increases in the residual fraction and decreases in the organic matter and sulfide, whereas acid-extractable and Fe-Mn oxide fractions remained largely the same. Increases in temperature and salinity led to opposite changes in the speciation of solid fractions, namely decreases in the residual fraction and increases in the organic matter and sulfide and Fe-Mn oxide fractions, whereas acid-extractable fractions remained largely the same. The effect of pH, temperature, and salinity on Cu fractions in the solids was much smaller. According to the ratio of the secondary phase to the primary phase (RSP), acidic, high-temperature, and high-salt conditions increase the release risks of Zn. Changes in water temperature have the greatest influence on the risk of Zn and Cu release from sediments, followed by the influence of salinity changes.
Collapse
Affiliation(s)
- Shengnan Zhao
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Z.); (Z.C.); (H.Z.); (J.Z.)
- Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, China
- State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Inner Mongolia, Bayan Nur 014404, China
| | - Yunxi Zhao
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Z.); (Z.C.); (H.Z.); (J.Z.)
- Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, China
- State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Inner Mongolia, Bayan Nur 014404, China
| | - Zhimou Cui
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Z.); (Z.C.); (H.Z.); (J.Z.)
- Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, China
- State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Inner Mongolia, Bayan Nur 014404, China
| | - Hui Zhang
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Z.); (Z.C.); (H.Z.); (J.Z.)
- Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, China
- State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Inner Mongolia, Bayan Nur 014404, China
| | - Jinda Zhang
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Z.); (Z.C.); (H.Z.); (J.Z.)
- Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, China
- State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Inner Mongolia, Bayan Nur 014404, China
| |
Collapse
|
13
|
Xian L, Lu D, Yang Y, Feng J, Fang J, Jacobs DF, Wu D, Zeng S. Effects of woodland slope on heavy metal migration via surface runoff, interflow, and sediments in sewage sludge application. Sci Rep 2024; 14:13468. [PMID: 38867064 PMCID: PMC11169265 DOI: 10.1038/s41598-024-64163-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
Sewage sludge (SS) application to forest plantation soils as a fertilizer and/or soil amendment is increasingly adopted in plantation forest management. However, the potential risks of SS-derived heavy metals (HMs) remain a concern. Many factors, including woodland slope may affect the risks, but the understanding of this issue is limited. This research evaluated the HMs migration via surface runoff, interflow, and sediments when SS was applied in woodlands of varying slopes. We conducted indoor rainfall simulations and natural rainfall experiments to clarify the effect of slope on the migration of HMs via runoff (including surface and interflow) and sediments. In the simulated rainfall experiment, HMs lost via sediments increased by 9.79-27.28% when the slope increased from 5° to 25°. However, in the natural rainfall experiment, when the slope of forested land increased from 7° to 23°, HMs lost via surface runoff increased by 2.38% to 6.13%. These results indciate that the surface runoff water on a high slope (25°) posed high water quality pollution risks. The migration of HMs via surface runoff water or interflow increased as the steepness of the slope increased. The total migration of Cu, Zn, Pb, Ni, Cr and Cd via sediment greatly exceeded that via surface runoff and interflow. Particles ≤ 0.05 mm contributed the most to the ecological risks posed by sediments. Cd was the main source of potential ecological risks in sediments under both experimental conditions.
Collapse
Affiliation(s)
- Lihua Xian
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Dehao Lu
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yuantong Yang
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jiayi Feng
- Guangdong Eco-Engineering Polytechnic, Guangzhou, Guangdong, China
| | - Jianbo Fang
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Douglass F Jacobs
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, USA
| | - Daoming Wu
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Shucai Zeng
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
14
|
Li J, Gao Y, Li C, Wang F, Chen H, Yang X, Jeyakumar P, Sarkar B, Luo Z, Bolan N, Li X, Meng J, Wang H. Pristine and Fe-functionalized biochar for the simultaneous immobilization of arsenic and antimony in a contaminated mining soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133937. [PMID: 38460259 DOI: 10.1016/j.jhazmat.2024.133937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024]
Abstract
This study examined the effectiveness of pristine biochar (BC) and Fe-functionalized biochar (FBC) in remediating As-Sb co-contaminated soil, and revealed the resulting impact on soil enzymatic activities and bacterial communities. Results from incubation experiments showed that the 1.5% FBC treatment reduced the bioavailable As and Sb concentration by 13.5% and 27.1%, respectively, in compared to the control, and reduced the proportion of specifically adsorbed and amorphous Fe-Mn oxide-bound metal(loid) fractions in the treated soil. Among the BC treatments, only the 1.5% BC treatment resulted in a reduction of bioavailable As by 11.7% and Sb by 21.4%. The 0.5% BC treatment showed no significant difference. The FBC achieved high As/Sb immobilization efficiency through Fe-induced electrostatic attraction, π-π electron donor-acceptor coordination, and complexation (Fe-O(H)-As/Sb) mechanisms. Additionally, the 1.5% FBC treatment led to a 108.2% and 367.4% increase in the activities of N-acetyl-β-glucosaminidase and urease in soils, respectively, compared to the control. Furthermore, it significantly increased the abundance of Proteobacteria (15.2%), Actinobacteriota (37.0%), Chloroflexi (21.4%), and Gemmatimonadota (43.6%) at the phylum level. Co-occurrence network analysis showed that FBC was better than BC in increasing the complexity of bacterial communities. Partial least squares path modeling further indicated that the addition of biochar treatments can affect soil enzyme activities by altering soil bacterial composition. This study suggests that FBC application offers advantages in simultaneous As and Sb immobilization and restructuring the bacterial community composition in metal(loid)-contaminated soil.
Collapse
Affiliation(s)
- Jiayi Li
- Agronomy College, Shenyang Agricultural University, Shenyang 110866, China; School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Yurong Gao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Caibin Li
- Yancao Production Technology Center, Bijie Yancao Company of Guizhou Province, Bijie 551700, China
| | - Fenglin Wang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Hanbo Chen
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science & Technology, Hangzhou 310023, China
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Paramsothy Jeyakumar
- Environmental Sciences, School of Agriculture & Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Zhenbao Luo
- Yancao Production Technology Center, Bijie Yancao Company of Guizhou Province, Bijie 551700, China
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Xiaofei Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Jun Meng
- Agronomy College, Shenyang Agricultural University, Shenyang 110866, China.
| | - Hailong Wang
- Agronomy College, Shenyang Agricultural University, Shenyang 110866, China; School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
15
|
Wu Y, Yan Y, Wang Z, Tan Z, Zhou T. Biochar application for the remediation of soil contaminated with potentially toxic elements: Current situation and challenges. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119775. [PMID: 38070425 DOI: 10.1016/j.jenvman.2023.119775] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 01/14/2024]
Abstract
Recently, biochar has garnered extensive attention in the remediation of soils contaminated with potentially toxic elements (PTEs) owing to its exceptional adsorption properties and straightforward operation. Most researchers have primarily concentrated on the effects, mechanisms, impact factors, and risks of biochar in remediation of PTEs. However, concerns about the long-term safety and impact of biochar have restricted its application. This review aims to establish a basis for the large-scale popularization of biochar for remediating PTEs-contaminated soil based on a review of interactive mechanisms between soil, PTEs and biochar, as well as the current situation of biochar for remediation in PTEs scenarios. Biochar can directly interact with PTEs or indirectly with soil components, influencing the bioavailability, mobility, and toxicity of PTEs. The efficacy of biochar in remediation varies depending on biomass feedstock, pyrolysis temperature, type of PTEs, and application rate. Compared to pristine biochar, modified biochar offers feasible solutions for tailoring specialized biochar suited to specific PTEs-contaminated soil. Main challenges limiting the applications of biochar are overdose and potential risks. The used biochar is separated from the soil that not only actually removes PTEs, but also mitigates the negative long-term effects of biochar. A sustainable remediation technology is advocated that enables the recovery and regeneration (95.0-95.6%) of biochar from the soil and the removal of PTEs (the removal rate of Cd is more than 20%) from the soil. Finally, future research directions are suggested to augment the environmental safety of biochar and promote its wider application.
Collapse
Affiliation(s)
- Yi Wu
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuhang Yan
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zongwei Wang
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhongxin Tan
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Tuo Zhou
- China State Key Laboratory of Power Systems, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
16
|
Ghosh S, Mondal S, Mandal J, Mukherjee A, Bhattacharyya P. Effect of metal fractions on rice grain metal uptake and biological parameters in mica mines waste contaminated soils. J Environ Sci (China) 2024; 136:313-324. [PMID: 37923441 DOI: 10.1016/j.jes.2022.10.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2023]
Abstract
Heavy metals from mica waste not only deteriorate the soil quality but also results in the uptake of metals in the crop. The present investigation was conducted to evaluate the effects of different fractions of metals on the uptake in rice, soil microbial and biochemical properties in mica waste-contaminated soils of Jharkhand, India. From each active mine, soil samples were randomly collected at distances of < 50 m (zone 1), 50-100 m (zone 2), and >100 m (zone 3). Sequential metal extraction was used to determine the fractions of different metals (nickel (Ni), cadmium (Cd), chromium (Cr) and lead (Pb)) including water-soluble (Ws) and exchangeable metals (Ex), carbonate-bound metals (CBD), Fe/Mn oxide (OXD) bound metals, organically bound metals (ORG), and residues (RS). The Ni, Cr, Cd and Pb in rice grain were 0.83±0.41, 0.41±0.19, 0.21±0.14 and 0.17±0.08 mg/kg respectively. From the variable importance plot of the random forest (RF) algorithm, the Ws fraction of Ni, Cr and Cd and Ex fraction of Pb was the most important predictor for rice grain metal content. Further, the partial dependence plots (PDP) give us an insight into the role of the two most important metal fractions on rice grain metal content. The microbial and enzyme activity was significantly and negatively correlated with Ws and Ex metal fractions, indicating that water-soluble and exchangeable fractions exert a strong inhibitory effect on the soil microbiological parameters and enzyme activities.
