1
|
Gharabli H, Della Gala V, Welner DH. The function of UDP-glycosyltransferases in plants and their possible use in crop protection. Biotechnol Adv 2023; 67:108182. [PMID: 37268151 DOI: 10.1016/j.biotechadv.2023.108182] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 06/04/2023]
Abstract
Glycosyltransferases catalyse the transfer of a glycosyl moiety from a donor to an acceptor. Members of this enzyme class are ubiquitous throughout all kingdoms of life and are involved in the biosynthesis of countless types of glycosides. Family 1 glycosyltransferases, also referred to as uridine diphosphate-dependent glycosyltransferases (UGTs), glycosylate small molecules such as secondary metabolites and xenobiotics. In plants, UGTs are recognised for their multiple functionalities ranging from roles in growth regulation and development, in protection against pathogens and abiotic stresses and in adaptation to changing environments. In this study, we review UGT-mediated glycosylation of phytohormones, endogenous secondary metabolites, and xenobiotics and contextualise the role this chemical modification plays in the response to biotic and abiotic stresses and plant fitness. Here, the potential advantages and drawbacks of altering the expression patterns of specific UGTs along with the heterologous expression of UGTs across plant species to improve stress tolerance in plants are discussed. We conclude that UGT-based genetic modification of plants could potentially enhance agricultural efficiency and take part in controlling the biological activity of xenobiotics in bioremediation strategies. However, more knowledge of the intricate interplay between UGTs in plants is needed to unlock the full potential of UGTs in crop resistance.
Collapse
Affiliation(s)
- Hani Gharabli
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kgs. Lyngby DK-2800, Denmark
| | - Valeria Della Gala
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kgs. Lyngby DK-2800, Denmark
| | - Ditte Hededam Welner
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kgs. Lyngby DK-2800, Denmark.
| |
Collapse
|
2
|
Zhou M, Wang J, Zhou J, Liu L, Yang R, Xu J, Liang M, Xu L. Exogenous IAA application affects the specific characteristics of fluoranthene distribution in Arabidopsis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115306. [PMID: 37515970 DOI: 10.1016/j.ecoenv.2023.115306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
Indole-3-acetic acid (IAA) is a crucial growth regulator involved in the accumulation of polycyclic aromatic hydrocarbons (PAHs). However, the precise physiological and molecular mechanisms underlying IAA-mediated plant growth and PAH accumulation are not yet fully understood. In this study, two distinct IAA-sensitive genotypes of Arabidopsis thaliana (wild type and Axr5 mutant) were chosen to investigate the mechanisms of fluoranthene (Flu) uptake and accumulation in plant tissues (roots and leaves) through physiological and molecular analyses. The results revealed that the Flu concentration in Axr5 leaves was significantly higher than that in wild-type (WT) leaves. In roots, the Flu content decreased significantly with increasing IAA treatment, while no significant changes were observed with lower IAA treatment. Principal component analysis demonstrated that Flu accumulation in Arabidopsis roots was associated with IAA concentrations, whereas Flu accumulation in leaves was dependent on the genotype. Moreover, Flu accumulation showed a positive correlation with the activity of glutathione S-transferase (GST) and root length and a positive correlation with catalase (CAT) and peroxidase (POD) activity in the leaves. Transcriptome analysis confirmed that the expression of the ethylene-related gene ATERF6 and GST-related genes ATGSTF14 and ATGSTU27 in roots, as well as the POD-related genes AtPRX9 and AtPRX25 and CAT-related gene AtCAT3 in leaves, played a role in Flu accumulation. Furthermore, WRKY transcription factors (TFs) in roots and NAC TFs in leaves were identified as important regulators of Flu accumulation. Understanding the mechanisms of Flu uptake and accumulation in A. thaliana provides valuable insights for regulating PAH accumulation in plants.
