1
|
Ndou DL, Mtolo BP, Khwathisi A, Ndhlala AR, Tavengwa NT, Madala NE. Development of the Pipette-Tip Micro-Solid-Phase Extraction for Extraction of Rutin From Moringa oleifera Lam. Using Activated Hollow Carbon Nanospheres as Sorbents. Int J Anal Chem 2024; 2024:2681595. [PMID: 39371109 PMCID: PMC11452233 DOI: 10.1155/2024/2681595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/01/2024] [Accepted: 08/23/2024] [Indexed: 10/08/2024] Open
Abstract
Herein, a micro-solid-phase extraction (μSPE) method was developed using a pipette tip for rutin extraction, employing activated hollow carbon nanospheres (HCNSs) as the sorbent. Characterization of the activated carbon nanospheres through TGA, FTIR, and SEM analysis confirmed the success of the activation process. The study demonstrated the efficacy of PT-μSPE in rutin extraction under pH 2 conditions with a standard concentration of 2 mg·L-1. The optimal mass of HCNSs was found to be 2 mg, and a loading volume of 500 μL resulted in the maximum recovery of rutin. Propan-2-ol was the best elution solvent with 15 aspirating/dispensing cycles. The correlation of determination (R 2) for the calibration curve was found to be 0.9991, and the LOD and LOQ values were 0.604 and 1.830 mg·L-1, respectively. The applicability of the method was demonstrated by extracting rutin from a complex Moringa oleifera leaf extract with the relative standard deviation (RSD) of 3.26%, thereby validating this method as feasible for the extraction of useful bioactive compounds from complex plant samples.
Collapse
Affiliation(s)
- Dakalo Lorraine Ndou
- Department of ChemistryFaculty of ScienceEngineering and AgricultureUniversity of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
| | - Bonakele Patricia Mtolo
- DSI-NRF Centre of Excellence in Strong MaterialsSchool of ChemistryUniversity of the Witwatersrand, Johannesburg 2050, South Africa
| | - Adivhaho Khwathisi
- Department of BiochemistryFaculty of ScienceEngineering and AgricultureUniversity of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
| | - Ashwell Rungano Ndhlala
- Green Biotechnologies Research CentreDepartment of Plant ProductionSoil Science and Agricultural EngineeringUniversity of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| | - Nikita Tawanda Tavengwa
- Department of ChemistryFaculty of ScienceEngineering and AgricultureUniversity of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
| | - Ntakadzeni Edwin Madala
- Department of BiochemistryFaculty of ScienceEngineering and AgricultureUniversity of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
| |
Collapse
|
2
|
Kiełbasa K, Siemak J, Sreńscek-Nazzal J, Benaouda B, Roy B, Michalkiewicz B. Carbon Dioxide Adsorption over Activated Biocarbons Derived from Lemon Peel. Molecules 2024; 29:4183. [PMID: 39275031 PMCID: PMC11397313 DOI: 10.3390/molecules29174183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024] Open
Abstract
The rising concentration of CO2 in the atmosphere is approaching critical levels, posing a significant threat to life on Earth. Porous carbons derived from biobased materials, particularly waste byproducts, offer a viable solution for selective CO2 adsorption from large-scale industrial sources, potentially mitigating atmospheric CO2 emissions. In this study, we developed highly porous carbons from lemon peel waste through a two-step process, consisting of temperature pretreatment (500 °C) followed by chemical activation by KOH at 850 °C. The largest specific surface area (2821 m2/g), total pore volume (1.39 cm3/g), and micropore volume (0.70 cm3/g) were obtained at the highest KOH-to-carbon ratio of 4. In contrast, the sample activated with a KOH-to-carbon ratio of 2 demonstrated the greatest micropore distribution. This activated biocarbon exhibited superior CO2 adsorption capacity, reaching 5.69 mmol/g at 0 °C and 100 kPa. The remarkable adsorption performance can be attributed to the significant volume of micropores with diameters smaller than 0.859 nm. The Radke-Prausnitz equation, traditionally employed to model the adsorption equilibrium of organic compounds from liquid solutions, has been shown to be equally applicable for describing the gas-solid adsorption equilibrium. Furthermore, equations describing the temperature dependence of the Radke-Prausnitz equation's parameters have been developed.
Collapse
Affiliation(s)
- Karolina Kiełbasa
- Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pulaskiego 10, 70-322 Szczecin, Poland
| | - Joanna Siemak
- Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pulaskiego 10, 70-322 Szczecin, Poland
| | - Joanna Sreńscek-Nazzal
- Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pulaskiego 10, 70-322 Szczecin, Poland
| | - Bestani Benaouda
- Laboratory of Structure, Development, and Application of Molecular Materials (SEA2M), Faculty of Sciences and Technology, Abdelahmid Ibn Badis University of Mostaganem, P.O. Box 227, Mostaganem 27000, Algeria
| | - Banasri Roy
- Department of Chemical Engineering, Birla Institute of Technology and Science (BITS), Pilani 333031, Rajasthan, India
| | - Beata Michalkiewicz
- Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pulaskiego 10, 70-322 Szczecin, Poland
| |
Collapse
|
3
|
Hu G, Wang Z, Xia C, Wang X, He H, Nie Z, Wang S, Li W. Regulating the Interface Polarity Distribution of Zr-Based MOFs by Amino Acid-Like Ligand Functionalization Enables Efficient Recovery of Gold. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42976-42985. [PMID: 39091115 DOI: 10.1021/acsami.4c08841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The recovery of gold from industrial effluents is crucial for environmental conservation, sustainable resource management, and promoting the green development of gold resources. We designed a Zr-based MOF (UKM-78) by incorporating functional organic ligands that resemble amino groups, using MOFs' inherent sieving effect for ion separation. This novel material exhibited enhanced gold recovery under acidic conditions, with an adsorption capacity three times and an adsorption rate four times higher than those of nonfunctionalized UKM-77. Notably, UKM-78 efficiently captured gold solutions at concentrations as low as 1 ppm and achieved an adsorption rate exceeding 90%, owing to the electrostatic interactions and coordination between its functionalized groups and the synergistic effect of its porous structure. Despite multiple regeneration cycles, UKM-78 retains 99.4% of its adsorption capacity. X-ray photoelectron spectroscopy (XPS), kinetic studies, and thermodynamics collectively demonstrated that Au(III) binding on UKM-78 involved cooperative electrostatic interactions and chemical adsorption through coordination. This study highlights the potential of MOFs for efficient and sustainable recovery of gold from complex waste streams.
Collapse
Affiliation(s)
- Guangyuan Hu
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, College of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Zhiwei Wang
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, College of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Changqing Xia
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, College of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Xinliang Wang
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, College of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Hongxing He
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, College of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Zhifeng Nie
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, College of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Shixing Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
| | - Weili Li
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, College of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| |
Collapse
|
4
|
Tokalıoğlu Ş, Moghaddam STH, Demir S. A zirconium metal-organic framework functionalized with a S/N containing carboxylic acid (MOF-808(Zr)-Tz) as an efficient sorbent for the ultrafast and selective dispersive solid phase micro extraction of chromium, silver, and rhodium in water samples. Talanta 2024; 274:126094. [PMID: 38643650 DOI: 10.1016/j.talanta.2024.126094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/23/2024]
Abstract
Metal-organic frameworks (MOFs) are good adsorbents for targeted chemicals with their adjustable properties. Herein, we prepared a zirconium based MOF (MOF-808(Zr)) and functionalized it employing 2-mercapto-4-methyl-5-thiazolacetic acid (MOF-808(Zr)-Tz). The prepared MOFs were characterized by XRD, FTIR, SEM-EDX, TGA, N2 sorption, zeta potential measurements, and elemental analysis. The surface area of MOF-808(Zr)-Tz was 1348 m2/g. Dispersive solid-phase micro-extraction (D-SPµE) method based on MOF-808(Zr)-Tz was firstly developed and applied to the extraction of chromium, silver, and rhodium in waters. The determination of the analytes was done by FAAS. The optimal pH and eluent for analytes were 7.0 and 3 mL of 2 mol L-1 HCl, respectively. The contact times were 1 min for adsorption and 3 min for elution. The LOD and PFs of the D-SPμE for analytes were 2.3 μg L-1 and 13.3 for chromium, 2.1 μg L-1 and 13.3 for silver, and 3.1 μg L-1 and 13.3 rhodium, respectively. The D-SPμE method was verified with analyses of NW-TMDA-54.6 Lake water and SPS-WW1 Batch 114 Wastewater and with spiked dam water, river water, well water, sea water, and wastewater. The recoveries of the analytes changed from 89 to 108 %. The results indicated that the method is selective, simple, effective, and rapid for extracting chromium(III), silver(I) and rhodium(III) in waters.