Collapse
Affiliation(s)
- Saibal Ghosh
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, Jharkhand 815301, India
| | - Sandip Mondal
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, Jharkhand 815301, India
| | - Jajati Mandal
- School of Science, Engineering & Environment, University of Salford, Manchester M5 4WT, UK.
| | - Abhishek Mukherjee
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, Jharkhand 815301, India.
| | - Pradip Bhattacharyya
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, Jharkhand 815301, India.
| |
Collapse
|
17
|
Nkoh JN, Shi RY, Li JY, Xu RK. Combined application of Pseudomonas fluorescens and urea can mitigate rapid acidification of cropland Ultisol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167652. [PMID: 37813255 DOI: 10.1016/j.scitotenv.2023.167652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
Rhizobacteria maintain a healthy soil required for crop growth. This has led to increased interest in the use of bacteria-based biofertilizers in agriculture as they improve soil nutrient content and protect plants against pathogens. However, the effect of bacteria inoculum on N transformation and soil physicochemical properties during urea fertilization remains unexploited. Thus, this study investigated the effect of Pseudomonas fluorescens on urea N transformation in an acidic Ultisol within a 70-d incubation period. The results revealed that (1) soil pH peaked on d 5 (pH 5.58) and 20 (pH 6.23) and rapidly decreased till d 62 (pH 4.10) and 50 (pH 4.93) for urea and urea + bacteria treatments, respectively, and remained constant thereafter. After 70 d, the pH of the bacteria-treated Ultisol remained higher (0.78 pH units) than that of urea-treated Ultisol; (2) the change in soil pH was in agreement with the mineralization trend of N, as the concentration of NH4+-N peaked on d 5 (134.2 mg N kg-1) and 20 (423 mg N kg-1) before decreasing to 62.1 and 276.1 mg N kg-1 on d 70 in urea-treated and bacteria-treated Ultisol, respectively; and (3) P. fluorescens consumed protons produced during nitrification to retard rapid decrease in soil pH, decreased soil exchangeable acidity (33.3 %), increased soil effective cation exchange capacity (32.8 %), and increased the solubility of soil exchangeable base cations (68.4 %, Ca2+ + Mg2+ + K+ + Na+). Thus, bacterial inoculum could promote N mineralization, enhance nutrient solubility, and retard soil acidification during N transformation in soils.
Collapse
Affiliation(s)
- Jackson Nkoh Nkoh
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; Department of Chemistry, University of Buea, P.O. Box 63, Buea, Cameroon.
| | - Ren-Yong Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China.
| | - Jiu-Yu Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China.
| | - Ren-Kou Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China.
| |
Collapse
|
18
|
Clarke VC, Marcelo-Silva J, Claassens S, Siebert SJ. Crinum bulbispermum, a Medicinal Geophyte with Phytostabilization Properties in Metal-Enriched Mine Tailings. PLANTS (BASEL, SWITZERLAND) 2023; 13:79. [PMID: 38202387 PMCID: PMC10780652 DOI: 10.3390/plants13010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Ancient grasslands are lost through transformation to agriculture, mining, and urban expansion. Land-use change leads to ecosystem degradation and a subsequent loss of biodiversity. Globally, degraded grasslands have become a priority for restoration efforts to recover lost ecosystem services. Although the ecological and social benefits of woody species and grasses are well documented, limited research has considered the use of forbs for restoration purposes despite their benefits (e.g., C sequestration and medicinal uses). The aim of this study was to determine if Crinum bulbispermum (Burm.f.) Milne-Redh. & Schweick., a medicinal geophyte, could form part of restoration initiatives to restore mine soils in grasslands of the South African Highveld. A pot experiment was conducted to assess the performance of C. bulbispermum in a random design, with three soil treatments varying in level of degradation and metal contamination. The plants were monitored for 12 months, and the morphological characters were measured monthly to assess performance and survival. Inductively coupled plasma mass spectrometry (ICP-MS) was used to determine the soil and plant tissue concentration of potentially toxic metals. The results indicated that mine tailings negatively affected the growth and development of C. bulbispermum. Although the survival rates indicated that it could survive on tailings, its below-par productivity indicated that the species is not ideal for restoration purposes unless the tailings are ameliorated with topsoil. Although there was root accumulation of metals (Co, Cd, Cu, Mo, and Zn), there was no translocation to the bulbs and leaves, which makes C. bulbispermum suitable for medicinal use even when grown on metal-enriched soil. This species may not be viable for phytoremediation but is a contender to be used in phytostabilization due to its ecological advantages and the fact that it does not accumulate or store metals. These findings underscore the importance of considering geophytes in grassland restoration strategies, expanding their ecological and societal benefits beyond conventional approaches.
Collapse
Affiliation(s)
- Vincent C. Clarke
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (V.C.C.); (S.C.)
| | - João Marcelo-Silva
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (V.C.C.); (S.C.)
| | - Sarina Claassens
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (V.C.C.); (S.C.)
- School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Stefan J. Siebert
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (V.C.C.); (S.C.)
| |
Collapse
|
19
|
Manquián-Cerda K, Calderón R, Molina-Roco M, Maldonado T, Arancibia-Miranda N. Cd 2+ Sorption Alterations in Ultisol Soils Triggered by Different Engineered Nanoparticles and Incubation Times. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3115. [PMID: 38133012 PMCID: PMC10745855 DOI: 10.3390/nano13243115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
The progressive influx of engineered nanoparticles (ENPs) into the soil matrix catalyses a fundamental transformation in the equilibrium dynamics between the soil and the edaphic solution. This all-encompassing investigation is geared towards unravelling the implications of an array of ENP types, diverse dosages and varying incubation durations on the kinetics governing Cd2+ sorption within Ultisol soils. These soils have been subjected to detailed characterizations probing their textural and physicochemical attributes in conjunction with an exhaustive exploration of ENP composition, structure and morphology. To decipher the intricate nuances of kinetics, discrete segments of Ultisol soils were subjected to isolated systems involving ENP dosages of 20 and 500 mg ENPs·kg-1 (AgNPs, CuNPs and FeNPs) across intervals of 1, 3 and 6 months. The comprehensive kinetic parameters were unveiled by applying the pseudo-first-order and pseudo-second-order models. At the same time, the underlying sorption mechanisms were studied via the intra-particle diffusion model. This study underscores the substantial impact of this substrate on the kinetic behaviours of contaminants such as Cd, emphasizing the need for its consideration in soil-linked economic activities and regulatory frameworks to optimize resource management.
Collapse
Affiliation(s)
- Karen Manquián-Cerda
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. B. O’Higgins, 3363, Santiago 9170124, Chile
| | - Raúl Calderón
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O’Higgins, Fabrica 1990, Segundo Piso, Santiago 8370993, Chile;
| | - Mauricio Molina-Roco
- Departamento de Acuicultura y Recursos Agroalimentarios, Campus Osorno-Chuyaca, Universidad de los Lagos, Osorno 5290000, Chile;
| | - Tamara Maldonado
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Placilla, Valparaíso 2373223, Chile;
| | - Nicolás Arancibia-Miranda
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. B. O’Higgins, 3363, Santiago 9170124, Chile
| |
Collapse
|
20
|
Khan S, Galstyan H, Abbas M, Wenjing X. Advanced biotechnology strategies for detoxification of persistent organic pollutants and toxic elements in soil. CHEMOSPHERE 2023; 345:140519. [PMID: 37871876 DOI: 10.1016/j.chemosphere.2023.140519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/20/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
This paper aims to comprehensively examine and present the current state of persistent organic pollutants (POPs) and toxic elements (TEs) in soil. Additionally, it seeks to assess the viability of employing advanced biotechnology, specifically phytoremediation with potent microbial formulations, as a means of detoxifying POPs and TEs. In the context of the "global treaty," which is known as the Stockholm Convention, we analyzed the 3D chemical structures of POPs and its prospects for living organisms which have not been reviewed up to date. The obstacles associated with the phytoremediation strategy in biotechnology, including issues like slow plant growth and limited efficiency in contaminant uptake, have also been discussed and demonstrated. While biotechnology is recognized as a promising method for detoxifying persistent organic pollutants (POPs) and facilitating the restoration of contaminated and degraded lands, its full potential in the field is constrained by various factors. Recent advances in biotechnology, such as microbial enzymes, designer plants, composting, and nanobiotechnology techniques, have opened up new avenues for mitigating persistent organic pollutants (POPs) and toxic elements (TEs). The insights gained from this review can contribute to the development of innovative, practical, and economically viable approaches for remediating and restoring soils contaminated with persistent organic pollutants (POPs) and toxic elements (TEs). The ultimate aim is to reduce the risks to both human and environmental health.
Collapse
Affiliation(s)
- Shamshad Khan
- School of Geography and Resources Science, Neijiang Normal University, Neijiang, 641100, China.
| | - Hrachuhi Galstyan
- School of Geography and Resources Science, Neijiang Normal University, Neijiang, 641100, China
| | - Mohsin Abbas
- College of Engineering, University of Technology Bahrain, Salmabad, Kingdom of Bahrain
| | - Xiang Wenjing
- Department of International Exchange and Cooperation, Neijiang Normal University, Neijiang, 641100, China
| |
Collapse
|
21
|
Wang J, Aghajani Delavar M. Techno-economic analysis of phytoremediation: A strategic rethinking. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165949. [PMID: 37536595 DOI: 10.1016/j.scitotenv.2023.165949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Phytoremediation is a cost-effective and environmentally sound approach, which uses plants to immobilize/stabilize, extract, decay, or lessen toxicity and contaminants. Despite successful evidence of field application, such as natural attenuations, and self-purification, the main barriers remain from a "promising" to a "commercial" approach. Therefore, the ultimate goal of this paper is to examine factors that contribute to phytoremediation's underutilization and discuss the real costs of phytoremediation when the time and land values are considered. We revisit mechanisms and processes of phytoremediation. We synthesize existing information and understanding based on previous works done on phytoremediation and its applications to provide the technical assessment and perspective views in the commercial acceptance of phytoremediation. The results show that phytoremediation is the most suitable for remote regions with low land values. Since these regions allow a longer period to be restored, land vegetation covers can be established in more or less time like natural attenuation. Since the length of phytoremediation is an inherent limitation, this inherent disadvantage limits its adoption in developed business regions, such as growing urban areas. Because high land values could not be recovered in the short term, phytoremediation is not cost-effective in those regions. We examine the potential measures that can enhance the performance of phytoremediation, such as soil amendments, and agricultural practices. The results obtained through review can clarify where/what conditions phytoremediation can provide the most suitable solutions at a large scale. Finally, we identify the main barriers and knowledge gaps to establishing a vegetation cover in large-scale applications and highlight the research priorities for increased acceptance of phytoremediation.