Collapse
Affiliation(s)
- Mengjia Zhou
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, China
| | - Ji Wang
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Zhou
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, China
| | - Lin Liu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruixuan Yang
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingjing Xu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingxiang Liang
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Li Xu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, China.
| |
Collapse
|
3
|
Kösesakal T, Seyhan M. Naphthalene Stress Responses of the Aquatic fern Azolla Filiculoides Lam. and Evaluation of Phytoremediation Potential. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2126505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Taylan Kösesakal
- Department of Botany, Faculty of Science, Istanbul University, Vezneciler, Istanbul, Turkey
| | - Müge Seyhan
- Institute of Sciences, Istanbul University, Vezneciler, Istanbul, Turkey
| |
Collapse
|
4
|
Dimunová D, Matoušková P, Podlipná R, Boušová I, Skálová L. The role of UDP-glycosyltransferases in xenobiotic-resistance. Drug Metab Rev 2022; 54:282-298. [DOI: 10.1080/03602532.2022.2083632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Diana Dimunová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Radka Podlipná
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Praha 6 - Lysolaje, Czech Republic
| | - Iva Boušová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
5
|
Molina L, Segura A. Biochemical and Metabolic Plant Responses toward Polycyclic Aromatic Hydrocarbons and Heavy Metals Present in Atmospheric Pollution. PLANTS (BASEL, SWITZERLAND) 2021; 10:2305. [PMID: 34834668 PMCID: PMC8622723 DOI: 10.3390/plants10112305] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 05/17/2023]
Abstract
Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) are toxic components of atmospheric particles. These pollutants induce a wide variety of responses in plants, leading to tolerance or toxicity. Their effects on plants depend on many different environmental conditions, not only the type and concentration of contaminant, temperature or soil pH, but also on the physiological or genetic status of the plant. The main detoxification process in plants is the accumulation of the contaminant in vacuoles or cell walls. PAHs are normally transformed by enzymatic plant machinery prior to conjugation and immobilization; heavy metals are frequently chelated by some molecules, with glutathione, phytochelatins and metallothioneins being the main players in heavy metal detoxification. Besides these detoxification mechanisms, the presence of contaminants leads to the production of the reactive oxygen species (ROS) and the dynamic of ROS production and detoxification renders different outcomes in different scenarios, from cellular death to the induction of stress resistances. ROS responses have been extensively studied; the complexity of the ROS response and the subsequent cascade of effects on phytohormones and metabolic changes, which depend on local concentrations in different organelles and on the lifetime of each ROS species, allow the plant to modulate its responses to different environmental clues. Basic knowledge of plant responses toward pollutants is key to improving phytoremediation technologies.
Collapse
Affiliation(s)
- Lázaro Molina
- Department of Environmental Protection, Estación Experimental del Zaidín, C.S.I.C., Calle Profesor Albareda 1, 18008 Granada, Spain;
| | | |
Collapse
|
6
|
Li Y, Zhao L, Chen F, Jin KS, Fallgren PH, Chen L. Oxidation of nine petroleum hydrocarbon compounds by combined hydrogen peroxide/sodium persulfate catalyzed by siderite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25655-25663. [PMID: 32356061 DOI: 10.1007/s11356-020-08968-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
A system consisting of hydrogen peroxide/persulfate (H2O2/S2O82-) catalyzed by siderite was attempted to oxidize nine representative petroleum hydrocarbon compounds [benzene, toluene, ethylbenzene, m-xylene, p-xylene, o-xylene, 1,2,4-trimethylbenzene, methyl-tert-butyl ether, and naphthalene] that tend to persist in the environment. Oxidation under different siderite dosages, H2O2:S2O82- ratios, and pH conditions were investigated. Results indicated that oxidation rates increased from 1.21-4.62 to 1.77-8.94 d-1 as siderite increased from 0.16 to 0.48 g/40 mL (H2O2:Na2S2O8 = 5:1, initial pH = 3.0), except for naphthalene (decreased from 0.58 to 0.45 d-1 with increased siderite dosage). When the H2O2:S2O82- ratio was increased from 1:1 to 5:1 (siderite = 0.16 g, initial pH = 3.0), the oxidation rates increased from 0.02-0.73 to 0.33-2.19 d-1. However, as pH increased to > 5.5 (siderite = 0.16 g, H2O2:Na2S2O8 = 2.5:1), the oxidation rates of petroleum hydrocarbons decreased to 0.003-0.09 d-1, which was approximately 90% less than that at pH = 3.0. The partial correlations and principal component analysis of the experimental data were conducted. Overall, both siderite dosage and H2O2:S2O82- ratio correlated positively with oxidation efficiency. The oxidation potential by H2O2/S2O82- mixtures towards the target petroleum hydrocarbon compounds seemed to be more sensitive to pH conditions than to siderite dosages or H2O2:S2O82- ratios.