Collapse
Affiliation(s)
- Şerife Tokalıoğlu
- Erciyes University, Faculty of Sciences, Chemistry Department, 38039, Kayseri, Turkey.
| | | | - Selçuk Demir
- Recep Tayyip Erdoğan University, Faculty of Arts and Sciences, Chemistry Department, 53100, Rize, Turkey.
| |
Collapse
|
5
|
Zhu M, Wang H, Liu X, Wang S, Zhang D, Peng Z, Fu L, Chen Y, Xiang D. Synthesis of metal-organic frameworks with multiple nitrogen groups for selective capturing Ag(I) from wastewater. J Colloid Interface Sci 2024; 663:761-774. [PMID: 38437755 DOI: 10.1016/j.jcis.2024.02.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/06/2024]
Abstract
As a noble metal with extremely high economic benefits, the recovery of silver ions has attracted a particular deal of attention. However, it is a challenge to recover silver ions efficiently and selectively from aqueous solutions. In this research, the novel metal-organic frameworks (MOFs) adsorbent (Zr-DPHT) is prepared for the highly efficient and selective recovery of silver ions from wastewater. Experimental findings reveal that Zr-DPHT's adsorption of Ag(I) constitutes an endothermic process, with an optimal pH of 5 and exhibits a maximum adsorption capacity of 268.3 mg·g-1. Isotherm studies show that the adsorption of Ag(I) by Zr-DPHT is mainly monolayer chemical adsorption. Kinetic studies indicate that the internal diffusion of Ag(I) in Zr-DPHT may be the rate-limiting step. The mechanism for Ag(I) adsorption on Zr-DPHT involves electrostatic interactions and chelation. In competitive adsorption, Ag(I) has the largest partition coefficient (9.64 mL·mg-1), indicating a strong interaction between Zr-DPHT and Ag(I). It is proven in the adsorption-desorption cycle experiments that Zr-DPHT has good regeneration performance. The research results indicate that Zr-DPHT can serve as a potential adsorbent for efficiently and selectively capturing Ag(I), providing a new direction for MOFs in the recycling field of precious metals.
Collapse
Affiliation(s)
- Manying Zhu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Hao Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Xiang Liu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Shixing Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China.
| | - Dekun Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Zhengwu Peng
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Likang Fu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China.
| | - Yuefeng Chen
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Dawei Xiang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| |
Collapse
|
6
|
Lu J, Zhang Q, An Q, Bu T, Feng Y, Chen D, Qian K, Chen H. Preparation of activated carbon from sewage sludge using green activator and its performance on dye wastewater treatment. ENVIRONMENTAL TECHNOLOGY 2023; 44:3897-3910. [PMID: 35543664 DOI: 10.1080/09593330.2022.2077130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
The remediation of dyes in wastewater using activated carbon produced from sewage sludge pyrolysis char (PYC) is an environmentally friendly and sustainable process. However, traditional activators can cause corrosion of the processing facility, thereby increasing the costs of waste disposal. Here, activated carbons were prepared from sewage sludge PYC, and the effects of activation conditions (different activators, temperature and time, and char:activator mass ratio) on their specific surface areas and adsorption of iodine and methylene blue (MB; model dye) were studied. The results showed that a value of 952 m2/g could be attained for the specific surface area and values of 882 and 162 mg/g for the adsorption of iodine and MB, respectively, by heating PYC with KHCO3 (PYC- KHCO3: 1:2 w/w) for 60 min at 800 ℃. Compared with activation by KOH, the adsorption of MB using PYC-KHCO3 was slightly lower but the yield was 13.7% higher. Optimization of the activation process using surface response modelling indicated that sensitivity of three key factors to the adsorption of iodine and MB followed the order: Mass ratio > temperature > time. Systematic investigation of the effects of time, pH and temperature on the removal of MB by the activated carbon revealed that adsorption conformed to the Langmuir model and pseudo-second-order kinetics. The proposed mechanisms of MB adsorption involved ion exchange, functional group complexation and physical/π-π interactions. This study provides a basis for the efficient remediation of dyes in wastewater using activated carbon prepared from sustainable sewage sludge PYC and green chemistry.
Collapse
Affiliation(s)
- Jintao Lu
- Thermal and Environmental Engineering Institute, School of Mechanical Engineering, Tongji University, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai, People' s Republic of China
| | - Qian Zhang
- Thermal and Environmental Engineering Institute, School of Mechanical Engineering, Tongji University, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai, People' s Republic of China
| | - Qing An
- Thermal and Environmental Engineering Institute, School of Mechanical Engineering, Tongji University, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai, People' s Republic of China
| | - Tong Bu
- Thermal and Environmental Engineering Institute, School of Mechanical Engineering, Tongji University, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai, People' s Republic of China
| | - Yuheng Feng
- Thermal and Environmental Engineering Institute, School of Mechanical Engineering, Tongji University, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai, People' s Republic of China
| | - Dezhen Chen
- Thermal and Environmental Engineering Institute, School of Mechanical Engineering, Tongji University, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai, People' s Republic of China
| | - Kezhen Qian
- Thermal and Environmental Engineering Institute, School of Mechanical Engineering, Tongji University, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai, People' s Republic of China
| | - Hui Chen
- School of Mechanical Engineering, Shanghai Dianji University, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Hamed A, Orabi A, Salem H, Ismaiel D, Saad G, Abdelhamid I, Elwahy A, Elsabee M. An effective uranium removal using diversified synthesized cross-linked chitosan bis-aldehyde Schiff base derivatives from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106790-106811. [PMID: 36334198 PMCID: PMC10611627 DOI: 10.1007/s11356-022-23856-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Three new cross-linked chitosan derivatives were yielded through intensification of chitosan with diverse types of bis-aldehydes. The prepared cross-linked chitosan was characterized by FTIR, 1H NMR, XRD, and TGA techniques. TGA indicated an improvement in thermal stability of the cross-linked chitosan compared with pure chitosan. Batch adsorption experiments showed that the three novel cross-linked chitosan bis-aldehyde derivatives possessed good adsorption capacity against U(VI) in the order of BFPA > BFB > BODB (adsorption capacity of the three adsorbents for U(VI) reaches 142, 124, and 114 mg/g respectively) and the adsorption isotherm and kinetic were well described by the Langmuir and the pseudo-second-order kinetic model, respectively. In addition, the prepared cross-linked chitosan bis-aldehyde derivatives were examined as U(VI) catcher from waste solutions.
Collapse
Affiliation(s)
- Amira Hamed
- Chemistry Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Ahmed Orabi
- Nuclear Materials Authority, El-Maadi, P.O. Box 530, Cairo, Egypt.
| | - Hend Salem
- Nuclear Materials Authority, El-Maadi, P.O. Box 530, Cairo, Egypt
| | - Doaa Ismaiel
- Nuclear Materials Authority, El-Maadi, P.O. Box 530, Cairo, Egypt
| | - Gamal Saad
- Chemistry Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Ismail Abdelhamid
- Chemistry Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Ahmed Elwahy
- Chemistry Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Maher Elsabee
- Chemistry Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| |
Collapse
|
8
|
Zhang Z, Liu D, Zhang X, Luo X, Lin W, Li Z, Huang J. Silver nanoparticles deposited carbon microspheres nanozyme with enhanced peroxidase-like catalysis for colorimetric detection of Hg 2+ in seafood. Mikrochim Acta 2023; 190:340. [PMID: 37528330 DOI: 10.1007/s00604-023-05921-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/17/2023] [Indexed: 08/03/2023]
Abstract
Novel methods for high-performance detection of Hg2+ in seafood are critical for ensuring food safety and human health. Herein, Ag nanoparticles (Ag NPs) were successfully deposited on carbon microspheres (CMs) to form Ag NPs-CMs nanocomplex. The proposed Ag NPs-CMs could oxidize colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxidation state TMB (oxTMB) in the presence of hydrogen peroxide (H2O2) and had a significant UV-vis absorption peak at 652 nm. The excellent peroxidase-like activity was attributed to the increased electrostatic attraction of CMs and the catalytic synergistic effect. After adding Hg2+, the catalytic activity of Ag NPs-CMs was specifically enhanced and the Michaelis-Menten constant (Km) decreased from 0.067 to 0.052 mmol/L due to the formation of Ag-Hg amalgam which produced more superoxide anions (O2•-) and hydroxyl radicals (•OH). The linear response ranges for Hg2+ were 2~833 nmol/L and 2.5~40 μmol/L, with the low detection limit of 1.10 nmol/L. This method was applied to detect Hg2+ in seafood with satisfactory recoveries of 95.65~106.56%. A hydrogel kit was designed for portable detection of Hg2+, and the response range was 0.5~5 μmol/L. This work provides a reliable method for visual Hg2+ detection in seafood as well as a feasible strategy for the design of high-performance nanozymes.