Collapse
Affiliation(s)
- Junye Wang
- Faculty of Science and Technology, Athabasca University, 1 University Drive, Athabasca, Alberta T9S 3A3, Canada.
| | - Mojtaba Aghajani Delavar
- Faculty of Science and Technology, Athabasca University, 1 University Drive, Athabasca, Alberta T9S 3A3, Canada
| |
Collapse
|
22
|
Liu J, Sun S, Zhang H, Kong Q, Li Q, Yao X. Remediation materials for the immobilization of hexavalent chromium in contaminated soil: Preparation, applications, and mechanisms. ENVIRONMENTAL RESEARCH 2023; 237:116918. [PMID: 37611786 DOI: 10.1016/j.envres.2023.116918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/01/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Hexavalent chromium is a toxic metal that can induce severe chromium contamination of soil, posing a potential risk to human health and ecosystems. In recent years, the immobilization of Cr(VI) using remediation materials including inorganic materials, organic materials, microbial agents, and composites has exhibited great potential in remediating Cr(VI)-contaminated soil owing to the environmental-friendliness, short period, simple operation, low cost, applicability on an industrial scale, and high efficiency of these materials. Therefore, a systematical summary of the current progress on various remediation materials is essential. This work introduces the production (sources) of remediation materials and examines their characteristics in detail. Additionally, a critical summary of recent research on the utilization of remediation materials for the stabilization of Cr(VI) in the soil is provided, together with an evaluation of their remediation efficiencies toward Cr(VI). The influences of remediation material applications on soil physicochemical properties, microbial community structure, and plant growth are summarized. The immobilization mechanisms of remediation materials toward Cr(VI) in the soil are illuminated. Importantly, this study evaluates the feasibility of each remediation material application for Cr(VI) remediation. The latest knowledge on the development of remediation materials for the immobilization of Cr(VI) in the soil is also presented. Overall, this review will provide a reference for the development of remediation materials and their application in remediating Cr(VI)-contaminated soil.
Collapse
Affiliation(s)
- Jiwei Liu
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, 250014, China.
| | - Shuyu Sun
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Huanxin Zhang
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, 250014, China; Dongying Institute, Shandong Normal University, Dongying, Shandong, 257092, China
| | - Qian Li
- School of Modern Agriculture and Environment, Weifang Institute of Technology, Weifang, Shandong, 261000, China
| | - Xudong Yao
- Project Department, Shandong Luqiao Detection Technology Co., Ltd., Rizhao, Shandong, 276800, China
| |
Collapse
|
23
|
Ullah S, Liu Q, Wang S, Jan AU, Sharif HMA, Ditta A, Wang G, Cheng H. Sources, impacts, factors affecting Cr uptake in plants, and mechanisms behind phytoremediation of Cr-contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165726. [PMID: 37495153 DOI: 10.1016/j.scitotenv.2023.165726] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Chromium (Cr) is released into the environment through anthropogenic activities and has gained significant attention in the recent decade as environmental pollution. Its contamination has adverse effects on human health and the environment e.g. decreases soil fertility, alters microbial activity, and reduces plant growth. It can occur in different oxidation states, with Cr(VI) being the most toxic form. Cr contamination is a significant environmental and health issue, and phytoremediation offers a promising technology for remediating Cr-contaminated soils. Globally, over 400 hyperaccumulator plant species from 45 families have been identified which have the potential to remediate Cr-contaminated soils through phytoremediation. Phytoremediation can be achieved through various mechanisms, such as phytoextraction, phytovolatilization, phytodegradation, phytostabilization, phytostimulation, and rhizofiltration. Understanding the sources and impacts of Cr contamination, as well as the factors affecting Cr uptake in plants and remediation techniques such as phytoremediation and mechanisms behind it, is crucial for the development of effective phytoremediation strategies. Overall, phytoremediation offers a cost-effective and sustainable solution to the problem of Cr pollution. Further research is needed to identify plant species that are more efficient at accumulating Cr and to optimize phytoremediation methods for specific environmental conditions. With continued research and development, phytoremediation has the potential to become a widely adopted technique for the remediation of heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Sadeeq Ullah
- School of Environment and Civil Engineering, Research Center for Eco-Environment Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, China
| | - Qingling Liu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
| | - Shiyong Wang
- School of Environment and Civil Engineering, Research Center for Eco-Environment Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, China
| | - Amin Ullah Jan
- Department of Biotechnology, Faculty of Science, Shaheed Benazir Bhutto University Sheringal, Dir Upper, Khyber Pakhtunkhwa 18000, Pakistan
| | - Hafiz M Adeel Sharif
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal, Dir Upper, Khyber Pakhtunkhwa 18000, Pakistan; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Gang Wang
- School of Environment and Civil Engineering, Research Center for Eco-Environment Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, China.
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
24
|
Li J, Abbas M, Desoky ESM, Zafar S, Soaud SA, Hussain SS, Abbas S, Hussain A, Ihtisham M, Ragauskas AJ, Wafa HA, El-Sappah AH. Analysis of metal tolerance protein (MTP) family in sunflower (Helianthus annus L.) and role of HaMTP10 as Cadmium antiporter under moringa seed extract. INDUSTRIAL CROPS AND PRODUCTS 2023; 202:117023. [DOI: 10.1016/j.indcrop.2023.117023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
|
25
|
Shahrokh V, Martínez-Martínez S, Faz Á, Zornoza R, Acosta JA. Efficiency of large-scale aided phytostabilization in a mining pond. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:4665-4677. [PMID: 36892788 PMCID: PMC10310568 DOI: 10.1007/s10653-023-01520-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Mining activities accumulate large quantities of waste in tailing ponds, which results in several environmental impacts. In Cartagena-La Unión mining district (SE Spain), a field experiment was carried out in a tailing pond to evaluate the effect of aided phytostabilization on reducing the bioavailability of zinc (Zn), lead (Pb), copper (Cu) and cadmium (Cd) and enhancing soil quality. Nine native plant species were planted, and pig manure and slurry along with marble waste were used as amendments. After 3 years, the vegetation developed heterogeneously on the pond surface. In order to evaluate the factors affecting this inequality, four areas with different VC and an area without treatment (control area) were sampled. Soil physicochemical properties, total, bioavailable and soluble metals, and metal sequential extraction were determined. Results revealed that pH, organic carbon, calcium carbonate equivalent and total nitrogen increased after the aided phytostabilization, while electrical conductivity, total sulfur and bioavailable metals significantly decreased. In addition, results indicated that differences in VC among sampled areas were mainly owing to differences in pH, EC and concentration of soluble metals, which in turn were modified by the effect of non-restored areas on close restored areas after heavy rains due to a lower elevation of the restored areas compared to the unrestored ones. Therefore, to achieve the most favorable and sustainable long-term results of aided phytostabilization, along with plant species and amendments, micro-topography should be also taken into consideration, which causes different soil characteristics and thus different plant growth and survival.
Collapse
Affiliation(s)
- Vajihe Shahrokh
- Department of Agricultural Engineering, Technical University of Cartagena, Paseo Alfonso XIII 48, 30203, Cartagena, Spain
| | - Silvia Martínez-Martínez
- Department of Agricultural Engineering, Technical University of Cartagena, Paseo Alfonso XIII 48, 30203, Cartagena, Spain
| | - Ángel Faz
- Department of Agricultural Engineering, Technical University of Cartagena, Paseo Alfonso XIII 48, 30203, Cartagena, Spain
| | - Raúl Zornoza
- Department of Agricultural Engineering, Technical University of Cartagena, Paseo Alfonso XIII 48, 30203, Cartagena, Spain
| | - Jose A Acosta
- Department of Agricultural Engineering, Technical University of Cartagena, Paseo Alfonso XIII 48, 30203, Cartagena, Spain.
| |
Collapse
|
26
|
Romero-Estonllo M, Ramos-Castro J, San Miguel del Río Y, Rodríguez-Garrido B, Prieto-Fernández Á, Kidd PS, Monterroso C. Soil amendment and rhizobacterial inoculation improved Cu phytostabilization, plant growth and microbial activity in a bench-scale experiment. Front Microbiol 2023; 14:1184070. [PMID: 37455720 PMCID: PMC10346841 DOI: 10.3389/fmicb.2023.1184070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Mine driven trace elements' pollution entails environmental risks and causes soil infertility. In the last decades, in situ techniques such as phytostabilization have become increasingly important as ways to tackle these negative impacts. The aim of this study was to test the individual and combined effects of different aided phytostabilization techniques using substrate from barren tailings of a Cu mine, characterized by extreme infertility (high acidity and deficiency of organic matter and nutrients). The experiment analyzed the growth of Populus nigra L. planted alone (P) or in co-cropping with Trifolium repens L. (PT), in pots containing mine soil amended with compost (1, 10, compost, soil, w/w) non inoculated (NI) or inoculated with plant growth promoting rhizobacteria (PGP), mycorrhizae (MYC) or a combination of bacterial and fungal inocula (PGPMYC). Non-amended, non-planted and non-inoculated reference ports were also prepared. Plants were harvested after 110 days of plant development and several biometric and phytopathological parameters (stem height, aerial biomass, root biomass, wilting, chlorosis, pest and death) and macro and micronutrient composition were determined. The growth substrate was analyzed for several physicochemical (pH, CECe, and exchangeable cations, total C and N, P Olsen and availability of trace elements) and microbiological (community level physiological profiles: activity, richness and diversity) parameters. The use of the amendment, P. nigra plantation, and inoculation with rhizobacteria were the best techniques to reduce toxicity and improve soil fertility, as well as to increase the plant survival and growth. Soil bacterial functional diversity was markedly influenced by the presence of plants and the inoculation with bacteria, which suggests that the presence of plant regulated the configuration of a microbial community in which the inoculated bacteria thrive comparatively better. The results of this study support the use of organic amendments, tolerant plants, and plant growth promoting rhizobacteria to reduce environmental risk and improve fertility of soils impacted by mining.