Collapse
Affiliation(s)
- YueHua Li
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, 300072, People's Republic of China
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Lin Zhao
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, 300072, People's Republic of China
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Fulong Chen
- College of water Conservancy & Architectural Engineering, Shihezi University, Xinjiang, 832000, People's Republic of China
| | - Kylan S Jin
- Advanced Environmental Technologies LLC, Fort Collins, CO, 80525, USA
| | - Paul H Fallgren
- Advanced Environmental Technologies LLC, Fort Collins, CO, 80525, USA
| | - Liang Chen
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, 300072, People's Republic of China.
- School of Civil Engineering, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
7
|
Liu Y, Bai J, Yao H, Li G, Zhang T, Li S, Zhang L, Si J, Zhou R, Zhang H. Embryotoxicity assessment and efficient removal of naphthalene from water by irradiated graphene aerogels. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:110051. [PMID: 31812022 DOI: 10.1016/j.ecoenv.2019.110051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/20/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
Naphthalene has remained a challenge how to eradicate it from the water because of its carcinogenic risk to humans. In the present study, naphthalene prominently increased the rates of embryonic mortality and malformation, and decreased the hatchability of zebrafish which have a high developmental similarity to humans. Moreover, multiple-organ toxicity were notably found in naphthalene-treated zebrafish. Here, irradiated graphene aerogel (IGA) was successfully prepared from high-energy electron beam to generate more wrinkles, folds, defects and a strong absorption capability for naphthalene, compared with the non-irradiated graphene aerogel. IGA was outstandingly found to remove naphthalene from the embryo culture medium, and subsequently inhibit the embryotoxicity and maintain tissue integrity by restoring cardiac function, attenuating apoptosis signals, recovering eye morphology and structure, reducing expression of heat shock protein 70 in the tissues and promoting behavioral capacity. Meanwhile, no obvious negative impact of IGA was found in the developing zebrafish from embryo to larvae. Consequently, reduction in the toxicity of naphthalene during zebrafish embryogenesis was mediated by IGA as an advanced strategy.
Collapse
Affiliation(s)
- Yang Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing Bai
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huijun Yao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guo Li
- School of Stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Taofeng Zhang
- Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Sirui Li
- School of Stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Luwei Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Si
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Zhao C, Zhang L, Zhang X, Xu Y, Wei Z, Sun B, Liang M, Li H, Hu F, Xu L. Regulation of endogenous phytohormones alters the fluoranthene content in Arabidopsis thaliana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:935-943. [PMID: 31726575 DOI: 10.1016/j.scitotenv.2019.06.384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/21/2019] [Accepted: 06/23/2019] [Indexed: 06/10/2023]
Abstract
Phytohormones are crucial endogenous modulators that regulate and integrate plant growth and responses to various environmental pollutants, including the uptake of pollutants into the plant. However, possible links between endogenous phytohormone pathways and pollutant accumulation are unclear. Here we describe the fluoranthene uptake, plant growth, and superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and glutathione S-transferase (GST) activities in relation to different endogenous phytohormones and different levels in Arabidopsis thaliana. Three phytohormone inhibitors-N-1-naphthyl-phthalamic acid (NPA), daminozide (DZ), and silver nitrate (SN)-were used to regulate endogenous auxin, gibberellin, and ethylene levels, respectively. Fluoranthene inhibited plant growth and root proliferation while increasing GST and SOD activity. The three inhibitors reduced fluoranthene levels in Arabidopsis by either affecting plant growth or modulating antioxidant enzyme activity. NPA reduced plant growth and increased CAT activity. SN promoted plant growth and increased POD and CAT activity, whereas DZ increased POD activity.