Collapse
Affiliation(s)
- Ziyi Zhang
- Food and Pharmacy College, Xuchang University, Xuchang, Henan, 461000, People's Republic of China
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Dan Liu
- Food and Pharmacy College, Xuchang University, Xuchang, Henan, 461000, People's Republic of China
| | - Xiaoshuo Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xueli Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Wanmei Lin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Zhonghong Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Jihong Huang
- Food and Pharmacy College, Xuchang University, Xuchang, Henan, 461000, People's Republic of China.
| |
Collapse
|
9
|
Huang X, Jin K, Yang S, Zeng J, Zhou H, Zhang R, Xue J, Liu Y, Liu G, Peng H. Fabrication of polyvinylidene fluoride and acylthiourea composite membrane and its adsorption performance and mechanism on silver ions. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
10
|
Wang J, Zhang J, Song Y, Xu X, Cai M, Li P, Yuan W, Xiahou Y. Functionalized agarose hydrogel with in situ Ag nanoparticles as highly recyclable heterogeneous catalyst for aromatic organic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:43950-43961. [PMID: 36680722 DOI: 10.1007/s11356-023-25420-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
In the present research work, a highly recyclable catalyst of Ag-based agarose (HRC-Ag/Agar) hydrogel was successfully fabricated through a simple and efficient in situ reduction method without the aid of additional surface active agent. The interaction between the rich hydroxyl functional (-OH) groups in agarose and Ag can effectively control the growth and dispersion of Ag nanoparticles (NPs) in the HRC-Ag/Agar hydrogel and keep Ag NPs free from chemical contamination, which also guarantees the reusability of HRC-Ag/Agar hydrogel as catalysts. HRC-Ag/Agar hydrogel without freeze drying and calcination was investigated for their potential applications as highly active/recyclable catalysts in reducing aromatic organic pollutants (p-nitrophenol (4-NP), methylene blue (MB) and rhodamine B (RhB)) by KBH4. The optimal HRC-Ag/Agar-1.9 hydrogel can complete the catalytic reduction of 4-NP within 11 min. Moreover, HRC-Ag/Agar-1.9 hydrogel achieves the high conversion rate (> 99%) through ten catalytic runs. Similarly, HRC-Ag/Agar-1.9 hydrogel was able to achieve a reduction efficiency of RhB at 98% within 17 min and that of MB at 95% within 40 min. The advantages of simple synthetic procedure, no secondary pollution, strong stability and easily separated make the HRC-Ag/Agar hydrogel have great potential prospect for environmental applications.
Collapse
Affiliation(s)
- Jin Wang
- Heze Branch, Qilu University of Technology (Shandong Academy of Sciences), Biological Engineering Technology Innovation Center of Shandong Province, Heze, 274000, People's Republic of China.
| | - Jihui Zhang
- Heze Branch, Qilu University of Technology (Shandong Academy of Sciences), Biological Engineering Technology Innovation Center of Shandong Province, Heze, 274000, People's Republic of China
| | - Yahui Song
- Heze Branch, Qilu University of Technology (Shandong Academy of Sciences), Biological Engineering Technology Innovation Center of Shandong Province, Heze, 274000, People's Republic of China
| | - Xianmang Xu
- Heze Branch, Qilu University of Technology (Shandong Academy of Sciences), Biological Engineering Technology Innovation Center of Shandong Province, Heze, 274000, People's Republic of China
| | - Mengyun Cai
- Heze Branch, Qilu University of Technology (Shandong Academy of Sciences), Biological Engineering Technology Innovation Center of Shandong Province, Heze, 274000, People's Republic of China
| | - Peichuang Li
- Heze Branch, Qilu University of Technology (Shandong Academy of Sciences), Biological Engineering Technology Innovation Center of Shandong Province, Heze, 274000, People's Republic of China
| | - Wenpeng Yuan
- Heze Branch, Qilu University of Technology (Shandong Academy of Sciences), Biological Engineering Technology Innovation Center of Shandong Province, Heze, 274000, People's Republic of China
| | - Yujiao Xiahou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
11
|
Biomass-Based Hydrothermal Carbons for the Contaminants Removal of Wastewater: A Mini-Review. Int J Mol Sci 2023; 24:ijms24021769. [PMID: 36675284 PMCID: PMC9862638 DOI: 10.3390/ijms24021769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
The preparation of adsorbents with eco-friendly and high-efficiency characteristics is an important approach for pollutant removal, and can relieve the pressure of water shortage and environmental pollution. In recent studies, much attention has been paid to the potential of hydrothermal carbonization (HTC) from biomass, such as cellulose, hemicellulose, lignin, and agricultural waste for the preparation of adsorbents. Hereby, this paper summarizes the state of research on carbon adsorbents developed from various sources with HTC. The reaction mechanism of HTC, the different products, the modification of hydrochar to obtain activated carbon, and the treatment of heavy metal pollution and organic dyes from wastewater are reviewed. The maximum adsorption capacity of carbon from different biomass sources was also evaluated.
Collapse
|
12
|
Sun S, Han L, Hou J, Yang Y, Yue J, Gu G, Chuah CY, Li J, Zhang Z. Single-walled carbon nanotube gutter layer supported ultrathin zwitterionic microporous polymer membrane for high-performance lithium-sulfur battery. J Colloid Interface Sci 2022; 628:1012-1022. [PMID: 35970127 DOI: 10.1016/j.jcis.2022.08.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 01/29/2023]
Abstract
Development of efficient lithium-sulfur (Li-S) battery requires the need to develop an appropriate functional separator that allows strong facilitation and transport of lithium ions together with limited passage of polysulfides. In this work, a multifunctional separator (TB-BAA/SWCNT/PP) is developed through spin coating of a novel zwitterionic microporous polymer (TB-BAA) on the gutter layer constructed from single-walled carbon nanotubes (SWCNT), where commercially available polypropylene (PP) separator is used to act as the mechanical support. SWCNT in this study serves as the first modification layer to decrease the size of the macropores in the PP separator, while the ultrathin TB-BAA top barrier layer with the presence of zwitterionic side chains allows the creation of confined ionic channels with both lithiophilic and sulfophilic groups. Due to the presence of available chemical interactions with lithium polysulfides, selective ion transport can be foreseen through such separator. In this regard, shuttle effect that is frequently encountered in Li-S battery can be suppressed effectively via implementing the as-obtained functional separator, resulting in the creation of credible and stable sulfur electrochemistry. The TB-BAA/SWCNT/PP-based Li-S battery has been investigated to possess high cycling ability (capacity fading per cycle of 0.055% over 500 cycles at 1 C) together with decent rate capability (736.6 mAh g-1 at 3 C). In addition, a high areal capacity retention of 5.03 mAh cm-2 after 50 cycles can be also obtained under raised sulfur loading (5.4 mg cm-2).
Collapse
Affiliation(s)
- Shuzheng Sun
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, No. 8, Guangrong Road, Tianjin 300130, China
| | - Lu Han
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, No. 8, Guangrong Road, Tianjin 300130, China
| | - Jingjing Hou
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, No. 8, Guangrong Road, Tianjin 300130, China
| | - Yanqin Yang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, No. 8, Guangrong Road, Tianjin 300130, China.
| | - Junbo Yue
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, No. 8, Guangrong Road, Tianjin 300130, China
| | - Guoxian Gu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, No. 8, Guangrong Road, Tianjin 300130, China
| | - Chong Yang Chuah
- Department of Chemical Engineering, Universiti Teknologi Petronas, Bandar Seri Iskandar, 32610 Perak, Malaysia; CO(2) Research Centre (CO2RES), Institute of Contaminant Management, Universiti Teknologi Petronas, Bandar Seri Iskandar, 32610 Perak, Malaysia.
| | - Jingde Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, No. 8, Guangrong Road, Tianjin 300130, China.
| | - Zisheng Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, No. 8, Guangrong Road, Tianjin 300130, China; Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
13
|
Zou W, Liu Z, Chen J, Zhang X, Jin C, Zhang G, Cao Z, Jiang K, Zhou Q. Impact of sulfhydryl ligands on the transformation of silver ions by molybdenum disulfide and their combined toxicity to freshwater algae. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128953. [PMID: 35462190 DOI: 10.1016/j.jhazmat.2022.128953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
The transformation of silver ions (Ag+) mediated by engineered nanomaterials (ENMs) influences the biosafety of Ag-containing products in natural environments. Actually, modification of biomolecules to ENMs in aquatic ecosystems alters their interactions with Ag+. This study discovered that surface functionalization of glutathione (GSH, a sulfhydryl compound ubiquitous in natural waters) on molybdenum disulfide (MoS2) nanoflakes suppressed the redox reaction between 1 T components and Ag+, inhibiting the MoS2-mediated reduction of Ag+ to Ag nanoparticles (AgNPs) in aqueous phase in the dark. However, AgNPs formation (from 2.32 ± 0.35-3.25 ± 0.29 mg/L per day, pH 7.0) and oxidation of MoS2 were remarkably accelerated after GSH binding under light conditions. The dominant electron donator of MoS2 to Ag+ was transformed from the electron-hole pairs to surface ligands driven by the introduction of chromophoric groups was authenticated as the cause for the elevated Ag+ reduction. These processes also occurred between Ag+ and MoS2 at low levels (50 μg/L). Additionally, the joint algal toxicity of GSH-modified MoS2 with Ag+ was weaker than that of pristine MoS2 due to increased retention of free Ag+ and AgNPs formation. Our findings improve the understanding of the interaction between ENMs and Ag+ in aquatic ecosystems.