Collapse
Affiliation(s)
- Marc Romero-Estonllo
- CRETUS, Departamento de Edafoloxía e Química Agrícola, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Judith Ramos-Castro
- CRETUS, Departamento de Edafoloxía e Química Agrícola, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Yaiza San Miguel del Río
- CRETUS, Departamento de Edafoloxía e Química Agrícola, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Beatriz Rodríguez-Garrido
- Misión Biológica de Galicia Sede de Santiago de Compostela (MBG), Consejo Superior de Investigaciones Científicas (CSIC), Santiago de Compostela, Spain
| | - Ángeles Prieto-Fernández
- Misión Biológica de Galicia Sede de Santiago de Compostela (MBG), Consejo Superior de Investigaciones Científicas (CSIC), Santiago de Compostela, Spain
| | - Petra S. Kidd
- Misión Biológica de Galicia Sede de Santiago de Compostela (MBG), Consejo Superior de Investigaciones Científicas (CSIC), Santiago de Compostela, Spain
| | - Carmen Monterroso
- CRETUS, Departamento de Edafoloxía e Química Agrícola, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
27
|
Krautforst K, Szymczycha-Madeja A, Wełna M, Michalak I. Brown seaweed: Fucus vesiculosus as a feedstock for agriculture and environment protection. Sci Rep 2023; 13:10065. [PMID: 37344524 PMCID: PMC10284851 DOI: 10.1038/s41598-023-36881-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/12/2023] [Indexed: 06/23/2023] Open
Abstract
A comprehensive approach to the management of brown seaweed-Fucus vesiculosus was presented. An algal extract, which served as a biostimulant of plant growth was produced using ultrasound-assisted extraction (UAE). The concentration of the extract (20, 40, 60, 80, 100%), which had the greatest influence on biometric parameters of radish, was determined in germination tests. The seaweed itself as well as the produced post-extraction residue were used in doses of 2 and 4 g/kg as soil additives, stimulating plant growth in the initial phase. Pot tests for sorghum carried out under optimal conditions (20% extract and 2 g/kg of soil additive) had a positive effect on the plant weight, length and the content of chlorophyll in comparison with the control group treated with distilled water. Additionally, preliminary studies on the bioremediation of soil contaminated with Zn(II) ions with the use of both soil additives were performed. It was shown that the immobilization of Zn(II) ions in the soil by the applied additives reduced the bioaccumulation of zinc in the aerial part of plants as compared with the group cultivated in the contaminated soil but without additive. Accordingly, by producing plant biostimulants by UAE it was also possible to successfully manage the post-extraction residue following the concept of a bio-based economy.
Collapse
Affiliation(s)
- Karolina Krautforst
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| | - Anna Szymczycha-Madeja
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Maja Wełna
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Izabela Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland.
| |
Collapse
|
28
|
Wang F, Shen X, Wu Y, Wang Y, Zhang H, Ding Y, Zhu W. Evaluation of the effectiveness of amendments derived from vermicompost combined with modified shell powder on Cd immobilization in Cd-contaminated soil by multiscale experiments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115166. [PMID: 37348213 DOI: 10.1016/j.ecoenv.2023.115166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/06/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
The widespread heavy metal contamination of agricultural soils poses an enormous challenge to food safety. To evaluate the Cd immobilization potential of vermicompost combined with modified shell powder (VMSP) on Cd-contaminated soil, batch adsorption tests and field experiments were conducted. First, the Cd2+ removal characteristics and adsorption mechanisms of vermicompost (V), vermicompost combined with shell powder (VSP), and VMSP in an aqueous solution were investigated by batch tests. Then, 3 kg·m2 V, VSP, and VMSP doses were applied to Cd-contaminated farmland soils as soil amendments to plant green garlic (Allium sativum L.) and investigate their Cd immobilization effects in Cd-contaminated soils. Batch adsorption tests showed that VMSP was most effective for Cd2+ removal, with adsorption rates as high as 85.7-99.79% and desorption rates of approximately 1.25-1.34%. Combining further characterization analysis of VMSP, it was demonstrated that the adsorption mechanism of Cd2+ was monolayer chemisorption, mainly involving the complexation reaction of Cd2+ with organic functional groups and the precipitation reaction of Cd2+ with mineral elements. The field experiment showed that adding V, VSP, and VMSP effectively inhibited the enrichment of Cd in green garlic, and the Cd content was reduced by 42.18%, 46.88%, and 68.75%, respectively. However, only the Cd content of green garlic treated with VMSP was lower than the national standard for food safety in China (Cd≤ 0.2 mg·kg-1). V, VSP, and VMSP additions improved soil fertility and reduced Cd bioavailability in the soil by 15.5%, 18.9%, and 36.3%, respectively. In addition, V, VSP, and VMSP addition increased bacterial diversity and improved bacterial communities and functions in the soil by improving basic soil properties and reducing Cd-related toxicity. The results indicated that VMSP is a promising amendment for Cd immobilization in Cd-contaminated farmland soils.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Engineering, Hangzhou Normal University, Hangzhou 311121, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xuyang Shen
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - YuKe Wu
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - YiFan Wang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Hangjun Zhang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Ying Ding
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Weiqin Zhu
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
29
|
Qu L, Xu J, Dai Z, Elyamine AM, Huang W, Han D, Dang B, Xu Z, Jia W. Selenium in soil-plant system: Transport, detoxification and bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131272. [PMID: 37003006 DOI: 10.1016/j.jhazmat.2023.131272] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Selenium (Se) is an essential micronutrient for humans and a beneficial element for plants. However, high Se doses always exhibit hazardous effects. Recently, Se toxicity in plant-soil system has received increasing attention. This review will summarize (1) Se concentration in soils and its sources, (2) Se bioavailability in soils and influencing factors, (3) mechanisms on Se uptake and translocation in plants, (4) toxicity and detoxification of Se in plants and (5) strategies to remediate Se pollution. High Se concentration mainly results from wastewater discharge and industrial waste dumping. Selenate (Se [VI]) and selenite (Se [IV]) are the two primary forms absorbed by plants. Soil conditions such as pH, redox potential, organic matter and microorganisms will influence Se bioavailability. In plants, excessive Se will interfere with element uptake, depress photosynthetic pigment biosynthesis, generate oxidative damages and cause genotoxicity. Plants employ a series of strategies to detoxify Se, such as activating antioxidant defense systems and sequestrating excessive Se in the vacuole. In order to alleviate Se toxicity to plants, some strategies can be applied, including phytoremediation, OM remediation, microbial remediation, adsorption technique, chemical reduction technology and exogenous substances (such as Methyl jasmonate, Nitric oxide and Melatonin). This review is expected to expand the knowledge of Se toxicity/detoxicity in soil-plant system and offer valuable insights into soils Se pollution remediation strategies.
Collapse
Affiliation(s)
- Lili Qu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Jiayang Xu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhihua Dai
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ali Mohamed Elyamine
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou, Guangdong, China
| | - Wuxing Huang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Dan Han
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Bingjun Dang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Zicheng Xu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Wei Jia
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| |
Collapse
|
30
|
Liu T, Wang S, Chen Y, Luo J, Hao B, Zhang Z, Yang B, Guo W. Bio-organic fertilizer promoted phytoremediation using native plant leymus chinensis in heavy Metal(loid)s contaminated saline soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121599. [PMID: 37037280 DOI: 10.1016/j.envpol.2023.121599] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/20/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Heavy metal(loid)s (HMs) contaminated saline soil appeared around the world, however, remediation regarding these collected from field conditions remains unknown. Native plants cultivation and bio-organic fertilizer (BOF) application were two efficient tools for soil amelioration. Herein, a pot experiment was conducted to examine the feasibility of a native plant (Leymus chinensis) for phytoremediation, and investigate the impacts of lignite based bio-organic fertilizer (LBOF) and manure based bio-organic fertilizer (MBOF) on phytoremediation of the soil contaminated by Pb, Cd, As, Zn, Cu, Ca2+, and SO42-. The results demonstrated the effectiveness of L. chinensis and highlighted the positive impacts of BOF according to the improved plant growth, HMs phytostabilization, salt removal, and soil properties. LBOF and MBOF changed soil microbiome to assist phytoremediation in addition to physiological modulation. Having enhanced fungal and bacterial richness respectively, LBOF and MBOF recruited various plant growth promoting rhizobacteria with different functions, and shifted microbial co-occurrence networks and keystone taxa towards these different but beneficial forms. Structural equation models comprehensively reveled the strategy discrepancy of LBOF and MBOF to regulate the plant biomass, HMs uptake, and soil salt. In summary, L. chinensis coupled with BOF, especially LBOF, was a effective strategy to remediate HMs contaminated saline soil.