Collapse
Affiliation(s)
- Chenyu Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Lihao Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xuhui Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yuanzhou Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhimin Wei
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Bin Sun
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Mingxiang Liang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Huixin Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Feng Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Li Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China.
| |
Collapse
|
9
|
Hernández-Vega JC, Cady B, Kayanja G, Mauriello A, Cervantes N, Gillespie A, Lavia L, Trujillo J, Alkio M, Colón-Carmona A. Detoxification of polycyclic aromatic hydrocarbons (PAHs) in Arabidopsis thaliana involves a putative flavonol synthase. JOURNAL OF HAZARDOUS MATERIALS 2017; 321:268-280. [PMID: 27637093 PMCID: PMC5373802 DOI: 10.1016/j.jhazmat.2016.08.058] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/18/2016] [Accepted: 08/23/2016] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmental contaminants with cytotoxic, teratogenic and carcinogenic properties. Bioremediation studies with bacteria have led to the identification of dioxygenases (DOXs) in the first step to degrade these recalcitrant compounds. In this study, we characterized the role of the Arabidopsis thaliana AT5G05600, a putative DOX of the flavonol synthase family, in the transformation of PAHs. Phenotypic analysis of loss-of-function mutant lines showed that these plant lines were less sensitive to the toxic effects of phenanthrene, suggesting possible roles of this gene in PAH degradation in vivo. Interestingly, these mutant lines showed less accumulation of H2O2 after PAH exposure. Transgenic lines over-expressing At5g05600 showed a hypersensitive response and more oxidative stress after phenanthrene treatments. Moreover, fluorescence spectra results of biochemical assays with the recombinant His-tagged protein AT5G05600 detected chemical modifications of phenanthrene. Taken together, these results support the hypothesis that AT5G05600 is involved in the catabolism of PAHs and the accumulation of toxic intermediates during PAH biotransformation in plants. This research represents the first step in the design of transgenic plants with the potential to degrade PAHs, leading to the development of vigorous plant varieties that can reduce the levels of these pollutants in the environment.
Collapse
Affiliation(s)
- Juan C Hernández-Vega
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Brian Cady
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Gilbert Kayanja
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Anthony Mauriello
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Natalie Cervantes
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Andrea Gillespie
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Lisa Lavia
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Joshua Trujillo
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | | | - Adán Colón-Carmona
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA.
| |
Collapse
|
10
|
Widdup EE, Chatfield-Reed K, Henry D, Chua G, Samuel MA, Muench DG. Identification of detoxification pathways in plants that are regulated in response to treatment with organic compounds isolated from oil sands process-affected water. CHEMOSPHERE 2015; 139:47-53. [PMID: 26052061 DOI: 10.1016/j.chemosphere.2015.05.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/16/2015] [Accepted: 05/18/2015] [Indexed: 06/04/2023]
Abstract
Bitumen mining in the Athabasca oil sands region of northern Alberta results in the accumulation of large volumes of oil sands process-affected water (OSPW). The acid-extractable organic (AEO) fraction of OSPW contains a variety of compounds, including naphthenic acids, aromatics, and sulfur- and nitrogen-containing compounds that are toxic to aquatic and terrestrial organisms. We have studied the effect of AEO treatment on the transcriptome of root and shoot tissues in seedlings of the model plant, Arabidopsis thaliana. Several genes encoding enzymes involved in the xenobiotic detoxification pathway were upregulated, including cytochrome P450s (CYPs), UDP-dependent glycosyltransferases (UGTs), glutathione-S-transferases (GSTs), and membrane transporters. In addition, gene products involved in oxidative stress, β-oxidation, and glucosinolate degradation were also upregulated, indicating other potential mechanisms of the adaptive response to AEO exposure. These results provide insight into the pathways that plants use to detoxify the organic acid component of OSPW. Moreover, this study advances our understanding of genes that could be exploited to potentially develop phytoremediation and biosensing strategies for AEO contaminants resulting from oil sands mining.