Collapse
Affiliation(s)
- Wei Zou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China.
| | - Zhenzhen Liu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Jiayi Chen
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Xingli Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Caixia Jin
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Guoqing Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China.
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Kai Jiang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
14
|
Sheoran K, Kaur H, Siwal SS, Saini AK, Vo DVN, Thakur VK. Recent advances of carbon-based nanomaterials (CBNMs) for wastewater treatment: Synthesis and application. CHEMOSPHERE 2022; 299:134364. [PMID: 35318024 DOI: 10.1016/j.chemosphere.2022.134364] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Carbon-based nanomaterials (CBNMs) have attracted significant alert due to the affluent science underpinning their implementations associated with a novel mixture of high aspect proportions, greater thermal and electrical performance, outstanding optical features, and high exterior area. CBNMs not only bear assurance in a broad range of implementations in medication, nano and microelectronics, and ecological remedies but may also be utilized in practical laboratory determinations. More specifically, CBNMs perform as an outstanding adsorbent in terminating heavy metal ions (HMI) from wastewater. There is presently a deficiency of powerful threat inspection instruments owing to their complex detection and related deficit in the health risk database. Therefore, our present review concentrates on spreading CBNMs to release pollutants from wastewater. The article wraps the effect of these contaminants and photocatalytic strategies towards treating these mixtures in wastewater, along with their restrictions and challenges, convincing resolutions, and possibilities of these approaches.
Collapse
Affiliation(s)
- Karamveer Sheoran
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Harjot Kaur
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Samarjeet Singh Siwal
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India.
| | - Adesh Kumar Saini
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC (Scotland's Rural College), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, Uttarakhand, India.
| |
Collapse
|
15
|
Rossatto DL, Netto MS, Reis GS, Silva LFO, Dotto GL. Volcanic rock powder residues as precursors for the synthesis of adsorbents and potential application in the removal of dyes and metals from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:25685-25693. [PMID: 34850342 DOI: 10.1007/s11356-021-17749-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
The present study verified the potential of volcanic rock powder residues originating from the extraction of semi-precious rocks in the state of Rio Grande do Sul, Brazil, as precursors or adsorbents for dyes and metallic ion removal from water. In this way, it is possible to add value and give an adequate destination to this waste. Volcanic rock powder residues from Ametista do Sul (AME) and Nova Prata (NP) were the starting materials. These were used naturally or submitted to the alkaline activation process at 60 °C and alkaline fusion at 550 °C. The analysis of the starting samples by X-ray fluorescence (XRF) revealed that they are mainly composed of aluminum, calcium, iron, and silicon oxides, which corroborates the presence of numerous crystalline phases observed in the X-ray diffraction spectra (XRD). Moreover, by XRD analysis of the synthesized samples, alkaline fusion proved to be more efficient in the dissolution of crystalline phases and consequently in the formation of the amorphous phase (more reactive). Furthermore, the adsorption tests with acid green and acid red dyes and Ag+, Co2+, and Cu2+ ions indicated the viability of using residual volcanic rock powder as raw material for the production of adsorbents functionalized with sodium hydroxide, being that the samples synthesized by alkaline fusion showed better results of removal and adsorption capacity for all the contaminants used in the study.
Collapse
Affiliation(s)
- Diovani L Rossatto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Matias S Netto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Glaydson S Reis
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Luis F O Silva
- Department of Civil and Environmental, Universidad de La Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Guilherme L Dotto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil.
| |
Collapse
|
16
|
Shao M, Chen M, Fan M, Luo G, Jin C, Huang Z. Microemulsion system constructed with a new cyano-functionalized ionic liquid for the extraction of Pd(II) and preparation of palladium nanoparticles. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Zeng Q, Sun W, Zhong H, He Z. Efficient and selective removal of Ag + as nano silver particles by the composite of SiO 2 supported nano ferrous oxalate. ENVIRONMENTAL RESEARCH 2021; 202:111696. [PMID: 34331922 DOI: 10.1016/j.envres.2021.111696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/23/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Developing novel environmentally materials with high capacity and selectivity for Ag+ adsorption by transforming Ag+ to nano silver is important for the recovery of precious metals from Ag-containing solution. The present study systematically studied the Ag + adsorption process from solution by the composite of SiO2 supported nano ferrous oxalate (SNFO) synthesized from biotite-containing minerals. Batch experiments, dynamics and isothermal adsorption fitting results showed that Ag+ removal behaviours were in accordance with the pseudo-first-order kinetic model and Langmuir model, and the maximal Ag+ removal capacity was 223.68 mg/g. Thermodynamic fitting results suggested that Ag + removal by the composite was a spontaneous and endothermic reaction process. XRD and TEM revealed that the reaction products were consisted of SiO2 and nano silver particles, and FTIR and XPS results indicated that the Ag+ removal mechanisms were attributed to the synergistic reduction interaction between ferrous and the anions of oxalate. Meanwhile, the composite possesses high selectivity for Ag+ removal even at low Ag+ concentration. Moreover, the size of nano silver particles could be adjusted by different pH values. All above results demonstrated that the composite was an ideal material for selective recovery of Ag+ from Ag+ containing effluents in the form of nano silver.
Collapse
Affiliation(s)
- Qiang Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Hui Zhong
- School of Life Sciences, Central South University, Changsha, 410083, China.
| | - Zhiguo He
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Faculty of Materials Metallurgy & Chemistry, Jiangxi University of Science & Technology, Ganzhou, Jiangxi, 341000, China.
| |
Collapse
|
18
|
Han X, Li P, Zhang M, Wang J, Cao Y, Zhang T, Zhou G, Li F. Designing three-dimensional half-embedded ES-PAN/AHCNs adsorption membrane for removal of Pb(Ⅱ), Cu(Ⅱ) and Cr(Ⅲ). Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Recovery of Copper(II) and Silver(I) from Nitrate Leaching Solution of Industrial Dust via Solvent Extraction with LIX63. METALS 2021. [DOI: 10.3390/met11081300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A nitrate leachate containing Cu(II), Ag(I), Ni(II), Mg(II), and Al(III) was obtained during the leaching of industrial dust, which arises during the pyrometallurgy of spent camera modules. To separate and recover Cu(II) and Ag(I) from the leaching solution, solvent extraction experiments using 5,8-diethyl-7-hydroxydodecan-6-oxime (LIX63) were conducted. LIX63 was found to selectively extract Cu(II) and Ag(I) over other metal ions (Ni(II), Mg(II), and Al(III)) at low nitric acid concentrations. The extraction efficiency of Cu(II) was more affected than that of Ag(I) by the acidity of the feed solution and the LIX63 concentration in the organic phase. Cu(II) and Ag(I) were simultaneously extracted using 2 mol/L LIX63. Cu(II) was separated from the loaded LIX63 via stripping with 4 mol/L HNO3, whereas Ag(I) was recovered via stripping with 0.1 mol/L thiourea after the removal of Cu(II). McCabe–Thiele diagrams for the extraction and stripping of Cu(II) and Ag(I) were constructed. The complete extraction of Cu(II) and Ag(I) was confirmed via counter-current extraction. Moreover, stripping simulation tests confirmed that higher than 99.99% of Cu(II) and 99.2% of Ag(I) were stripped. The purities of Cu(II) and Ag(I) in the recovered solution were 95.2% and 99.993%, respectively. A process flow chart for the recovery of Cu(II) and Ag(I) from the nitrate leachate of the target industrial dust was also provided.