Collapse
Affiliation(s)
- Tai Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Sensen Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Yunong Chen
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Junqing Luo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Baihui Hao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Zhechao Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Bo Yang
- Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wei Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
31
|
Sánchez-Castro I, Molina L, Prieto-Fernández MÁ, Segura A. Past, present and future trends in the remediation of heavy-metal contaminated soil - Remediation techniques applied in real soil-contamination events. Heliyon 2023; 9:e16692. [PMID: 37484356 PMCID: PMC10360604 DOI: 10.1016/j.heliyon.2023.e16692] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/28/2023] [Accepted: 05/24/2023] [Indexed: 07/25/2023] Open
Abstract
Most worldwide policy frameworks, including the United Nations Sustainable Development Goals, highlight soil as a key non-renewable natural resource which should be rigorously preserved to achieve long-term global sustainability. Although some soil is naturally enriched with heavy metals (HMs), a series of anthropogenic activities are known to contribute to their redistribution, which may entail potentially harmful environmental and/or human health effects if certain concentrations are exceeded. If this occurs, the implementation of rehabilitation strategies is highly recommended. Although there are many publications dealing with the elimination of HMs using different methodologies, most of those works have been done in laboratories and there are not many comprehensive reviews about the results obtained under field conditions. Throughout this review, we examine the different methodologies that have been used in real scenarios and, based on representative case studies, we present the evolution and outcomes of the remediation strategies applied in real soil-contamination events where legacies of past metal mining activities or mine spills have posed a serious threat for soil conservation. So far, the best efficiencies at field-scale have been reported when using combined strategies such as physical containment and assisted-phytoremediation. We have also introduced the emerging problem of the heavy metal contamination of agricultural soils and the different strategies implemented to tackle this problem. Although remediation techniques used in real scenarios have not changed much in the last decades, there are also encouraging facts for the advances in this field. Thus, a growing number of mining companies publicise in their webpages their soil remediation strategies and efforts; moreover, the number of scientific publications about innovative highly-efficient and environmental-friendly methods is also increasing. In any case, better cooperation between scientists and other soil-related stakeholders is still required to improve remediation performance.
Collapse
Affiliation(s)
- Iván Sánchez-Castro
- Estación Experimental Del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Lázaro Molina
- Estación Experimental Del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - María-Ángeles Prieto-Fernández
- Misión Biolóxica de Galicia (CSIC), Sede Santiago de Compostela, Avda de Vigo S/n. Campus Vida, 15706, Santiago de Compostela, Spain
| | - Ana Segura
- Estación Experimental Del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| |
Collapse
|
32
|
Gao J, Han H, Gao C, Wang Y, Dong B, Xu Z. Organic amendments for in situ immobilization of heavy metals in soil: A review. CHEMOSPHERE 2023:139088. [PMID: 37268229 DOI: 10.1016/j.chemosphere.2023.139088] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/04/2023]
Abstract
There is a growing need for soil remediation due to the increase in heavy metals (HMs) migrating into the soil environment, especially those from man-made sources dominated by industry and agriculture. In situ immobilization technology, because of its lower life cycle environmental footprint, can achieve "green and sustainable remediation" of soil heavy-metal pollution. Among the various in situ immobilization remediation agents, organic amendments (OAs) stand out as they can act as soil conditioners while acting as HMs immobilization agents, and therefore have excellent application prospects. In this paper, the types and remediation effects of OAs for HMs in situ immobilization in soil are summarized. OAs have an important effect on the soil environment and other active substances in soil while interacting with HMs in soil. Based on these factors, the principle and mechanism of HMs in situ immobilization in soil using OAs are summarized. Given the complex differential characteristics of soil itself, it is impossible to determine whether it can remain stable after heavy-metal remediation; therefore, there is still a gap in knowledge regarding the compatibility and long-term effectiveness of OAs with soil. In the future, it is necessary to develop a reasonable HMs contamination remediation program for in situ immobilization and long-term monitoring through interdisciplinary integration techniques. These findings are expected to provide a reference for the development of advanced OAs and their applications in engineering.
Collapse
Affiliation(s)
- Jun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Haoxuan Han
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Chang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yuhao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China.
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
33
|
Wang S, Liao P, Cen L, Cheng H, Liu Q. Biochar Promotes Arsenopyrite Weathering in Simulated Alkaline Soils: Electrochemical Mechanism and Environmental Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37224024 DOI: 10.1021/acs.est.2c09874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Oxidation dissolution of arsenopyrite (FeAsS) is one of the important sources of arsenic contamination in soil and groundwater. Biochar, a commonly used soil amendment and environmental remediation agent, is widespread in ecosystems, where it participates in and influences the redox-active geochemical processes of sulfide minerals associated with arsenic and iron. This study investigated the critical role of biochar on the oxidation process of arsenopyrite in simulated alkaline soil solutions by a combination of electrochemical techniques, immersion tests, and solid characterizations. Polarization curves indicated that the elevated temperature (5-45 °C) and biochar concentration (0-1.2 g·L-1) accelerated arsenopyrite oxidation. This is further confirmed by electrochemical impedance spectroscopy, which showed that biochar substantially reduced the charge transfer resistance in the double layer, resulting in smaller activation energy (Ea = 37.38-29.56 kJ·mol-1) and activation enthalpy (ΔH* = 34.91-27.09 kJ·mol-1). These observations are likely attributed to the abundance of aromatic and quinoid groups in biochar, which could reduce Fe(III) and As(V) as well as adsorb or complex with Fe(III). This hinders the formation of passivation films consisting of iron arsenate and iron (oxyhydr)oxide. Further observation found that the presence of biochar exacerbates acidic drainage and arsenic contamination in areas containing arsenopyrite. This study highlighted the possible negative impact of biochar on soil and water, suggesting that the different physicochemical properties of biochar produced from different feedstock and under different pyrolysis conditions should be taken into account before large-scale applications to prevent potential risks to ecology and agriculture.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Peng Liao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ling Cen
- Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hongguang Cheng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qingyou Liu
- Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
34
|
Padhye LP, Srivastava P, Jasemizad T, Bolan S, Hou D, Shaheen SM, Rinklebe J, O'Connor D, Lamb D, Wang H, Siddique KHM, Bolan N. Contaminant containment for sustainable remediation of persistent contaminants in soil and groundwater. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131575. [PMID: 37172380 DOI: 10.1016/j.jhazmat.2023.131575] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/14/2023]
Abstract
Contaminant containment measures are often necessary to prevent or minimize offsite movement of contaminated materials for disposal or other purposes when they can be buried or left in place due to extensive subsurface contamination. These measures can include physical, chemical, and biological technologies such as impermeable and permeable barriers, stabilization and solidification, and phytostabilization. Contaminant containment is advantageous because it can stop contaminant plumes from migrating further and allow for pollutant reduction at sites where the source is inaccessible or cannot be removed. Moreover, unlike other options, contaminant containment measures do not require the excavation of contaminated substrates. However, contaminant containment measures require regular inspections to monitor for contaminant mobilization and migration. This review critically evaluates the sources of persistent contaminants, the different approaches to contaminant remediation, and the various physical-chemical-biological processes of contaminant containment. Additionally, the review provides case studies of contaminant containment operations under real or simulated field conditions. In summary, contaminant containment measures are essential for preventing further contamination and reducing risks to public health and the environment. While periodic monitoring is necessary, the benefits of contaminant containment make it a valuable remediation option when other methods are not feasible.
Collapse
Affiliation(s)
- Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Prashant Srivastava
- CSIRO, The Commonwealth Scientific and Industrial Research Organisation, Environment Business Unit, Waite Campus, Urrbrae, South Australia 5064, Australia
| | - Tahereh Jasemizad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - David O'Connor
- School of Real Estate and Land Management, Royal Agricultural University, Cirencester, Gloucestershire GL7 6JS, United Kingdom
| | - Dane Lamb
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Kadambot H M Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
35
|
Qiao P, Wang S, Li J, Shan Y, Wei Y, Zhang Z, Lei M. Quantitative analysis of the contribution of sources, diffusion pathways, and receptor attributes for the spatial distribution of soil heavy metals and their nested structure analysis in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163647. [PMID: 37088387 DOI: 10.1016/j.scitotenv.2023.163647] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Investigation of heavy metal pollution degree, pollution sources, and spatial distribution structure is crucial for the country's soil pollution prevention, but relevant research is lacking. In this study, As, Cd, Cr, Cu, Pb and Zn in the national scope are taken as research objects. Among them, Cd has the highest pollution level. Four sources were quantitatively allocated as soil type, mining and dressing industry, GDP, and NDVI, which accounted for 92.93, 97.81, 99.30 and 96.24 % of Cr, Cd, Zn and As contamination, respectively. In addition, according to the geographical detector, the spatial distribution of As was affected by three diffusion pathways, whose influence degree were 0.822-0.947, especially the slope. Cadmium was primarily affected by both receptor attributes and diffusion pathways, with an influence degree of 0.010-0.175, especially soil water content and slope; Cr and Pb were affected by receptor attributes, with an influence degree of 0.886-0.986 and 0.007-0.288, respectively, especially for soil water content and soil organic carbon; Cu and Zn were affected by receptor attributes, with an influence degree of 0.182-0.823 and 0.002-0.150, respectively, especially for soil texture. There are two spatial distribution structures with nested scales in east-west and north-south directions. The large spatial structure has a more significant impact on the spatial distribution of heavy metals, especially in the east-west direction. Overall, the mining and dressing industry is the main source in Hunan, Yunnan, and Liaoning, where many mines exist and mining activities are frequent. GDP was the main source in Shanghai and Zhejiang areas, where the economy is developed. NDVI was the main source in Guangdong and Anhui areas, where agriculture is relatively developed. These results provide a basis for determining remediation and prevention objectives in soil pollution remediation and prevention in the national scope.
Collapse
Affiliation(s)
- Pengwei Qiao
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Beijing 100089, China.
| | - Shuo Wang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Beijing 100089, China
| | - Jiabin Li
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Beijing 100089, China
| | - Yue Shan
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Beijing 100089, China
| | - Yan Wei
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Beijing 100089, China
| | - Zhongguo Zhang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Beijing 100089, China
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
36
|
Kibria KQ, Islam MA, Hoque S, Hossain MZ, Islam MA. Effect of Organic Amendments on Cadmium Bioavailability in Soil and its Accumulation in Rice Grain. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:74. [PMID: 37000244 DOI: 10.1007/s00128-023-03717-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
A pot trial was conducted during the boro (dry) season to evaluate the impact of six traditional organic amendments (OAs) on the growth of SL-8 rice variety in both agricultural and cadmium (Cd) stressed soil at 2% and 4% application rates. Traditional OAs used in the study were cow dung, mustard oil cake (MOC), rice husk, saw dust, tea leaf and vermi compost (VC). Except for cow dung all other OAs were found to remove 99% of Cd from the aqueous solution, while cow dung removed 95%. Rice grain grown in OA-added soil in all application rates contained less Cd than the control. A 2% application rate was found to be more effective in reducing both Cd bioavailability and Cd in grain. OA application in soil significantly influenced soil pH in all cases. Though both bioavailable Cd in soil and grain Cd were reduced by the OA addition, the Cd uptake tendency of SL-8 rice variety markedly increased because of Cd spiking in soil.