Collapse
Affiliation(s)
- Ellen E Widdup
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N1N4, Canada
| | - Kate Chatfield-Reed
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N1N4, Canada
| | - Darren Henry
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N1N4, Canada
| | - Gordon Chua
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N1N4, Canada.
| | - Marcus A Samuel
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N1N4, Canada.
| | - Douglas G Muench
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N1N4, Canada.
| |
Collapse
|
11
|
Liu H, Weisman D, Tang L, Tan L, Zhang WK, Wang ZH, Huang YH, Lin WX, Liu XM, Colón-Carmona A. Stress signaling in response to polycyclic aromatic hydrocarbon exposure in Arabidopsis thaliana involves a nucleoside diphosphate kinase, NDPK-3. PLANTA 2015; 241:95-107. [PMID: 25224398 DOI: 10.1007/s00425-014-2161-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 08/22/2014] [Indexed: 05/18/2023]
Abstract
The study is the first to reveal the proteomic response in plants to a single PAH stress, and indicates that NDPK3 is a positive regulator in the Arabidopsis response to phenanthrene stress. Polycyclic aromatic hydrocarbons (PAHs) are highly carcinogenic pollutants that are byproducts of carbon-based fuel combustion, and tend to persist in the environment for long periods of time. PAHs elicit complex, damaging responses in plants, and prior research at the physiological, biochemical, and transcriptional levels has indicated that reactive oxygen species (ROS) and oxidative stress play major roles in the PAH response. However, the proteomic response has remained largely unexplored. This study hypothesized that the proteomic response in Arabidopsis thaliana to phenanthrene, a model PAH, would include a strong oxidative stress signature, and would provide leads to potential signaling molecules involved. To explore that proteomic signature, we performed 2D-PAGE experiments and identified 30 proteins levels that were significantly altered including catalases (CAT), ascorbate peroxidase (APX), peroxiredoxins (POD), glutathione-S-transferase, and glutathione reductase. Also upregulated was nucleoside diphosphate kinase 3 (NDPK-3), a protein known to have metabolic and stress signaling functions. To address whether NDPK-3 functions upstream of the oxidative stress response, we measured levels of stress-responsive enzymes in NDPK-3 overexpressor, loss-of-function knockout, and wild-type plant lines. In the NDPK-3 overexpressor, the enzyme activities of APX, CAT, POD, as well as superoxide dismutase were all increased compared to wild type; in the NDPK-3 knockout line, these enzymes had reduced activity. This pattern occurred in untreated as well as phenanthrene-treated plants. These data support a model in which NDPK-3 is a positive regulator of the Arabidopsis stress response to PAHs.