Collapse
|
20
|
Zou W, Liu Z, Li R, Jin C, Zhang X, Jiang K. Photoinduced transformation of silver ion by molybdenum disulfide nanoflakes at environmentally relevant concentrations attenuates its toxicity to freshwater algae. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126043. [PMID: 34492890 DOI: 10.1016/j.jhazmat.2021.126043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/30/2021] [Accepted: 05/03/2021] [Indexed: 06/13/2023]
Abstract
The transformation of Ag+ is strongly correlated with its risks in aquatic environment. Considering the wide application of molybdenum disulfide (MoS2) and the inevitable release into the environment, the effects of MoS2 on Ag+ transformation and toxicity are of great concerns. This study revealed the pH-dependent reduction of Ag+ (0.5 mM) to Ag nanoparticles (AgNPs) by MoS2 (50 mg/L) and solar irradiation obviously accelerates the AgNPs formation (2.638 mg/L per day, pH=7.0) compared with dark condition (0.637 mg/L per day), ascribing to the electrons capture from electron-hole pairs of MoS2 by Ag+. Ionic strengths and natural organic matter decreased the AgNPs yield. Metallic 1 T phase of MoS2 primarily participated in AgNPs formation and was oxidized to soluble ions (MoO42-) due to the oxygen generation in valance band. The above processes also occurred between Ag+ and MoS2 at environmentally relevant concentrations. Further, photoinduced transformation of Ag+ by MoS2 (10-100 μg/L) significantly lowered its toxicity to freshwater algae. The AgNPs formation on MoS2 reduced the bioavailability of Ag+ to algae, which was the mechanism for attenuated Ag+ toxicity. The provided data are helpful for better understanding the roles of MoS2 on the environmental fates and risks of metal ions under natural conditions.
Collapse
Affiliation(s)
- Wei Zou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China.
| | - Zhenzhen Liu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Rui Li
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Caixia Jin
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Xingli Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Kai Jiang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
21
|
Zhao W, Huang Y, Chen R, Peng H, Liao Y, Wang Q. Facile preparation of thioether/hydroxyl functionalized polyhedral oligomeric silsesquioxanes hybrid polymer for ultrahigh selective adsorption of silver(I) ions. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104899] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
22
|
A novel cost-effective PAN/CNS nanofibrous membranes with rich carboxyl groups for high efficient adsorption of Lanthanum(III) ions. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118216] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
23
|
Islam MA, Jacob MV, Antunes E. A critical review on silver nanoparticles: From synthesis and applications to its mitigation through low-cost adsorption by biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 281:111918. [PMID: 33433370 DOI: 10.1016/j.jenvman.2020.111918] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 05/27/2023]
Abstract
Silver nanoparticles are one of the most beneficial forms of heavy metals in nanotechnology applications. Due to its exceptional antimicrobial properties, low electrical and thermal resistance, and surface plasmon resonance, silver nanoparticles are used in a wide variety of products, including consumer goods, healthcare, catalysts, electronics, and analytical equipment. As the production and applications of silver nanoparticles containing products increase daily, the environmental pollution due to silver nanoparticles release is increasing and affecting especially the aqueous ecosystem. Silver nanoparticles can kill useful bacteria in soil and water, and bioaccumulate in living organisms even at low concentrations from 10-2 to 10 μg/mL silver can show antibacterial effect. On the other hand, the maximum silver discharge limit into freshwater is 0.1 μg/L and 3.2 μg/L for Australia and the USA, respectively. To reduce its toxic consequences and meet the regulatory guidelines, it is crucial to remove silver nanoparticles from wastewater before it is discharged into other water streams. Several technologies are available to remove silver nanoparticles, but the adsorption process using low-cost adsorbents is a promising alternative to mitigate silver nanoparticle pollution in the bulk stage. As one of the low-cost adsorbents, biochar produced from the biomass waste could be a suitable adsorbent. This review focuses on collating the latest evidence on silver nanoparticle production, applications, environmental consequences, and cost-effective technological approaches for silver removal from wastewater.
Collapse
Affiliation(s)
- Md Anwarul Islam
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Mohan V Jacob
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Elsa Antunes
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
24
|
Xing CY, Ma TF, Guo JS, Shen Y, Yan P, Fang F, Chen YP. Bacterially self-assembled encapsulin nanocompartment for removing silver from water. WATER RESEARCH 2021; 191:116800. [PMID: 33433335 DOI: 10.1016/j.watres.2020.116800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Compartmentalization can protect cells from the interference of external toxic substances by sequestering toxic products. We hypothesized that proteinaceous nanocompartments may be a feasible candidate material to be added to genetically modified bacteria for the sequestration of toxic environmental products, which would open up a new bioremediation pathway. Here, we showed that the model bacterium (Escherichia coli) with self-assembling nanocompartments can remove silver (Ag) from water. Transmission electron microscopy and energy dispersive X-ray (TEM-EDX) analysis showed that the nanocompartments combined stably with silver in vitro. In addition, when exposed to 30 μM AgNO3, the survival rate of genetically modified bacteria (with nanocompartments) was 86%, while it was just 59% in the wild-type bacteria (without nanocompartments). Label-free quantitative proteomics indicated that the nanocompartments enhanced bacterial activity by inducing the up-regulation of protein processing and secondary metabolites, and decreased their intracellular silver concentration, both of which contributed to their increased resistance to toxic silver. This study on nanocompartments has contributed to a deeper understanding of how bacteria respond to environmental stressors like heavy metal pollutants in water. The technology promises to provide a new strategy for recycling heavy metals from sewage.
Collapse
Affiliation(s)
- Chong-Yang Xing
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligence Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Teng-Fei Ma
- National Base of International Science and Technology Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Yu Shen
- National Base of International Science and Technology Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - You-Peng Chen
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligence Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
25
|
Patiño-Guillén G, Arceta-Lozano A, Falcón-Montes JA, García-Díaz E, Díaz de León JN, Vazquez-Duhalt R, Gao G, Méndez-Rojas MÁ, Campos-Delgado J. Simple in situ functionalization of carbon nanospheres. NANOTECHNOLOGY 2021; 32:085602. [PMID: 33166942 DOI: 10.1088/1361-6528/abc8b3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Functionalized carbon nanospheres have been synthesized in situ via a facile chemical vapor deposition strategy, fabricated by the pyrolysis of toluene/ethanol mixtures at different percentages (0, 1, 2, 3, 4, and 5 wt% of ethanol). The as-grown nanospheres have been characterized using transmission electron microscopy, scanning electron microscopy, Raman and Fourier transform infrared spectroscopy, x-ray diffraction, nitrogen adsorption, zeta potential measurements and x-ray photoelectron spectroscopy. Results indicate that the incorporation of ethanol in the precursor solution reflected in the presence of oxygen and hydrogen functional groups, the highest functionalized nanospheres without compromising the morphology of the sample were yielded at 3 wt% concentration. These in situ added functional groups rendered the carbon nanostructures enhancedly dispersible and stable in water, avoiding post-synthesis and harsh chemicals processing; envisaging thus applications of the nanospheres in the biomedical field where hydrophilicity of the nanomaterials is mandatory.