Collapse
Affiliation(s)
| | - Md Azharul Islam
- Forestry and Wood Technology Discipline, Khulna University, Khulna, Bangladesh
| | - Sirajul Hoque
- Department of Soil, Water and Environment, University of Dhaka, Dhaka, 1000, Bangladesh
| | | | - Md Atikul Islam
- Environmental Science Discipline, Khulna University, Khulna, Bangladesh.
| |
Collapse
|
37
|
Paniagua-López M, Aguilar-Garrido A, Contero-Hurtado J, García-Romera I, Sierra-Aragón M, Romero-Freire A. Ecotoxicological Assessment of Polluted Soils One Year after the Application of Different Soil Remediation Techniques. TOXICS 2023; 11:298. [PMID: 37112525 PMCID: PMC10143980 DOI: 10.3390/toxics11040298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
The present work evaluated the influence of eight different soil remediation techniques, based on the use of residual materials (gypsum, marble, vermicompost) on the reduction in metal(loid)s toxicity (Cu, Zn, As, Pb and Cd) in a polluted natural area. Selected remediation treatments were applied in a field exposed to real conditions and they were evaluated one year after the application. More specifically, five ecotoxicological tests were carried out using different organisms on either the solid or the aqueous (leachate) fraction of the amended soils. Likewise, the main soil properties and the total, water-soluble and bioavailable metal fractions were determined to evaluate their influence on soil toxicity. According to the toxicity bioassays performed, the response of organisms to the treatments differed depending on whether the solid or the aqueous fraction was used. Our results highlighted that the use of a single bioassay may not be sufficient as an indicator of toxicity pathways to select soil remediation methods, so that the joint determination of metal availability and ecotoxicological response will be determinant for the correct establishment of any remediation technique carried out under natural conditions. Our results indicated that, of the different treatments used, the best technique for the remediation of metal(loid)s toxicity was the addition of marble sludge with vermicompost.
Collapse
Affiliation(s)
- Mario Paniagua-López
- Departamento de Edafología y Química Agrícola, Faculty of Science, University of Granada, 18071 Granada, Spain; (A.A.-G.); (J.C.-H.); (M.S.-A.)
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (EEZ-CSIC), 18008 Granada, Spain;
| | - Antonio Aguilar-Garrido
- Departamento de Edafología y Química Agrícola, Faculty of Science, University of Granada, 18071 Granada, Spain; (A.A.-G.); (J.C.-H.); (M.S.-A.)
| | - José Contero-Hurtado
- Departamento de Edafología y Química Agrícola, Faculty of Science, University of Granada, 18071 Granada, Spain; (A.A.-G.); (J.C.-H.); (M.S.-A.)
| | - Inmaculada García-Romera
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (EEZ-CSIC), 18008 Granada, Spain;
| | - Manuel Sierra-Aragón
- Departamento de Edafología y Química Agrícola, Faculty of Science, University of Granada, 18071 Granada, Spain; (A.A.-G.); (J.C.-H.); (M.S.-A.)
| | - Ana Romero-Freire
- Departamento de Edafología y Química Agrícola, Faculty of Science, University of Granada, 18071 Granada, Spain; (A.A.-G.); (J.C.-H.); (M.S.-A.)
| |
Collapse
|
38
|
Chen W, Yu Z, Yang X, Wang T, Li Z, Wen X, He Y, Zhang C. Unveiling the Role of Dissolved Organic Matter on the Hg Phytoavailability in Biochar-Amended Soils. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3761. [PMID: 36834455 PMCID: PMC9963283 DOI: 10.3390/ijerph20043761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/13/2023]
Abstract
Biochar can effectively reduce the phytoavailability of mercury (Hg) in soil, but the mechanisms are not fully understood. In this study, the dynamic changes in Hg content adsorbed by the biochar (BC-Hg), Hg phytoavailability in the soil (P-Hg), and soil dissolved organic matter (DOM) characteristics were determined over a 60-day treatment period. Biochar obtained at 300 °C, 500 °C and 700 °C reduced the P-Hg concentration assessed by MgCl2 extraction by 9.4%, 23.5% and 32.7%, respectively. However, biochar showed a very limited adsorption on Hg, with the maximum BC-Hg content only accounting for 1.1% of the total amount. High-resolution scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDS) results showed that the proportion of Hg atoms in biochar after 60 d was barely detectable. Biochar treatment can shift soil DOM toward higher aromatic content and molecular weight. Additionally, the addition of high-temperature biochar increased more humus-like components, but low-temperature biochar increased more protein-like components. Correlation analysis and partial least squares path modeling (PLS-PM) showed that biochar promoted humus-like fractions formation to reduce the Hg phytoavailability. This research has deepened the understanding of the mechanisms by which biochar stabilizes Hg in agricultural soils.
Collapse
Affiliation(s)
- Wenhao Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zhigang Yu
- Australian Centre for Water and Environmental Biotechnology (Formerly AWMC), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Tantan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zihao Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xin Wen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yubo He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| |
Collapse
|
39
|
Medina-Díaz HL, López-Bellido FJ, Alonso-Azcárate J, Fernández-Morales FJ, Rodríguez L. COMPREHENSIVE STUDY OF ELECTROKINETIC-ASSISTED PHYTOEXTRACTION OF METALS FROM MINE TAILINGS BY APPLYING DIRECT AND ALTERNATE CURRENT. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
40
|
Qiao P, Wang S, Li J, Zhao Q, Wei Y, Lei M, Yang J, Zhang Z. Process, influencing factors, and simulation of the lateral transport of heavy metals in surface runoff in a mining area driven by rainfall: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159119. [PMID: 36183764 DOI: 10.1016/j.scitotenv.2022.159119] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/12/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
The lateral transport of heavy metals can expand the scope of original contamination, and an accurate prediction of heavy metal migration is necessary to control heavy metal transport. However, previous studies have mainly focused on the migration of soil pollutants in the runoff-soil-groundwater system, whereas research on the lateral migration of heavy metals in surface soil driven by rainfall is relatively scarce. Therefore, in this study we analyzed the horizontal migration of water-soluble heavy metals with surface runoff and non-water-soluble heavy metals with sediment particles, investigated the main factors affecting the processes of runoff and sediment transport and the main factors affecting the mobility of heavy metals in soils, summarized the existing methods for the simulation of heavy metal transportation. The construction of a lateral migration model based on the migration mechanism of soil heavy metals, the hydrological model, and the application of the lateral migration model should be the focus of future research. This study provides a theoretical basis for establishing a model of the lateral migration of soil heavy metals and is of great significance for the prevention and control of the risks related to the lateral migration of soil heavy metals.
Collapse
Affiliation(s)
- Pengwei Qiao
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Beijing 100089, China.
| | - Shuo Wang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Beijing 100089, China.
| | - Jiabin Li
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Beijing 100089, China
| | - Qianyun Zhao
- YuHuan Environmental Technology Co., Ltd., Shijiazhuang 050051, China
| | - Yan Wei
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Beijing 100089, China
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Yang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhongguo Zhang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Beijing 100089, China
| |
Collapse
|
41
|
Feng H, Cheng J. Whole-Process Risk Management of Soil Amendments for Remediation of Heavy Metals in Agricultural Soil-A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1869. [PMID: 36767236 PMCID: PMC9914875 DOI: 10.3390/ijerph20031869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Reducing the mobility and bioavailability of heavy metals in soils by adding exogenous materials is a technology for remediating soils contaminated with heavy metals. Unlike industrial sites, the use of such techniques in agricultural soils requires consideration of not only reducing the mobility of heavy metals but also avoiding adverse effects on soil fertility and the growth of plants. Due to the uncertainty of the stability of amendments applied to agricultural soil, the application of amendments in farmland soil is controversial. This article reviewed the field studies in which amendments were used to immobilize heavy metals, and identified the potential environmental impacts of all aspects of soil amendment usage, including production and processing, transportation, storage, application to soil, long-term stability, and plant absorption. Results of the study indicated that after identifying the environmental risks of the whole process of the application of improvers in agricultural fields, it is necessary to classify the risks according to their characteristics, and design differentiated risk control measures for the safe application of this type of technology.
Collapse
|
42
|
Bolan N, Sarmah AK, Bordoloi S, Bolan S, Padhye LP, Van Zwieten L, Sooriyakumar P, Khan BA, Ahmad M, Solaiman ZM, Rinklebe J, Wang H, Singh BP, Siddique KHM. Soil acidification and the liming potential of biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120632. [PMID: 36384210 DOI: 10.1016/j.envpol.2022.120632] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Soil acidification in managed ecosystems such as agricultural lands principally results from the increased releasing of protons (H+) from the transformation reactions of carbon (C), nitrogen (N) and sulphur (S) containing compounds. The incorporation of liming materials can neutralize the protons released, hence reducing soil acidity and its adverse impacts to the soil environment, food security, and human health. Biochar derived from organic residues is becoming a source of carbon input to soil and provides multifunctional values. Biochar can be alkaline in nature, with the level of alkalinity dependent upon the feedstock and processing conditions. This review covers the fundamental aspects of soil acidification and of the use of biochar to address constraints related to acidic soil. Biochar is increasingly considered as an effective soil amendment for reducing soil acidity owing to its liming potential, thereby enhancing soil fertility and productivity in acid soils. The ameliorant effect on acid soils is mainly because of the dissolution of carbonates, (hydro)-oxides of the ash fraction of biochar and potential use by microorganisms.