Collapse
Affiliation(s)
- Hong Liu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Peng RH, Fu XY, Zhao W, Tian YS, Zhu B, Han HJ, Xu J, Yao QH. Phytoremediation of phenanthrene by transgenic plants transformed with a naphthalene dioxygenase system from Pseudomonas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:12824-12832. [PMID: 25299803 DOI: 10.1021/es5015357] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Genes from microbes for degrading polycyclic aromatic hydrocarbons (PAHs) are seldom used to improve the ability of plants to remediate the pollution because the initiation of the microbial degradation of PAHs is catalyzed by a multienzyme system. In this study, for the first time, we have successfully transferred the complex naphthalene dioxygenase system of Pseudomonas into Arabidopsis and rice, the model dicot and monocot plant. As in bacteria, all four genes of the naphthalene dioxygenase system can be simultaneously expressed and assembled to an active enzyme in transgenic plants. The naphthalene dioxygenase system can develop the capacity of plants to tolerate a high concentration of phenanthrene and metabolize phenanthrene in vivo. As a result, transgenic plants showed improved uptake of phenanthrene from the environment over wild-type plants. In addition, phenanthrene concentrations in shoots and roots of transgenic plants were generally lower than that of wild type plants. Transgenic plants with a naphthalene dioxygenase system bring the promise of an efficient and environmental-friendly technology for cleaning up PAHs contaminated soil and water.
Collapse
Affiliation(s)
- Ri-He Peng
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences , 2901 Beidi Rd, Shanghai, 201106, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Peng R, Fu X, Tian Y, Zhao W, Zhu B, Xu J, Wang B, Wang L, Yao Q. Metabolic engineering of Arabidopsis for remediation of different polycyclic aromatic hydrocarbons using a hybrid bacterial dioxygenase complex. Metab Eng 2014; 26:100-110. [PMID: 25305469 DOI: 10.1016/j.ymben.2014.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/02/2014] [Accepted: 09/18/2014] [Indexed: 12/24/2022]
Abstract
The widespread presence of polycyclic aromatic hydrocarbons (PAHs) and their potential harm to various organisms has generated interest in efficiently eliminating these compounds from the environment. Phytoremediation is an efficient technology for cleaning up pollutants. However, unlike microorganisms, plants lack the catabolic pathway for complete degradation of these dangerous groups of compounds. One way to enhance the potential of plants for remediation of these compounds is by transferring genes involved in xenobiotic degradation from microbes to plants. In this paper, four genes, namely nidA and nidB (encoding the large and small subunits of naphthalene dioxygenase of Mycobacterium vanbaalenii PYR-1) as well as NahAa and NahAb (encoding flavoprotein reductase and ferredoxin of the electron-transport chain of the Pseudomonas putida G7 naphthalene dioxygenase system), were transferred and ectopically expressed in Arabidopsis thaliana. Transgenic Arabidopsis plants overexpressing the heterozygous naphthalene dioxygenase system exhibited enhanced tolerance toward 2-4 rings PAHs. Transgenic plants assimilated PAHs from the culture media faster and accumulated less in vivo than wild-type plants. Furthermore, examination of metabolic intermediates by gas chromatography-mass spectrometry revealed that the naphthalene metabolic pathway in transgenic plants mainly involves the dioxygenase pathway. Taken together, our findings suggest that grafting the naphthalene dioxygenase complex into plants is a possible strategy to breed PAH-tolerant plants to efficiently degrade PAHs in the environment.
Collapse
Affiliation(s)
- Rihe Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, National Center for Plant Gene Research, Shanghai, PR China
| | - Xiaoyan Fu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, National Center for Plant Gene Research, Shanghai, PR China
| | - Yongsheng Tian
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, National Center for Plant Gene Research, Shanghai, PR China
| | - Wei Zhao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, National Center for Plant Gene Research, Shanghai, PR China
| | - Bo Zhu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, National Center for Plant Gene Research, Shanghai, PR China
| | - Jing Xu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, National Center for Plant Gene Research, Shanghai, PR China
| | - Bo Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, National Center for Plant Gene Research, Shanghai, PR China
| | - Lijuan Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, National Center for Plant Gene Research, Shanghai, PR China
| | - Quanhong Yao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research institute, Shanghai Academy of Agricultural Sciences, National Center for Plant Gene Research, Shanghai, PR China.