Collapse
Affiliation(s)
- Gerardo Patiño-Guillén
- Universidad de las Américas Puebla, Departamento de Ciencias Químico Biológicas, ExHacienda Sta. Catarina Mártir S/N, San Andrés Cholula, Puebla, 72810, Mexico
| | - Alan Arceta-Lozano
- Universidad de las Américas Puebla, Departamento de Ciencias Químico Biológicas, ExHacienda Sta. Catarina Mártir S/N, San Andrés Cholula, Puebla, 72810, Mexico
| | - Jessica A Falcón-Montes
- Universidad de las Américas Puebla, Departamento de Ciencias Químico Biológicas, ExHacienda Sta. Catarina Mártir S/N, San Andrés Cholula, Puebla, 72810, Mexico
| | - Esmeralda García-Díaz
- Benemérita Universidad Autónoma de Puebla, Centro de Química, Instituto de Ciencias, Av. San Claudio S/N, Ciudad Universitaria, Edif. IC7, Puebla, Pue. 72570, Mexico
| | - Jorge Noé Díaz de León
- UNAM, Centro de Nanociencias y Nanotecnología, Km. 107 Carretera Ensenada Tijuana, Col. Pedregal Playitas, Ensenada, Baja California, 22800, Mexico
| | - Rafael Vazquez-Duhalt
- UNAM, Centro de Nanociencias y Nanotecnología, Km. 107 Carretera Ensenada Tijuana, Col. Pedregal Playitas, Ensenada, Baja California, 22800, Mexico
| | - Guanhui Gao
- Materials Science and NanoEngineering Department, Rice University, Houston, TX 770025, United States of America
| | - Miguel Ángel Méndez-Rojas
- Universidad de las Américas Puebla, Departamento de Ciencias Químico Biológicas, ExHacienda Sta. Catarina Mártir S/N, San Andrés Cholula, Puebla, 72810, Mexico
| | - Jessica Campos-Delgado
- Universidad de las Américas Puebla, Departamento de Ciencias Químico Biológicas, ExHacienda Sta. Catarina Mártir S/N, San Andrés Cholula, Puebla, 72810, Mexico
| |
Collapse
|
26
|
Plasmonic Ag Nanoparticles Decorated Acid-Aching Carbon Fibers for Enhanced Photocatalytic Reduction of CO2 into CH3OH Under Visible-Light Irradiation. Catal Letters 2021. [DOI: 10.1007/s10562-021-03554-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Zhou S, Xu W, Hu C, Zhang P, Tang K. Fast and effective recovery of Au(III) from aqueous solution by a N-containing polymer. CHEMOSPHERE 2020; 260:127615. [PMID: 32683014 DOI: 10.1016/j.chemosphere.2020.127615] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
In this work, a N-containing polymer was successfully synthesized by one-step treatment with 3-amine-1,2,4-triazole ligands and Zn(II) using the thermal solvent method, and employed to recover Au(III) from water. The adsorption kinetics was comprehensively studied through kinetics models including pseudo-first-order model, pseudo-second-order model, moving boundary model and Weber-Morris model. It is found that the overall adsorption rate was determined by chemical adsorption, and the rate-limiting step of diffusion steps is film diffusion. Rising temperature can improve the adsorption rate significantly, making the adsorption equilibrium time be reduced from 6 h at 298 K to 2 h at 318 K. The adsorption isotherm can be described well by Sips model, indicating it is a heterogeneous adsorption. The material shows high adsorption capacity towards Au(III) up to 1073 mg/g. It shows strong affinity towards Au(III) in the mixture solutions containing Au(III), Cu(II), Zn(II), Co(II), Cd(II), Pb(II) and Ni(II) ions. The material can be easily and completely desorbed by thiourea solution and still maintains its adsorption performance only with a slight decrease after three cycles. Combined with studies on pH influence, adsorption kinetics, adsorption isotherm and XPS analysis, it can be concluded that the adsorption mechanism could be attributed to electrostatic interaction, the coordination of the Zn-OH and -C-N/-CN- with Au(III), and partial reduction of Au(III) to Au(I) by -NH group on the polymer. The N-containing polymer is an excellent candidate for Au(III) recovery efficiently and selectively from aqueous solution.
Collapse
Affiliation(s)
- Shuxian Zhou
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, Hunan, China
| | - Weifeng Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, Hunan, China.
| | - Chenghong Hu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, Hunan, China
| | - Panliang Zhang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, Hunan, China
| | - Kewen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, Hunan, China.
| |
Collapse
|
28
|
Zeng M, Yang B, Yan H, Qu H, Hu Y. Efficient recovery of Ag(I) from aqueous solution using MoS2 nanosheets: Adsorption study and DFT calculation. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
29
|
Yu H, Gu L, Wu S, Dong G, Qiao X, Zhang K, Lu X, Wen H, Zhang D. Hydrothermal carbon nanospheres assisted-fabrication of PVDF ultrafiltration membranes with improved hydrophilicity and antifouling performance. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116889] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Ponnusamy VK, Nagappan S, Bhosale RR, Lay CH, Duc Nguyen D, Pugazhendhi A, Chang SW, Kumar G. Review on sustainable production of biochar through hydrothermal liquefaction: Physico-chemical properties and applications. BIORESOURCE TECHNOLOGY 2020; 310:123414. [PMID: 32354676 DOI: 10.1016/j.biortech.2020.123414] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 05/22/2023]
Abstract
This review examines in detail the production and characteristics of biochar resulting from hydrothermal liquefaction. Specifically, the impact of feedstocks and different process parameters on the properties and yield of biochar by hydrothermal liquefaction has been thoroughly studied. Hydrothermal liquefaction derived biochars, relative to biochars from high-temperature thermochemical processes retain critical functional groups during carbonization and are therefore promising for a wide range of applications. Most of the review's efforts are to study possible hydrothermal liquefaction biochar applications in various fields, including fuel, metal and dye adsorption, pollutant reduction, animal feed, and biogas catalyst. The feasibility of biochar through the hydrothermal liquefaction process has been analysed via life-cycle assessment and energy evaluation. The article concludes with a brief discussion on possible issues and strategies for the sustainable development of hydrothermal liquefaction-based biochar.
Collapse
Affiliation(s)
- Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry & Research Center for Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City 807 Taiwan
| | - Senthil Nagappan
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumpudur, Tamil Nadu, India
| | - Rahul R Bhosale
- Department of Chemical Engineering, Qatar University, PO Box-2713, Doha, Qatar
| | - Chyi-How Lay
- Master's Program of Green Energy Sciecne and Technology, Feng Chia University, Taichung, Taiwan
| | - Dinh Duc Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; Department of Environmental Energy Engineering, Kyonggi University, Suwon, Republic of Korea
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, Suwon, Republic of Korea
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
31
|
Chang Q, Wang M, Zhang G, Zang X, Li H, Zhang S, Wang C, Wang Z. Carbon nanospheres as solid‐phase microextraction coating for the extraction of polycyclic aromatic hydrocarbons from water and soil samples. J Sep Sci 2020; 43:2594-2601. [DOI: 10.1002/jssc.201901294] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/15/2020] [Accepted: 03/26/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Qingyun Chang
- Department of ChemistryCollege of ScienceHebei Agricultural University Baoding P.R. China
| | - Mengting Wang
- Department of ChemistryCollege of ScienceHebei Agricultural University Baoding P.R. China
| | - Guijiang Zhang
- College of Science & TechnologyHebei Agricultural University Cangzhou P.R. China
| | - Xiaohuan Zang
- Department of ChemistryCollege of ScienceHebei Agricultural University Baoding P.R. China
| | - Hongda Li
- Department of ChemistryCollege of ScienceHebei Agricultural University Baoding P.R. China
| | - Shuaihua Zhang
- Department of ChemistryCollege of ScienceHebei Agricultural University Baoding P.R. China
| | - Chun Wang
- Department of ChemistryCollege of ScienceHebei Agricultural University Baoding P.R. China
| | - Zhi Wang
- Department of ChemistryCollege of ScienceHebei Agricultural University Baoding P.R. China
| |
Collapse
|
32
|
Green Synthesis of S- and N-Codoped Carbon Nanospheres and Application as Adsorbent of Pb (II) from Aqueous Solution. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2020. [DOI: 10.1155/2020/9068358] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this paper, green and facile synthesis of sulfur- and nitrogen-codoped carbon nanospheres (CNs) was prepared from the extract of Hibiscus sabdariffa L by a direct hydrothermal method. Finally, sulfur-carbon nanospheres (CNs) were used as the adsorbent to remove Pb+2 ions from aqueous solutions because of the high surface area of S-CNs from CNs and N-CNs. The synthesized nanospheres were examined by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy, transmission electron microscopy (TEM), and nitrogen adsorption-desorption isotherms. The results show spherical shapes have a particle size of up to 65 nm with a high surface area capable of absorbing lead ions efficiently. Additionally, the factors affecting the process of adsorption that include equilibrium time, temperature, pH solution, ionic intensity, and adsorbent dose were studied. The equilibrium removal efficiency was studied employing Langmuir, Freundlich, and Temkin isotherm forms. The kinetic data were analyzed with two different kinetic models, and both apply to the adsorption process depending on the values of correlation coefficients. The thermodynamic parameters including Gibbs free energy (ΔG°), standard enthalpy change (ΔH°), and standard entropy change (ΔS°) were calculated for the adsorption process.