Collapse
Affiliation(s)
- Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia.
| | - Ajit K Sarmah
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia; Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92010, Auckland, 1142, New Zealand
| | - Sanandam Bordoloi
- Prairie Research Institute-Illinois Sustainable Technology Centre, University of Illinois at Urbana Champaign, Illinois, USA
| | - Shankar Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92010, Auckland, 1142, New Zealand
| | | | - Prasanthi Sooriyakumar
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Basit Ahmed Khan
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Mahtab Ahmad
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Zakaria M Solaiman
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, People's Republic of China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, People's Republic of China
| | - Bhupinder Pal Singh
- Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, Australia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| |
Collapse
|
43
|
Zulfiqar U, Haider FU, Ahmad M, Hussain S, Maqsood MF, Ishfaq M, Shahzad B, Waqas MM, Ali B, Tayyab MN, Ahmad SA, Khan I, Eldin SM. Chromium toxicity, speciation, and remediation strategies in soil-plant interface: A critical review. FRONTIERS IN PLANT SCIENCE 2023; 13:1081624. [PMID: 36714741 PMCID: PMC9880494 DOI: 10.3389/fpls.2022.1081624] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
In recent decades, environmental pollution with chromium (Cr) has gained significant attention. Although chromium (Cr) can exist in a variety of different oxidation states and is a polyvalent element, only trivalent chromium [Cr(III)] and hexavalent chromium [Cr(VI)] are found frequently in the natural environment. In the current review, we summarize the biogeochemical procedures that regulate Cr(VI) mobilization, accumulation, bioavailability, toxicity in soils, and probable risks to ecosystem are also highlighted. Plants growing in Cr(VI)-contaminated soils show reduced growth and development with lower agricultural production and quality. Furthermore, Cr(VI) exposure causes oxidative stress due to the production of free radicals which modifies plant morpho-physiological and biochemical processes at tissue and cellular levels. However, plants may develop extensive cellular and physiological defensive mechanisms in response to Cr(VI) toxicity to ensure their survival. To cope with Cr(VI) toxicity, plants either avoid absorbing Cr(VI) from the soil or turn on the detoxifying mechanism, which involves producing antioxidants (both enzymatic and non-enzymatic) for scavenging of reactive oxygen species (ROS). Moreover, this review also highlights recent knowledge of remediation approaches i.e., bioremediation/phytoremediation, or remediation by using microbes exogenous use of organic amendments (biochar, manure, and compost), and nano-remediation supplements, which significantly remediate Cr(VI)-contaminated soil/water and lessen possible health and environmental challenges. Future research needs and knowledge gaps are also covered. The review's observations should aid in the development of creative and useful methods for limiting Cr(VI) bioavailability, toxicity and sustainably managing Cr(VI)-polluted soils/water, by clear understanding of mechanistic basis of Cr(VI) toxicity, signaling pathways, and tolerance mechanisms; hence reducing its hazards to the environment.
Collapse
Affiliation(s)
- Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | | | - Muhammad Ishfaq
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Babar Shahzad
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Muhammad Mohsin Waqas
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan, Pakistan
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan, Pakistan
| | | | - Syed Amjad Ahmad
- Department of Mechanical Engineering, NFC IEFR, Faisalabad, Pakistan
| | - Ilyas Khan
- Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Sayed M. Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo, Egypt
| |
Collapse
|
44
|
Zveushe OK, Ling Q, Li X, Sajid S, de Dios VR, Nabi F, Han Y, Dong F, Zeng F, Zhou L, Shen S, Zhang W, Li Z. Reduction of Cd Uptake in Rice ( Oryza sativa) Grain Using Different Field Management Practices in Alkaline Soils. Foods 2023; 12:314. [PMID: 36673405 PMCID: PMC9858237 DOI: 10.3390/foods12020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/16/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Cadmium contamination and toxicity on plants and human health is a major problem in China. Safe rice production in Cd-contaminated alkaline soils, with acceptably low Cd levels and high yields, remains an important research challenge. To achieve this, a small-scale field experiment with seven different soil amendment materials was conducted to test their effects performance. Two best-performing materials were selected for the large-scale field experiment. Combinations of humic acid, foliar, and/or soil silicon fertilization and deep or shallow plowing were designed. It was found that the combination, including humic acid, soil and foliar silicate fertilization, and shallow plowing (5-10 cm), produced the most desirable results (the lowest soil bioavailable Cd, the lowest grain Cd concentrations, and the highest grain yield). Rice farmers are therefore recommended to implement this combination to attain high grain yield with low Cd concentrations in alkaline soils.
Collapse
Affiliation(s)
- Obey Kudakwashe Zveushe
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Qin Ling
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xing Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Sumbal Sajid
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Víctor Resco de Dios
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Department of Crop and Forest Sciences, University of Lleida, 25003 Lleida, Spain
- Joint Research Unit CTFC-AGROTECNIO, Universitat de Lleida, 25003 Lleida, Spain
| | - Farhan Nabi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ying Han
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Faqin Dong
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, China
| | - Fang Zeng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lei Zhou
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China
| | - Songrong Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Wei Zhang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China
- Center of Analysis and Testing, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zhi Li
- Chengdu Defei Environmental Engineering Co., Ltd., Chengdu 610041, China
| |
Collapse
|
45
|
Xu H, Fan Y, Xia X, Liu Z, Yang S. Effect of Ginkgo biloba leaves on the removal efficiency of Cr(VI) in soil and its underlying mechanism. ENVIRONMENTAL RESEARCH 2023; 216:114431. [PMID: 36167113 DOI: 10.1016/j.envres.2022.114431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Cr(VI) is a toxic, teratogenic, and carcinogenic heavy metal element in soil that poses major ecological and human health risks. In this study, microcosm tests combined with X-ray absorption near-edge spectra (XANES) and 16Sr DNA amplification techniques were used to explore the effect of Ginkgo biloba leaves on the removal efficiency of Cr(VI) in soil and its underlying mechanism. Ginkgo biloba leaves had a favorable remediation effect on soil varying in Cr(VI) contamination levels, and the optimal effect was observed when 5% Ginkgo biloba leaves were added. The occurrence state of Cr(VI) in soil before and after the addition of Ginkgo biloba leaves was analyzed by XANES, which revealed that Cr(VI) was fully converted to the more biologically innocuous Cr(III), and the hydroxyl-containing quercetin in Ginkgo biloba leaves was one of the primary components mediating this reduction reaction. The Cr(VI) content was significantly lower in non-sterilized soil than in sterilized soil, suggesting that soil microorganisms play a key role in the remediation process. The addition of Ginkgo biloba leaves decreased the α-diversity and altered the β-diversity of the soil bacterial community. Actinobacteria was the dominant phylum in the soil remediated by Ginkgo biloba leaves; four genera of Cr(VI)-reducing bacteria were also enriched, including Agrococcus, Klebsiella, Streptomyces, and Microbacterium. Functional gene abundances predicted by PICRUST indicated that the expression of glutathione synthesis genes was substantially up-regulated, which might be the main metabolic pathway underlying the mitigation of Cr(VI) toxicity in soil by Cr(VI)-reducing bacteria. In sum, Ginkgo biloba leaves can effectively remove soil Cr(VI) and reduce Cr(VI) to Cr(III) via quercetin in soil, which also functions as a carbon source to drive the production of glutathione via Cr(VI)-reducing bacteria and mitigate Cr(VI) toxicity. The findings of this study elucidate the chemical and microbial mechanisms of Cr(VI) removal in soil by Ginkgo biloba leaves and provide insights that could be used to enhance the remediation of Cr(VI)-contaminated soil.
Collapse
Affiliation(s)
- Hefeng Xu
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, No. 59 Beiyingfang Middle Street, Xicheng District, 100037, Beijing, PR China
| | - Yanling Fan
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, No. 59 Beiyingfang Middle Street, Xicheng District, 100037, Beijing, PR China
| | - Xu Xia
- Institute of Environment and Sustainable Development in Agricultural, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, 100081, Beijing, PR China
| | - Zengjun Liu
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, No. 59 Beiyingfang Middle Street, Xicheng District, 100037, Beijing, PR China.
| | - Shuo Yang
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, No. 59 Beiyingfang Middle Street, Xicheng District, 100037, Beijing, PR China
| |
Collapse
|
46
|
Mench M, Matin S, Szulc W, Rutkowska B, Persson T, Sæbø A, Burges A, Oustriere N. Field assessment of organic amendments and spring barley to phytomanage a Cu/PAH-contaminated soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:19-39. [PMID: 35435522 DOI: 10.1007/s10653-022-01269-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
The INTENSE project, supported by the EU Era-Net Facce Surplus, aimed at increasing crop production on marginal land, including those with contaminated soils. A field trial was set up at a former wood preservation site to phytomanage a Cu/PAH-contaminated sandy soil. The novelty was to assess the influence of five organic amendments differing in their composition and production process, i.e. solid fractions before and after biodigestion of pig manure, compost and compost pellets (produced from spent mushroom substrate, biogas digestate and straw), and greenwaste compost, on Cu availability, soil properties, nutrient supply, and plant growth. Organic amendments were incorporated into the soil at 2.3% and 5% soil w/w. Total soil Cu varied from 179 to 1520 mg kg-1, and 1 M NH4NO3-extractable soil Cu ranged from 4.7 to 104 mg kg-1 across the 25 plots. Spring barley (Hordeum vulgare cv. Ella) was cultivated in plots. Changes in physico-chemical soil properties, shoot DW yield, shoot ionome, and shoot Cu uptake depending on extractable soil Cu and the soil treatments are reported. Shoot Cu concentration varied from 45 ± 24 to 140 ± 193 mg kg DW-1 and generally increased with extractable soil Cu. Shoot DW yield, shoot Cu concentration, and shoot Cu uptake of barley plants did not significantly differ across the soil treatments in year 1. Based on soil and plant parameters, the effects of the compost and pig manure treatments were globally discriminated from those of the untreated, greenwaste compost and digested pig manure treatments. Compost and its pellets at the 5% addition rate promoted soil functions related to primary production, water purification, and soil fertility, and the soil quality index.