| |
Collapse
|
14
|
Han HJ, Peng RH, Zhu B, Fu XY, Zhao W, Shi B, Yao QH. Gene expression profiles of Arabidopsis under the stress of methyl viologen: a microarray analysis. Mol Biol Rep 2014; 41:7089-102. [PMID: 25253097 DOI: 10.1007/s11033-014-3396-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 05/02/2014] [Indexed: 01/01/2023]
Abstract
Methyl viologen (MV) is the main ingredient of Paraquat. It is little known about how plants respond to this compound. To understand the mode of MV action and molecular mechanism of plant response, we performed experiments of microarray on Arabidopsis. In MV treated seedling, approximately 6% genes were altered at mRNA levels, including 818 genes increased, whereas 1,440 genes decreased. Studies of these genes expression patterns provided some new information on the reaction process of plant after the treatment with MV. These included signaling molecules for MV response and reactive oxygen species formation, enzymes required for secondary metabolism and, cell wall maintenance and strategy of photostasis balance. The expression kinetics of the genes induced by MV will provides useful information for the abiotic stress defense mechanism in plants.
Collapse
Affiliation(s)
- Hong-Juan Han
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
15
|
An overview of phytoremediation as a potentially promising technology for environmental pollution control. BIOTECHNOL BIOPROC E 2013. [DOI: 10.1007/s12257-013-0193-8] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Couée I, Serra AA, Ramel F, Gouesbet G, Sulmon C. Physiology and toxicology of hormone-disrupting chemicals in higher plants. PLANT CELL REPORTS 2013; 32:933-41. [PMID: 23553555 DOI: 10.1007/s00299-013-1428-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/15/2013] [Accepted: 03/19/2013] [Indexed: 05/13/2023]
Abstract
Higher plants are exposed to natural environmental organic chemicals, associated with plant-environment interactions, and xenobiotic environmental organic chemicals, associated with anthropogenic activities. The effects of these chemicals result not only from interaction with metabolic targets, but also from interaction with the complex regulatory networks of hormone signaling. Purpose-designed plant hormone analogues thus show extensive signaling effects on gene regulation and are as such important for understanding plant hormone mechanisms and for manipulating plant growth and development. Some natural environmental chemicals also act on plants through interference with the perception and transduction of endogenous hormone signals. In a number of cases, bioactive xenobiotics, including herbicides that have been designed to affect specific metabolic targets, show extensive gene regulation effects, which are more in accordance with signaling effects than with consequences of metabolic effects. Some of these effects could be due to structural analogies with plant hormones or to interference with hormone metabolism, thus resulting in situations of hormone disruption similar to animal cell endocrine disruption by xenobiotics. These hormone-disrupting effects can be superimposed on parallel metabolic effects, thus indicating that toxicological characterisation of xenobiotics must take into consideration the whole range of signaling and metabolic effects. Hormone-disruptive signaling effects probably predominate when xenobiotic concentrations are low, as occurs in situations of residual low-level pollutions. These hormone-disruptive effects in plants may thus be of importance for understanding cryptic effects of low-dosage xenobiotics, as well as the interactive effects of mixtures of xenobiotic pollutants.
Collapse
Affiliation(s)
- Ivan Couée
- Centre National de la Recherche Scientifique, UMR 6553 ECOBIO, Université de Rennes 1, Campus de Beaulieu, bâtiment 14A, 35042 Rennes Cedex, France.
| | | | | | | | | |
Collapse
|
17
|
Lee I, Oh WK, Jang J. Screen-printed fluorescent sensors for rapid and sensitive anthrax biomarker detection. JOURNAL OF HAZARDOUS MATERIALS 2013; 252-253:186-191. [PMID: 23518174 DOI: 10.1016/j.jhazmat.2013.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/27/2013] [Accepted: 03/03/2013] [Indexed: 06/01/2023]
Abstract
Since the 2001 anthrax attacks, efforts have focused on the development of an anthrax detector with rapid response and high selectivity and sensitivity. Here, we demonstrate a fluorescence sensor for detecting anthrax biomarker with high sensitivity and selectivity using a screen-printing method. A lanthanide-ethylenediamine tetraacetic acid complex was printed on a flexible polyethersulfone film. Screen-printing deposition of fluorescent detecting moieties produced fluorescent patterns that acted as a visual alarm against anthrax.