Collapse
|
33
|
Nano-carbons in biosensor applications: an overview of carbon nanotubes (CNTs) and fullerenes (C60). SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2404-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
34
|
Zhou S, Hu C, Xu W, Mo X, Zhang P, Liu Y, Tang K. Fast recovery of Au (III) and Ag(I) via amine‐modified zeolitic imidazolate framework‐8. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shuxian Zhou
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 China
| | - Chenghong Hu
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 China
| | - Weifeng Xu
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 China
| | - Xiaohui Mo
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 China
| | - Panliang Zhang
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 China
| | - Yu Liu
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 China
| | - Kewen Tang
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 China
| |
Collapse
|
35
|
Mu C, Zhang L, Zhang X, Zhong L, Li Y. Selective adsorption of Ag (Ⅰ) from aqueous solutions using Chitosan/polydopamine@C@magnetic fly ash adsorbent beads. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:120943. [PMID: 31400716 DOI: 10.1016/j.jhazmat.2019.120943] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/09/2019] [Accepted: 07/26/2019] [Indexed: 05/21/2023]
Abstract
A Chitosan/polydopamine@C@magnetic fly ash (CPCMFA) adsorbent bead was prepared for adsorption of Ag (Ⅰ) in aqueous solutions and exhibited good selectivity for Ag (Ⅰ) ion. To investigate its adsorption behaviors, equilibrium, kinetic and selective studies were conducted through batch experiments. Additionally, the influence of the pH value was also evaluated. In addition, the nature, composition, morphology, and magnetic property of the prepared adsorbent beads were characterized by Fourier transform-infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) analysis, thermogravimetric-differential scanning calorimetry (TG-DSC) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating-sample magnetometry (VSM). The freeze-dry form of CPCMFA also exhibited high adsorption capacity and selectivity for Ag (Ⅰ), with a maximum adsorption capacity of 57.02 mg/g at pH 4 and 30 °C. The experimental data were well described by the Langmuir isotherm and elovich kinetic models. The thermodynamics parameters, ΔH = 10.653 kJ/mol, ΔS = 96.63 J/mol K and ΔG < 0, demonstrate that the adsorption of Ag (Ⅰ) on the freeze-dry form adsorbent is spontaneous and endothermic. Moreover, regeneration studies showed the high recyclability of the adsorbent, which after five cycles of use it was still able to adsorb 95.7% of the amount adsorbed by the fresh adsorbent.
Collapse
Affiliation(s)
- Chaoqun Mu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, China
| | - Liang Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, China.
| | - Xiaomin Zhang
- College of Materials and Mineral Resources, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, China.
| | - Lvling Zhong
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, China
| | - Yue Li
- College of Materials and Mineral Resources, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, China
| |
Collapse
|
36
|
Hegde S, Kumar A, Hegde G. Synthesis of Sustainable Carbon Nanospheres from Natural Bioresources and Their Diverse Applications. ACS SYMPOSIUM SERIES 2020. [DOI: 10.1021/bk-2020-1353.ch016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Supriya Hegde
- Centre for Nano-materials and Displays, B.M.S. College of Engineering, Bull Temple Road, Basavanagudi, Bengaluru 560019, India
| | - Anuj Kumar
- Natural Resources Institute Finland (Luke)/Luonnonvarakeskus (Luke), Joensuu Unit, Yliopistokatu 6 80100, JOENSUU, Finland
| | - Gurumurthy Hegde
- Centre for Nano-materials and Displays, B.M.S. College of Engineering, Bull Temple Road, Basavanagudi, Bengaluru 560019, India
| |
Collapse
|
37
|
Adsorption of Ag(I) ions from wastewaters using poly(2-aminothiazole): kinetic and isotherm studies. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-03073-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Moradi E, Ebrahimzadeh H, Mehrani Z, Asgharinezhad AA. The efficient removal of methylene blue from water samples using three-dimensional poly (vinyl alcohol)/starch nanofiber membrane as a green nanosorbent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:35071-35081. [PMID: 31673970 DOI: 10.1007/s11356-019-06400-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
In the present study, a simple, fast, and economical method was introduced to eliminate methylene blue from dye wastewater water using a non-toxic, inexpensive, stable, and efficient adsorbent. The poly (vinyl alcohol) (PVA)/starch hydrogel nanofiber membrane with high surface area and the three-dimensional structure was fabricated in water via electrospinning strategy, and the cross-linking reaction was done by thermal treatment. The characterization of the nanofibers was carried out using Fourier-transform infrared spectrometer (FT-IR) and field-emission scanning electron microscopy (FE-SEM), and the cross-linked PVA/starch nanofiber was applied as a membrane for the removal of methylene blue (MB). The recovery of MB was performed by methanol solution containing 5% (v/v) HCl. Langmuir isotherm model successfully described the adsorption of MB on nanosorbent, and the maximum adsorption capacity (qm) was 400 mg g-1. Also, the kinetic of adsorption was well fitted by the pseudo-second-order model. In this study, because of the high stability of fabricated membrane (based on the tensile testing), it can be used as a filter for the fast separation of MB (cationic dye) and methyl orange (MO, anionic dye). Graphical abstract.
Collapse
Affiliation(s)
- Ebrahim Moradi
- Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Homeira Ebrahimzadeh
- Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, 1983969411, Iran.
| | - Zahra Mehrani
- Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Ali Akbar Asgharinezhad
- Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, 1983969411, Iran
| |
Collapse
|
39
|
Huang QS, Wu W, Wei W, Ni BJ. Polyethylenimine modified potassium tungsten oxide adsorbent for highly efficient Ag + removal and valuable Ag 0 recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:1048-1056. [PMID: 31539937 DOI: 10.1016/j.scitotenv.2019.07.328] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
Elemental Ag0 is well known for its remarkable catalytic and antibacterial properties, thus the regeneration of valuable Ag0 metal from Ag+ wastewater is of great significance. In this study, a novel polyethylenimine (PEI) modified potassium tungsten oxide (N-K2W4O13) adsorbent was prepared for Ag+ removal and reduction to Ag0 using glutaraldehyde as crosslinking agent. XPS and FT-IR spectra verified PEI successfully anchored on the surface O and W atoms of K2W4O13 through aldehyde bridges. The content of PEI in N-K2W4O13 was calculated as 8.74wt% by TG curve. A heterogeneous PEI coating was observed in the SEM and TEM images. The N-K2W4O13 exhibited larger Ag+ uptake (48.25mg/g) than the raw K2W4O13 (42.50mg/g) though required a longer equilibrium time. This was due to the combined results of strong chelation and weak electrostatic repulsion that meanwhile occurring on the positive-charged surface of N-K2W4O13. The maximum Ag+ uptake on N-K2W4O13 was 72.5mg/g, which was larger than many of the reported adsorbents. Furthermore, the prepared N-K2W4O13 displayed good anti-interference toward background ions (Na+, K+) and hold a stable Ag+ removal (>95%) after five runs of recycling tests. The mechanism studies elucidated that NH/N groups from the PEI modified N-K2W4O13 mainly accounted for the Ag+ adsorption and Ag0 recovery in the adsorption-reduction process. Ion-exchange between Ag+ and K+ from the N-K2W4O13 lattice also occurred. This work provided a facile method to synthesize a promising adsorbent for Ag+ wastewater remediation and valuable Ag0 recovery.
Collapse
Affiliation(s)
- Qi-Su Huang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Wei Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Wei Wei
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Bing-Jie Ni
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
40
|
Monodispersed Zerovalent Iron Nanoparticles Decorated Carbon Submicrospheres for Enhanced Removal of DDT from Aqueous Solutions. ChemistrySelect 2019. [DOI: 10.1002/slct.201902837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Liu C, Wang Q, Jia F, Song S. Adsorption of heavy metals on molybdenum disulfide in water: A critical review. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111390] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
42
|
Wang Y, Li R, Liu W, Cheng L, Jiang Q, Zhang Y. Exploratory of immobilization remediation of hydroxyapatite (HAP) on lead-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:26674-26684. [PMID: 31297709 DOI: 10.1007/s11356-019-05887-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
This study was aimed to investigate the adsorption and fixation effects of hydroxyapatite (HAP) on lead-contaminated soil. According to the experimental results, the microstructure of hydroxyapatite was observed by a scanning electron microscope (SEM). Fourier transform infrared spectroscopy (FTIR) showed that OH- and PO43- were the main functional groups in HAP. Optimum adsorption conditions of Pb2+ were obtained: 0.2 g/L, adsorbent; initial solution pH of 5.5; and contact time of 120 min. The kinetic adsorption experiments were carried out with the initial lead solution concentrations of 50 mg/L, 150 mg/L, and 250 mg/L. The kinetics fitting was consistent with the pseudo-second-kinetic model, which indicated that the main process of HAP adsorption of Pb2+ was mainly controlled by surface reactions and chemical reactions. The adsorption isotherms had a satisfactory fit with the Langmuir model, which indicated that the adsorption of Pb2+ by HAP was a monolayer adsorption. According to the experimental results, ion exchange, phosphorus supply, precipitate, and complexation are the main immobilization mechanisms for soil remediation with HAP. In remediation of Pb2+-contaminated soil experiments, the adsorption rate of Pb2+ by HAP was significantly higher than that of non-HAP soil with increasing immobilization days. With the increasing addition of HAP, the weak acid soluble (WA), reducible (RED), oxidizable (OX), and water soluble (WS) are transformed into residue (RES). The application of HAP in contaminated soil effectively reduced the leachable and exchangeable Pb2+, indicating that HAP is a potential material for remediating environmental pollution with Pb2+.