Collapse
Affiliation(s)
- Michel Mench
- University Bordeaux, INRAE, BIOGECO, Bât. B2, Allée Geoffroy St-Hilaire, CS50023, 33615, Pessac cedex, France.
| | - Shahlla Matin
- University Bordeaux, INRAE, BIOGECO, Bât. B2, Allée Geoffroy St-Hilaire, CS50023, 33615, Pessac cedex, France
| | - Wieslaw Szulc
- Warsaw University of Life Sciences, 02-787, Warsaw, Poland
| | | | - Tomas Persson
- NIBIO-Norwegian Institute of Bioeconomy Research, Særheim, Klepp Stasjon, Norway
| | - Arne Sæbø
- NIBIO-Norwegian Institute of Bioeconomy Research, Særheim, Klepp Stasjon, Norway
| | - Aritz Burges
- University Bordeaux, INRAE, BIOGECO, Bât. B2, Allée Geoffroy St-Hilaire, CS50023, 33615, Pessac cedex, France
| | - Nadège Oustriere
- University Bordeaux, INRAE, BIOGECO, Bât. B2, Allée Geoffroy St-Hilaire, CS50023, 33615, Pessac cedex, France
| |
Collapse
|
47
|
Cleophas FN, Zahari NZ, Murugayah P, Rahim SA, Mohd Yatim AN. Phytoremediation: A Novel Approach of Bast Fiber Plants (Hemp, Kenaf, Jute and Flax) for Heavy Metals Decontamination in Soil-Review. TOXICS 2022; 11:5. [PMID: 36668731 PMCID: PMC9864374 DOI: 10.3390/toxics11010005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/01/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Heavy metal pollution in the environment is a major concern for humans as it is non-biodegradable and can have a lot of effects on the environment, humans as well as plants. At present, a solution to this problem is suggested in terms of a new, innovative and eco-friendly technology known as phytoremediation. Bast fiber plants are typically non-edible crops that have a short life cycle. It is one of the significant crops that has attracted interest for many industrial uses because of its constant fiber supply and ease of maintenance. Due to its low maintenance requirements with minimum economic investment, bast fiber plants have been widely used in phytoremediation. Nevertheless, these plants have the ability to extract metals from the soil through their deep roots, combined with their commercial prospects, making them an ideal candidate as a profit-yielding crop for phytoremediation purposes. Therefore, a comprehensive review is needed for a better understanding of the morphology and phytoremediation mechanism of four commonly bast fiber plants, such as hemp (Cannabis sativa), kenaf (Hibiscus cannabinus), jute (Corchorus olitorius) and Flax (Linum usitatissimum). This review article summarizes the existing research on the phytoremediation potential of these plants grown in different toxic pollutants such as Lead (Pb), Cadmium (Cd) and Zinc (Zn). This work also discusses several aids including natural and chemical amendments to improve phytoremediation. The role of these amendments in the bioavailability of contaminants, their uptake, translocation and bioaccumulation, as well as their effect on plant growth and development, has been highlighted in this paper. This paper helps in identifying, comparing and addressing the recent achievements of bast fiber plants for the phytoremediation of heavy metals in contaminated soil.
Collapse
Affiliation(s)
- Fera Nony Cleophas
- Environmental Science Programme, Faculty of Science & Natural Resources, Universiti Malaysia Sabah, UMS Road, Kota Kinabalu 88400, Sabah, Malaysia
- Small Islands Research Center, Universiti Malaysia Sabah, UMS Road, Kota Kinabalu 88400, Sabah, Malaysia
| | - Nur Zaida Zahari
- Environmental Science Programme, Faculty of Science & Natural Resources, Universiti Malaysia Sabah, UMS Road, Kota Kinabalu 88400, Sabah, Malaysia
- Small Islands Research Center, Universiti Malaysia Sabah, UMS Road, Kota Kinabalu 88400, Sabah, Malaysia
| | - Pavitra Murugayah
- Environmental Science Programme, Faculty of Science & Natural Resources, Universiti Malaysia Sabah, UMS Road, Kota Kinabalu 88400, Sabah, Malaysia
| | - Sahibin Abd Rahim
- Environmental Science Programme, Faculty of Science & Natural Resources, Universiti Malaysia Sabah, UMS Road, Kota Kinabalu 88400, Sabah, Malaysia
| | - Ahmad Norazhar Mohd Yatim
- Environmental Science Programme, Faculty of Science & Natural Resources, Universiti Malaysia Sabah, UMS Road, Kota Kinabalu 88400, Sabah, Malaysia
| |
Collapse
|
48
|
Mikhailova EO. Green Synthesis of Platinum Nanoparticles for Biomedical Applications. J Funct Biomater 2022; 13:260. [PMID: 36412901 PMCID: PMC9680517 DOI: 10.3390/jfb13040260] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
The diverse biological properties of platinum nanoparticles (PtNPs) make them ideal for use in the development of new tools in therapy, diagnostics, and other biomedical purposes. "Green" PtNPs synthesis is of great interest as it is eco-friendly, less energy-consuming and minimizes the amount of toxic by-products. This review is devoted to the biosynthesis properties of platinum nanoparticles based on living organisms (bacteria, fungi, algae, and plants) use. The participation of various biological compounds in PtNPs synthesis is highlighted. The biological activities of "green" platinum nanoparticles (antimicrobial, anticancer, antioxidant, etc.), the proposed mechanisms of influence on target cells and the potential for their further biomedical application are discussed.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of Innovation Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
49
|
Dotaniya ML, Rajendiran S, Saurabh K, Saha JK, Dotaniya CK, Patra AK. Immobilization of chromium bioavailability through application of organic waste to Indian mustard (Brassica juncea) under chromium-contaminated Indian soils. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:31. [PMID: 36282356 DOI: 10.1007/s10661-022-10625-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Industrialization results in production of large volume of wastewaters, and disposing of them become a serious problem. The wastewaters may have range of heavy metals, which have an impact on soil and plant health. The objective was to evaluate the influence of farm yard manure (FYM) and pressmud (PM) applications on Indian mustard growth and chromium (Cr) uptake in tannery effluent irrigated Cr-contaminated soil. Soil was collected from the tannery effluent irrigated fields (chromium contaminated) of Shekhpura village of Kanpur, India. A pot culture experiment was carried out by growing Indian mustard (Brassica juncea) var. RH 749 on the Cr-contaminated soil with application of different levels and combinations of FYM and PM (at 0, 2.5, and 5 g kg-1 each). Biomass yield, Cr uptake, bioconcentration factor (BCF), transfer factor (TF), transfer efficiency (TE), and Cr removal indices were examined. Higher doses of FYM and PM resulted in reduction of Cr concentrations in shoot (6.60 to 2.50 µg g-1) and root (27.27 to 9.43 µg g-1); and absorption in plant tissues and had improved total dry matter yield (14.56 to 30.94 g pot-1). The use of FYM and PM had a substantial (p ≤ 0.05) impact on phytoremediation parameters like BCF (0.128 to 0.045), TE (59.61 to 64.51%), and Cr removal (0.65 to 0.51%). Combined application of FYM (5 g kg-1) and PM (5 g kg-1) had enhanced the dry matter yield of shoot (12.51 to 26.40 g pot-1) and root (2.05 to 4.54 g pot-1) and reduced the Cr uptake (138.54 to 108.79 mg pot-1) than the individual amendment addition of FYM (138.52 to 135.89 mg pot-1) and PM (126.02 to 130.52 mg pot-1). Combined application of FYM (5 g kg-1) and PM (5 g kg-1) could be beneficial for remediation of Cr-contaminated areas for cultivation of crops.
Collapse
Affiliation(s)
- M L Dotaniya
- ICAR-Indian Institute of Soil Science, Nabibagh, Berasia Road, 462 038, Bhopal, India.
- ICAR-Directorate of Rapeseed-Mustard Research, 321 303, Bharatpur, India.
| | - S Rajendiran
- ICAR-Indian Institute of Soil Science, Nabibagh, Berasia Road, 462 038, Bhopal, India
- ICAR - Indian Institute of Horticultural Research, 560 089, Bengaluru, India
| | - Kirti Saurabh
- ICAR-Research Complex for Eastern Region, 800 014, Patna, India
| | - J K Saha
- ICAR-Indian Institute of Soil Science, Nabibagh, Berasia Road, 462 038, Bhopal, India
| | - C K Dotaniya
- Department of Soil Science & Agricultural Chemistry, SKRAU, 334006, Bikaner, India
| | - A K Patra
- ICAR-Indian Institute of Soil Science, Nabibagh, Berasia Road, 462 038, Bhopal, India
| |
Collapse
|
50
|
Qing Z, Guijian L, Shuchuan P, Chuncai Z, Arif M. Immobilization of hexavalent chromium in soil-plant environment using calcium silicate hydrate synthesized from coal gangue. CHEMOSPHERE 2022; 305:135438. [PMID: 35750229 DOI: 10.1016/j.chemosphere.2022.135438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/09/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
The presence of excessive hexavalent chromium (Cr(VI)) in the contaminated soils and plants has become a global environmental issue due to its toxicity and carcinogenicity. This work investigated the feasibility of immobilizing Cr(VI) in the soil-plant environment using calcium silicate hydrate (C-S-H) synthesized from coal gangue. The results revealed that the C-S-H amendment increased soil pH and organic matter (OM), which further promoted Cr(VI) immobilization. Results also revealed that exchangeable and carbonate bound fractions of Cr were either converted into Fe/Mn oxide and OM bound fractions of Cr or hardly released residual fraction of Cr due to C-S-H treatment. The C-S-H accelerated conversion of Cr(VI) into Cr(III) promoting plant growth and alleviating the toxic effect of Cr(VI). Cr(VI) was mainly immobilized and accumulated in the plant roots which resulted in comparatively lower Cr(VI) content in the edible part of plants. The exchangeable fraction of Cr in soil could be used as a bioavailability evaluation index of Cr(VI) in plants. In short, C-S-H was proved to be a practical and environmentally friendly amendment for in-situ immobilization of Cr(VI) contaminated soil.
Collapse
Affiliation(s)
- Zhang Qing
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China
| | - Liu Guijian
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China; CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Peng Shuchuan
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Zhou Chuncai
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China
| | - Muhammad Arif
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 60000, Pakistan
| |
Collapse
|