Collapse
Affiliation(s)
- Inkyu Lee
- World Class University Program of Chemical Convergence for Energy & Environment, School of Chemical and Biological Engineering, Seoul National University, 599 Gwanangro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | | | | |
Collapse
|
18
|
Ramel F, Sulmon C, Serra AA, Gouesbet G, Couée I. Xenobiotic sensing and signalling in higher plants. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3999-4014. [PMID: 22493519 DOI: 10.1093/jxb/ers102] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Anthropogenic changes and chemical pollution confront plant communities with various xenobiotic compounds or combinations of xenobiotics, involving chemical structures that are at least partially novel for plant species. Plant responses to chemical challenges and stimuli are usually characterized by the approaches of toxicology, ecotoxicology, and stress physiology. Development of transcriptomics and proteomics analysis has demonstrated the importance of modifications to gene expression in plant responses to xenobiotics. It has emerged that xenobiotic effects could involve not only biochemical and physiological disruption, but also the disruption of signalling pathways. Moreover, mutations affecting sensing and signalling pathways result in modifications of responses to xenobiotics, thus confirming interference or crosstalk between xenobiotic effects and signalling pathways. Some of these changes at gene expression, regulation and signalling levels suggest various mechanisms of xenobiotic sensing in higher plants, in accordance with xenobiotic-sensing mechanisms that have been characterized in other phyla (yeast, invertebrates, vertebrates). In higher plants, such sensing systems are difficult to identify, even though different lines of evidence, involving mutant studies, transcription factor analysis, or comparative studies, point to their existence. It remains difficult to distinguish between the hypothesis of direct xenobiotic sensing and indirect sensing of xenobiotic-related modifications. However, future characterization of xenobiotic sensing and signalling in higher plants is likely to be a key element for determining the tolerance and remediation capacities of plant species. This characterization will also be of interest for understanding evolutionary dynamics of stress adaptation and mechanisms of adaptation to novel stressors.
Collapse
Affiliation(s)
- Fanny Ramel
- Université de Rennes 1, Centre National de la Recherche Scientifique, UMR 6553 ECOBIO, Campus de Beaulieu, bâtiment 14A, F-35042 Rennes Cedex, France
| | | | | | | | | |
Collapse
|
19
|
Su ZH, Xu ZS, Peng RH, Tian YS, Zhao W, Han HJ, Yao QH, Wu AZ. Phytoremediation of trichlorophenol by Phase II metabolism in transgenic Arabidopsis overexpressing a Populus glucosyltransferase. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:4016-4024. [PMID: 22409265 DOI: 10.1021/es203753b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Trichlorophenol (TCP) and its derivatives are introduced into the environment through numerous sources, including wood preservatives and biocides. Environmental contamination by TCPs is associated with human health risks, necessitating the development of cost-effective remediation techniques. Efficient phytoremediation of TCP is potentially feasible because it contains a hydroxyl group and is suitable for direct phase II metabolism. In this study, we present a system for TCP phytoremediation based on sugar conjugation by overexpressing a Populus putative UDP-glc-dependent glycosyltransferase (UGT). The enzyme PtUGT72B1 displayed the highest TCP-conjugating activity among all reported UGTs. Transgenic Arabidopsis demonstrated significantly enhanced tolerances to 2,4,5-TCP and 2,4,6-TCP. Transgenic plants also exhibited a strikingly higher capacity to remove TCP from their media. This work indicates that Populus UGT overexpression in Arabidopsis may be an efficient method for phytoremoval and degradation of TCP. Our findings have the potential to provide a suitable remediation strategy for sites contaminated by TCP.
Collapse
Affiliation(s)
- Zhen-Hong Su
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | | | | | | | | | |
Collapse
|