Collapse
Affiliation(s)
- Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ruizhen Li
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Wenzhu Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Li Cheng
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Qun Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
43
|
Cao X, Ma C, Zhao J, Guo H, Dai Y, Wang Z, Xing B. Graphene oxide mediated reduction of silver ions to silver nanoparticles under environmentally relevant conditions: Kinetics and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 679:270-278. [PMID: 31082600 DOI: 10.1016/j.scitotenv.2019.05.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
We systematically investigated the reduction mechanisms and reduction kinetics of silver ions (Ag ions) by graphene oxide (GO) under ambient condition. UV-vis spectroscopy, transmission electron microscopy, and electron diffraction results revealed that silver nanoparticles (Ag NPs) could be formed from aqueous Ag ions in the presence of GO at pH 8 under light. Formation of Ag NPs increased with increasing pH (7.4, 8, and 9) and temperature (from 30 to 90); however, the increasing ionic strength and dissolved oxygen reduced the Ag NPs yield. The Ag ions reduction by GO followed pseudo-first-order kinetics under both dark and light, and light irradiation significantly accelerated the Ag NPs formation induced by GO. The phenolic-OH on GO was the dominating electron donator for Ag ion reduction in dark. Exposure to light increased the concentration of phenolic-OH on the GO surface, thereby stimulating the reduction rate of Ag ions by GO. In addition, the light induced electron-hole pairs on GO surface and light activated oxygen-centered radicals on GO surface promoted the reduction of adsorbed Ag ions by GO. Our findings provide important information for the role of GO in reducing Ag ions to Ag NPs in aquatic environments, and shed light on understanding the environmental fate and risk of both Ag ions and GO materials.
Collapse
Affiliation(s)
- Xuesong Cao
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Chuanxin Ma
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Huiyuan Guo
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Yanhui Dai
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
44
|
Carbon microspheres prepared from the hemicelluloses-rich pre-hydrolysis liquor for contaminant removal. Carbohydr Polym 2019; 213:296-303. [DOI: 10.1016/j.carbpol.2019.02.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/03/2019] [Accepted: 02/09/2019] [Indexed: 12/18/2022]
|
45
|
Cho SY, Kim TY, Sun PP. Recovery of silver from leachate of silicon solar cells by solvent extraction with TOPO. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.01.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
A novel magnetic biochar/MgFe-layered double hydroxides composite removing Pb2+ from aqueous solution: Isotherms, kinetics and thermodynamics. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.01.064] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
He X, Büchel R, Figi R, Zhang Y, Bahk Y, Ma J, Wang J. High-performance carbon/MnO 2 micromotors and their applications for pollutant removal. CHEMOSPHERE 2019; 219:427-435. [PMID: 30551109 DOI: 10.1016/j.chemosphere.2018.12.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/02/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
The wide applications of particulate micromotors in practice, especially in the removal of environmental pollutants, have been limited by the low production yields and demand on high concentration of fuel such as H2O2. Carbon/MnO2 micromotors were made hydrothermally using different carbon allotropes including graphite, carbon nanotube (CNT), and graphene for treatment of methylene blue and toxic Ag ions. The obtained micromotors showed high speed of self-propulsion. The highest speed of MnO2-based micromotors to date was observed for CNT/MnO2 (>2 mm/s, 5 wt% H2O2, 0.5 wt% surfactant). Moreover, different from previous studies, even with low H2O2 concentration (0.5 wt%) and without surfactant addition, the micromotors could also be well dispersed in water by the O2 stream released from their reaction with H2O2. The carbon/MnO2 micromotors removed both methylene blue (>80%) and Ag ions (100%) effectively within 15 min by catalytic decomposition and adsorption. Especially high adsorption capacity of Ag (600 mg/g) was measured on graphite/MnO2 and graphene/MnO2 micromotors.
Collapse
Affiliation(s)
- Xu He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China; Institute of Environmental Engineering, ETH Zurich, Schafmattstrasse 6, 8093, Zurich, Switzerland
| | - Robert Büchel
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092, Zurich, Switzerland
| | - Renato Figi
- Advanced Analytical Technologies Laboratory, EMPA, Überlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Yucheng Zhang
- Electron Microscopy Center, EMPA, Überlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Yeonkyoung Bahk
- Institute of Environmental Engineering, ETH Zurich, Schafmattstrasse 6, 8093, Zurich, Switzerland
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zurich, Schafmattstrasse 6, 8093, Zurich, Switzerland; Advanced Analytical Technologies Laboratory, EMPA, Überlandstrasse 129, 8600, Dübendorf, Switzerland.
| |
Collapse
|
48
|
Wu X, Jiang W, Luo Y, Li J. Poly(aspartic acid) surface modification of macroporous poly(glycidyl methacrylate) microspheres. J Appl Polym Sci 2019. [DOI: 10.1002/app.47441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Xiaoyuan Wu
- College of Chemical Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| | - Wenwei Jiang
- College of Chemical Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| | - Yu Luo
- College of Chemical Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| | - Jingjing Li
- College of Chemical Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| |
Collapse
|
49
|
Dowlatabadi M, Jahangiri M, Farhadian N. Prediction of chlortetracycline adsorption on the Fe3O4 nanoparticle using molecular dynamics simulation. J Biomol Struct Dyn 2019; 37:3616-3626. [DOI: 10.1080/07391102.2018.1521746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Maryam Dowlatabadi
- Faculty of Chemical & Petroleum and Gas Engineering, Semnan University, Semnan, I. R. Iran
| | - Mansour Jahangiri
- Faculty of Chemical & Petroleum and Gas Engineering, Semnan University, Semnan, I. R. Iran
| | - Nafiseh Farhadian
- Faculty of Engineering, Chemical Engineering Department, Ferdowsi University of Mashhad, I. R. Iran
| |
Collapse
|
50
|
Zhang H, Ke H, Wang Y, Li P, Huang C, Jia N. 3D carbon nanosphere and gold nanoparticle-based voltammetric cytosensor for cell line A549 and for early diagnosis of non-small cell lung cancer cells. Mikrochim Acta 2018; 186:39. [PMID: 30569315 DOI: 10.1007/s00604-018-3160-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 12/09/2018] [Indexed: 02/07/2023]
Abstract
An electrochemical cytosensor for the detection of the non-small-cell lung cancer cell line A549 (NSCLC) had been developed. A microwave-hydrothermal method was employed to prepare monodisperse colloidal carbon nanospheres (CNSs). Gold nanoparticles (AuNPs) were placed on the surface of the colloidal CNSs by self-assembly to obtain 3D-structured microspheres of the type CNS@AuNP. The results of an MTT assay show the microspheres to possess good biocompatibility. The CNS@AuNP nanocomposite was then placed, in a chitosan film, on a glassy carbon electrode (GCE). The voltammetric signals and detection sensitivity are significantly enhanced owing to the synergistic effect of CNSs and AuNPs. A cytosensor was then obtained by immobilization of antibody against the carcinoembryonic antigen (which is a biomarker for NSCLC) on the GCE via crosslinking with glutaraldehyde. Hexacyanoferrate is used as an electrochemical probe, and the typical working voltage is 0.2 V (vs. SCE). If exposed to A549 cells, the differential pulse voltammetric signal decreases in the 4.2 × 10-1 to 4.2 × 10-6 cells mL-1 concentration range, and the detection limit is 14 cells mL-1 (at S/N = 3). Graphical abstract Schematic presentation of design strategy and fabrication process of the electrochemical cytosensor for A549 cells. (CNS: carbon nanospheres; GA: glutaraldehyde; PEI: polyethyleneimine; AuNPs: gold nanoparticles; BSA: Bovine serum albumin).
Collapse
Affiliation(s)
- Huan Zhang
- The Education Ministry Key Laboratory of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Department of Chemistry, Shanghai Normal University, Shanghai, 200234, China
| | - Hong Ke
- The Education Ministry Key Laboratory of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Department of Chemistry, Shanghai Normal University, Shanghai, 200234, China
| | - Yinfang Wang
- The Education Ministry Key Laboratory of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Department of Chemistry, Shanghai Normal University, Shanghai, 200234, China
| | - Pengwei Li
- The Education Ministry Key Laboratory of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Department of Chemistry, Shanghai Normal University, Shanghai, 200234, China
| | - Chusen Huang
- The Education Ministry Key Laboratory of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Department of Chemistry, Shanghai Normal University, Shanghai, 200234, China
| | - Nengqin Jia
- The Education Ministry Key Laboratory of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Department of Chemistry, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|